
Adjoint symmetries, separability and volume formsW. SarletDepartment of Mathematical Physics and AstronomyUniversity of Ghent, Krijgslaan 281, B-9000 Ghent, BelgiumA. RamosDepartamento de F��sica Te�oricaUniversidad de Zaragoza, 50009 Zaragoza, SpainAbstract.Two results of a preceding paper are generalized. The �rst is aboutcharacterizing to what extent preservation of the energy function of a Lagrangianof mechanical type turns dynamical symmetries into Noether symmetries. The gen-eralization here is twofold: polynomial integrals of arbitrary degree are consideredand the kinetic energy can have an arbitrary metric. The second result (here againfor arbitrary metrics) is about the way separation variables for the Hamilton-Jacobiequation, when they are ensured to exist by Eisenhart's theorem, can be computed,in principle, from a factorization property of a certain volume form. The main nov-elty in the way the generalizations are discussed is that the emphasis is shifted fromsymmetries to the dual concept of adjoint symmetries.1 IntroductionIn a preceding paper [21], two aspects of the practical use of symmetries of Lagrangiansystems were scrutinized: one was about conditions which will force a general dynamicalsymmetry to fall into the class of Noether symmetries; the other one was about the wayseparation variables for the Hamilton-Jacobi equation (if they exist) could be obtainedfrom calculations involving the symmetry generators. Both of these investigations wereprompted by certain potentially misleading statements in the work of others. To be moreprecise, for the �rst aspect, the idea was to show why in [9, 10, 11] calculations originatingfrom the determining equations of general symmetries and thought not to be making useof Noether's theorem, turned out to give rise to Noether symmetries anyway. For thesecond aspect, there was need for an explanation why certain formal manipulations onthe characteristic equations of the symmetry generators in the work of the same authors,can indeed produce separation variables under the right circumstances.By the nature of the problems posed in [21], the emphasis was very much on computationalaspects. For a start, therefore, attention was restricted to Lagrangians whose kinetic1



energy term has the standard Euclideanmetric, and the whole analysis was about integralsof the motion which are polynomial functions of the velocities. Let us recall the two mainconclusions, formulated as propositions in [21].It is well known that Noether symmetries of autonomous Lagrangian systems preservethe energy function, so this is a condition which is the most likely candidate for havingthe e�ect of forcing symmetry generators towards matching the requirements of Noethersymmetries. Symmetry generators were considered whose leading components are polyno-mials of odd degree and are at most of degree three in the velocities (so that correspondingNoether �rst integrals, if any, are bound to be even degree polynomials of at most degreefour). Now, conditions for a vector �eld Y to be a symmetry of the given second-ordersystem (Sode) �, or to be a Noether symmetry with respect to the given quadraticLagrangian L, or to leave the energy function E invariant, all give rise to di�erent de-termining equations (pde's) for the polynomial coe�cients of the leading components �iof Y and from a computational point of view it is by no means obvious how all theseequations interrelate. It was shown that whenever the coe�cients of the �i are fully sym-metric and energy preservation Y (E) = 0 is imposed, vanishing of the lowest-order termsin the symmetry requirement [Y;�] = 0 is enough to guarantee that all other terms willvanish as well and that in fact also all determining equations coming from the Noetherrequirement will be satis�ed.For the problem of explaining where the separation variables come from in [9, 10, 11], atleast for systems with two degrees of freedom and an additional quadratic �rst integral,Eisenhart's theorem (see e.g. [7, 8, 1, 23]) was recalled in [21]. Always in the case that thekinetic energy term is the standard one, it was shown how this theorem implies that thevolume form of the con�guration manifold gives rise to a determinant, computed out ofthe symmetry generator corresponding to the additional integral, which factorizes into theproduct of linear functions in the velocities. These in turn, to within an integrating factor,are bound to be the derivatives of the separation variables. Adding an extra degree offreedom, such a mechanism of course produces a cubic expression which factorizes as theproduct of three linear functions (giving no support for the attempts in [11] to manipulatealso quadratic expressions in that case).The limitations which were built into the analysis of [21] gave enough freedom still toanswer all the questions of computational nature which were posed. The conjecture was,moreover, that looking at more general situations (polynomial �rst integrals of degreehigher than four and general metrics in the kinetic energy) would merely be a matterof more labour. In the present paper, we shall consider these generalizations anyway,because we feel that something substantial can be added to the discussion. Essentially,we shall look at a dual picture for proving more general results. The regular Lagrangianof the given Sode provides us with a symplectic form by which all statements concerningvector �elds (symmetries in particular) can be translated, in principle, into equivalentstatements on 1-forms (`adjoint symmetries' in particular). The point now is that bylooking at this dual world, proving the more general results we have in mind turns outto become much more simple. In fact, for the �rst result, the proof for arbitrary degreepolynomial �rst integrals becomes almost trivial and is carried out in the next section.With respect to the second result, the computation of a volume form with corresponding2



factorization property becomes more elegant and direct. This is presented in Section 3. Inaddition, we will arrive in Section 5 at a rather surprising new formulation of Eisenhart'stheorem, which may inspire new developments in Hamilton-Jacobi theory in the future.Section 4 contains some illustrative examples for the computation of separation variablesalong the lines of the results of Section 3.2 The dual picture of adjoint symmetriesLet the second-order vector �eld� = _xi @@xi + f i(x; _x) @@ _xi ; (1)living on the tangent bundle TM of a manifold M , be derived from a regular Lagrangianfunction L 2 C1(TM), i.e. we have i�d�L = �dE; (2)where E = �(L) � L is the `energy function' associated to L, and �L = S(dL) is thePoincar�e-Cartan 1-form. These de�ning relations further refer to two canonically de�nedobjects on TM , namely the Liouville vector �eld � = _xi@=@ _xi and the type (1,1) tensor�eld S = @@ _xi 
 dxi; (3)usually called the vertical endomorphism (cf. [5]). The 2-form d�L is symplectic, so thatthe relation iY d�L = � (4)de�nes an isomorphism between the module of vector �elds Y and the module of 1-forms� on TM . We will �rst discuss how a number of features of Y translate into correspondingfeatures for �.As was the case in [21], vector �elds Y of interest will always be of the formY = �i @@xi + �(�i) @@ _xi ; (5)so that they are completely determined by their @=@xi components (referred to before asthe leading components �i). The intrinsic characterization of such vector �elds is that theybelong to the set X� introduced in [17], determined by the condition S(L�Y ) = 0. Thecorresponding 1-form � then will likewise be characterized by the property S(L��) = 0.The set of such forms was denoted byM�� in [4] to distinguish it from the closely related setof 1-forms X �� considered in [17], which consists of those 1-forms � which have the propertyL�(S(�)) = �. The relation between these two sets is simply that M�� = L�S(X ��), andthis is an isomorphism in view of the property (L�S)2 = 1. What elements of M�� andX �� have in common is that their d _xi components can be any functions, whereas, similar3



to the situation in (5), the dxi components then are completely �xed. Elements of X ��,for example, are of the form � = bi d _xi + �(bi) dxi : (6)The relationship between the sets X� (and M� = L�S(X�)) of vector �elds on the onehand, and the sets M�� and X �� of 1-forms on the other hand, which are of course wellde�ned for any Sode � (not necessarily coming from a Lagrangian), was also describedin [15].We are, in particular, interested in those elements of X� which are symmetries of �, i.e.vector �elds Y for which [Y;�] = 0. In view of the property L�d�L = 0, this is equivalentto saying that the corresponding � is invariant: L�� = 0. Originally in [18] (and [20]for time-dependent systems) the related 1-form � = L�S(�) 2 X �� was called an adjointsymmetry. To avoid too much terminology, however, we will also use the term adjointsymmetry for an invariant 1-form �. In fact, there is a deeper reason for that. Havingrecognised that for second-order systems �, objects of interest on TM are very frequentlyfully determined by only part of their components, Mart��nez et al [12, 13] developed asuitable calculus in which only this `leading part' occurs, namely a calculus of derivationsof forms along the projection � : TM ! M . In that approach, the adjoint symmetrywould simply be the semi-basic 1-form S(�) = S(�) = bi dxi, regarded as 1-form along �(and satisfying of course a suitable condition, cf. [13]), and it becomes then a matter oftaste or preference to choose whether one wants to think of this object as being associatedto � 2 X �� or to � 2 M��. We come back to this calculus along � later. For the moment,and for the sake of generalizing the �rst result of [21], we stick to the more familiar calculuson the full space TM .Let now L more speci�cally be a Lagrangian of the formL = 12gij(x) _xi _xj � V (x); (7)with gij(x) symmetric and non-singular. The functions f i in the expression for � thus areof the form f i = ��ijk _xj _xk � gil @V@xl ; (8)where the �ijk are the Christo�el symbols coming from the kinetic energy metric g. Sincethe f i contain terms of even degree in the velocities only, whenever a polynomial functionF is a �rst integral of �, its odd and even parts will be �rst integrals by themselves andwe can discuss these two cases separately. Thinking of the even case �rst, let F be apolynomial (always to be understood as referring to the velocity variables) of degree 2r.Then the condition that F be a �rst integral, �(F ) = 0, requires a polynomial of degree2r + 1 to vanish identically. If F were a �rst integral indeed, its corresponding Noethersymmetry would be a vector �eld Y of the form (5), whose leading components �i wouldbe given by �i = �gij @F@ _xj ; (9)and would accordingly be polynomials of degree 2r�1, containing odd degree terms only.Suppose, on the other hand, that the construction of polynomial type symmetries of �4



would be our �rst move (and that we would worry later about identifying which of theseare of Noether type). Then, we would again be looking for vector �elds of the form (5),with �i purely odd polynomials of degree 2r � 1 say, satisfying the requirements (comingfrom [Y;�] = 0): �2(�i) = Y (f i); i = 1; : : : ; n = dimM: (10)Also this requires polynomials of degree 2r + 1 to vanish. Finally, the independent re-quirement that a vector �eld of type (5), with odd �i of degree 2r�1 preserves the energyfunction E = T + V , i.e. satis�es Y (E) = 0, again gives rise to a polynomial conditionof degree 2r + 1. In all three cases, moreover, the polynomials in question will containterms of odd degree only, but the three conditions of course are drastically di�erent ingeneral, if only because in the second case there are n requirements, as opposed to onlyone in the �rst and third case. The result we want to generalize from [21], where gij was�ij and r was either 1 or 2, is the following: if the coe�cients of the di�erent powers of_x in the �i are symmetric in all their indices and Y (E) = 0, then vanishing of the lowestorder term in the polynomial expressions (10) is enough to ensure that Y is a Noethersymmetry with respect to L. The �rst of these conditions is equivalent to saying that the�i are of the form @F=@ _xi for some function F . Obviously, it will have to be replaced hereby a symmetry requirement with respect to the metric gij , which is the same as sayingthat the �i are of the form (9) for some F (the sign is irrelevant for that matter). So wenow state and prove the following result.Proposition 1. Consider the Sode � coming from a Lagrangian of type (7). Let Y be avector �eld in X�, whose leading components �i are polynomial functions of the velocitiesof degree 2r � 1 (and contain odd degree terms only). Then, if1. the �i are of the form (9) for some function F ,2. Y (E) = 0, where E = �(L)� L,3. the lowest order terms in the expressions (10) cancel out,Y is a Noether symmetry and there exists a function f 2 C1(M), such that F + f is thecorresponding �rst integral.Proof: Consider the 1-form � associated to Y via the relation (4). To say that Ybelongs to X� and satis�es the �rst condition, is exactly equivalent to saying that � is ofthe form � = dF � S(d�(F )) (11)for some function F 2 C1(TM). Indeed, d�L contains the term gijd _xj ^dxi (and no otherterms in d _xj), so that the term dF in � will make sure that the �i are of the form (9).The extra semi-basic part in � simply makes sure that � belongs to M��, as can be easilyveri�ed, remembering that when acting on 1-forms, we have the property S � L�S = S.Observe that there is a certain `gauge freedom' in selecting functions F to construct a �of the form (11). Indeed, if f is any function on the base manifoldM , putting ~F = F +f ,we will have d ~F � S(d�( ~F )) = dF � S(d�(F )).5



The second condition on Y , namely Y (E) = 0, in view of (2) and (4) translates equiv-alently to the condition i�� = 0. But with a � of the form (11) and remembering thatS(�) = �, we have i�� = �(F ) � �(�(F )), so that the second condition immediatelyimplies that �(F ) is homogeneous of degree 1 and (being a polynomial) therefore linearin the velocities. It further follows thati�d� = �i�d�S(d�(F ))�= �L��S(d�(F ))�+ di�d�(F )= �L��S(d�(F ))�+ d�(F ):Turning now to the third condition, remember that the full symmetry requirements (10)translate to L�� = 0, which in view of i�� = 0 reduces to i�d� = 0. This in turn, fromthe computation just done, reduces to� @�(F )@ _xi !� @�(F )@xi = 0; (12)with �(F ) of the form ai(x) _xi say. Hence, in this dual picture it is immediately clear thatall terms but the lowest-order ones of the symmetry requirement, have already cancelledout, so that the third condition is going to make sure that Y is a symmetry. To seethat it is actually going to be a Noether symmetry, it su�ces to note that (12) expressesthat �(F ) is the total time derivative of a function on M . In other words, there exists afunction f 2 C1(M) such that, with ~F = F + f , we will have �( ~F ) = 0 and � = d ~F . 2Remark: For the case of polynomial functions F of even degree, it is clear that in de�ningthe �i via (9), information about the zeroth-order term in F is lost. Therefore, we knowfrom the outset that Y (E) = 0 cannot be enough, in general, to guarantee that Y willbecome a Noether symmetry. The lowest order terms of the symmetry conditions (10),which will be second-order pde's for the potential V , then precisely provide the integra-bility conditions for existence of a function f(x) which will complete the construction ofa �rst integral.The situation of course is di�erent if F contains only terms of odd degree and is of degree,say, 2r � 1. Then, all conditions such as �(F ) = 0, Y (E) = 0 or [Y;�] = 0 give rise topolynomials of degree 2r with even degree terms only. The coordinate free computationsin the above proof remain perfectly valid, however, and still lead to the conclusion (fromh�; �i = 0) that �(F ) is linear in the velocities. This can now only be `true', however, if�(F ) = 0. Hence, we reach the following conclusion.Proposition 2. Consider the Sode � coming from a Lagrangian of type (7). Let Y be avector �eld in X�, whose leading components �i are polynomial functions of the velocitiesof degree 2r � 2 (and contain even degree terms only). Then, if1. the �i are of the form (9) for some function F ,2. Y (E) = 0, where E = �(L)� L,F is a �rst integral and Y is the corresponding Noether symmetry. 26



3 Adjoint symmetries and separabilityAssume now, still for Lagrangians of type (7) with a general metric, that we are inthe situation of Eisenhart's theorem, which gives necessary and su�cient conditions forthe existence of a point transformation which will transform the kinetic energy part intoSt�ackel form. As in [21], for the sake of discussing the identi�cation of separation variables,we can actually drop the potential energy term without loss of generality. So assume thenthat the Sode is a spray and that we know, apart from the energy function E, n � 1further (homogeneous) quadratic �rst integralsF
 = 12a
 ij _xi _xj; 
 = 1; : : : ; n� 1: (13)These are assumed to be linearly independent and all symmetric matrices involved aresimultaneously diagonalizable in coordinates. More explicitly, the further assumptions inthe contravariant version of Eisenhart's theorem (which is mentioned e.g. in [23, 1]) arethat the roots of the n � 1 eigenvalue problems det(aij
 � �
gij) = 0 are simple and thatthere exist n common orthogonal closed eigenforms �(k):(aij
 � �(k)
 gij)�(k)j = 0; d�(k) = 0: (14)Separation variables yk then follow from the local exactness of these eigenforms: �(k) =dyk. We can rewrite these conditions equivalently with type (1,1) tensor �elds whilekeeping the same 1-forms �(k). That is to say, multiplying the above relations with gmi,we obtain n equivalent conditions for each 
 = 1; : : : ; n � 1 and each k = 1; : : : ; n; butsince all functions involved are basic, multiplying further by _xm, these n conditions arestill equivalent to the single condition, linear in the velocities:_xma
 mlglj�(k)j = �(k)
 _xm�(k)m : (15)As in [21] we recognise the symmetry generator in this expression. To be precise, in viewof the symmetry of the matrices a
 and g the left-hand side, up to a sign, contains theleading components �j of the Noether symmetry Y corresponding to F
 (cf. equation (9)).So we introduce (for each 
) X
 = ��j
 @@xj ; (16)and recall that this is a well de�ned object, namely a vector �eld along the projection� : TM ! M , and that there are intrinsic operations by which the symmetry generatorY 2 X (TM) can be constructed from this X 2 X (� ). We further recall that there is acanonical element in X (� ), namely T = _xi @@xi : (17)The 1-forms �(k), being basic forms, can also be regarded as elements of V1(� ), i.e. as1-forms along � , and thus can be paired with elements of X (� ). This way, the relations(15) acquire the simple form:hX
 ; �(k)i = �(k)
 hT; �(k)i; k = 1; : : : ; n; 
 = 1; : : : ; n� 1: (18)7



It follows that(�(1) ^ � � � ^ �(n))(T;X1; : : : ;Xn�1) = � hT; �(1)i � � � hT; �(n)i; (19)where � is the determinant with 1's in the �rst row and the eigenvalues �(k)
 in the rows2 to n, and is non-zero in view of the linear independence of the integrals E;F
. Wethus obtain, always as a corollary of Eisenhart's theorem, the following generalization(to arbitrary degrees of freedom n and arbitrary metrics g) of a procedure discussed in[21] by which, in principle, the separation variables yk could be obtained from a compu-tation on the symmetry generators: the left-hand side of (19) is a polynomial of degreen in the velocities, which is, up to a factor, the volume form dx1 ^ � � � ^ dxn acting on(T;X1; : : : ;Xn�1), and the right-hand side of (19) says that this polynomial can be factor-ized into the product of linear functions in the velocities which are total time derivativesof the separation variables.What we wish to do now is to pass also for these considerations to the dual picture ofadjoint symmetries and to show that one can express the result this way in an even moredirect and transparant form.In agreement with the discussion at the beginning of the previous section, the leadingpart of an adjoint symmetry � of a Sode � (whether regarded as element of M�� or asthe corresponding � in X ��) is the part bid _xi. A way of singling out this part of a 1-form� on TM is in fact to act on it with the tensor �eld S, thus producing the semi-basicform (or 1-form along � ) bidxi. It is in this more economical representation that adjointsymmetries can be discussed also within the calculus along � (see [13]). If we are talkingabout an adjoint symmetry coming from a �rst integral F , then the bi are of the formbi = @F=@ _xi. The corresponding element of V1(� ) then is� = dVF = @F@ _xi dxi: (20)We have hereby identi�ed the canonically de�ned vertical exterior derivative dV on V(� ),at least for its action on functions on TM (its de�nition is completed by adding that dV isa derivation of degree 1 and that dV dxi = 0). For the time being, however, there is evenno need to use this notation, as dVF is also the Poincar�e-Cartan 1-form associated to Fand hence we can write �F instead. But we will continue to regard it now as a 1-formalong � and in that sense, it is an adjoint symmetry of � as soon as F is a �rst integral.Consider now again property (18), and transfer in the left-hand side a glj-factor fromone side of the pairing to the other, thereby de�ning the vector �elds �(k)] 2 X (� ) withcomponents: �(k)]l = glj�(k)j . Then we havehX
 ; �(k)i = h�(k)]; �F
 i; (21)and likewise (we write �E instead of �L although of course E and L are the same here)hT; �(k)i = h�(k)]; �Ei: (22)As a result, the left-hand side of (19) can be rewritten as:(�E ^ �F1 ^ � � � ^ �Fn�1)(�(1)]; : : : ; �(n)]):8



All the velocity dependence this way is shifted to the volume form itself, so that it is thefunction appearing there which will have the factorization property.Proposition 3. Consider a system with Lagrangian (7) and assume that n�1 additionalquadratic integrals have been found. Then, if we are in a situation where orthogonalseparation variables exist, they can be found by taking only the homogeneous quadraticparts E;F1; : : : ; Fn�1 of all integrals and factorizing the single component of the volumeform �E ^ �F1 ^ � � � ^ �Fn�1 into n factors which are linear in the velocities and integrable.2Remark: the single component of the volume form in question is of course the determinantof the matrix @F
=@ _xi, with 
 = 0; : : : ; n� 1 and F0 = E.4 Illustrative examplesWe content ourselves in this section to giving a number of simple illustrations of thefactorization ensured by Proposition 3. We leave the selection of suitable potentials forseparability out of the discussion. For better legibility, we shall label coordinates herewith lower indices.Consider �rst a Lagrangian with the following kinetic energy term:L = E = 12 � _x21 + x21 _x22� :A second quadratic integral is given byF1 = x21(x1 _x22 cosx2 + _x1 _x2 sinx2) :We have �E ^ �F1 = x21�2x1 _x1 _x2 cos x2 + ( _x21 � x21 _x22) sinx2� dx1 ^ dx2 :It is easy to see that, up to a factor, the component of this volume form is the product ofthe linear expressions(1 � cosx2) _x1 + x1 _x2 sinx2 and (1 + cos x2) _x1 � x1 _x2 sinx2 ;which are total time derivatives and thus provide the separation variablesy1 = x1(1� cosx2); y2 = x1(1 + cos x2):Another quadratic integral for the same metric Lagrangian could be taken to beF2 = x21(x1 _x22 sin x2 � _x1 _x2 cos x2) :It would lead by the same procedure to the separation variablesy1 = x1(1� sinx2); y2 = x1(1 + sinx2):9



These are of course well-known results: the Lagrangian we took can be thought of as thekinetic energy part of the Kepler problem in polar coordinates, and the two integrals F1and F2 then are the quadratic parts of the Runge-Lenz vector.As a second illustration, take L to have a constant (but non-Euclidian) metric:L = 12 � _x21 � _x22� ;and consider the additional quadratic integralF = x2 _x1 _x2 � x1 _x22 :We �nd �E ^ �F = �x2( _x21 + _x22)� 2x1 _x1 _x2�dx1 ^ dx2 :In domains where x21 � x22 > 0, putting r = qx21 � x22 , a factorization is given by�(r + x1) _x1 � x2 _x2��x2 _x2 + (r � x1) _x1�;and suitable integrating factors can be found which lead to the following separation vari-ables y1 = px1 + r; y2 = px1 � r :Next, consider the Lagrangian L = 12( _x21 + sin2 x1 _x22) ;for which one can verify that the following functions are �rst integrals:F1 = sin3 x1 cos x1 cosx2 _x22 + sin2 x1 sinx2 _x1 _x2F2 = sin3 x1 cos x1 sinx2 _x22 � sin2 x1 cosx2 _x1 _x2 :For F1 as additional integral, our volume form becomes�E ^ �F1 = sin2 x1(sinx2 _x21 + cos x2 sin 2x1 _x1 _x2� sin2 x1 sinx2 _x22) dx1 ^ dx2:Its component can be seen to factorize as the product of the linear functions:�q1� cos2 x2 sin2 x1 + cosx1 cos x2� _x1 � sin x1 sinx2 _x2 ;�q1� cos2 x2 sin2 x1 � cosx1 cos x2� _x1 + sin x1 sinx2 _x2 :Both of these functions become total time derivatives if one divides by the square rootthey contain. One thus identi�es the separation variables by the transformation formulas(in domains where they apply):y1 = x1 + arcsin(sinx1 cosx2) ;y2 = x1 � arcsin(sin x1 cosx2) :10



For the case of F2 as second integral, the calculations are completely similar.Let us �nally put the theory to a test on an example with n degrees of freedom for whichwe know what should come out from the start. Consider a so-called system of Liouvilletype, as described for example in [16]. We have (the summation convention cannot beused here), L = E = 12c nXj=1 _x2jaj(xj) ; c(x) = nXj=1 cj(xj) ;where the functions aj and cj depend on xj only. Quadratic �rst integrals areFj = 12 c2 _x2jaj � cj E ; j = 1; : : : ; n:We have Pj Fj = 0 but, for example, E and F2; : : : ; Fn can be chosen as linearly inde-pendent integrals. Writing Fj = Gj � cj E, for shorthand, we have �Fj = �Gj � cj �E, sothat the volume form reduces to�E ^ �G2 ^ � � � ^ �Gn = �E ^  c2 _x2a2 ! dx2 ^ � � � ^  c2 _xnan ! dxn :It is obvious then that only the term in dx1 in �E survives, so that the result isc2n�1Qnj=1 aj _x1 � � � _xn dx1 ^ � � � ^ dxn :This simple factorization of course does not come as a surprise: it tells us that the xi arealready separation variables, as expected. A completely similar result would be obtainedif we took, somewhat more generally, St�ackel systems (see e.g. [16]) as the starting point.5 Outlook for further studyVector �elds and 1-forms along � have popped up in our analysis in a natural way, butwe have avoided so far to refer too much to the related calculus developed in [12, 13].We shall now embark into this area a bit more deeply. To some extent, showing howthe same results could have been obtained by using that calculus at this stage, merelymeans rewriting the same formulas in another way. But it seems to us that the alternativeformulation of Eisenhart's theorem we will arrive at, may open up an interesting avenuefor future study.The fundamental property following from Eisenhart's theorem, which leads to the factor-ization of a volume form, is (18) and was rewritten in the dual form using (21) and (22).Let us write Xk for the vector �eld �(k)] along � (which for the time being can be seen asjust a simpli�cation of notations), and now use the notation dVF for �F . Then this dualform of (18) readsdVF
 (Xk) = �(k)
 dVE(Xk); k = 1; : : : ; n; 
 = 1; : : : ; n� 1:11



or DVXkF
 = �(k)
 DVXkE: (23)Here, DVX is a degree zero derivation, the vertical covariant derivative with respect toX = X i@=@xi, whose action on functions F is simply given byDVXF = X i @F@ _xi : (24)The volume form becomesdVE ^ dVF1 ^ � � � ^ dVFn�1 = dV(E dVF1 ^ � � � ^ dVFn�1): (25)One can easily show that for any Xi 2 X (� ) (not necessarily basic vector �elds):(dVE ^ dVF1 ^ � � � ^ dVFn�1)(X1; : : : ;Xn) = �������� DVX1E � � � DVXnE... ...DVX1Fn�1 � � � DVXnFn�1 �������� : (26)If then the Xi are vector �elds for which the relations (23) hold, we immediately �nd thefactorization property again(dVE ^ dVF1 ^ � � � ^ dVFn�1)(X1; : : : ;Xn) = � DVX1E � � � DVXnE; (27)where � is the same determinant as in (19).Now, remember that relations like (23) contain a large part of the information in Eisen-hart's theorem and note in fact that by dualizing the formulation (18) we used �rst via(21-22), we have returned from the contravariant tensors in (14) to covariant tensors. Tobe speci�c, the coordinate expressions for (23), with the F
 given by (13) and writing thecomponents of the vector Xk as Xjk , read_xia
 ijXjk = �(k)
 _xigijXjk : (28)Identifying the coe�cients of each _xi, they just say that the Xk are common eigenvectorsof all matrices a
. A somewhat tricky remark is in order here. The (covariant) version ofEisenhart's theorem which can be found in [8] states that there exist such common eigen-vectors which are in fact the coordinate vector �elds @=@yk in the separation variables.We used the other version (14) �rst because we needed the closed 1-forms �(k) in ourarguments, and the point now is that the Xk we thus obtained as �(k)] then cannot be thecoordinate vector �elds, in general. This is not a contradiction because the theorem actu-ally ensures that the system will have the St�ackel form in the new variables, with diagonal(gij). As a result, one can verify that the eigenvectors �(k)] will just be multiples of thecoordinate eigenvectors Xk. This being said, it is obvious that in the present formulation(23) or (28), we rather work with Xk which will turn out to be coordinate vector �elds inthe good variables, because this can simply be expressed by requiring that they commute.We �nally observe that the other assumptions of Eisenhart's theorem can also, just asis the case with (23), be written as conditions on the F
. Indeed, we want the F
 to behomogeneous quadratic in the velocities, which by Euler's theorem can be expressed as12



DVTF
 = 2F
, and they have to be �rst integrals, meaning that �(F ) � r(F ) = 0. (Thedegree zero derivation r is the dynamical covariant derivative of the calculus along � ,but coincides with the vector �eld � for its action on functions.)We thus come to the conclusion that Eisenhart's theorem, as copied in [21] from [8], canbe rewritten in the following form.Proposition 4 (Eisenhart's theorem). The necessary and su�cient conditions thata geodesic Lagrangian L = 12gij _xi _xj = E can be given the St�ackel form is that there existn� 1 functions F
 such that:1. rF
 = 0 ,2. DVTF
 = 2F
 ,3. there exist n commuting basic vector �elds Xk, such that for some functions �(k)
which are all di�erent for each �xed 
, we have DVXkF
 = �(k)
 DVXkE,4. �������� DVX1E � � � DVXnE... ...DVX1Fn�1 � � � DVXnFn�1 �������� 6= 0 :Proof: That the �rst three conditions are just transcripts of conditions in [8] wasexplained above. The last one, knowing already that the F
 are quadratic, is just a wayof saying that all quadratic integrals involved are linearly independent. 2Needless to say, we have made a point in this formulation of Eisenhart's theorem of ex-pressing all conditions as di�erential conditions on the �rst integrals. The motivation fordoing so is the following. Much of the old work on separability of the Hamilton-Jacobiequation is about conditions for checking whether a system is separable in the given co-ordinates. Examples in this respect are the Levi Civita conditions and St�ackel's theorem.Eisenhart's theorem was perhaps the �rst result which gives a sort of test for checkingwhether separation variables exist, although it is to a large extent an existence theorem,i.e. the test is not of the kind that could be applied directly on the given data. Importantgeneralizations were obtained by Woodhouse [23] and, speci�cally for non-orthogonal sep-arability by Benenti (see [2] and references therein). What these have in common is thata transition to separation variables, if they exist, will always be a point transformation.A couple of examples are known (see e.g. [3, 22]) of Hamiltonian systems with additionalintegrals of degree higher than two, for which a non-point canonical transformation existssuch that the Hamilton-Jacobi equation of the transformed Hamiltonian is separable. Tothe best of our knowledge, no intrinsic characterization exists, for example of the kind ofEisenhart's theorem, of existence of such non-point transformations to separation vari-ables. The idea is that our above reformulation of Eisenhart's theorem might lead togeneralizations when not all additional integrals are quadratic (a generalization of condi-tion 2). One might hope that an appropriate generalization of condition 3 could be found,which then presumably would involve vector �elds Xk 2 X (� ) which are not basic (andalso non-basic functions �(k)
 ). (Note that we have mentioned at least one result in what13



preceeds, which is valid for more than just basic vector �elds.) The overall idea of the newapproach would be to base the analysis on a study of the integrability conditions for formalintegrability of the pde's on the F
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