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Abstract

An omission in the outline of the general approach to the inverse problem in [5] is
clarified.

While working on a comprehensive application of the theory established in [5], it has
occurred to one of us that a rather subtle point about ordering the Helmholtz conditions
has been overlooked in the paper’s general theoretical sections 2 and 3. Although the
effect on the validity of that general part is rather minor, it is not unimportant to clarify
this matter because one might be led to erronous applications of the theory otherwise.
The claim made in [5] (and also in the review text [4]) was that the conclusions about the
full set of passivity conditions were valid irrespective of the ordering of the equations in
the Riquier approach, as long as the second-order passivity conditions in the list, referred
to as the A-conditions, would not degenerate into conditions of order lower than two.
Now in Riquier theory derivatives are divided into two types, principal and parametric.
In deriving passivity conditions one should always substitute parametric for principal
derivatives, and not the other way round; we were insufficiently careful about this point
in [5]. As we shall explain below, our results in [5] are nevertheless correct, but with one
proviso: the ordering referred to above must satisfy some minimal requirements which
we shall capture here in the definition of a proper ordering.

With reference to the concepts, notations and numbered formulas in [5], consider the



(vertical) closure conditions,
DYg(Z,X,Y)=D"g (Y, X, Z),

which are part of the original set of Helmholtz conditions. Here and below, X, Y, Z etc.
are taken from a vector field basis adapted to the problem in hand. It is important to
realize that for each fixed triple of different vector arguments X, Y, Z, the corresponding
closure conditions more exactly read

D"g(Z,X,Y)=D"g(Y,X,Z) =D"g (X, Z,Y),

where the order of the last two arguments in each term does not matter in view of the
symmetry of the tensor field g. In essence, two of these derivatives will be principal
derivatives whereas the third one is parametric. This depends on the ordering which is
chosen for the dependent variables, namely the components of g. If, for example, the
term in the middle is the parametric derivative, the two equations which equivalently
represent this triplet will be written as

DYg(Z,X,Y) = D"¢g(Y,X,Z),
DYg(X,Z)Y) = D"g(Y,X,Z).

One further remark is in order here. In calling a term like DVg (Z, X,Y’) a principal
derivative (as we will often do for brevity), we in fact tacitly transfer properties of
derivatives of components of g to components of derivatives of g. That is to say, the
true principal derivative is the ‘leading term’ D% (¢(X,Y)) = ZV(¢g(X,Y’)). But it may
happen, for example, that external algebraic requirements force certain components of
g to be zero, in which case the corresponding component of a derivative of g cannot
be formally treated as a principal derivative. Of course, there must then be a shift in
the list of principal derivatives; but this need not necessarily imply that the ordering
rules for the remaining components of g have to be changed. Incidentally, it may even
happen that the leading terms on both sides disappear due to algebraic restrictions,
the corresponding closure condition thus becoming an algebraic equation itself. Such a
situation will be integrated in our present discussion within the category of improper
orderings.

To arrive at the definition of proper orderings and motivate it, let us reconsider the
question of writing down DV -prolongations of the closure conditions which are candidates
to combine into passivity conditions in the sense of the Riquier theory, i.e. new relations
between parametric derivatives (which then require one of the parametric derivatives to
be promoted to the rank of principal derivative). Consider the following prolongations:

DVDVg (U7 X7 Y7 Z) = DVDVg (U7 Z7 Y7 X)?
D'DVg(X,U,Y,Z) = D'DV¢(X,ZY,U).

When the second is subtracted from the first, the left-hand side is zero in view of
the commutator identity Eqn. (34) in [5], whereas the right-hand side, using the same



identity, becomes
DVDVg (Z7 U’ Y’ X) = DVDVg (Z7 X? Y’ U)7

or written differently
Dy (DVg (U, Y, X) —=Dg (X,Y,U)) + (D¢ (D4U,Y, X) = D"g (X,Y,D5U)) +... =0,

where the dots represent two more terms similar to the second. After expanding vector
fields such as D% U in terms of the selected local basis, this whole expression consists of
pairs of terms and for each pair, irrespective of the ordering which has been chosen, we
have one of the following situations: either one of the terms is a principal derivative and
the other one is the parametric derivative in the corresponding closure condition, or both
terms are principal derivatives. Riquier’s method requires that principal derivatives are
systematically replaced by parametric ones in order to see whether a new passivity con-
dition can be obtained. In the first situation the cancellation of terms is immediate; in
the second, both terms have to be substituted by the same parametric derivative after
which they will cancel each other as well. This is a typical example of the legitimate
use of previously obtained equations to show that no new conditions arise. A key point
in the above calculation, however, the one which escaped our attention in [5], is that a
derivative with respect to a common vector field Z can be brought outside the brackets
in the first term. A rather subtle point about ordering slips into the procedure here.
There is no guarantee, for an arbitrary ordering, that when we set up the two prolon-
gations whose left-hand sides involve comparable second-order derivatives of the same
component of g (¢(Y,Z) in the example), the right-hand sides will both have Z in the
same position. It may happen, for example, that DV g (Z,Y, X) is a principal derivative
and therefore must be replaced by DV¢ (Y, X, Z). In such a case, the subsequent cal-
culations cannot be traced back to closure conditions and their prolongations, and thus
may give rise to passivity conditions. We therefore introduce the following concept.

Definition. An ordering of the components of g is said to be proper when the following
requirements are met:

(i) if the list of vertical closure conditions contains two items in which the principal
derivatives are of the form DY g (Z,Y, X) and DY g (Z>,Y, X), then the correspond-
ing parametric derivatives are derivatives with respect to the same vector argument
(X orY as the case may be);

(ii) none of the vertical closure conditions reduces to an algebraic relation.

Some comments are in order here. The last item in the above definition was recognized
already in [5] as requiring a new start of the algorithmic process: it has always been
understood that whenever algebraic relations are encountered which restrict the num-
ber of independent components of g, such information has to be exhausted before the
systematic search for passivity conditions is resumed. The Riquier process also requires



ordering independent variables. It is always tacitly understood that vertical and hori-
zontal derivatives are ordered in the same way. Since the horizontal closure conditions
are obtained via the commutator identity [V,DV] = —D¥ it is then clear that these will
inherit the ordering structure of the vertical closure conditions.

We have now to verify that the assumption of having a proper ordering makes the rest
of the general considerations in [5] still work, even though we do not allow ourselves to
replace terms in the calculations by substitutions from earlier conditions, unless we are
sure that this involves substituting parametric derivatives for principal ones.

Before proceeding, however, it is of interest to give some examples of proper and im-
proper orderings. In the two columns below, we give the vertical closure conditions fol-
lowing from two possible orderings for the case n = 2, one which starts with the diagonal
elements of g, the other one doing the opposite (g;; ), is shorthand for DVg (Xj, X;, Xj)):

g1112 = 91211
92211 = 9122

9121 = 911)2
91212 = 9221

Assuming no diagonal elements are zero, the first ordering is proper, simply because
the two principal derivatives do not involve the same component of g. The second one
is improper, however, because the right-hand sides of the two equations for g;o have
derivatives with respect to different variables. It is obvious that cross differentiation of
these two equations will lead to a new relation between parametric derivatives. Next,
we look at three different orderings for n = 3:

g1112 = 9121 12|11 = 911)2 g1112 = 9121
91113 = 9131 913)11 = 9113 91113 = 9131
92211 = 9122 92211 = 9122 J12|12 = 92211
922|3 = 923|2 922|3 = 923|2 912|3 = 9231
933|11 = 913|3 933|11 = 913|3 913|12 = 9231
93312 = 923|3 93312 = 923|3 913|3 = 9331
912|3 = 913|2 912|3 = 913|2 92312 = 922|3
9231 = 9132 9231 = 913|2 g23|3 = 933|2

The first of these, in which the dependent variables can be ordered gi11 > g22 > ¢33 >
gi2 > g23 > g13, is proper, assuming that none of the g;; is identically zero (we remind the
reader that a principal derivative must be a derivative of a dependent variable of higher
order than the order of the dependent variable occurring in any parametric derivative
of the same degree in the same equation). The second ordering, with goo > g33 > g12 >
gos > g13 > ¢g11, for example, is likewise also proper. Observe, however, that the first
ordering looses its validity if g;1 = 0, since then neither g;;2 nor g;1)3 can be principal;
note that these two covariant derivatives need not be zero, it is the vanishing of their
leading terms which causes the problem. With ¢g1; = 0, one is forced to pass to the
second column, where the ordering induced on the remaining dependent variables is still
proper. If, however, also goo were zero, a similar transition to an induced ordering on



the remaining variables would result in an improper ordering. The third ordering above
is not proper from the outset: things go wrong in the last two equations, resulting in a
DV-DVY passivity condition.

Assuming the ordering is proper, we now go through the whole procedure of completing
the set of passivity conditions again and indicate where amendments have to be made.

The first equation encountered in Section 3 of [5], coming from V-D” compatibility,
reads
(®1D"g +igg)(Z,X,Y) = (21DVg +iyg) (Y, X, Z).

Whereas before we used closure conditions to substitute for the first term on both sides,
we must face the fact now that it is impossible to know whether such terms will be
principal or parametric. Instead, therefore, we look at the second term on both sides,
and more particularly at the parts involving DV ® (see the definition of ¥ in (30)). Such
terms can be substituted for by using DV-derivatives of the first algebraic requirement
(13). This is permitted because the idea is always that algebraic conditions on g are
imposed first (to determine the set of independent components of g which will then
become the unknowns in the differential conditions). In other words, algebraic conditions
(and their derivatives) are to be regarded as identities in our approach and thus can be
used in the process of simplifying expressions much in the same way as the curvature
relations (34-36). In carrying out the indicated substitutions in the present case, we will
create for example a term DV¢g (Z, X, ®(Y')) in the right-hand side. This term, together
with the first one on the left precisely make up a pair of type (12) which cannot be
both parametric and will cancel each other in the Riquier procedure as explained above.
What we are left with is, as before, the algebraic curvature condition (20) which is
assumed to be already taken care of.

Concerning D”-D” compatibility as discussed in [5], the crucial point is again that
for a proper ordering, the right-hand sides of the two prolongations we start from will
have a common argument Z in second position. The procedure which leads to the
‘intermediate relation’ of the bottom of the page is fine. From there on, the following
modified arguments must be invoked. When the first term is replaced via the identity
(35), the second-order terms combine to closure conditions and their D#-prolongations
and thus cancel out. There remains:

0=D"g(R(U,2),Y,X) + D"g (R(X,U),Y, Z) + D"g (R(Z,X),Y,U)
+9(DVR(Y,U, 2),X) + g(DR(Y,X,U), Z) + g(D R (Y, Z, X),U),

where use has been made of the property g (Y, DYR(X,U, %)) = 0 following from
(24). Again, we don’t touch the first-order terms now as it is undecidable at the moment
which of them is principal and which is parametric. Instead, we make a substitution
for the algebraic terms, coming from the Dy prolongation of the curvature condition
> g(R(U,Z),X) = 0. This creates first-order terms in g which are exactly the ones we



need to cancel out, by making proper use of the closure conditions, those we already
had.

We now come to the most delicate part of this note: the confirmation that the so-called
A-conditions remain valid.

Since the structure of the D¥-closure conditions is the same as that of the DV-equations,
we will always have to compare two mixed second-order derivatives of g with respect to
the same vector argument, but these will certainly have the same vector argument Z
in second position in the right-hand sides. If on the other hand we have to consider a
prolongation such as

DD (U, X,Y,Z) =D"D"¢ (U, Z,Y, X)

with U # X, this necessarily means that both D¢ (X,Y, Z) and DV¢ (U,Y, Z) figure
in the list of principal derivatives so that, assuming that the ordering is proper, the
corresponding right-hand sides have the same vector argument Z (or Y') in first position.
Hence, the prolongation to which the above one has to be compared will necessarily be

of the form
DVDHg (X7 U’ Y’ Z) = DVDH g(X7 Z7 Y7 U)?

with the same Z in second position again. By subtracting the first from the second and
using the identity (36) which introduces a component called € of the curvature of the
linear connection, and by replacing also the right-hand side of the second equation by
using (36), we arrive at an equation of the following form:

D"D"g¢(U,Z,Y,X) —D"D"g(Z,X,Y,U) +g(0(Y,X)Z,U) — g(6(Y, XU, Z) = 0.

We now carefully investigate the nature of the second-order terms. Observe first that in
view of the preceding ordering assumptions, DV¢ (Z,Y, X) and DVg (Z,Y,U) are both
parametric (and the same is true for the corresponding D”-derivatives). Hence, the only
way in which one or both second-order terms can be parametric is when DVg (U,Y, X)
and/or DVg (X,Y,U) are parametric as well. Clearly, however, these cannot both be
parametric, so we have to discuss separately the case that one of them is principal
and the case that they are both principal. For the first case, assume to fix ideas that
DVg (X,Y,U) is principal and the other one parametric. Then we can substitute the
latter for the former and the second-order equation becomes:

(AU, 2)g)(Y, X) =
D"DVg (U,Z,Y,X) —D"D"g(Z,U,Y,X) + g(0(Y, X)Z,U) — g(0(Y,X)U, Z) = 0.

We thus obtain an ‘A-condition’ in which both second-order terms are parametric. In
the second case, when both DV¢ (U,Y, X) and DV ¢ (X, Y, U) are principal (and thus also
D¢ (U,Y, X) is principal), we know that DV¢g (Y, X,U) is parametric. In the second
term of our intermediate relation, we can do the substitution of parametric for principal



immediately, whereas in the first term we first have to swap the arguments (U, Z) by
using the curvature identity (36), then do the substitution and then swap the first two
arguments again to obtain the term D¥DVg (Y, Z,U, X). It is easy to verify that the
algebraic terms in this procedure get rearranged in such a way that the final expression
is exactly the tensor A(Y, Z)g evaluated on the arguments (U, X) and we have again
obtained an ‘A-condition’ in which both second-order terms are parametric.

Note in passing that the interesting Proposition 2 of [5] about A(X, Y )g-tensors remains
valid; although we did not use this property in deriving the above passivity conditions
now, it will still be useful in subsequent considerations.

As for the remainder of the general search for passivity conditions, specifically the rather
complicated computations reported in Appendix B of [5], one can verify that the con-
clusions remain unaltered. Essentially, the difference between the inaccurate arguments
used in [5] and the proper ones we appeal to now is of the same type as discussed above
for V-D¥ and D¥-D# compatibility: instead of making substitutions in derivative terms
where we cannot know whether they are principal or parametric, we have to appeal at
an earlier stage to prolongations of algebraic conditions. We limit ourselves to a sketch
of the way this works in each case.

Consider first V-A compatibility. The beginning of the computation as explained on
p. 267 of [5] remains unaltered, up to and including the intermediate result at the bot-
tom of the page. We now proceed to work out first the explicit form for the terms
involving the tensors ¥ and Rie, using the defining relation (30) for ¥ and the prop-
erty (53) for Rie. In addition, we use the Bianchi identity (46) to substitute for the
V6 terms which gives rise to more terms involving a second DV-derivative of ®. The
resulting expression contains a number of DVg terms which involve the curvature R in
one of the arguments and we first work on eliminating those terms. Two of them are
DVg(Y,R(X,U),Z)—D"g (X, R(Y,U), Z); we replace them by using a Dy -prolongation
of the algebraic curvature condition > g(R(X,U),Z) = 0 and the similar one with YV’
and X interchanged. In doing so, we further take into account the relation

DVR(Y,X,U) = sD'D"®(Y,X,U) — :D'D'®(Y,U, X),

which follows from (19). The result is that a number of terms now cancel out via
legitimate use of closure conditions, or because the first two arguments in a DYDY ®
tensor can always be interchanged. Remarkably, however, quite a number of terms also
add up, and we obtain as the next intermediate result the equation

DYDVg (X,®Y,U,Z) —D"DVg (Y, ®X,U, Z) =
- 2Dvg (R(XaY)a Ua Z) - Dvg (YaR(ZaX)a U) + Dvg (Ya UaR(ZaX))
+D"g(X,R(Z,Y),U) —D"g (X,U,R(Y,Z)) +D"g (Y,DV®(U, X), Z)
+D"g(Y,U,D"®(Z, X)) -D"g(X,DV®(U,Y),Z) —D"g (X,U,DV®(Z,Y))
+ %g(DVDV(I)(Ya U,X),Z) - %g(DVDV@(Ya Ua Z)aX) - %g(DVDV@(Xa U,Y),Z)



+39(D"D"®(X,U,2),Y) + 39(D'DY®(U, Z,X),Y) - 59(D'DVO(U, Z,Y), X).

Invoking the Dy;-prolongation of 3 g(R(X,Y"), Z) = 0, we next replace the four terms
having a factor % (taking again the expression of DV R in terms of ® into account). All
DV g terms having R acting in one of the arguments now cancel out and the second-order
equation reduces to

DVDVg (X,®Y,U,Z) —D'DVg (Y,®X,U, Z) =
D"g(Y,D"®(U,X),Z) +D"g(Y,U,D"®(Z,X)) - D"g (X,D"®(U,Y), Z)
- Dvg (Xa Ua DV(I)(Z,Y)) - g(DVDVQ)(U, Z,Y),X) +g(DVDV(I)(U7 Z,X),Y)

Finally, using a DV-DV-prolongation of the algebraic condition (13), we can substitute
for the two algebraic terms in the above relation. In the resulting expression, the first
order terms cancel out via closure conditions and we are left with

DVDVg (X,®Y,U,Z) —D"D"g (U, Z,®Y, X) =
DVDVg (Y,®X,U,Z) —D"D g (U, Z,®X,Y).

For a proper ordering, whenever a combination of terms of the form DVDVg (X,Y,U, Z)—
DVDVg (U, Z,X,Y ) occurs, these terms can never be both parametric. For if they were,
every selection of a triple of arguments from each term, referring to first-order derivatives
which would then also be parametric, would still have two arguments in common (one
from the first couple and one from the second). Say these common arguments are X and
U. This means that there would be two corresponding equations in the list of closure
conditions with left-hand sides of the form DVg (-, X,U) and that cross differentiation
of these equations would already have produced the difference of two terms we started
from at the level of DV-DV compatibility. But we have shown that this cannot occur for
a proper ordering. Therefore, when parametric derivatives are substituted for principal
ones the expressions on both sides of the above equation become separately zero.

We next turn to DV-A compatibility, following the computation which starts on p. 268
of [5]. The intermediate condition mentioned there is not quite correct because improper
use was made of closure conditions. The correct expression reads

DVDVD¢ (Y, W, X,U,Z) —D"D"D¥g (Z,X,Y,U,W) =
D"g (W,0(U,Z)X,Y) —=D"g (X,0(W,Y)U, Z) +g (DVO(Y,U, Z) X, W)
— g(DVO(Y,U, Z)W,X) + ¢ (DV0(Z.U,W)X,Y) — g D" 0(X, W, YU, Z).

Now, the information which is contained in the prolongations we started from to derive
this expression is that DVg (Z, U, W), DVg (U, W, Z), DVg(X,U,Z), DVg(Y,U, Z) are
all parametric, whereas DV g (W, U, Z) and DYD"g (X,Y, U, Z) are principal. It follows
that certainly DVDVD¥#¢ (Y, W, X,U, Z) is principal and thus must be replaced. To
do this we must bring the argument W into third position first and therefore proceed
as follows. Considering the term DVD"g (W, X,U, Z), swap the first two arguments



using the curvature identity (36), then make the substitution, subsequently swap the
first two arguments again via (36) and finally take a DY derivative of the resulting
expression. When the third-order principal derivative above is replaced in this way,
cancellations occur in view of the closure conditions and also through the Bianchi identity
(46). The leading terms of the remaining expression are those of the DY -derivative of
(AY, X)g)(U,W). If (A(Y,X)g)(U,W) = 0 is one of the passivity conditions which
has been added to the original closure conditions, just one of its leading terms will be
principal. So another substitution is required and one can verify that the remaining
terms then all cancel out. If, on the other hand, (A(Y, X)g)(U,W) = 0 is not one of
the passivity conditions, the implication is that its leading terms are both principal
derivatives so that again substitutions must be made. Using Proposition 2 we conclude,
however, that modulo prolongations the computation will be formally the same as in
the first case. Hence, no new passivity conditions can be obtained.

For the D”-A compatibility, the few lines of indications in [5] are sufficient to lead
the way through quite similar calculations. The only correction which has to be made
is, as before, that the second DV-derivative of the curvature condition (20), previously
mentioned as the final outcome of the calculation, now has to be invoked at an earlier
stage, to create the terms which are needed for a proper use of closure conditions.

Finally we must reconsider whether alternants formed out of ‘. 4-conditions’ among them-
selves could give rise to new relations between parametric derivatives. Why this does
not happen will now be briefly explained. Suppose we have the following ‘. A-conditions’
in the list of passivity conditions of order two:

DVD7¢(X,Y,U,Z) = D'D"g(Y,X,U,Z) +lo.
DVD"¢(V,W,U,Z) = D'D"g¢(W,V,U,Z) +lo.

where the abbreviation l.o. refers to unspecified terms of lower order. The two left-
hand sides are principal, the right-hand sides parametric, which implies that also all
derivatives Dg( ., U, Z), where D stands for either DV or D¥ and the dot stands for one
of the arguments X, Y, V, W are parametric. An alternant arises from the following two
prolongations:

DVD"DYD"g (V,W,X,Y,U,Z) = D'D"D'D"¢(V,W,Y,X,U,Z) +lo.
DVD”DYD"¢ (X,Y,V,W,U,Z) = D'D"D'D"¢(X,Y,W,V,U,Z) +lo.

The procedure to make the left-hand side of the second equation identical to that of
the first consist of the following series of swappings of arguments by virtue of the cur-
vature identities (34-36): interchange first the middle two derivative arguments which
gives rise to DVDVD"D"g (X, V,Y, W, U, Z); next, interchange X and V and Y and W
finally, interchange the middle derivatives X and W again. Carrying out the same steps
simultaneously in the right-hand side of the equation, the second equation is replaced
by one of the form

DVD”DYD"g (V,W,X,Y,U,Z) = DVD"D"D" g (W, V,X,Y,U, Z) + lLo.



When this transformed equation is subtracted from the first one, the left-hand sides
cancel out and we obtain a relation of the form

DVD”DYD"g (V,W,Y,X,U,Z) = DVD"D"D" g (W, V, X,Y,U, Z) + Lo.

Both fourth-order terms in this expression are manifestly principal, however, the first
one via the Dy, Dij,-derivative, the second one because of the DDy -derivative. Hence,
further substitutions are required. In the right-hand side the substitution can be done
immediately, after which the interchanged arguments Y, X can be moved to the front
positions again by the same three-step procedure as before. In the left-hand side, on
the other hand, we have to transport the arguments V, W to the inner positions first
by the three-step procedure, and we must next interchange them via the appropriate
‘A-condition’. At the end of this process, it is clear that the fourth-order terms on
both sides are identical. Needless to say, however, many lower order terms have been
created throughout the use of (35-36) and by substitutions of parametric for principal
derivatives via ‘A-conditions’. One can verify, however, that all lower order terms in the
end cancel out. This is unfortunately a very tedious calculation. We content ourselves
therefore with giving some hints about the most important steps in the process. To
begin with, the D” ¢ terms which show up in the overall lower order part immediately
cancel out in view of the full symmetry of DV#. The terms in DYD¥g all occur in
pairs which constitute the highest-order terms of an A-type tensor. By the fact that
Proposition 2 of [5] still applies, we know that the process of substituting parametric
for principal derivatives will eventually give rise to purely algebraic terms here. The
other algebraic terms in g (which do not cancel out immediately) have vector fields such
as DVYD¥0 (X,Y,U, Z)W in their arguments. These can be turned into terms involving
DVDVDVR as follows. First interchange the derivatives acting on #. This requires an
extension of (36), because 6 is not purely covariant: in fact

DVD"0 (X,Y,U, Z)W — DDV (Y, X, U, Z)W = pigix 10 (U, Z)W =
—0(0(X, YU, Z)W — 0(U,0(X,Y)Z)W — 0(U, Z)0(X, Y)W + 0(X,Y)0(U, Z)W.

The symmetry of DV€ can now be used to interchange two of its arguments. The
identity above can then be used again to restore the original order of differentiation.
If the arguments to be interchanged in the middle step are chosen correctly, all the
derivatives of 6 which arise combine so as to give a third derivative of R via the Bianchi
identity (47). All other algebraic terms which are created in this process precisely cancel
out the ones obtained before. Using finally the third-order DV -derivative of the cyclic
curvature condition (20), one finds that all remaining terms cancel out by virtue of the
closure conditions and their prolongations.

It is worth observing again that the generality of this search for further passivity condi-
tions requires the ‘A-conditions’ to be effectively conditions of second order. Unfortu-
nately, in many of the particular cases in a Douglas-type classification, the ‘ A-conditions’
will degenerate into first-order or even algebraic conditions. Obviously, the last three
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compatibility investigations carried out above make no sense in such cases because they
start with setting up second-order prolongations of the closure conditions or the ‘A-
conditions’ themselves. In case the ‘A-conditions’ would degenerate into algebraic con-
ditions, for example, the philosophy of our general approach would require these to be
imposed first and then to see whether it is still possible to set up a proper ordering for
the restricted set of unknowns.

The upshot of the corrections discussed in this note is that Theorem 1 of [5] remains
valid, provided we replace the final sentence by: The completeness of the scheme only
applies when the ordering which is selected is proper and no degeneracy occurs in the
second-order passivity conditions.

In fact, this hardly restricts the range of applicability of the general conclusions as the
number of particular cases in a Douglas-type classification where no degeneracy problem
occurs is rather restricted anyway. This does not mean, on the other hand, that our
approach is useless in the majority of cases. All it means is that for many cases in
a classification study one will have to proceed in an ad hoc manner from the closure
conditions on, but the same technique of using a more geometrical calculus, adapted to
the Jordan normal form structure of the Jacobi endomorphism @, remains valid and will
provide more structure and insight into the analysis than working in a coordinate basis
does.

We have claimed so far to have generalized two interesting subcases of Douglas’s scheme
to an arbitrary number of degrees of freedom. To finish this note, we briefly argue why
these two general cases are indeed correct. In the first case, treated in [5], where @ is
a multiple of the identity, there are no algebraic restrictions on g. The diagonalizewise
ordering of the components of g we selected is easily seen to be proper and there is no
degeneracy in the second-order passivity conditions, so all conclusions are correct. In the
generalization of Douglas’s Case ITal we reported in [1], g is diagonal and the ordering
we chose is manifestly proper. The A-conditions do degenerate here so we are in danger
of having to proceed in an ad hoc manner. But we showed that these conditions are
actually identically satisfied for this case, so no further action is needed.
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