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1 Introduction

The general concept of a Berwald connection re-
lates to a kind of linearization of an arbitrary non-
linear connection on a vector bundle. Yet, one
will encounter this notion almost exclusively in
the literature on Finsler geometry, which is a gen-
eralization of Riemannian geometry. Recently, a
number of authors have extensively used a co-
ordinate free calculus of derivation operators in
the study of a variety of questions concerning the
equations modelling Newtonian and Lagrangian
mechanics (see the final section for a couple of
examples). The calculus in question appears to
be closely related to a Berwald-type connection.
Motivated by this, we have carried out an exten-
sive study [5] of the freedom in constructing a
Berwald-type connection in time-dependent me-
chanics, leading to an optimal way of restricting
this freedom. The results of this study will be
briefly outlined here.

Recall first the definition of a linear connection
on a bundle π : A → B. It is an IR-bilinear map
D : X (B)× Sec(π) → Sec(π), which satisfies the
following requirements with respect to multipli-
cation by functions f on B:

DX(fσ) = fDXσ + X(f)σ and DfXσ = fDXσ.

[X (B) denotes the set of vector fields on B and
elements of Sec(π), called sections of π, are maps
σ : B → A with the property π ◦ σ = IB (the
identity map on B).]

The kernel of the tangent map Tπ is known as
the vertical distribution V π. A non-linear con-
nection on π is a horizontal distribution Hπ, that
is to say a pointwise construction of a complemen-
tary space, yielding a direct sum decomposition
of the tangent bundle TA of A: TA ≡ V π⊕Hπ.
The projection operator PH of tangent vectors to
A onto their horizontal component, contains all
information which defines Hπ. If (xi) are coor-
dinates on B and (xi, vα) coordinates on A, PH

is of the form PH = dxi ⊗ ( ∂
∂xi − Γα

i
∂

∂vα ), where
the functions Γα

i (x, v) are called connection coef-
ficients.

The equations of Newtonian mechanics are
second-order differential equations (Sodes). In
the autonomous case, ẋi = vi, v̇i = f i(x, v)
say, their geometrical representation is a vector
field Γ = vi ∂

∂xi + f i ∂
∂vi on the tangent bun-

dle τ : TM → M . The reason why the the-
ory of connections is important for the study of
Sodes is that each Sode on TM comes naturally
equiped with a horizontal distribution, defined by
PH = 1

2 (ITM −LΓS), where S = dxi ⊗ ∂
∂vi is the

canonical vertical endomorphism on TM . The
connection coefficients of a Sode-connection are
given by: Γi

j = − 1
2

∂fi

∂vj .

The main part of this note is concerned with time-
dependent Sodes, for which the natural geomet-
ric framework is that of a vector field

Γ =
∂

∂t
+ vi ∂

∂xi
+ f i(t, x, v)

∂

∂vi

on the first jet bundle J1π of a bundle π : E → IR.
Again, Γ determines a non-linear connection, this
time on the bundle π0

1 : J1π → E, with projector
PH = dt ⊗ ( ∂

∂t − Γi
0

∂
∂vi ) + dxi ⊗ ( ∂

∂xi − Γj
i

∂
∂vj ),

where Γi
j = − 1

2
∂fi

∂vj and Γi
0 = −(f i + Γi

jv
j).

2 Autonomous systems

Given a horizontal distribution on TM , the direct
sum decomposition of each tangent space enables
us to write for each ξ = ξi

1
∂

∂xi + ξi
2

∂
∂vi ∈ X (TM):

ξ = ξi
1

(
∂

∂xi
− Γj

i

∂

∂vj

)
+

(
ξi
2 + ξj

1Γ
i
j

) ∂

∂vi
.

Considering the pullback bundle τ∗τ : τ∗(TM) →
TM , whose sections are called vector fields along
τ and constitute a C∞(TM)-module denoted by
X (τ), we see that ξ can be regarded as originat-
ing from two vector fields along τ , via a process
of horizontal and vertical lift, respectively. Ex-
plicitly: ξ = ξH

H + ξV
V , with ξH = ξi

1
∂

∂xi and

ξV =
(
ξi
2 + ξj

1Γ
i
j

)
∂

∂xi . The Berwald-type connec-
tion on the bundle τ∗τ , associated to the given



horizontal distribution, is the linear connection
defined by: ∀ξ ∈ X (TM), ∀X ∈ X (τ),

DξX = [PH(ξ), XV ]
V

+ [PV (ξ), XH ]
H
.(1)

As Crampin [2] has shown, this is the unique con-
nection which has the following properties: (i) the
restriction to fibres TxM is the canonical com-
plete parallelism; (ii) parallel translation along a
horizontal curve is given by a rule of Lie trans-
port.

A point to be observed here is that most other ac-
counts of Berwald-type connections are situated
within the context of Finsler-type connections
(see e.g. [7]). These consist of a pair (PH ,∇),
where ∇ is a linear connection on Tτ , also called
linear connection on TM , i.e. ∇ξ acts on vector
fields η ∈ X (TM), rather than on elements of
X (τ). The pair is said to be a Finsler-type con-
nection if ∇PH = ∇J = 0, where J is the almost
complex structure related to the given horizon-
tal distribution. Given a horizontal distribution
and a linear connection D on τ∗τ , a Finsler pair
(PH ,∇) can be constructed by putting:

∇ξX
H = (DξX)H

, ∇ξX
V = (DξX)V

.(2)

If D is the Berwald-type connection on τ∗τ as
defined by (1), the ‘doubling procedure’ (2) gives
rise to the corresponding Berwald-type connec-
tion on Tτ . The torsion T of a connection on Tτ
is the skew-symmetric type (1,2) tensor field de-
fined by: T (ξ, η) = ∇ξη − ∇ηξ − [ξ, η]. Via the
decomposition into horizontal and vertical lifts,
it gives rise to six tensor fields along τ . An-
other characteristic feature of the Berwald-type
connection coming from a Sode horizontal dis-
tribution is that it has maximally vanishing tor-
sion: all of these torsion tensors vanish except for
one, namely R(X, Y ) = T (XH , Y H)

V
, which is

in fact related to the curvature of the horizontal
distribution.

3 The time-dependent case

With π0
1 : J1π → E as described before, and

τE : TE → E, the pullback bundle π0
1
∗(τE) takes

over the role of τ∗τ in the previous section. The
module X (π0

1) of sections of this bundle has a
canonically defined element, namely the ‘total
time derivative’ operator T = ∂

∂t + vi ∂
∂xi . We

have the decomposition:

X (π0
1) ≡ X (π0

1)⊕ 〈T〉,(3)

where sections in X (π0
1) are annihilated by dt.

Likewise, if a horizontal distribution on J1π is

given, we have

X (J1π) ≡ X (π0
1)

H ⊕X (π0
1)

V ⊕ 〈TH〉.(4)

Every vector field ξ ∈ X (J1π) can then be de-
composed in one of the following ways:

ξ = ξH
H + ξV

V

= ξH

H

+ ξV

V

+ 〈ξ, dt〉TH ,

with ξH , ξV ∈ X (π0
1). The one-dimensional dis-

tribution spanned by T, respectively TH , is the
source of a certain freedom or ambiguity, when
one tries to carry over the constructions of the
autonomous picture to the present framework. In
fact, one can find three different constructions of a
linear connection associated to a time-dependent
Sode in the literature. They were independently
derived by Massa and Pagani [4], Byrnes [1] and
Crampin et al [3]. The first two live on J1π,
whereas the third one is a connection on π0

1
∗(τE).

In [5] we have investigated in great detail all as-
pects of the differences between these construc-
tions. We will not enter into all these aspects
here, but merely highlight a few features of what
the above mentioned freedom has to offer when
one constructs connections of Finsler or Berwald
type in the time-dependent set-up.

Let D be a linear connection on π0
1
∗(τE), which

we assume to have the property:

Dξ(X (π0
1)) ⊂ X (π0

1) ∀ξ ∈ X (J1π).(5)

Let further PH represent a given horizontal distri-
bution on J1π. The mechanism expressed by (2)
for constructing a Finsler pair in the autonomous
case, in a way uses the connection coefficients of
D twice: once for vertical and once for horizontal
vector fields. In the present framework, we can
do the same, except that there is an extra dimen-
sion now, which leaves us the freedom of selecting
an arbitrary type (1,1) tensor field K on J1π. To
be precise, the following rules define a linear con-
nection ∇ on J1π, associated to the given D and
PH (? stands for both H and V ):

∇ξX
?

= (DξX)
?

, ∇ξTH = K(ξ).(6)

It follows from (5) that ∇ has the properties

∇ξ(X (π0
1)

?

) ⊂ X (π0
1)

?

,(7)

and

J(∇ξX
H

) = ∇ξX
V

, J(∇ξX
V

) = −∇ξX
H

,(8)

or equivalently ∇ξJ |X (J1π) = 0 (where X (J1π) ≡
X (π0

1)
H ⊕X (π0

1)
V

). Here, J is the degenerate al-
most complex structure defined by J(X

H

) = X
V

,
J(X

V

) = −X
H

and J(TH) = 0. A pair (PH ,∇)
consisting of a horizontal distribution PH and a



linear connection ∇ on J1π with the properties
(7) and (8) is what we call a connection of Finsler
type here. One can prove that equivalent charac-
terizations of the properties (7) and (8) are:{

∇ξPH |X (J1π) = 0
∇ξJ |X (J1π) = 0

or

{
∇ξPH |X (J1π) = 0
∇ξS|X (J1π) = 0

where PH is defined by PH = PH + dt⊗TH , and
S = (dxi − vidt) ⊗ ∂

∂vi is the canonical vertical
endomorphism on J1π.

Conversely, if (PH ,∇) is a Finsler pair on J1π,
we can define a linear connection on π0

1
∗(τE) by

putting

DξX =(∇ξX
H

)
H

=(∇ξX
V

)
V
, DξT = L(ξ),(9)

where L is a C∞(J1π)-linear map from vector
fields on J1π to sections of X (π0

1). Any such D
will have the property (5). Apart from the ar-
bitrariness expressed by the tensor fields K and
L in (6) and (9), it is clear that the essence of
a Finsler-type connection on J1π in fact comes
from a connection on π0

1
∗(τE). In [5], various

aspects have been considered which can give an
indication on natural ways to fix the remaining
arbitrariness. We briefly sketch one here.

Tensor fields of type (1,1) on J1π can be con-
structed from tensor fields along π0

1 . If fact, all
tensor fields of interest considered so far, such as
PH , J and S, come from the identity tensor on
X (π0

1) via appropriate lifting procedures. If U is
an arbitrary type (1,1) tensor field along π0

1 , we
distinguish the following four ways for lifting it to
a tensor field on J1π:

UH;H(XH) = U(X)H
, UH;H(X

V

) = 0,

UH;V (XH) = U(X)V
, UH;V (X

V

) = 0,

UV ;H(XH) = 0, UV ;H(X
V

) = U(X)
H

,

UV ;V (XH) = 0, UV ;V (X
V

) = U(X)
V

.

Then, any type (1,1) tensor field U on J1π has a
unique decomposition of the form:

U = UH;H
1 + UH;V

2 + UV ;H
3 + UV ;V

4 ,(10)

where U1 is a general tensor field along π0
1 , U2

has the property U2(X (π0
1)) ⊂ X (π0

1), U3(T) = 0
and U4 has the properties of both U2 and U3. If
(PH ,∇) is a Finsler pair and D is a corresponding
connection on π0

1
∗(τE), one would hope that ∇-

invariance of U gets translated into D-invariance
of the Ui. One can prove that

∇ξU = 0 ⇐⇒

{
DξU1(X) = 0, DξU2(X) = 0,

DξU3(X) = 0, DξU4(X) = 0,

∀X ∈ X (π0
1), X ∈ X (π0

1), provided that

∇ξTH = (DξT)H
.(11)

A natural way to restrict the as yet arbitrary
tensor field K in (6) therefore is to put K(ξ) =
(DξT)H . This has the additional effect that the
lifting procedure (6) can be cast into one compact
formula, namely: ∀ξ, η ∈ X (J1π),

∇ξη = (DξηH)H + (DξηV )V
.(12)

Observe, however, that due to the appearance of
an X in the covariant derivatives of U3 and U4,
the restriction (11) is not sufficient to ensure that
∇-invariance of U is equivalent to D-invariance of
the Ui. For that, we need in addition that

DξT ∈ 〈T〉.(13)

Again, this is a very natural additional restric-
tion to impose: taken in conjunction with (5),
it guarantees that the connection D preserves the
decomposition (3) of X (π0

1). Moreover, in view of
(11), we then further have that ∇ also preserves
the decomposition (4).

Let us now come to the issue of defining Berwald-
type connections in the time-dependent frame-
work. Our first preoccupation in [5] was to ob-
tain a scheme in which the three existing ver-
sions [1, 3, 4] of a linear connection associated
to a Sode, referred to before, can rightly be
termed connections of Berwald type. This can
be achieved if we do not impose restrictions such
as (11) and (13) and in fact treat all connections
which only differ in their selection of a tensor K
or L, as belonging to the same equivalence class.
Guided by the definition (1) for the autonomous
case, we then come to the following concept.

Definition A linear connection D on π0
1
∗(τE)

with the property (5) belongs to the class of
Berwald-type connections with respect to a given
horizontal distribution, if it satisfies

DξX = [PH(ξ), X
V

]
V

+ [PV (ξ), X
H

]
H
,(14)

for all X ∈ X (π0
1). A Finsler pair (PH ,∇) on J1π

is said to be of Berwald type if it is lifted via (6)
from a connection on π0

1
∗(τE) with the property

(14).

In [5], we have shown that this definition meets
the purpose and that the terminology is justified
by the fact that such connections all share the two
properties which were characteristic for Berwald-
type connections as analysed by Crampin [2] in
the autonomous case (cf. Section 2). We further
have explained from this perspective in what re-
spect the constructions in [1, 3, 4] precisely differ.
One of the distinguishing features, for example,
has to do with different torsion properties, but
we will not enter into such details here. Instead,
let us come immediately to a kind of optimal se-
lection of a representative of the class of Berwald-
type connections.



The formula (14) says nothing about the action
of D on T, and the action of ∇ on TH . Being left
with this freedom, the most obvious choice is to
take

DξT = 0 and ∇ξTH = 0.(15)

This double choice clearly meets the two natural
restrictions (11) and (13) identified before. It has
the additional appealing feature that there exists
a direct construction formula for the complete ac-
tion of this D (which perfectly matches the defi-
nition (1) of the autonomous case). We have:

DξX =[PH(ξ), X
V

]
V
+[PV (ξ), X

H

]
H
+ξ(〈X, dt〉)T.

Note that the corresponding lifted connection ∇
on J1π, in the particular case that the horizontal
distribution is the one canonically associated to a
Sode, is precisely the connection constructed by
Massa and Pagani [4].

As a final remark, one can verify that the
above optimal selection of a representative for
the Berwald class does not insist on having maxi-
mally vanishing torsion tensor fields along π0

1 . In
the special case of a Sode horizontal distribu-
tion, the torsion components which do not vanish
are not only those related to the curvature of the
horizontal distribution (R(X,Y ) = T (X

H

, Y
H

)
V

and RT(X) = T (TH , X
H

)
V
), but also BT =

T (TH , X
V

)
H

which turns out to be minus the
identity on X (π0

1).

4 Applications

The vertical and horizontal covariant derivative
operators which come with the Berwald-type con-
nection associated to a Sode, play an important
role in the characterization of a variety of qualita-
tive features of that Sode. An important role in
the theory of Sodes is played by the so-called
Jacobi endomorphism. It can be viewed as a
C∞(J1π)-linear map Φ : X (π0

1) → X (π0
1), and it

completely determines the curvature of the Sode
connection, as well as the torsion of the associ-
ated Berwald-type connection. In fact we have
Φ = −RT. Very often, it is appropriate to choose
a local basis of vector fields along π0

1 , which is
adapted to the structure of Φ (for example a basis
of eigenvector fields of Φ). The covariant deriv-
ative operators then allow to replace analytical
computations by intrinsic, geometrical ones. We
briefly sketch two of such applications.

A Sode is said to be linearizable if, by an ap-
propriate coordinate change, it can be cast in
the form ẋi = vi, vi = Ai

j(t)v
j + Bi

j(t)x
j +

ai(t). From the curvature of the Berwald-type
connection (curv(ξ, η)X = DξDηX − DηDξX −

D[ξ,η]X), another tensor field of interest can be
detected, namely a type (1,3) tensor θ, defined
by θ(X,Y )Z = curv(X

V

, Y
H

)Z. It turns out
(see [3]) that necessary and sufficient conditions
for the linearizability of a given Sode are that
θ = 0 and D

X
H Φ(Y ) = D

X
V Φ(Y ) = 0 for all

X,Y ∈ X (π0
1). Such intrinsic conditions can be

tested on the given data in any coordinates.

Another appliction is the so-called inverse prob-
lem of the calculus of variations. This con-
cerns the question whether, for a given Sode
ẍi − f i = 0, a nonsingular symmetric type (0,2)
tensor field g exists, such that the equivalent sys-
tem gij(ẍj − f j) = 0 is a set of Euler-Lagrange
equations. The conditions for the existence of
such metric tensor, known as the Helmholtz con-
ditions, can be cast in the following coordinate
free way: DΓg = 0, D

Z
V g(X,Y ) = D

Y
V g(X,Z)

and g(Φ(X), Y ) = g(Φ(Y ), X). It was shown in
[6] that the calculus originating from the Berwald-
type connection makes it possible to give a full
geometrical treatment of the integrability condi-
tions of these equations for g.
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