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Abstract.Two results of a preceding paper are generalized. The first is about
characterizing to what extent preservation of the energy function of a Lagrangian
of mechanical type turns dynamical symmetries into Noether symmetries. The gen-
eralization here is twofold: polynomial integrals of arbitrary degree are considered
and the kinetic energy can have an arbitrary metric. The second result (here again
for arbitrary metrics) is about the way separation variables for the Hamilton-Jacobi
equation, when they are ensured to exist by Eisenhart’s theorem, can be computed,
in principle, from a factorization property of a certain volume form. The main nov-
elty in the way the generalizations are discussed is that the emphasis is shifted from
symmetries to the dual concept of adjoint symmetries.

1 Introduction

In a preceding paper [21], two aspects of the practical use of symmetries of Lagrangian
systems were scrutinized: one was about conditions which will force a general dynamical
symmetry to fall into the class of Noether symmetries; the other one was about the way
separation variables for the Hamilton-Jacobi equation (if they exist) could be obtained
from calculations involving the symmetry generators. Both of these investigations were
prompted by certain potentially misleading statements in the work of others. To be more
precise, for the first aspect, the idea was to show why in [9, 10, 11] calculations originating
from the determining equations of general symmetries and thought not to be making use
of Noether’s theorem, turned out to give rise to Noether symmetries anyway. For the
second aspect, there was need for an explanation why certain formal manipulations on
the characteristic equations of the symmetry generators in the work of the same authors,
can indeed produce separation variables under the right circumstances.

By the nature of the problems posed in [21], the emphasis was very much on computational
aspects. For a start, therefore, attention was restricted to Lagrangians whose kinetic



energy term has the standard Euclidean metric, and the whole analysis was about integrals
of the motion which are polynomial functions of the velocities. Let us recall the two main
conclusions, formulated as propositions in [21].

It is well known that Noether symmetries of autonomous Lagrangian systems preserve
the energy function, so this is a condition which is the most likely candidate for having
the effect of forcing symmetry generators towards matching the requirements of Noether
symmetries. Symmetry generators were considered whose leading components are polyno-
mials of odd degree and are at most of degree three in the velocities (so that corresponding
Noether first integrals, if any, are bound to be even degree polynomials of at most degree
four). Now, conditions for a vector field Y to be a symmetry of the given second-order
system (SODE) I', or to be a Noether symmetry with respect to the given quadratic
Lagrangian L, or to leave the energy function F invariant, all give rise to different de-
termining equations (pde’s) for the polynomial coefficients of the leading components ¢*
of Y and from a computational point of view it is by no means obvious how all these
equations interrelate. It was shown that whenever the coefficients of the £ are fully sym-
metric and energy preservation Y(E) = 0 is imposed, vanishing of the lowest-order terms
in the symmetry requirement [Y, '] = 0 is enough to guarantee that all other terms will
vanish as well and that in fact also all determining equations coming from the Noether
requirement will be satisfied.

For the problem of explaining where the separation variables come from in [9, 10, 11], at
least for systems with two degrees of freedom and an additional quadratic first integral,
Eisenhart’s theorem (see e.g. [7, 8, 1, 23]) was recalled in [21]. Always in the case that the
kinetic energy term is the standard one, it was shown how this theorem implies that the
volume form of the configuration manifold gives rise to a determinant, computed out of
the symmetry generator corresponding to the additional integral, which factorizes into the
product of linear functions in the velocities. These in turn, to within an integrating factor,
are bound to be the derivatives of the separation variables. Adding an extra degree of
freedom, such a mechanism of course produces a cubic expression which factorizes as the
product of three linear functions (giving no support for the attempts in [11] to manipulate
also quadratic expressions in that case).

The limitations which were built into the analysis of [21] gave enough freedom still to
answer all the questions of computational nature which were posed. The conjecture was,
moreover, that looking at more general situations (polynomial first integrals of degree
higher than four and general metrics in the kinetic energy) would merely be a matter
of more labour. In the present paper, we shall consider these generalizations anyway,
because we feel that something substantial can be added to the discussion. Essentially,
we shall look at a dual picture for proving more general results. The regular Lagrangian
of the given SODE provides us with a symplectic form by which all statements concerning
vector fields (symmetries in particular) can be translated, in principle, into equivalent
statements on 1-forms (‘adjoint symmetries’ in particular). The point now is that by
looking at this dual world, proving the more general results we have in mind turns out
to become much more simple. In fact, for the first result, the proof for arbitrary degree
polynomial first integrals becomes almost trivial and is carried out in the next section.
With respect to the second result, the computation of a volume form with corresponding



factorization property becomes more elegant and direct. This is presented in Section 3. In
addition, we will arrive in Section 5 at a rather surprising new formulation of Eisenhart’s
theorem, which may inspire new developments in Hamilton-Jacobi theory in the future.
Section 4 contains some illustrative examples for the computation of separation variables
along the lines of the results of Section 3.

2 The dual picture of adjoint symmetries

Let the second-order vector field

N

living on the tangent bundle 7'M of a manifold M, be derived from a regular Lagrangian
function L € C~(TM), i.e. we have

ird0, = —dE, (2)

where £ = A(L) — L is the ‘energy function’ associated to L, and 8, = S(dL) is the
Poincaré-Cartan 1-form. These defining relations further refer to two canonically defined
objects on T'M, namely the Liouville vector field A = #'9/di" and the type (1,1) tensor
field

9 i

usually called the vertical endomorphism (cf. [5]). The 2-form dfy, is symplectic, so that
the relation

wyddy = 3 (4)

defines an isomorphism between the module of vector fields Y and the module of 1-forms
G on T'M. We will first discuss how a number of features of ¥ translate into corresponding
features for 3.

As was the case in [21], vector fields Y of interest will always be of the form

0 0
ozt + 1) oz’ (5)

y=¢

so that they are completely determined by their 3/0z' components (referred to before as
the leading components £'). The intrinsic characterization of such vector fields is that they
belong to the set AL introduced in [17], determined by the condition S(LrY’) = 0. The
corresponding 1-form (3 then will likewise be characterized by the property S(Lrf3) = 0.
The set of such forms was denoted by M7 in [4] to distinguish it from the closely related set
of 1-forms A} considered in [17], which consists of those 1-forms /3 which have the property
Lr(S(B)) = B. The relation between these two sets is simply that M} = LpS(A}), and
this is an isomorphism in view of the property (LrS)? = 1. What elements of M} and

AT have in common is that their d#* components can be any functions, whereas, similar



to the situation in (5), the da’ components then are completely fixed. Elements of A7,
for example, are of the form

B = b;di' + I'(b;)dz" . (6)

The relationship between the sets AL (and My = LpS(AL)) of vector fields on the one
hand, and the sets My and AT of 1-forms on the other hand, which are of course well
defined for any SODE I' (not necessarily coming from a Lagrangian), was also described

in [15].

We are, in particular, interested in those elements of AT which are symmetries of ', i.e.
vector fields Y for which [Y,T'] = 0. In view of the property Lrdf;, = 0, this is equivalent
to saying that the corresponding [ is invariant: Lr3 = 0. Originally in [18] (and [20]
for time-dependent systems) the related 1-form o = LrS(3) € AY was called an adjoint
symmetry. To avoid too much terminology, however, we will also use the term adjoint
symmetry for an invariant 1-form (. In fact, there is a deeper reason for that. Having
recognised that for second-order systems I, objects of interest on T'M are very frequently
fully determined by only part of their components, Martinez et al [12, 13] developed a
suitable calculus in which only this ‘leading part’ occurs, namely a calculus of derivations
of forms along the projection 7 : TM — M. In that approach, the adjoint symmetry
would simply be the semi-basic 1-form S(a) = S(8) = b; dz*, regarded as 1-form along 7
(and satisfying of course a suitable condition, cf. [13]), and it becomes then a matter of
taste or preference to choose whether one wants to think of this object as being associated
to o € A or to B € M7. We come back to this calculus along 7 later. For the moment,
and for the sake of generalizing the first result of [21], we stick to the more familiar calculus

on the full space T'M.

Let now L more specifically be a Lagrangian of the form

L:%%WWW—V@% (7)

with g;;(x) symmetric and non-singular. The functions f' in the expression for I' thus are
of the form 9y
R YA (3
where the F;k are the Christoffel symbols coming from the kinetic energy metric g. Since
the f* contain terms of even degree in the velocities only, whenever a polynomial function
Fis a first integral of I, its odd and even parts will be first integrals by themselves and
we can discuss these two cases separately. Thinking of the even case first, let F' be a
polynomial (always to be understood as referring to the velocity variables) of degree 2r.
Then the condition that F' be a first integral, I'(#') = 0, requires a polynomial of degree
2r + 1 to vanish identically. If ' were a first integral indeed, its corresponding Noether
symmetry would be a vector field Y of the form (5), whose leading components £ would
be given by op
5 =9 ]@7 (9)
and would accordingly be polynomials of degree 2r — 1, containing odd degree terms only.
Suppose, on the other hand, that the construction of polynomial type symmetries of I’
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would be our first move (and that we would worry later about identifying which of these
are of Noether type). Then, we would again be looking for vector fields of the form (5),
with € purely odd polynomials of degree 2r — 1 say, satisfying the requirements (coming
from [Y,I'] = 0):

ey =Y(f), i=1,....,n=dimM. (10)

Also this requires polynomials of degree 2r + 1 to vanish. Finally, the independent re-
quirement that a vector field of type (5), with odd £ of degree 2r — 1 preserves the energy
function £ =T + V, i.e. satisfies Y (E) = 0, again gives rise to a polynomial condition
of degree 2r 4+ 1. In all three cases, moreover, the polynomials in question will contain
terms of odd degree only, but the three conditions of course are drastically different in
general, if only because in the second case there are n requirements, as opposed to only
one in the first and third case. The result we want to generalize from [21], where g;; was
9;; and r was either 1 or 2, is the following: if the coefficients of the different powers of
# in the ¢ are symmetric in all their indices and Y(E) = 0, then vanishing of the lowest
order term in the polynomial expressions (10) is enough to ensure that Y is a Noether
symmetry with respect to L. The first of these conditions is equivalent to saying that the
¢ are of the form 9F/di* for some function I'. Obviously, it will have to be replaced here
by a symmetry requirement with respect to the metric g;;, which is the same as saying
that the £ are of the form (9) for some F' (the sign is irrelevant for that matter). So we
now state and prove the following result.

Proposition 1. Consider the SODE I' coming from a Lagrangian of type (7). Let Y be a
vector field in Xy, whose leading components £ are polynomial functions of the velocities
of degree 2r — 1 (and contain odd degree terms only). Then, if

1. the & are of the form (9) for some function F,
2. Y(FE)=0, where E = A(L)— L,

3. the lowest order terms in the expressions (10) cancel out,

Y is a Noether symmetry and there exists a function f € C=(M), such that F' + f is the
corresponding first integral.

PROOF: Consider the 1-form [ associated to Y via the relation (4). To say that Y
belongs to A} and satisfies the first condition, is exactly equivalent to saying that 3 is of
the form

B =dF — S dU(F)) (11)

for some function F € C*(TM). Indeed, df;, contains the term g,;;d#’ A dz' (and no other
terms in di’), so that the term dF in 3 will make sure that the £ are of the form (9).
The extra semi-basic part in 3 simply makes sure that 3 belongs to M, as can be easily
verified, remembering that when acting on 1-forms, we have the property S o LpS = 5.
Observe that there is a certain ‘gauge freedom’ in selecting functions F' to construct a g
of the form (11). Indeed, if f is any function on the base manifold M, putting F=F+,
we will have dF' — S(dT'(F)) = dIF — S(dT(F)).



The second condition on Y, namely Y(FE) = 0, in view of (2) and (4) translates equiv-
alently to the condition ir3 = 0. But with a § of the form (11) and remembering that
S(I) = A, we have ipf = I'(F') — A(I'(F)), so that the second condition immediately
implies that I'(F') is homogeneous of degree 1 and (being a polynomial) therefore linear
in the velocities. It further follows that

ird3 = —ird(S(dI(F)))
= —Lr(S(dL(F))) + disdD(F)
= —Lr(S(dr(F))) + dI(F).

Turning now to the third condition, remember that the full symmetry requirements (10)
translate to Lr = 0, which in view of ir3 = 0 reduces to ipd3 = 0. This in turn, from
the computation just done, reduces to

()2

with ['(F) of the form a;(x)#! say. Hence, in this dual picture it is immediately clear that
all terms but the lowest-order ones of the symmetry requirement, have already cancelled
out, so that the third condition is going to make sure that Y is a symmetry. To see
that it is actually going to be a Noether symmetry, it suffices to note that (12) expresses
that ['(F') is the total time derivative of a function on M. In other words, there exists a

function f € C*~(M) such that, with = F + f, we will have F(F) —0and f=dI. O

Remark: For the case of polynomial functions F' of even degree, it is clear that in defining
the £ via (9), information about the zeroth-order term in F' is lost. Therefore, we know
from the outset that Y(F) = 0 cannot be enough, in general, to guarantee that Y will
become a Noether symmetry. The lowest order terms of the symmetry conditions (10),
which will be second-order pde’s for the potential V', then precisely provide the integra-
bility conditions for existence of a function f(2) which will complete the construction of
a first integral.

The situation of course is different if F' contains only terms of odd degree and is of degree,
say, 2r — 1. Then, all conditions such as I'(F') = 0, Y(E) = 0 or [YV,['] = 0 give rise to
polynomials of degree 2r with even degree terms only. The coordinate free computations
in the above proof remain perfectly valid, however, and still lead to the conclusion (from
(I',3) = 0) that I'(F') is linear in the velocities. This can now only be ‘true’, however, if
['(F) = 0. Hence, we reach the following conclusion.

Proposition 2. Consider the SODE I' coming from a Lagrangian of type (7). Let Y be a
vector field in Xy, whose leading components £ are polynomial functions of the velocities
of degree 2r — 2 (and contain even degree terms only). Then, if

1. the & are of the form (9) for some function F,
2. Y(FE)=0, where E = A(L)— L,

F is a first integral and Y s the corresponding Noether symmetry. a
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3 Adjoint symmetries and separability

Assume now, still for Lagrangians of type (7) with a general metric, that we are in
the situation of Eisenhart’s theorem, which gives necessary and sufficient conditions for
the existence of a point transformation which will transform the kinetic energy part into
Stackel form. As in [21], for the sake of discussing the identification of separation variables,
we can actually drop the potential energy term without loss of generality. So assume then
that the SODE is a spray and that we know, apart from the energy function £, n — 1
further (homogeneous) quadratic first integrals

,n— 1. (13)

E, = §aw¢i¢f', y=1,...
These are assumed to be linearly independent and all symmetric matrices involved are
simultaneously diagonalizable in coordinates. More explicitly, the further assumptions in
the contravariant version of Eisenhart’s theorem (which is mentioned e.g. in [23, 1]) are
that the roots of the n — 1 eigenvalue problems det(agj — A, g") = 0 are simple and that
there exist n common orthogonal closed eigenforms a®):

(aij — )\(Wk)gij) agk) =0, da™ = 0. (14)
Separation variables y* then follow from the local exactness of these eigenforms: al®) =
dy®. We can rewrite these conditions equivalently with type (1,1) tensor fields while
keeping the same 1-forms o®). That is to say, multiplying the above relations with g,
we obtain n equivalent conditions for each v = 1,...,n — 1 and each &£ = 1,...,n; but
since all functions involved are basic, multiplying further by 2™, these n conditions are
still equivalent to the single condition, linear in the velocities:

:i:mawmlgljagk) = )\(Wk):i;mozgf) ) (15)

As in [21] we recognise the symmetry generator in this expression. To be precise, in view
of the symmetry of the matrices a., and ¢ the left-hand side, up to a sign, contains the
leading components & of the Noether symmetry ¥ corresponding to F., (cf. equation (9)).
So we introduce (for each v)

o,

X, =g (16)
and recall that this is a well defined object, namely a vector field along the projection
7:TM — M, and that there are intrinsic operations by which the symmetry generator
Y € X(TM) can be constructed from this X € X(7). We further recall that there is a

canonical element in X'(7), namely

0
ozt

The 1-forms a'¥)| being basic forms, can also be regarded as elements of A!(7), i.e. as
I-forms along 7, and thus can be paired with elements of X(7). This way, the relations
(15) acquire the simple form:

T = 3¢

(17)

X, o™y = BT oB)y, E=1,...,n, =1,...,n—1. 18
gl gl 7



It follows that
(a(l) ARRENA a(n))(Tlev s 7Xn—1) =p <T7 Oé(l)> o <T7 a(n)>7 (19)

where p is the determinant with 1’s in the first row and the eigenvalues )\(Wk) in the rows
2 to n, and is non-zero in view of the linear independence of the integrals £, F,. We
thus obtain, always as a corollary of Fisenhart’s theorem, the following generalization
(to arbitrary degrees of freedom n and arbitrary metrics g) of a procedure discussed in
[21] by which, in principle, the separation variables y* could be obtained from a compu-
tation on the symmetry generators: the left-hand side of (19) is a polynomial of degree
n in the velocities, which is, up to a factor, the volume form da' A --- A dz™ acting on
(T, X1,...,X,—1), and the right-hand side of (19) says that this polynomial can be factor-
ized into the product of linear functions in the velocities which are total time derivatives
of the separation variables.

What we wish to do now is to pass also for these considerations to the dual picture of
adjoint symmetries and to show that one can express the result this way in an even more
direct and transparant form.

In agreement with the discussion at the beginning of the previous section, the leading
part of an adjoint symmetry 3 of a SODE I' (whether regarded as element of M} or as
the corresponding « in A7) is the part b;dz’. A way of singling out this part of a 1-form
G on T'M is in fact to act on it with the tensor field S, thus producing the semi-basic
form (or 1-form along 7) b;dx'. Tt is in this more economical representation that adjoint
symmetries can be discussed also within the calculus along 7 (see [13]). If we are talking
about an adjoint symmetry coming from a first integral F', then the b; are of the form
b; = OF/9i'. The corresponding element of A'(7) then is
v IF 7

oz—dF—aj;idx. (20)
We have hereby identified the canonically defined vertical exterior derivative d on A(7),
at least for its action on functions on T'M (its definition is completed by adding that d" is
a derivation of degree 1 and that d"dz' = 0). For the time being, however, there is even
no need to use this notation, as d"F' is also the Poincaré-Cartan 1-form associated to F'
and hence we can write 0 instead. But we will continue to regard it now as a 1-form
along 7 and in that sense, it is an adjoint symmetry of [' as soon as F'is a first integral.

Consider now again property (18), and transfer in the left-hand side a g“-factor from

one side of the pairing to the other, thereby defining the vector fields a®* € X (7) with
(%)

components: a®tt — gljozj . Then we have
(X, a(k)> = <O‘(k)ﬁ7 (9F7>, (21)
and likewise (we write fp instead of 6, although of course E and L are the same here)
(T, a¥) = (@, gy). (22)
As a result, the left-hand side of (19) can be rewritten as:

(O AOg, A ABp_ ) (aWE oM,



All the velocity dependence this way is shifted to the volume form itself, so that it is the
function appearing there which will have the factorization property.

Proposition 3. Consider a system with Lagrangian (7) and assume that n —1 additional
quadratic integrals have been found. Then, if we are in a situation where orthogonal
separation variables exist, they can be found by taking only the homogeneous quadratic
parts B, Fy, ..., F,_1 of all integrals and factorizing the single component of the volume
form O ANOp, A--- NOp _, into n factors which are linear in the velocities and integrable.
O

—1

Remark: the single component of the volume form in question is of course the determinant

of the matrix 9F, /07", with y =0,...,n — 1 and Iy = E.

4 Illustrative examples

We content ourselves in this section to giving a number of simple illustrations of the
factorization ensured by Proposition 3. We leave the selection of suitable potentials for
separability out of the discussion. For better legibility, we shall label coordinates here
with lower indices.

Consider first a Lagrangian with the following kinetic energy term:

L. .
L:E:§(xf—|—x§x§).
A second quadratic integral is given by

Fy = 23(2123 cos wg + 7179 8in 79 .

We have

0p N\ Op, = 2° (2:1:1:12;1:&2 cos xg + (% — xja;) sin :1;2) dxzy N dzy .

It is easy to see that, up to a factor, the component of this volume form is the product of
the linear expressions

(1 —cosag)dy + xydgsiney and (1 4 cosay)dy — xqdasinag,
which are total time derivatives and thus provide the separation variables
y1 = x1(1 — cos xg), Yo = x1(1 + cos xz).
Another quadratic integral for the same metric Lagrangian could be taken to be
Fy = a}(x 25 sin w9 — 12 oS T9) .
It would lead by the same procedure to the separation variables

y1 = x1(1 — sin ), Yo = x1(1 4 sinay).



These are of course well-known results: the Lagrangian we took can be thought of as the
kinetic energy part of the Kepler problem in polar coordinates, and the two integrals F}
and F; then are the quadratic parts of the Runge-Lenz vector.

As a second illustration, take L to have a constant (but non-Euclidian) metric:

and consider the additional quadratic integral
F = $2jﬁ1jﬁ2 — l’ll'g .

We find

In domains where 2 — 3 > 0, putting r = /2% — 23, a factorization is given by

((7“ + @)@ — 51/’2‘72;2) (:1;2:12:2 (- :1;1)92?1),

and suitable integrating factors can be found which lead to the following separation vari-

ables
Y1 = v+, Yo =T — 1.

Next, consider the Lagrangian
L= 5(:1;% + sin? 2y :1;3) \
for which one can verify that the following functions are first integrals:

F, = sin®xy cosay cos :1;3 + sin? @ sinay 414y

F, = sin®xq cosa; sinay :1;% — sin? ay cos xq iy .
For F} as additional integral, our volume form becomes

Op NOp, = sin? 21 (sin @y :1;% 4 cos zy sin 2z 12,

— sin? zy sinxy 23) dzy A dxy.

Its component can be seen to factorize as the product of the linear functions:

(\/1 — cos? x4 sin? x; + cos xq cos :1;2)92;1 —sinxy Sin T To,

(\/1 — cos? x5 sin? #y — cos xq cos :1;2)92;1 +sinxq sin g Lo .

Both of these functions become total time derivatives if one divides by the square root
they contain. One thus identifies the separation variables by the transformation formulas
(in domains where they apply):

y1 = @1 + arcsin(sin xy cosxz),

Yo = a1 — arcsin(sin ay cosxy).
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For the case of F; as second integral, the calculations are completely similar.

Let us finally put the theory to a test on an example with n degrees of freedom for which
we know what should come out from the start. Consider a so-called system of Liouville
type, as described for example in [16]. We have (the summation convention cannot be

used here),
n -2 n
L=FK= lC s ) C(J?):ch(xj)v
2 7=1 a](x]) 7=1

where the functions a; and ¢; depend on z; only. Quadratic first integrals are

2

1% 22 )
=——21_—¢F, 7=1,...,n.

F; =
! 2 a;
We have 3, F; = 0 but, for example, I/ and Iy,..., F,, can be chosen as linearly inde-
pendent integrals. Writing F; = Gi; — ¢; I/, for shorthand, we have 0, = 0g, — ¢; 0E, so
that the volume form reduces to

Cc*To T,

2 2
(9]3/\(9(;2/\---/\(9@”:(9]3/\( )dl‘g/\---/\( )dl‘n

4P) Gn,

It is obvious then that only the term in dx; in g survives, so that the result is

ch—l

H?:l ay

Ty Tpdry Ao Ndey, .

This simple factorization of course does not come as a surprise: it tells us that the x; are
already separation variables, as expected. A completely similar result would be obtained
if we took, somewhat more generally, Stackel systems (see e.g. [16]) as the starting point.

5 Outlook for further study

Vector fields and 1-forms along 7 have popped up in our analysis in a natural way, but
we have avoided so far to refer too much to the related calculus developed in [12, 13].
We shall now embark into this area a bit more deeply. To some extent, showing how
the same results could have been obtained by using that calculus at this stage, merely
means rewriting the same formulas in another way. But it seems to us that the alternative
formulation of Eisenhart’s theorem we will arrive at, may open up an interesting avenue
for future study.

The fundamental property following from Eisenhart’s theorem, which leads to the factor-
ization of a volume form, is (18) and was rewritten in the dual form using (21) and (22).
Let us write X}, for the vector field a®# along 7 (which for the time being can be seen as
just a simplification of notations), and now use the notation d"F for 6z. Then this dual

form of (18) reads

dF, (X)) = \DdBE(Xy),  k=1,...n, y=1,....n—1

11



or

DY F, =AY DY E. (23)

Here, D% is a degree zero derivation, the vertical covariant derivative with respect to
X = X'9/0x', whose action on functions F' is simply given by

OF
DY F = XZ%. (24)
T
The volume form becomes
d"ENDFyN - ANF =dY(EdFy A - NdYF, ). (25)

One can easily show that for any X; € X'(7) (not necessarily basic vector fields):

DY E -~ DY E
(dENdFA N ANF ) (X X)) = | : . (26)
D}/( Fn—l D}/(nFn—l

1

If then the X, are vector fields for which the relations (23) hold, we immediately find the
factorization property again

(dEANdFL A - ANdF, 1) (Xy,...,X,) = p D5 E --- DY E, (27)

where p is the same determinant as in (19).

Now, remember that relations like (23) contain a large part of the information in Eisen-
hart’s theorem and note in fact that by dualizing the formulation (18) we used first via
(21-22), we have returned from the contravariant tensors in (14) to covariant tensors. To
be specific, the coordinate expressions for (23), with the I, given by (13) and writing the
components of the vector X as X}, read

#lay i X] = A\Pitg; X (28)

Identifying the coefficients of each @', they just say that the X} are common eigenvectors
of all matrices a,. A somewhat tricky remark is in order here. The (covariant) version of
Eisenhart’s theorem which can be found in [8] states that there exist such common eigen-
vectors which are in fact the coordinate vector fields d/9y* in the separation variables.
We used the other version (14) first because we needed the closed I1-forms a(*)
arguments, and the point now is that the X, we thus obtained as o®* then cannot be the
coordinate vector fields, in general. This is not a contradiction because the theorem actu-

in our

ally ensures that the system will have the Stackel form in the new variables, with diagonal
(gi;). As a result, one can verify that the eigenvectors a®* will just be multiples of the
coordinate eigenvectors X;. This being said, it is obvious that in the present formulation
(23) or (28), we rather work with X} which will turn out to be coordinate vector fields in
the good variables, because this can simply be expressed by requiring that they commute.
We finally observe that the other assumptions of Eisenhart’s theorem can also, just as
is the case with (23), be written as conditions on the F,. Indeed, we want the F, to be
homogeneous quadratic in the velocities, which by Euler’s theorem can be expressed as
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DYF, = 2F,, and they have to be first integrals, meaning that I'(F') = V(F) = 0. (The
degree zero derivation V is the dynamical covariant derivative of the calculus along 7,
but coincides with the vector field I' for its action on functions.)

We thus come to the conclusion that Eisenhart’s theorem, as copied in [21] from [§], can
be rewritten in the following form.

Proposition 4 (Eisenhart’s theorem). The necessary and sufficient conditions that
a geodesic Lagrangian L = %gij:i;i:i;j = F can be given the Stackel form is that there exist
n —1 functions F., such that:

1. VE, =0,
2. DLF, = 2F,

3. there exist n commuting basic vector fields Xy, such that for some functions )\(Wk)

which are all different for each fived v, we have Dy F, = )\(Wk) D%, E,

4 : : 7 0.
DY Fooy -+ DY Fo

PrROOF: That the first three conditions are just transcripts of conditions in [8] was
explained above. The last one, knowing already that the F, are quadratic, is just a way
of saying that all quadratic integrals involved are linearly independent. a

Needless to say, we have made a point in this formulation of Eisenhart’s theorem of ex-
pressing all conditions as differential conditions on the first integrals. The motivation for
doing so is the following. Much of the old work on separability of the Hamilton-Jacobi
equation is about conditions for checking whether a system is separable in the given co-
ordinates. Examples in this respect are the Levi Civita conditions and Stackel’s theorem.
Eisenhart’s theorem was perhaps the first result which gives a sort of test for checking
whether separation variables exist, although it is to a large extent an existence theorem,
i.e. the test is not of the kind that could be applied directly on the given data. Important
generalizations were obtained by Woodhouse [23] and, specifically for non-orthogonal sep-
arability by Benenti (see [2] and references therein). What these have in common is that
a transition to separation variables, if they exist, will always be a point transformation.
A couple of examples are known (see e.g. [3, 22]) of Hamiltonian systems with additional
integrals of degree higher than two, for which a non-point canonical transformation exists
such that the Hamilton-Jacobi equation of the transformed Hamiltonian is separable. To
the best of our knowledge, no intrinsic characterization exists, for example of the kind of
Eisenhart’s theorem, of existence of such non-point transformations to separation vari-
ables. The idea is that our above reformulation of Eisenhart’s theorem might lead to
generalizations when not all additional integrals are quadratic (a generalization of condi-
tion 2). One might hope that an appropriate generalization of condition 3 could be found,
which then presumably would involve vector fields X} € X(7) which are not basic (and
also non-basic functions )\(Wk)). (Note that we have mentioned at least one result in what
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preceeds, which is valid for more than just basic vector fields.) The overall idea of the new
approach would be to base the analysis on a study of the integrability conditions for formal
integrability of the pde’s on the F,. Admittedly, these ideas are rather speculative. But
it seems to us that it would already be worthwhile to try to arrive at a new, independent
proof of Eisenhart’s theorem along such lines. An integrability analysis of the conditions
in Proposition 4 might well lead to much more practical criteria for testing the existence
of separation variables, i.e. conditions expressed directly in terms of the given data. The
calculus for doing such an analysis is available and starts from commutator properties of
the derivations involved. We may refer in this respect to a somewhat similar study on
complete decoupling of systems of second-order equations which was carried out in [14]
and did indeed give rise to fairly practical test criteria. Also, although this refers to an
entirely different subject, an integrability study of equations expressed with the geometric
derivations of the calculus along 7 has successfully been carried out in the context of the
inverse problem of the calculus of variations [6, 19].
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