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1 IntroductionIn a recent paper in this journal [5] Dimakis and M�uller-Hoissen have shownhow to generate conservation laws in completely integrable systems by usinga bi-di�erential calculus. In [3] we described brie
y how this approach tointegrable systems is related to the standard approach using bi-Hamiltonianstructures of Poisson-Nijenhuis type, for systems with �nitely many degreesof freedom. Here we shall extend that work as follows: we shall discuss thePoisson-Nijenhuis case, corresponding to a simple bi-di�erential calculus, ingreater detail; and we shall describe a certain 2-dimensional version of whatDimakis and M�uller-Hoissen call a gauged bi-di�erential calculus. Our con-structions basically involve a symplectic manifold (M;!) and a type (1; 1)tensor �eld R on M . When M is a cotangent bundle T �Q and R is thecomplete lift of a tensor �eld J on Q, the gauged bi-di�erential calculuswe choose turns out to be equivalent to the construction of bi-Hamiltoniansystems on T �Q � IR, recently discussed by Ibort et al. [7] and related bythese authors to a theorem of Gelfand and Zakharevich. Ibort et al. use theGelfand-Zakharevitch construction to explain some results of Benenti [1, 2]on the separation of variables in the Hamilton-Jacobi equation for Hamil-tonians of mechanical type, when the metric de�ning the kinetic energyadmits a conformal Killing tensor with certain properties. By consideringthe relationship between the work of Ibort et al. and that of Dimakis andM�uller-Hoissen we have been able to sharpen some of the results of theformer.One of our main conclusions is that the conformal Killing tensor that lies atthe heart of Benenti's construction is not merely of gradient type but hasan even more special form. In particular such a conformal Killing tensornecessarily has vanishing Nijenhuis torsion when it is converted into a �eldof endomorphisms via the ambient metric. We shall also prove a partialconverse, namely, that a conformal Killing tensor with vanishing Nijenhuistorsion in the above sense and whose eigenvalues are functionally indepen-dent is necessarily of the special type.2



2 Simple bi-di�erential calculi andPoisson-Nijenhuis structuresLet M be a smooth manifold; it will be convenient for large parts of thispaper to assume that M is simply connected, so that closed 1-forms areexact. Consider the exterior algebra V(M) of forms on M , over the algebraC1(M) of real-valued C1 functions on M . By a simple (as opposed togauged) bi-di�erential calculus on V(M), we mean (following [5]) a pair(d1; d2) of derivations of V(M) of degree 1, which both have the co-boundaryproperty di2 = 0 and which commute in the graded sense, by which we meanthat [d1; d2] := d1d2+d2d1 = 0. The fundamental observation of [5], for ourpurposes, is that if �(0) 2 C1(M) satis�es d1d2�(0) = �d2d1�(0) = 0, thenone can inductively de�ne a sequence of functions �(m), m = 0; 1; 2; : : : ,according to the rule d1�(m+1) = d2�(m):In particular, let d1 be the ordinary exterior derivative d. We know fromFr�olicher-Nijenhuis theory [6] that every other derivation of degree 1 whichcommutes with d (i.e. is a derivation of type d�) must be of the form dRfor some type (1; 1) tensor �eld R on M . Furthermore, the necessary andsu�cient condition for dR to satisy dR2 = 0 is that the torsion, or Nijenhuistensor, NR of R must be zero. Recall that the action of dR on C1(M) isgiven by dRf = R�(df), where we think of the tensor R as a homomorphismof the C1(M)-module of vector �elds onM , and R� as its adjoint acting on1-forms.Let now �(0) be a function satisfying ddR�(0) = �dRd�(0) = 0, and considerthe sequence of functions �(m) de�ned according to the rule stated above,which now reads d�(m+1) = dR�(m):This sequence has interesting properties in the particular case in which Mis a Poisson manifold, as we now explain.Proposition 2.1. Suppose that (V(M); d; dR) is a bi-di�erential calculuson a simply connected manifold M ; and that 
 is a bivector �eld on Msuch that 
(R�(�); �) = 
(�;R�(�)) for any 1-forms �, �. Let �(0) satisfyddR�(0) = 0. Then the functions �(m) de�ned by d�(m+1) = dR�(m) satisfy
(d�(m); d�(n)) = 0 for all m;n � 0:3



Proof. Note �rst that the assumption on 
 implies that for any functions�,  , 
(dR�; d ) = 
(d�; dR ):Clearly we have 
(d�(0); d�(0)) = 0. Suppose that the assertion is true form;n � k; then for n < k
(d�(k+1); d�(n)) = 
(dR�(k); d�(n))= 
(d�(k); dR�(n)) = 
(d�(k); d�(n+1)) = 0:In exactly the same way we get 
(d�(k+1); d�(k)) = 
(d�(k); d�(k+1)), whichmust therefore also be zero in view of the skew-symmetry of 
, and ofcourse 
(d�(k+1); d�(k+1)) = 0. It follows that the assertion is also true form;n � k + 1. 2Corollary. Suppose in addition that [
;
] = 0, where [�; �] is the Schoutenbracket, so that if f�;  g = 
(d�; d ) then f�; �g is a Poisson bracket. Thenthe functions �(m) are in involution. In particular, if (M;!) is symplec-tic, and R is symmetric with respect to !, then the functions �(m) are ininvolution with respect to the Poisson bracket de�ned by !.We have shown in [3] that a bi-di�erential calculus (V(M); d; dR) endowsa symplectic manifold (M;!) such that !(R(�); �) = !(�; R(�)) = !1 andd!1 = 0 with a Poisson-Nijenhuis structure. That is to say, there is a secondPoisson bracket, which is compatible with the given one, in the sense thatany linear combination of the two, with constant coe�cients, is also a Poissonbracket. The recursion tensor of the structure is the R we started from,and the inductively de�ned functions �(m) are in involution with respect toboth Poisson brackets. We now wish to discuss in more detail the interplaybetween the various assumptions underlying these statements.We �rst recall the following result concerning Poisson structures from [9](see also [10, 8]). Let P denote the C1(M)-linear map of 1-forms to vector�elds de�ned by a Poisson structure (i.e. 
(�; �) = hP (�); �i), and supposethat R is a type (1; 1) tensor �eld such that PR� = RP . For any 1-form �and vector �eld X on M , de�ne a vector �eld �R;P (�;X) by�R;P (�;X) = (LP (�)R)(X)� P (LX(R��)) + P (LR(X)�):As a consequence of the assumption that PR� = RP , �R;P is a type (1; 2)tensor �eld onM , sometimes called the Magri-Morosi concomitant (see [12])4



of R and P . Then in order for RP to de�ne a Poisson structure it is su�cientthat R satis�es the following two conditions:1. the torsion of R is zero;2. the Magri-Morosi concomitant of R and P is zero.We now consider more speci�cally the case in which P comes from a sym-plectic form ! on M . We shall establish some interesting equivalent waysof expressing the second condition, that �R;P = 0; it is important, in thecontext of this paper, to note that these results do not require that theNijenhuis torsion of R vanishes.Since �R;P is a tensor, it is su�cient to consider its value when its 1-formargument is exact. For any function f on M , P (df) = Xf , the Hamiltonianvector �eld associated with f by P . Since P here comes from a symplecticstructure, iP (�)! = ��. Furthermore, �R;P = 0 if and only if i�R;P (df;Y )! =0 for all f and Y . Nowi�R;P (df;Y )! = iLXfR(Y )! + LY (dRf)� LR(Y )df= iLXfR(Y )! + iY ddRf + d(iY dRf)� d(iR(Y )df)= iLXfR(Y )! + iY ddRf:Note that the symmetry of R with respect to ! and the invariance of ! underthe 
ow of Xf together imply that LXfR is also symmetric with respect to!. Thus �R;P = 0 if and only ifiLXfR ! = �2ddRffor all functions f ; this is our �rst equivalent representation of the vanishingof �R;P .The de�ning relation for !1 likewise reads !1 = 12iR!, from which it follows,using the de�nition dR = [iR; d], that d!1 = �12dR!. Making use of thecommutator identity (see [6]) [iX ; dR] := iXdR + dRiX = �iLXR + LR(X),we next obtainiXfd!1 = �12 iXfdR! = �12dRdf + 12 iLXfR ! � 12diR(Xf)!= 12ddRf + 12iLXfR ! � 12LXf!1 + 12 iXfd!1;5



from which it follows thatiXfd!1 = ddRf + 12iLXfR !:Hence, the vanishing of the right-hand side is further equivalent to d!1 = 0.In conclusion, we have proved the following result.Proposition 2.2. Let (M;!) be a symplectic manifold with correspondingPoisson map P . Assume that R is a type (1; 1) tensor �eld such that PR� =RP . Then the following conditions are equivalent:1. the Magri-Morosi concomitant �R;P vanishes;2. iLXfR ! = �2 ddRf for all f ;3. d!1 = 0, where !1 = 12iR!. 2If in addition to the above equivalent conditions it is assumed that NR = 0,then RP de�nes a second Poisson structure which is compatible with theoriginal one. The second Poisson bracket on M is given byff; gg1 = RP (df)g = R(Xf)g = !1(Xf ; Xg) = �hXg; dRfi:We then have a bi-Hamiltonian manifold of Poisson-Nijenhuis type. (Forclarity, we should point out that if R is assumed to be non-singular, then !1is symplectic and therefore also de�nes a second Poisson structure, whichthis time is R�1P . This Poisson structure need not be compatible with P ,however. We shall be concerned only with the compatible structure whosebracket f�; �g1 is made explicit above.)Consider a bi-di�erential calculus (d; dR) on a symplectic manifold (M;!),where R satis�es any, and hence all, of the conditions of Proposition 2.2.Then there is a corresponding Poisson-Nijenhuis structure. Suppose thatR has n functionally independent real eigenfunctions, each of which hasgeometric multiplicity two. As we showed in [3], one then can generatethrough the iterative procedure associated with the bi-di�erential calculusthe sums of the powers of the eigenfunctions of R, and they are in involutionwith respect to both Poisson brackets. It follows that the eigenfunctionsthemselves are in involution.As an example of the Poisson-Nijenhuis structure just described, considerthe case in which M is a cotangent bundle, M = T �Q, with its standard6



symplectic structure ! = d�. Let J be a type (1; 1) tensor �eld on Q, andwrite Ĵ for the linear transformation of �bres of T �Q induced by J . Considerthe 2-form !1 on T �Q de�ned by!1 = d(Ĵ��);and de�ne a tensor R by !1 = !(R(�); �). It was observed via a coordinatecalculation in [7] that this tensor is the complete lift of J to T �Q, which wewill denote by ~J . In fact it can be shown by intrinsic methods, starting fromthe intrinsic de�nition of the complete lift ~J given for example in [4], thatthe 2-form !1 introduced above is the same as the !1 = 12 i ~J! occurring inProposition 2.2. We discuss these issues in an appendix to this paper. Forthe moment, however, we record that we have constructed a tensor R = ~Jon the symplectic manifold (T �Q; d�) which is manifestly symmetric withrespect to ! = d�, and that moreover the corresponding d!1 is zero. We thusknow from Proposition 2.2 that the Magri-Morosi concomitant will vanish.Furthermore, accepting that ~J is indeed the complete lift of J , we know thatN ~J = 0 if and only if NJ = 0 (see e.g. [4] or [14]). Thus any type (1; 1)tensor �eld on Q with zero torsion de�nes a Poisson-Nijenhuis structure onT �Q.If J has n functionally independent real eigenfunctions then ~J has the sameeigenfunctions, each of which is doubly degenerate. In fact when NJ = 0and J has n functionally independent real eigenfunctions, we can take theeigenfunctions as coordinates qi on Q, and with respect to these coordinatesJ = nXi=1 qi @@qi 
 dqi:Then in terms of the corresponding canonical coordinates (qi; pi) on T �Q,~J = nXi=1 qi � @@qi 
 dqi + @@pi 
 dpi� ;and !1 =Pni=1 qidqi^dpi. (The fact that the eigenfunctions are in involutionwith respect to the standard Poisson bracket is not very interesting here |they are so because they are independent of pi.)This set-up is in fact locally typical, in the following sense. We return tothe case of an arbitrary symplectic manifold M and a type (1; 1) tensor �eld7



R which satis�es all the assumptions which lead to the conclusion that itseigenfunctions are in involution. If these eigenfunctions are functionally in-dependent then by Liouville's theorem we can use them as one half of a setof canonical coordinates, so that ! = Pni=1 dqi ^ dpi with qi the eigenfunc-tions of R. Then using the fact that NR = 0 it can be shown that the pican be chosen so that R and !1 are given as above for ~J . Such coordinatesare called Darboux-Nijenhuis coordinates (see [11]).The equation ddRf = 0 plays an important role in the generation of thesequence of functions in involution using the bi-di�erential calculus method(in the simple case, and also in fact in the gauged case we will discussbelow). It is therefore worth noting that our results tell us the generalsolution of this equation, considered as an equation for f . For given R withNR = 0, satisfying the other conditions assumed above, such functions f , inDarboux-Nijenhuis coordinates, are of the formf = nXi=1 fi(qi);where the qi are the eigenfunctions of R. As a byproduct we see from theequivalences established in Proposition 2.2, that these functions are preciselythe Hamiltonian functions f such that LXfR = 0.3 Kinetic energy HamiltoniansIn the previous section we considered the condition ddRf = 0 as an equationfor f , given R. In fact the other interpretation, namely that in which f isgiven and R is the unknown, is more interesting. If we also require that Rshould satisfy the equivalent conditions of Proposition 2.2, then we are look-ing for tensors R which are invariant under Xf . Note that Proposition 2.2does not require the vanishing of the torsion of R; in analysing this situationwe can therefore start without assuming that the Nijenhuis condition is ine�ect.Consider the particular case in which f(q; p) = h(q; p) = 12g(p; p) is a Hamil-tonian on T �Q of kinetic energy type, and R = ~J is the complete lift of atype (1; 1) tensor �eld on Q. We seek those J for which dd ~Jh = 0. The sim-plest way of carrying out the calculations is to use tensor methods. Thus8



we write h = 12gijpipj ;with the summation convention now in force; we regard the gij as the com-ponents of the covariant form of the metric tensor g onQ, and use this metricfreely to raise and lower indices. (In fact it is the need to raise and lower in-dices, or in other words to pass conveniently between the contravariant andcovariant versions of tensors relative to the metric, which makes the use ofthe tensor calculus e�cient here.) Furthermore we shall use the Levi-Civitaconnection associated with the metric, denoting the connection coe�cientsby � ijk and the covariant derivative by a vertical bar.We work in terms of 1-forms on T �Q adapted to the connection, which aregiven by dqi and �i where �i = dpi � �kijpkdpj;the dual basis of vector �elds is fXi; @=@pig whereXi = @@qi + �kijpk @@pj :Then if J = J ij@=@qi 
 dqj ,~J = J ij  Xi 
 dqj + @@pj 
 �i!+ �Jkijj � Jkjji� pk @@pi 
 dqj :We have dh = gijpj�i, and it follows thatd ~Jh = J ijpj�i + gil �Jkjjl � Jkljj� pjpkdqi:Now d�i = 12Rlijkpldqj ^ dqk + �kijdqj ^ �k;where Rlijk are the components of the curvature tensor; it follows thatdd ~Jh = �J ij�i ^ �j + gil ��Jjkjl + Jjljk + Jkljj� pkdqi ^ �j+ �12JklRmkij + gjk(J lmjk � J lkjm)ji� plpmdqi ^ dqj :Thus in order that dd ~Jh = 0, J must satisfy Jji = J ij and�Jjkjl + Jjljk + Jkljj = 0:9



The �rst two terms in the latter equation taken together are skew-symmetricin k and l, while the third term is symmetric. It follows that Jkljj = 0,that is, J must be a parallel tensor �eld with respect to the connection.The further condition that JklRmkij +JkmRlkij = 0 is automatically satis�edwhen the �rst two are: in fact it is the integrability condition for a symmetrictensor to be parallel. Summarizing, we have proved the following result.Proposition 3.1. Let g be a given metric tensor �eld on Q and h = 12gijpipjthe corresponding kinetic energy Hamiltonian on T �Q. Then, for a type(1; 1) tensor �eld J on Q to have the property dd ~Jh = 0, it is necessary andsu�cient that J is symmetric and parallel. 2This result, though not very exciting in itself perhaps, has one very interest-ing feature: the torsion of ~J vanishes automatically, as a consequence of theconditions for dd ~Jh to vanish. In the penultimate section of the paper weshall discuss the case of a Hamiltonian of mechanical type, which is rathermore complicated, and leads to involutory integrals of genuine interest; inthat case also it will turn out, remarkably, that the vanishing of the torsionof the recursion tensor is a consequence of an analoguous condition on dd ~Jh.4 A gauged bi-di�erential calculus andbi-Hamiltonian structures on an extended spaceIn a gauged bi-di�erential calculus (see [5]), the pair of derivations (d1; d2)of degree 1 is replaced by operators Di = di + Ai, where the Ai in generalare N � N matrices of 1-forms and the operators Di act on N -componentcolumn vectors of forms. (Actually in [5] the Di act on square matrices offorms, but as we pointed out in [3] the construction works just as well asdescribed above.) The Di further have to satisfy the conditionsDi2 = 0; [D1; D2] := D1D2 +D2D1 = 0(which are formally the same as the conditions satis�ed by the derivationsin a simple bi-di�erential calculus).Consider the following scheme, with N = 2. We take d1 = d and d2 = dR,as before, and assume that (d; dR) is a bi-di�erential calculus already (i.e.10



that dR2 = 0). Set D1 = d, but (for arbitrary k-forms �; �) setD2 " �� # = dR " �� # + " df 0dh 0 # ^ " �� # = " dR�+ df ^ �dR� + dh ^ � # ;for some �xed functions f and h. The conditions D12 = 0 and [D1; D2] = 0are automatically satis�ed; we have D22 = 0 if and only ifddRh = dh ^ df; ddRf = 0:Starting with a suitable vector of functions, we will be able to generate asequence of such vectors by a procedure similar to the one in Section 2. Wewant to show that the functions so obtained are in some sense in involution,so that we are dealing again with complete integrability. We shall �rst showthat, assuming that we start from the situation where we already have aPoisson-Nijenhuis structure on M as described in Section 2, the conditionson f and h derived above are necessary and su�cient to enable us to de�nea certain type of bi-Hamiltonian structure on M � IR.Proposition 4.1. Let (M;!) be a symplectic manifold and R a type (1; 1)tensor with vanishing torsion, symmetric with respect to !, and such that!1 = 12 iR! is closed. Assume the functions f and h satisfy ddRh = dh ^ dfand ddRf = 0. Then M � IR can be equipped with a pair of compatiblePoisson brackets.Proof. Let f�; �g be the Poisson bracket on M associated with ! and f�; �g1the second one, as described in Section 2. We will extend these Poissonbrackets to M � IR. To do so, we must decribe how they act on the extracoordinate function on IR, which we denote by z. First, we set f�; zg = 0,that is we specify that z should be a Casimir of f�; �g. Then clearly theextended bracket is still Poisson (i.e. it satis�es the Jacobi identity). Nowde�ne the function ĥ on M � IR by ĥ = h+ zf . We setf�; zg1 = f�; ĥg;and show that the given conditions on f and h ensure that this de�nes aPoisson bracket on M � IR. It is su�cient to consider whether the Jacobiidentity holds with arguments z, � and  , where � and  are independentof z. Now f�; zg1 = f�; hg+ zf�; fg, since z is a Casimir of f�; �g. Thusf ; f�; zg1g1 = f ; f�; hgg1+ f ; zf�; fgg1= f ; f�; hgg1+ f ; hgf�; fg+ zf ; f�; fgg1+ zf�; fgf ; fg:11



It follows thatf ; f�; zg1g1 + f�; fz;  g1g1 + fz; f ; �g1g1= fh; f ; �g1g+ f ; f�; hgg1� f�; f ; hgg1+ f ; hgf�; fg� f�; hgf ; fg+ z (ff; f ; �g1g+ f ; f�; fgg1� f�; f ; fgg1) :In order for the Jacobi identity to hold the terms independent of z mustvanish and the coe�cient of z must also vanish. The Poisson brackets on theright-hand side all involve functions independent of z, so can be evaluatedusing the formulae of Section 2. WithX� denoting as before the Hamiltonianvector �eld of � calculated with respect to the Poisson bracket coming fromthe symplectic form !, we havef ; f�; hgg1� f�; f ; hgg1+ fh; f ; �g1g= !1(X ; [X�; Xh])� !1(X�; [X ; Xh]) +Xh(!1(X ; X�))= (LXh!1)(X ; X�) = (diXh!1)(X ; X�) = �ddRh(X ; X�);and �f ; hgf�; fg+ f�; hgf ; fg= df ^ dh(X ; X�):Thus the conditions for the existence of the gauged bi-di�erential calculusde�ned earlier are precisely those required to ensure that f�; �g1 satis�es theJacobi identity.Finally, we must show that the extended Poisson brackets are compatible,that is, that for any constants � and �, �f�; �g1 + �f�; �g is also a Poissonbracket. Now the restriction of this bracket to M is the Poisson bracketcorresponding to the recursion operator �R + �I , where I is the identitytensor. On the other hand,�f�; zg1+ �f�; zg = �f�; zg1 = f�; �ĥg:Thus �f�; �g1 + �f�; �g is constructed according to the procedure describedabove, with the recursion operator �R + �I and the functions �h and �f .But these quantities satisfy the conditions just derived for the new bracketto be Poisson, if R, h and f do. So the extended Poisson brackets arecompatible. 2Remark. It is easy to see that the Poisson tensor associated to the bracketf�; �g1 on M � IR is given by
1 = 
(R�(�); �)+ @@z ^ (Xh + zXf ):12



As an alternative proof of the above proposition, one can verify that theSchouten bracket [
1;
1] is zero and that [
;
1] = 0 also.We now turn to the properties of a vector sequence of functions [f (m); h(m)]Tconstructed recursively using the gauged bi-di�erential calculus, with a suit-able choice of initial functions, and under the assumption that the manifoldis simply connected. The idea is to de�ne [f (m+1); h(m+1)]T by the ruleD1[f (m+1); h(m+1)]T = D2[f (m); h(m)]T , ord " f (m+1)h(m+1) # = dR " f (m)h(m) #+ " df 0dh 0 # " f (m)h(m) # ;or equivalentlydf (m+1) = dRf (m) + f (m)df; dh(m+1) = dRh(m) + f (m)dh;which can be started provided thatD1D2[f (0); h(0)]T = 0. Take, for example,f (0) = 1 and h(0) = 0. Then f (1) = f and h(1) = h. (Notice in passingthe following di�erences between the recursive construction here and theone we discussed for a simple bi-di�erential calculus in Section 2, and moreexplicitly in [3]: the condition ddRf = 0 was the requirement on f to start therecursive procedure in Section 2, whereas now it is part of the conditions forhaving a gauged bi-di�erential calculus, and we here initialize the recursionby choosing trivial values for f (0) and h(0).)Proposition 4.2. Consider the functions f (m) and h(m) as de�ned above andput ĥ(m) = h(m) + zf (m):We then have the following properties:1. both the h(m) and f (m) are in involution with respect to both Poissonbrackets on M ;2. fh(i); f (j)g+ ff (i); h(j)g = 0 for every i; j � 1, and the same propertyholds with respect to the second bracket on M ;3. the functions ĥ(m) on M � IR are in involution with respect to bothbrackets.Proof. We write �(m) to stand for either h(m) or f (m). The rule for generating�(m+1), when expressed in terms of Poisson brackets, isf�(m+1); �g = f�(m); �g1 + f (m)f�(1); �g:13



Assume that f�(i); �(j)g = f�(i); �(j)g1 = 0 for all i, j with 1 � i; j � m: weshow that the same is true with m+ 1 in place of m. First, for 1 � i � mf�(m+1); �(i)g = f�(m); �(i)g1 + f (m)f�(1); �(i)g = 0:Then 0 = f�(i+1); �(m+1)g = f�(i); �(m+1)g1 + f (i)f�(1); �(m+1)g;whence f�(i); �(m+1)g1 = 0.Secondly, let k(i; j) stand for the function fh(i); f (j)g+ ff (i); h(j)g. Thenk(i+ 1; j) = fh(i); f (j)g1 + ff (i); h(j)g1 + f (i)(fh(1); f (j)g+ ff (1); h(j)g)= k(i; j + 1) + f (i)k(1; j) + f (j)k(i; 1):Now suppose that k(i; j) = 0 for all i, j with 1 � i; j � m. It follows fromthe formula above that k(m+ 1; j) = 0 for 1 � j < m, whilek(m+ 1; m) = fh(m); f (m)g1 + ff (m); h(m)g1 + f (m)k(1; m) = 0;and of course k(m+1; m+1) = 0. Finally, the �rst line in the expression fork(i+1; j) shows that vanishing of the k(i; j) implies that also fh(i); f (j)g1+ff (i); h(j)g1 = 0.For the third part, observe �rst that for any function � on Mf�; ĥ(m)g1 = f�; h(m)g1 + f�; zg1f (m) + zf�; f (m)g1= f�; h(m+1)g � f (m)f�; h(1)g+ z �f�; f (m+1)g � f (m)f�; f (1)g�+ f (m) �f�; h(1)g+ zf�; f (1)g�= f�; ĥ(m+1)g;whilefz; ĥ(m)g1 = fh(1); h(m)g+ z(fh(1); f (m)g+ ff (1); h(m)g)+ z2ff (1); f (m)g = 0as a result of the preceding two properties, so that trivially also fz; ĥ(m)g1 =fz; ĥ(m+1)g. It follows that the ĥ(m) satisfy the recursion relationf�; ĥ(m+1)g = f�; ĥ(m)g1:14



The fact that these functions are in involution can now be deduced fromthis relation by an inductive argument, or proved directly using the �rsttwo properties. 2Corollary. Suppose that the recursive generation of new functions breaksdown at order m+ 1, by which we mean that ĥ(m+1) = 0. ThenC(�) = mXi=0 �i ĥ(i)is a Casimir of the Poisson pencil 
� �
1.This result is to some extent related to a theorem of Gelfand and Zakhare-vich about the existence of a polynomial Casimir on an odd dimensional bi-Hamiltonian manifold with a Poisson pencil of maximal rank (see [7, 11]).The main result in [7] is based on this theorem and gives an interestinggeometrical interpretation of the theory of Benenti about the separabilityof the Hamilton-Jacobi equation (see [2] and references therein). We willhighlight some additional features of the results obtained by Ibort et al. inthe next section. But it should be emphasized that the scheme we have de-scribed in this section already covers the main structural properties whichare needed for that purpose and this scheme is valid for an arbitrary sym-plectic manifold M and with respect to a general type (1; 1) tensor �eldR.5 Conformal Killing tensors withvanishing torsionBy way of generalization of the results of Section 3, we now look at theconditions for the existence of the gauged bi-di�erential calculus, again fromthe perspective that h is given and R, and in this case f , are unknown.We consider the case in which h is a Hamiltonian of mechanical type onT �Q, and R = ~J . To keep the analogy with Section 3, we will not assumefrom the outset that NJ = 0. As before, we assume that the kinetic energypart of h is determined by a metric, so thath = 12gijpipj + V (q):15



We will assume further that f is a function on Q. Then the conditiondd ~Jh = dh ^ df becomes, using results obtained earlier:�J ij�i ^ �j + gil ��Jjkjl + Jjljk + Jkljj� pkdqi ^ �j+ �12JklRmkij + gjk(J lmjk � J lkjm)ji� plpmdqi ^ dqj + ddJV= � @f@qidqi ^ (gjkpk�j + dV ):From the �i ^ �j terms we �nd that J must be symmetric, as before. Thedqi ^ �j terms give �Jjkjl + Jjljk + Jkljj = �gjk @f@ql :The symmetric part of this in k and l givesJkljj = �12 �gjk @f@ql + gjl @f@qk� ;from which it follows that@f@qj = �(Jkk )jj ; or f = � trJ(up to a constant). Furthermore,Jjkjl + Jjljk + Jkljj = ��gjk @f@ql + gkl @f@qj + glj @f@qk� ;which is to say that J is a conformal Killing tensor of gradient type. More-over, if one substitutes for the covariant derivatives in the expression for thetorsion of J , which is J liJkjjl � J ljJkijl + Jkl �J lijj � J ljji� ;one �nds that it vanishes. So once again the vanishing of the torsion of Jis a consequence of the condition that dd ~Jh must satisfy. If one takes thetrace of the torsion on j and k one �nds thatdJ(trJ) = 12d(trJ2):Thus the condition on f , which reduces to ddJf = 0, is also satis�ed auto-matically. 16



Finally, the terms in dqi^dqj involving J vanish as a result of the di�erentialcondition it satis�es, and we are left with the following condition on V :ddJV = dV ^ df:We have therefore proved the following result, which adds some interestingfeatures to Proposition 2 in [7].Proposition 5.1. Let g be a given metric tensor �eld on Q and V and ffunctions on Q, and let h be the Hamiltonian function on T �Q given byh = 12gijpipj + V (q). The necessary and su�cient conditions for a type(1; 1) tensor �eld J on Q to have the property dd ~Jh = dh ^ df are that J issymmetric and satis�es the equationsJkljj = �12 �gjk @f@ql + gjl @f@qk� ;while the functions V and f satisfy ddJV = dV ^df . Such a J is a conformalKilling tensor of g of gradient type and �f is its trace (up to a constant).Moreover, J will have vanishing torsion and f has the property ddJf = 0;this implies that all conditions are satis�ed for the existence of a gaugedbi-di�erential calculus of the type described in the previous section. 2The special property of the conformal Killing tensors we encounter hereis characteristic of all su�ciently general conformal Killing tensors withvanishing torsion, as we will now show.Proposition 5.2. Let J be a type (1; 1) tensor �eld on an n-dimensional(pseudo)-Riemannian manifold (Q; g) such that the corresponding (0; 2) ten-sor is conformal Killing with factor �. Assume further that J has n real,functionally independent eigenfunctions. Then NJ = 0 if and only ifJkljj = 12 (�lgjk + �kgjl) :This further implies that J is conformal Killing of gradient type.Proof. We know that J satis�es P Jjkjl = P�lgjk, where the summationsign stands for the cyclic sum over all indices. PuttingTjkl = Jjkjl � 12(�jgkl + �kgjl);it follows that PTjkl = 0. The Nijenhuis condition now can be written inthe form Jmj (Tmkl�Tmlk) = Jml Tjkm� Jmk Tjlm. Adding to this the identity17



Jmj (Tmkl + Tklm) = �Jmj Tlmk, we obtain an expression for 2Jmj Tmkl whichis symmetric in j and k. It follows thatJmj Tmkl = Jmk Tmjl:This indicates that for each �xed l, the symmetric matrix Tl with compo-nents Tjkl commutes with J . Since J , by assumption, has distinct eigen-values at each point of an open dense subset of Q, it follows that all Tlare simultaneously diagonalizable. It then easily follows from the symmetryproperties of Tjkl that with respect to a basis of eigenvectors of J , all com-ponents of Tl are actually zero. Hence, J has the required property, fromwhich it further follows that �j = @f=@qj , with f = trJ . The proof in theother direction is contained in earlier statements. 2We end this section by pointing out that the conditions on f and h in thecase that R is the complete lift ~J again have an interpretation in terms ofthe Lie derivative of ~J with respect to the corresponding Hamiltonian vector�elds.Proposition 5.3. The conditions dd ~Jf = 0 and dd ~Jh = dh^df , for arbitraryfunctions f; h on T �Q, are equivalent toLXf ~J = 0; LXh ~J = Xf 
 dh�Xh 
 df:Proof. The statement about f has already been mentioned in Section 3.Concerning Xh, we know from the second of the equivalent properties inProposition 2.2 thatiLXh ~J d� = �2 dd ~Jh = �2 dh ^ df= dh ^ iXfd� � df ^ iXhd�;from which the result easily follows. 26 ApplicationsWe �rst brie
y review the results of [7] and [1], before mentioning the newinsights about them that our work provides.At the heart of the matter lie the recurrence relationsdf (m+1) = dJf (m) + f (m)df; dh(m+1) = d ~Jh(m) + f (m)dh;18



where h = 12gijpipj+V (q), J is a conformal Killing tensor of g with vanishingtorsion and functionally independent eigenfunctions, f = � trJ , and Vsatis�es ddJV = dV ^ df . Then, as Ibort et al. show,1. for m = 1; 2; : : : ; dimM we can take for f (m) the m th elementarysymmetric function of the eigenfunctions of J , and f (m) = 0 for m >dimM ;2. with this choice of the f (m), h(m) takes the form h(m) = 12K(m)ijpipj+V (m)(q), m = 1; 2; : : : ; dimM , where the K(m) are independent, pair-wise commuting Killing tensors of g with common closed eigenforms,K(1) = g, the V (m) satisfy dV (m) = dK(m)V so that ddK(m)V = 0, andh(m) = 0 for m > dimM .Such a collection of Killing tensors is called a St�ackel system. It is known ([2,7]) that if the metric g admits a St�ackel system and if the potential V satis�esddK(m)V = 0 then the Hamilton-Jacobi equation for the Hamiltonian h =12gijpipj + V (q) is separable in orthogonal coordinates.In fact in [1], Benenti proves the following result:Let (ui) be orthogonal coordinates on a Riemannian manifold(M; g). If @@ui (ln gjj) = 1uj � ui ; i 6= j; ui 6= ujthen the Hamilton-Jacobi equation for geodesics is separable.Benenti shows that the tensorL whose components relative to the orthogonalcoordinates are Lii = uigii; Lij = 0 i 6= j;is a conformal Killing tensor whose torsion vanishes, and is the generator ofa St�ackel system.This result is related to our work as follows. In Proposition 5.2 we haveproved that a conformal Killing tensor �eld L which has n real, functionallyindependent eigenfunctions, satis�es NL = 0 if and only ifLijjk = 12 (�igjk + �jgik) :19



Now the eigenfunctions of L may be used as coordinates (ui); with respectto these coordinates L takes the form (as a type (1; 1) tensor)L = nXi=1 ui @@ui 
 dui;and since L is symmetric (as a type (0; 2) tensor), the metric tensor g isdiagonal. The 1-form � whose components appear in the formula for Ljkjlis given by � = d(trL), so � = Pdui. The formula for Ljkjl, re-expressedfor convenience in the formLijjk = 12 ��igjk + �j�ik� ;reduces to (uj � ui)� ijj = gjj2gii ; (uj � ui)�iij = �12 ;for i 6= j; when i, j and k are all di�erent and when they are all the same theequations are identically satis�ed. But when the coordinates are orthogonal,� ijj = � 12gii @gjj@ui ; �iij = 12gii @gii@ujfor i 6= j, so the formula for Ljkjl reduces to just the one condition@@ui (ln gjj) = � 1uj � ui :Since gjj = 1=gjj , this is identical to the condition in Benenti's result.Ibort et al. show that the recurrence relations dh(m+1) = d ~Jh(m) + f (m)dhmay be written in the form f�; ĥ(m+1)g = f�; ĥ(m)g1 as in the proof of Propo-sition 4.2; that is, that the ĥ(m) satisfy Lenard's recurrence relations for thebi-Hamiltonian structure on M � IR. We have given an alternative way ofobtaining these recurrence relations, namely by using a certain gauged bi-di�erential calculus. We have shown further that the consistency conditionsfor such a bi-di�erential calculus are identical with the consistency condi-tions for such a bi-Hamiltonian structure, in a rather more general contextthan that required for the separability argument. Finally, we have shownthat the conformal Killing tensor that occurs in the construction of eitherthe bi-di�erential calculus or the bi-Hamiltonian system must be of a spe-cial form, that as a consequence the vanishing of its torsion is automatic20



and not an additional requirement, and that su�ciently general conformalKilling tensors with vanishing torsion must take this special form.The separability results require that the conformal Killing tensor has func-tionally independent eigenfunctions. By way of further application, we willillustrate how the results of Sections 4 and 5 can be used in a construc-tive procedure that may lead to the identi�cation of conservation laws evenwhen this condition is not satis�ed. The idea is to start with a given metrictensor �eld g, i.e. with the kinetic energy part T of a Hamiltonian on T �Q,as the only data, and to proceed from there to construct suitable type (1,1)tensor �elds J , potentials V and functions h(m) which Poisson-commutewith h = T + V . The procedure works as follows. First, the characteristicproperty of conformal Killing tensors with vanishing torsion, as identi�edin Proposition 5.1, is used as a set of partial di�erential equations for thedetermination of suitable tensor �elds J . The trace of such J de�nes corre-sponding functions f which then give rise to equations for the potential viathe condition ddJV = dV ^ df . We �nally appeal to the recursive schemedescribed in Proposition 4.2 to construct functions f (m) and h(m).Let us illustrate this procedure by taking g to be the Euclidean metric (indimension n). Since raising or lowering indices in this case has no e�ect onthe coordinate representation of tensor �elds, we will write all indices forconvenience as lower indices. The equations for J become (with Jkl = Jlk)Jkl;j = �12 ��jk @f@ql + �jl @f@qk� ;for some function f . It readily follows then that we must have (indices witha di�erent name in each equation are assumed to be di�erent and there areno summations):Jkl;j = 0; Jii;j = 0; Jii;i = � @f@qi (qi); Jkl;k = �12 @f@ql (ql):These equations are easy to solve and have the following general solution:Jkl = aqkql + bkql + blqk + ckl;where the a; bk and ckl = clk are constants. Notice that for a 6= 0, by aEuclidean coordinate transformation we can simplify this expression toJkl = aqkql + ck�kl;21



so that J is what Benenti, in [1], calls a planar inertia tensor. The case inwhich the ck (the eigenvalues of ckl) are distinct leads, via a particular caseof the results quoted above, to elliptic coordinates for Euclidean space.Suppose, however, we proceed to the other extreme by taking ck = 0 anda = 1. With f = �Pi qi2, the equations for V becomeqi  qj @2V@qi@qk � qk @2V@qi@qj!+ 3�qj @V@qk � qj @V@qk� = 0;from which it follows that qj@V=@qk � qk@V=@qj must be a homogeneousfunction of degree �2. This is so if V is of the form V = V1 + V2 whereV1 is an arbitrary function of Pi qi2 and V2 is an arbitary function which ishomogeneous of degree �2.Next, we have to �nd functions (f (m); h(m)) recursively from the equationsdf (m+1) = dJf (m) + f (m)df; dh(m+1) = d ~Jh(m) + f (m)dh;with f (1) = f = �jqj2 and h(1) = h = 12 jpj2 + V (we have introducedobvious vector notations here). The �rst hierarchy of functions immediatelyterminates, i.e. we �nd f (2) = 0, whence f (m) = 0 for m � 2. (Note that inthis case J has a single non-zero eigenfunction, namely jqj2, with eigenvectorq, so this is the expected result.) The complete lift of J (regarded as a (1; 1)tensor) is given by~J = qiqj  @@qi 
 dqj + @@pj 
 dpi!+ (pjqi � piqj) @@pi 
 dqj :A straightforward calculation then givesh(2) = 12(q � p)2 � 12 jqj2jpj2 � jq2jV2;and h(m) = 0 for m � 3. So, our procedure produces a single furtherquadratic integral for the system with Hamiltonian h. We recover in thisway results obtained by one of us previously by di�erent methods in [13].Appendix: some features of complete liftsIf J is a type (1; 1) tensor �eld on a manifold Q, its complete lift ~J to T �Qwas de�ned in [4] by the formulai ~J(X)d� = iXLJvd�;22



where Jv is the vertical lift (a vector �eld on T �Q). (See also [14] for adi�erent de�nition of the complete lift.) An immediate property is thatiJvd� = i ~J�.Lemma A1. For all h 2 C1(T �Q), we haveiXhd ~J� = �d ~Jh:Proof. Making use (consecutively) of the commutator identity [iX ; i ~J ] =i ~J(X), the de�nition of d ~J and the relations just mentioned, we �ndd ~Jh = i ~Jdh = �i ~J iXhd� = �iXhi ~Jd� + i ~J(Xh)d�= �iXhd ~J� � iXhdi ~J� + iXhLJvd�= �iXhd ~J� � iXhd �i ~J� � iJvd�� = �iXhd ~J�: 2Lemma A2. ~J is symmetric with respect to d�, i.e. for all vector �elds X; Yon T �Q we have d� �X; ~J(Y )� = d� � ~J(X); Y � :Proof. Using the �rst mentioned property, we havei ~J(X)d� = iXdi ~J� = �iXd ~J� + iXi ~Jd�:Contracting this with Xh and interchanging the �rst two contractions ineach term, we obtaini ~J(X)iXhd� = �iX iXhd ~J� + iXiXhi ~Jd�:Using Lemma A1 and the commutator [iX ; i ~J ] in the last term, we obtainthe desired property for Y = Xh. But since a local frame of vector �elds onT �Q can be constructed out of Hamiltonian vector �elds, the result followsfor arbitrary Y . 2Recalling now that for a general type (1; 1) tensor �eld U , iU!(X; Y ) =!(U(X); Y ) + !(X;U(Y )), the symmetry of ~J with respect to ! enables usto eliminate the vector �eld argument X from the de�ning relation of ~J ,and we obtain i ~Jd� = 2LJvd� = 2 di ~J�. Hence, we have!1 = d ~J� = di ~J� = d ~J��;which is the same as d(Ĵ��), as considered in Section 2.23
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