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Abstract

The theory of Dimakis and Muller-Hoissen concerning bi-differential
calculi and completely integrable systems is related to bi-Hamiltonian
systems of Poisson-Nijenhuis type. In the special case where the ambi-
ent manifold is a cotangent bundle one is able to recover and elucidate
the theory of Tbort et al. [7], which is in turn a reworking in the bi-
Hamitonian context of Benenti’s theory of Hamilton-Jacobi separable
systems. In particular it is shown that Benenti’s conformal Killing
tensor, which is central to his theory, has an even more special form
than has hitherto been realized and that when it is converted into a
field of endomorphisms by raising an index with the ambient metric,
it necessarily has vanishing Nijenhuis torsion.



1 Introduction

In a recent paper in this journal [5] Dimakis and Miiller-Hoissen have shown
how to generate conservation laws in completely integrable systems by using
a bi-differential calculus. In [3] we described briefly how this approach to
integrable systems is related to the standard approach using bi-Hamiltonian
structures of Poisson-Nijenhuis type, for systems with finitely many degrees
of freedom. Here we shall extend that work as follows: we shall discuss the
Poisson-Nijenhuis case, corresponding to a simple bi-differential calculus, in
greater detail; and we shall describe a certain 2-dimensional version of what
Dimakis and Miiller-Hoissen call a gauged bi-differential calculus. Our con-
structions basically involve a symplectic manifold (M,w) and a type (1, 1)
tensor field R on M. When M is a cotangent bundle 7%() and R is the
complete lift of a tensor field J on @, the gauged bi-differential calculus
we choose turns out to be equivalent to the construction of bi-Hamiltonian
systems on T*Q x IR, recently discussed by Ibort et al. [7] and related by
these authors to a theorem of Gelfand and Zakharevich. Ibort et al. use the
Gelfand-Zakharevitch construction to explain some results of Benenti [1, 2]
on the separation of variables in the Hamilton-Jacobi equation for Hamil-
tonians of mechanical type, when the metric defining the kinetic energy
admits a conformal Killing tensor with certain properties. By considering
the relationship between the work of Ibort et al. and that of Dimakis and
Miiller-Hoissen we have been able to sharpen some of the results of the
former.

One of our main conclusions is that the conformal Killing tensor that lies at
the heart of Benenti’s construction is not merely of gradient type but has
an even more special form. In particular such a conformal Killing tensor
necessarily has vanishing Nijenhuis torsion when it is converted into a field
of endomorphisms via the ambient metric. We shall also prove a partial
converse, namely, that a conformal Killing tensor with vanishing Nijenhuis
torsion in the above sense and whose eigenvalues are functionally indepen-
dent is necessarily of the special type.



2 Simple bi-differential calculi and
Poisson-Nijenhuis structures

Let M be a smooth manifold; it will be convenient for large parts of this
paper to assume that M is simply connected, so that closed 1-forms are
exact. Consider the exterior algebra A(M) of forms on M, over the algebra
C*(M) of real-valued C* functions on M. By a simple (as opposed to
gauged) bi-differential calculus on A(M), we mean (following [5]) a pair
(dq, dz) of derivations of A(M) of degree 1, which both have the co-boundary
property d;? = 0 and which commute in the graded sense, by which we mean
that [dy, d3] := dyds + dad; = 0. The fundamental observation of [5], for our
purposes, is that if y(©) € C* (M) satisfies didax® = —dydi (@ = 0, then
one can inductively define a sequence of functions Y™, m = 0,1,2,...,

according to the rule
A = gy ).

In particular, let d; be the ordinary exterior derivative d. We know from
Frolicher-Nijenhuis theory [6] that every other derivation of degree 1 which
commutes with d (i.e. is a derivation of type d.) must be of the form dg
for some type (1,1) tensor field R on M. Furthermore, the necessary and
sufficient condition for dg to satisy dg? = 0 is that the torsion, or Nijenhuis
tensor, Np of R must be zero. Recall that the action of dr on C'*(M) is
given by drf = R*(df), where we think of the tensor R as a homomorphism
of the C (M )-module of vector fields on M, and R* as its adjoint acting on
1-forms.

Let now y(?) be a function satisfying ddrx® = —drdy® =0, and consider
the sequence of functions y("™ defined according to the rule stated above,
which now reads

A"t = dpy ™).
This sequence has interesting properties in the particular case in which M
is a Poisson manifold, as we now explain.

Proposition 2.1. Suppose that (A(M),d,dr) is a bi-differential calculus
on a simply connected manifold M; and that Q is a bivector field on M
such that Q(R*(a), 8) = Q(a, R*(3)) for any 1-forms «, 3. Let x(©) satisfy
ddrx®) = 0. Then the functions "™ defined by dy(™1) = dr\ (™) satisfy

Q(dx(m)7 dX(n)) =0 forall m,n>0.



Proof. Note first that the assumption on € implies that for any functions

6, 1,
Qdpo, dv) = Q(do, dri).

Clearly we have Q(dx(o)7 dX(O)) = 0. Suppose that the assertion is true for
m,n < k; then for n < k

Qax* dx™) = Qdpx™, dy™)
Q(agx(k)7 dRX(n)) — Q(agx(’f)7 dX(nH)) — 0.

In exactly the same way we get Q(dx(k"'l)7 dx(k)) = Q(dx(k), dx(k‘"l))7 which
must therefore also be zero in view of the skew-symmetry of €2, and of
course Q(dx(k"'l)7 dx(k"'l)) = 0. It follows that the assertion is also true for
m,n < k-+ 1. a

Corollary. Suppose in addition that [Q, Q] = 0, where [-, -] is the Schouten
bracket, so that if {¢, ¥} = Q(d¢, dy) then {-,-} is a Poisson bracket. Then
the functions y(™) are in involution. In particular, if (M,w) is symplec-
tic, and R is symmetric with respect to w, then the functions y(™ are in
involution with respect to the Poisson bracket defined by w.

We have shown in [3] that a bi-differential calculus (A(M),d,dr) endows
a symplectic manifold (M,w) such that w(R(-),:) = w(-, R(:)) = wy and
dwy = 0 with a Poisson-Nijenhuis structure. That is to say, there is a second
Poisson bracket, which is compatible with the given one, in the sense that
any linear combination of the two, with constant coefficients, is also a Poisson
bracket. The recursion tensor of the structure is the R we started from,
and the inductively defined functions y("™ are in involution with respect to
both Poisson brackets. We now wish to discuss in more detail the interplay
between the various assumptions underlying these statements.

We first recall the following result concerning Poisson structures from [9]
(see also [10, 8]). Let P denote the C'(M)-linear map of 1-forms to vector
fields defined by a Poisson structure (i.e. Q(e, 3) = (P(«), 5)), and suppose
that R is a type (1, 1) tensor field such that PR* = RP. For any 1-form «
and vector field X on M, define a vector field ppr p(a, X) by

e (0, X) = (LpaB)(X) = P(Lx (R"0)) + P(Lrpxa).

As a consequence of the assumption that PR* = RP, ppp is a type (1,2)
tensor field on M, sometimes called the Magri-Morosi concomitant (see [12])



of R and P. Then in order for RP to define a Poisson structure it is sufficient
that R satisfies the following two conditions:

1. the torsion of R is zero;

2. the Magri-Morosi concomitant of R and P is zero.

We now consider more specifically the case in which P comes from a sym-
plectic form w on M. We shall establish some interesting equivalent ways
of expressing the second condition, that ur p = 0; it is important, in the
context of this paper, to note that these results do not require that the
Nijenhuis torsion of R vanishes.

Since pup p is a tensor, it is sufficient to consider its value when its 1-form
argument is exact. For any function f on M, P(df) = Xy, the Hamiltonian
vector field associated with f by P. Since P here comes from a symplectic
structure, ip(,yw = —a. Furthermore, pr p = 0 if and only if 4, 4y y)w =
0 for all f and Y. Now

bp @)@ = lex Ry + Ly (dRf) = Lagy)df
= ey my)w +ivddrf +d(iydrf) - d(ipy)df)
= iﬁxf R(Y )W + iyddgrf.
Note that the symmetry of R with respect to w and the invariance of w under

the flow of X together imply that Lx, R is also symmetric with respect to
w. Thus pr p = 0 if and only if

iy, nw = —2ddpf

for all functions f; this is our first equivalent representation of the vanishing
of uprp.

The defining relation for w; likewise reads w; = %iRw, from which it follows,
using the definition dr = [iR,d], that dwy = —%de. Making use of the
commutator identity (see [6]) [ix,dRr] := ixdr + drix = —ig r+ Lr(x),
we next obtain

. _ 1- _ 1 1, 1.
zdewl = —52deRw_—§def—|—§2£Xwa—§dzR(Xf)w

_ 1 1. 1 1.
= 3ddrf + jicy rw = 3Lx w1 + 3ix,dor,



from which it follows that
indwl =ddrf+ %i/;Xwa.

Hence, the vanishing of the right-hand side is further equivalent to dwy = 0.
In conclusion, we have proved the following result.

Proposition 2.2. Let (M,w) be a symplectic manifold with corresponding
Poisson map P. Assume that R is a type (1, 1) tensor field such that PR* =
RP. Then the following conditions are equivalent:

1. the Magri-Morosi concomitant g p vanishes;

2. i,chRw = —2ddpf for all f;

3. dwy =0, where w; = %iRw. a

If in addition to the above equivalent conditions it is assumed that Np = 0,
then RP defines a second Poisson structure which is compatible with the
original one. The second Poisson bracket on M is given by

{f,9}1 = RP(df)g = R(Xf)g = w1 (Xy, Xy) = —(Xy, drf).

We then have a bi-Hamiltonian manifold of Poisson-Nijenhuis type. (For
clarity, we should point out that if R is assumed to be non-singular, then wy
is symplectic and therefore also defines a second Poisson structure, which
this time is R~!P. This Poisson structure need not be compatible with P,
however. We shall be concerned only with the compatible structure whose
bracket {-,-}1 is made explicit above.)

Consider a bi-differential calculus (d,dg) on a symplectic manifold (M,w),
where R satisfies any, and hence all, of the conditions of Proposition 2.2.
Then there is a corresponding Poisson-Nijenhuis structure. Suppose that
R has n functionally independent real eigenfunctions, each of which has
geometric multiplicity two. As we showed in [3], one then can generate
through the iterative procedure associated with the bi-differential calculus
the sums of the powers of the eigenfunctions of R, and they are in involution
with respect to both Poisson brackets. It follows that the eigenfunctions
themselves are in involution.

As an example of the Poisson-Nijenhuis structure just described, consider
the case in which M is a cotangent bundle, M = T*(@), with its standard



symplgctic structure w = df. Let J be a type (1, 1) tensor field on @, and
write J for the linear transformation of fibres of T*() induced by .J. Consider
the 2-form wy on T*() defined by

W1 = d(J*0)7

and define a tensor R by wy = w(R(+),-). It was observed via a coordinate
calculation in [7] that this tensor is the complete lift of J to T*@Q, which we
will denote by J. In fact it can be shown by intrinsic methods, starting from
the intrinsic definition of the complete lift .J given for example in [4], that
the 2-form wy introduced above is the same as the w; = %ijw occurring in
Proposition 2.2. We discuss these issues in an appendix to this paper. For
the moment, however, we record that we have constructed a tensor R = J
on the symplectic manifold (7%, df) which is manifestly symmetric with
respect to w = d#, and that moreover the corresponding dw; is zero. We thus
know from Proposition 2.2 that the Magri-Morosi concomitant will vanish.
Furthermore, accepting that J is indeed the complete lift of .J, we know that
Nj; = 0 if and only if Ny = 0 (see e.g. [4] or [14]). Thus any type (1,1)
tensor field on ) with zero torsion defines a Poisson-Nijenhuis structure on

Q.

If J has n functionally independent real eigenfunctions then .J has the same
eigenfunctions, each of which is doubly degenerate. In fact when Ny = 0
and J has n functionally independent real eigenfunctions, we can take the
eigenfunctions as coordinates ¢* on Q, and with respect to these coordinates

0 .
J = ' @dq.
Zq aq* @
Then in terms of the corresponding canonical coordinates (qi,pi) on T%Q,

) .
J=2d (aqi s

=1

d
di 3
3]%@ p)

andw; = 32", ¢'dg' Adp;. (The fact that the eigenfunctions are in involution
with respect to the standard Poisson bracket is not very interesting here —
they are so because they are independent of p;.)

This set-up is in fact locally typical, in the following sense. We return to
the case of an arbitrary symplectic manifold M and a type (1, 1) tensor field



R which satisfies all the assumptions which lead to the conclusion that its
eigenfunctions are in involution. If these eigenfunctions are functionally in-
dependent then by Liouville’s theorem we can use them as one half of a set
of canonical coordinates, so that w = Y%, d¢' A dp; with ¢' the eigenfunc-
tions of R. Then using the fact that Np = 0 it can be shown that the p;
can be chosen so that R and wy are given as above for J. Such coordinates
are called Darboux-Nijenhuis coordinates (see [11]).

The equation ddrf = 0 plays an important role in the generation of the
sequence of functions in involution using the bi-differential calculus method
(in the simple case, and also in fact in the gauged case we will discuss
below). It is therefore worth noting that our results tell us the general
solution of this equation, considered as an equation for f. For given R with
Np = 0, satisfying the other conditions assumed above, such functions f, in
Darboux-Nijenhuis coordinates, are of the form

n

F=> filai),

=1

where the ¢; are the eigenfunctions of R. As a byproduct we see from the
equivalences established in Proposition 2.2, that these functions are precisely
the Hamiltonian functions f such that Lx, R = 0.

3 Kinetic energy Hamiltonians

In the previous section we considered the condition ddpr f = 0 as an equation
for f, given R. In fact the other interpretation, namely that in which f is
given and R is the unknown, is more interesting. If we also require that R
should satisfy the equivalent conditions of Proposition 2.2, then we are look-
ing for tensors R which are invariant under X . Note that Proposition 2.2
does not require the vanishing of the torsion of R; in analysing this situation
we can therefore start without assuming that the Nijenhuis condition is in
effect.

Consider the particular case in which f(q, p) = h(q,p) = %g(p7 p) is a Hamil-

tonian on T*Q) of kinetic energy type, and R = J is the complete lift of a
type (1,1) tensor field on ). We seek those J for which dd ;2 = 0. The sim-
plest way of carrying out the calculations is to use tensor methods. Thus



we write
h = 39" pipj,

with the summation convention now in force; we regard the ¢/ as the com-
ponents of the covariant form of the metric tensor ¢ on (), and use this metric
freely to raise and lower indices. (In fact it is the need to raise and lower in-
dices, or in other words to pass conveniently between the contravariant and
covariant versions of tensors relative to the metric, which makes the use of
the tensor calculus efficient here.) Furthermore we shall use the Levi-Civita
connection associated with the metric, denoting the connection coefficients
by ka and the covariant derivative by a vertical bar.

We work in terms of 1-forms on T7(Q) adapted to the connection, which are
given by d¢* and 7; where
i = dp; — Tiprdp;;
the dual basis of vector fields is {X;, d/dp;} where
J J

4 Thpp—.
8(]2+ 2]pk8p]

X, =

Then if J = Ji0/0q" @ dg,

=@ dg’.

k3

. 9 9
—J , by 2 , ko_ gk
J = J] (Xz & dq + 8])]‘ & 772) + (Jz|] J]|2) Pk 8])

We have dh = gijpjm, and it follows that
djh = J”pﬂi + gil (ka” - Jk”j) Pjpkdf]i-

Now 4 4
dr; = %Rlijkpldq] A dg® + Ff;dq] A Tk,

where Rli]‘k are the components of the curvature tensor; it follows that
dd;h = —J9m; Am;+ ga (—JW + JIE 4 J’“”j) prdq' A
+ (%JHR%]‘ + gip (S - Jlk|m)|i) Pipmdg’ A dg’.
Thus in order that dd;h = 0, J must satisfy J7t = J% and

ikl gitle o gkl — )



The first two terms in the latter equation taken together are skew-symmetric
in k and [, while the third term is symmetric. It follows that J* = 0,
that is, J must be a parallel tensor field with respect to the connection.
The further condition that JMRT,?M + Jhm leij = 0 is automatically satisfied
when the first two are: in fact it is the integrability condition for a symmetric
tensor to be parallel. Summarizing, we have proved the following result.

Proposition 3.1. Let g be a given metric tensor field on ) and h = %gijpipj
the corresponding kinetic energy Hamiltonian on T*(). Then, for a type
(1,1) tensor field J on @ to have the property dd;h = 0, it is necessary and
sufficient that J is symmetric and parallel. a

This result, though not very exciting in itself perhaps, has one very interest-
ing feature: the torsion of J vanishes automatically, as a consequence of the
conditions for dd ;h to vanish. In the penultimate section of the paper we
shall discuss the case of a Hamiltonian of mechanical type, which is rather
more complicated, and leads to involutory integrals of genuine interest; in
that case also it will turn out, remarkably, that the vanishing of the torsion
of the recursion tensor is a consequence of an analoguous condition on dd ;h.

4 A gauged bi-differential calculus and
bi-Hamiltonian structures on an extended space

In a gauged bi-differential calculus (see [5]), the pair of derivations (dy, d3)
of degree 1 is replaced by operators D; = d; + A;, where the A; in general
are N X N matrices of 1-forms and the operators D; act on N-component
column vectors of forms. (Actually in [5] the D; act on square matrices of
forms, but as we pointed out in [3] the construction works just as well as
described above.) The D; further have to satisfy the conditions

D=0, [Dy,Ds):=D1Dy+ DyD; =0

(which are formally the same as the conditions satisfied by the derivations
in a simple bi-differential calculus).

Consider the following scheme, with N = 2. We take d; = d and dy = dp,
as before, and assume that (d,dg) is a bi-differential calculus already (i.e.

10



that dg? = 0). Set Dy = d, but (for arbitrary k-forms «, 3) set
a | o af 0 a | | dpa+df N
o 5= e[ 0] n 5] = st

for some fixed functions f and h. The conditions Dy? = 0 and [Dy, D3] =0
are automatically satisfied; we have D,? = 0 if and only if

ddph = dh A df, ddpf = 0.

A

9

Starting with a suitable vector of functions, we will be able to generate a
sequence of such vectors by a procedure similar to the one in Section 2. We
want to show that the functions so obtained are in some sense in involution,
so that we are dealing again with complete integrability. We shall first show
that, assuming that we start from the situation where we already have a
Poisson-Nijenhuis structure on M as described in Section 2, the conditions
on f and h derived above are necessary and sufficient to enable us to define
a certain type of bi-Hamiltonian structure on M x RR.

Proposition 4.1. Let (M,w) be a symplectic manifold and R a type (1,1)
tensor with vanishing torsion, symmetric with respect to w, and such that
wy = %iRw is closed. Assume the functions f and h satisfy ddrph = dh A df
and ddpf = 0. Then M X IR can be equipped with a pair of compatible
Poisson brackets.

Proof. Let {-,-} be the Poisson bracket on M associated with w and {-, -},
the second one, as described in Section 2. We will extend these Poisson
brackets to M x IR. To do so, we must decribe how they act on the extra
coordinate function on IR, which we denote by z. First, we set {-,z} = 0,
that is we specify that z should be a Casimir of {-,-}. Then clearly the
extended bracket is still Poisson (i.e. it satisfies the Jacobi identity). Now
define the function /2 on M x IR by h=h+ zf. We set

{'7 Z}l = {'7 B}v
and show that the given conditions on f and h ensure that this defines a

Poisson bracket on M x IR. It is sufficient to consider whether the Jacobi

identity holds with arguments z, ¢ and 1, where ¢ and ¥ are independent
of z. Now {¢,z}1 ={o,h} + z{¢, f}, since z is a Casimir of {-,-}. Thus

{¢7 {(bv Z}l}l = {¢7 {(bv h}}l + {¢7 Z{(bv f}}l
{0 Ao hi i+ { ko, 1+ A0 Ao, f1 + 2{o, FH{e, [}

11



It follows that

{4 zhih +{o {z vhih +{z {¢, ol h
= {h v, 001} +{v{o. At — {0 A0 hf b+ {v, hi{ o, f} = {o, h}{e, f}
+z({fi{d b} +{b A I —{o.{, f1).
In order for the Jacobi identity to hold the terms independent of z must
vanish and the coefficient of z must also vanish. The Poisson brackets on the
right-hand side all involve functions independent of z, so can be evaluated
using the formulae of Section 2. With X denoting as before the Hamiltonian

vector field of ¢ calculated with respect to the Poisson bracket coming from
the symplectic form w, we have

{¢7 {(bv h}}l - {(bv {¢7 h}}l + {h7 {¢7 (b}l}
= w1 (Xy, [Xg, Xp]) — w1 (X, [Xys Xp]) + X (w1 (Xy, X))
(Lx,w1)(Xy, Xp) = (dix,w1)(Xy, Xy) = —ddph(Xy, Xy),

and
—{, b}, [+ {0 A, [} = df A dh(Xy, Xy).

Thus the conditions for the existence of the gauged bi-differential calculus
defined earlier are precisely those required to ensure that {-, -}, satisfies the
Jacobi identity.

Finally, we must show that the extended Poisson brackets are compatible,
that is, that for any constants A and u, A{-,-}; + p{-, -} is also a Poisson
bracket. Now the restriction of this bracket to M is the Poisson bracket
corresponding to the recursion operator AR + pl, where I is the identity
tensor. On the other hand,

/\{'7 Z}l + :u{'v Z} = /\{'7 Z}l = {'7 /\iL}

Thus A{-,-}1 + p{-, -} is constructed according to the procedure described
above, with the recursion operator AR + pI and the functions Ah and Af.
But these quantities satisfy the conditions just derived for the new bracket
to be Poisson, if R, h and f do. So the extended Poisson brackets are
compatible. a

Remark. It is easy to see that the Poisson tensor associated to the bracket
{-,-}1 on M x R is given by

QO =QR"(), )+ % A (Xp+ 2X5).

12



As an alternative proof of the above proposition, one can verify that the
Schouten bracket [y, €] is zero and that [©2, Q4] = 0 also.

We now turn to the properties of a vector sequence of functions [f(m), h(m)]T

constructed recursively using the gauged bi-differential calculus, with a suit-
able choice of initial functions, and under the assumption that the manifold
is simply connected. The idea is to define [f(+1) Am+D]T Ly the rule
Dy[fOm D) gt T = Dy [f0m) RO op

flm+1) f(m) df 0 f(m)
ey | TR e [T g o || wem |
or equivalently
df D = qp ) g fmgr gplmtt) — gpptm) 4 pm) g,

which can be started provided that DlDQ[f(O)7 h(o)]T = 0. Take, for example,
f© =1 and A® = 0. Then fM = f and AV = . (Notice in passing
the following differences between the recursive construction here and the
one we discussed for a simple bi-differential calculus in Section 2, and more
explicitly in [3]: the condition ddg f = 0 was the requirement on f to start the
recursive procedure in Section 2, whereas now it is part of the conditions for

having a gauged bi-differential calculus, and we here initialize the recursion
by choosing trivial values for f(©) and h(o).)

Proposition 4.2. Consider the functions f(™) and A(™) as defined above and
put
ACONSYACONNRPCON

We then have the following properties:

1. both the A{™) and f("™) are in involution with respect to both Poisson
brackets on M;

2. {hO, fO} 4+ {fO 1)} = 0 for every i,j > 1, and the same property
holds with respect to the second bracket on M;

3. the functions 2™ on M x R are in involution with respect to both

brackets.

Proof. We write (™) to stand for either A(™) or f(™m). The rule for generating
™+ when expressed in terms of Poisson brackets, is

{X(m+1)7 } = {X(m)7 '}1 + f(m){X(1)7 }

13



Assume that {x, y)} = {y), y@}, =0 for all 4, j with 1 < 4,5 < m: we
show that the same is true with m + 1 in place of m. First, for 1 <7< m

DN = (DY 4 R ) = 0.
Then
0= {0y = [ Dy fO L) Oy,
whence {x(), y(m+1}, =0,
Secondly, let k(i, j) stand for the function {h(), f0)} + {f) n(D}. Then

Kt 1) = {89, O} + (70,00} + fO{RD, fO) + {70, h)})
= K+ 1)+ FOROLG) + FORG ).

Now suppose that (¢, 7) = 0 for all 7, j with 1 < 4,5 < m. It follows from
the formula above that k(m + 1,j) =0 for 1 < j < m, while

k(m+1,m) = {h™) fy 4 {70 a0 4 f0 (1, m) = 0,

and of course k(m+1,m+1) = 0. Finally, the first line in the expression for
k(i 41, j) shows that vanishing of the k(¢, j) implies that also (RO, O 4
{f(Z)7 h(])}l = 0.

For the third part, observe first that for any function ¢ on M
{¢7 B(m)}l = {¢7 h(m)}l + {¢7 Z}lf(m) + Z{¢7 f(m)}l
= {6, A"} = f (6 DY 4 = ({o, Fm VY — (g, f0))
+ £ ({9, + 2{0, F})
= {g,htm+Dy,
while
{209 = (A, KOV ({0, F0) 4 (0, REY) 4220, ) = 0

as a result of the preceding two properties, so that trivially also {z, ﬂ(m)}l =
{z, k"), Tt follows that the A(™) satisfy the recursion relation

{.7ﬁ(m+1)} — {.jb(m)}l‘

14



The fact that these functions are in involution can now be deduced from
this relation by an inductive argument, or proved directly using the first
two properties. a

Corollary. Suppose that the recursive generation of new functions breaks
down at order m + 1, by which we mean that 2(™*1) = 0. Then

C(AN) = AR

=0
is a Casimir of the Poisson pencil €2 — AQ;.

This result is to some extent related to a theorem of Gelfand and Zakhare-
vich about the existence of a polynomial Casimir on an odd dimensional bi-
Hamiltonian manifold with a Poisson pencil of maximal rank (see [7, 11]).
The main result in [7] is based on this theorem and gives an interesting
geometrical interpretation of the theory of Benenti about the separability
of the Hamilton-Jacobi equation (see [2] and references therein). We will
highlight some additional features of the results obtained by Ibort et al. in
the next section. But it should be emphasized that the scheme we have de-
scribed in this section already covers the main structural properties which
are needed for that purpose and this scheme is valid for an arbitrary sym-
plectic manifold M and with respect to a general type (1,1) tensor field
R.

5 Conformal Killing tensors with
vanishing torsion

By way of generalization of the results of Section 3, we now look at the
conditions for the existence of the gauged bi-differential calculus, again from
the perspective that h is given and R, and in this case f, are unknown.

We consider the case in which h is a Hamiltonian of mechanical type on
T*Q, and R = J. To keep the analogy with Section 3, we will not assume
from the outset that N; = 0. As before, we assume that the kinetic energy
part of h is determined by a metric, so that

h=1Lg"pip;+V(q).
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We will assume further that f is a function on . Then the condition
ddj, = dh A\ df becomes, using results obtained earlier:

—JIR AT+ g (_ij” + M 4 Jk”j) prdg’ A 7y
+ (%J’” i gin (I - J”“'m)u) pipmdg’ A dg’ + dd;V

af . ,
= _8qfi dq" A (g]kpkﬂ']‘ +dV).

From the #* A 7/ terms we find that J must be symmetric, as before. The
dq' N 7; terms give
af
=Sk + Sk + Ty = ik T

The symmetric part of this in k& and [ gives

of of
Jhjj = -3 (gjka—q, ‘|‘gjla—qk) ;

from which it follows that

of
Py —(J,]j)u, or f=—trJ

(up to a constant). Furthermore,

d 0 o
Tirn+ Jiue + Ty = - (!ija—(']fl ‘|‘gk18—qu + gzja—;;) ;

which is to say that J is a conformal Killing tensor of gradient type. More-
over, if one substitutes for the covariant derivatives in the expression for the
torsion of J, which is
l 7k [ 1k k l l
LIS = T+ IE (T = Th)

one finds that it vanishes. So once again the vanishing of the torsion of J
is a consequence of the condition that dd;h must satisfy. If one takes the
trace of the torsion on j and & one finds that

dy(trJ) = Ld(tr J?).

1
2

Thus the condition on f, which reduces to ddyf = 0, is also satisfied auto-
matically.
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Finally, the terms in d¢ Adg’ involving J vanish as a result of the differential
condition it satisfies, and we are left with the following condition on V:

dd,;V = dV A df.

We have therefore proved the following result, which adds some interesting
features to Proposition 2 in [7].

Proposition 5.1. Let g be a given metric tensor field on @ and V and f
functions on ), and let h be the Hamiltonian function on 7% given by
h = %gijpipj + V(gq). The necessary and sufficient conditions for a type
(1,1) tensor field J on @) to have the property dd ;h = dh A df are that J is
symmetric and satisfies the equations
Jhjj=—3 (gjkg—'qf, -I-%l%i) ,

while the functions V and f satisfy dd;V = dV Adf. Such a J is a conformal
Killing tensor of g of gradient type and — f is its trace (up to a constant).
Moreover, J will have vanishing torsion and f has the property ddjf = 0;
this implies that all conditions are satisfied for the existence of a gauged
bi-differential calculus of the type described in the previous section. O

The special property of the conformal Killing tensors we encounter here
is characteristic of all sufficiently general conformal Killing tensors with
vanishing torsion, as we will now show.

Proposition 5.2. Let J be a type (1,1) tensor field on an n-dimensional
(pseudo)-Riemannian manifold (), ¢) such that the corresponding (0, 2) ten-
sor is conformal Killing with factor o. Assume further that J has n real,
functionally independent eigenfunctions. Then Ny = 0 if and only if

I = 5 (cugjn + orgsi) -
This further implies that J is conformal Killing of gradient type.

Proof. We know that J satisfies >_ J;p; = > augjk, where the summation
sign stands for the cyclic sum over all indices. Putting

Tirt = Jjpp — 3(0igm + argji),
it follows that > 75 = 0. The Nijenhuis condition now can be written in

the form .J7" (Tonkt = Trire) = I Tikm — JJ Tjimn. Adding to this the identity
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J7 (Tokt + Thim) = —J7" Tk, We obtain an expression for 2.J7T;,,; which
is symmetric in j and k. It follows that

J]mekl = J;ZnTmﬂ.

This indicates that for each fixed [, the symmetric matrix 7; with compo-
nents 7y commutes with J. Since J, by assumption, has distinct eigen-
values at each point of an open dense subset of @, it follows that all 7;
are simultaneously diagonalizable. It then easily follows from the symmetry
properties of T} that with respect to a basis of eigenvectors of .J, all com-
ponents of T; are actually zero. Hence, J has the required property, from
which it further follows that o; = 8f/8¢?, with f = tr.J. The proof in the
other direction is contained in earlier statements. a

We end this section by pointing out that the conditions on f and h in the
case that R is the complete lift J again have an interpretation in terms of
the Lie derivative of .J with respect to the corresponding Hamiltonian vector

fields.

Proposition 5.3. The conditions dd;f = 0 and dd ;h = dh A df, for arbitrary
functions f, h on T*(), are equivalent to

Lx,J =0, Lx,J =X;@dh— X, df.

Proof. The statement about f has already been mentioned in Section 3.
Concerning Xy, we know from the second of the equivalent properties in
Proposition 2.2 that

iy, jd0 = —2dd;h=—2dh N df
= dh Nix,df — df Aix,dS,

from which the result easily follows. a

6 Applications

We first briefly review the results of [7] and [1], before mentioning the new
insights about them that our work provides.

At the heart of the matter lie the recurrence relations

At = @, r0m) 4 e gpim ) = djh(m) + ™),
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where h = %gijpipj—l—‘/(q), J is a conformal Killing tensor of ¢ with vanishing
torsion and functionally independent eigenfunctions, f = —tr.J, and V

satisfies ddjV = dV A df. Then, as Ibort et al. show,

1. for m = 1,2,...,dim M we can take for f(™) the mth elementary
symmetric function of the eigenfunctions of .J, and ) =0 for m >
dim M;

2. with this choice of the (™), h(™) takes the form k(™) = %K(m)”pipj +
V(m)(q)7 m=1,2,...,dim M, where the K(m) are independent, pair-
wise commuting Killing tensors of ¢ with common closed eigenforms,
KW = g, the V™ satisfy dV (™) = dy(m)V so that ddemV =0, and
R(™) =0 for m > dim M.

Such a collection of Killing tensors is called a Stickel system. It is known ([2,
7]) that if the metric g admits a Stéckel system and if the potential V satisfies
ddy(m)V = 0 then the Hamilton-Jacobi equation for the Hamiltonian h =
%gijpipj + V(q) is separable in orthogonal coordinates.

In fact in [1], Benenti proves the following result:

Let (u') be orthogonal coordinates on a Riemannian manifold

(M,g). If

0 . 1 . .
17y — ; : 7 7
aui(lng )_ i 27&]7 u#u

uJ

then the Hamilton-Jacobi equation for geodesics is separable.

Benenti shows that the tensor I whose components relative to the orthogonal
coordinates are B o -

LZZ — ulgll7 LZ] — 0 Z# j7
is a conformal Killing tensor whose torsion vanishes, and is the generator of
a Stickel system.

This result is related to our work as follows. In Proposition 5.2 we have
proved that a conformal Killing tensor field L which has n real, functionally
independent eigenfunctions, satisfies Ny = 0 if and only if

Lijik = 3 (igjr + ajgir) -
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Now the eigenfunctions of I may be used as coordinates (u'); with respect
to these coordinates L takes the form (as a type (1, 1) tensor)

"9 :
L = Zu2%®dul7
=1

and since L is symmetric (as a type (0,2) tensor), the metric tensor g is
diagonal. The 1-form o whose components appear in the formula for Lz
is given by a = d(tr L), so @ = 3 du'. The formula for L;;, re-expressed
for convenience in the form

e =13 (g +a;07),

reduces to 4 '
(v —u")[

7 (' =)l = =3

- %7 29
for ¢ # j; when ¢, j and k are all different and when they are all the same the
equations are identically satisfied. But when the coordinates are orthogonal,
i _ 109 i L 09
v 2g;; Ouw'’ Y 2g 0w

for @ # j, so the formula for L j; reduces to just the one condition

1

w — ut’

J
Far 093) =
Since ¢/ = 1/g;;, this is identical to the condition in Benenti’s result.

Ibort et al. show that the recurrence relations dh(™+1) = djh(m) + f(m)dh
may be written in the form {-, 71<m+1)} ={, ﬁ(m)}l as in the proof of Propo-
sition 4.2; that is, that the R (m) satisfy Lenard’s recurrence relations for the
bi-Hamiltonian structure on M X R. We have given an alternative way of
obtaining these recurrence relations, namely by using a certain gauged bi-
differential calculus. We have shown further that the consistency conditions
for such a bi-differential calculus are identical with the consistency condi-
tions for such a bi-Hamiltonian structure, in a rather more general context
than that required for the separability argument. Finally, we have shown
that the conformal Killing tensor that occurs in the construction of either
the bi-differential calculus or the bi-Hamiltonian system must be of a spe-
cial form, that as a consequence the vanishing of its torsion is automatic
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and not an additional requirement, and that sufficiently general conformal
Killing tensors with vanishing torsion must take this special form.

The separability results require that the conformal Killing tensor has func-
tionally independent eigenfunctions. By way of further application, we will
illustrate how the results of Sections 4 and 5 can be used in a construc-
tive procedure that may lead to the identification of conservation laws even
when this condition is not satisfied. The idea is to start with a given metric
tensor field g, i.e. with the kinetic energy part T" of a Hamiltonian on T*@,
as the only data, and to proceed from there to construct suitable type (1,1)
tensor fields .J, potentials V and functions h(™ which Poisson-commute
with h =T + V. The procedure works as follows. First, the characteristic
property of conformal Killing tensors with vanishing torsion, as identified
in Proposition 5.1, is used as a set of partial differential equations for the
determination of suitable tensor fields J. The trace of such J defines corre-
sponding functions f which then give rise to equations for the potential via
the condition dd;V = dV A df. We finally appeal to the recursive scheme
described in Proposition 4.2 to construct functions f(™) and A(™).

Let us illustrate this procedure by taking ¢ to be the Euclidean metric (in
dimension n). Since raising or lowering indices in this case has no effect on
the coordinate representation of tensor fields, we will write all indices for
convenience as lower indices. The equations for .J become (with Ji = Jix)

of of
S = =4 (B + )

for some function f. It readily follows then that we must have (indices with
a different name in each equation are assumed to be different and there are
no summations):

0
J; =0, Ju; =0, Jyu;= —8—;(%)7 Jrie = —%

af

7 \4q)-

9\

These equations are easy to solve and have the following general solution:
i = aqrq + bkqi + bigr + cpi,

where the a, b, and c¢p; = ¢ are constants. Notice that for a # 0, by a
Euclidean coordinate transformation we can simplify this expression to

Jri = aqrq + cpOgi,
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so that J is what Benenti, in [1], calls a planar inertia tensor. The case in
which the ¢ (the eigenvalues of ¢y) are distinct leads, via a particular case
of the results quoted above, to elliptic coordinates for Euclidean space.

Suppose, however, we proceed to the other extreme by taking ¢ = 0 and
a=1. With f = — 3. ¢;?, the equations for V' become

(il ) g (2 )
"\ oq00. ~ " og0q; Yo Vog) T

from which it follows that ¢;0V/dqx — 0V /Jq; must be a homogeneous
function of degree —2. This is so if V is of the form V = Vj 4+ V, where
V) is an arbitrary function of 3; ¢;2 and V4 is an arbitary function which is
homogeneous of degree —2.

Next, we have to find functions (f(m)7 h(m)) recursively from the equations
dfmtY) = g pm) 4 g gpimtt) = djh(m) + ftmdp,

with f1) = f = —|q|? and (Y = h = IIp|* + V (we have introduced
obvious vector notations here). The first hierarchy of functions immediately
terminates, i.e. we find f(2) = 0, whence f(™) =0 for m > 2. (Note that in
this case .J has a single non-zero eigenfunction, namely |q|?, with eigenvector
q, so this is the expected result.) The complete lift of J (regarded as a (1, 1)
tensor) is given by

- 0 0 0
J=¢q | — @dg;: + — @ dp; i — Pigs) — © dq;.
qq](%@ %+ 5, ¢ p)-l—(qu Pidj) - @ da;
A straightforward calculation then gives
W = 3(a-p)* — 3lal’lpl® - [a®|V2,

and A = 0 for m > 3. So, our procedure produces a single further
quadratic integral for the system with Hamiltonian . We recover in this
way results obtained by one of us previously by different methods in [13].

Appendix: some features of complete lifts

If J is a type (1, 1) tensor field on a manifold @, its complete lift J to T=Q
was defined in [4] by the formula
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where JV is the vertical lift (a vector field on T%Q)). (See also [14] for a
different definition of the complete lift.) An immediate property is that
igedd =150,

Lemma Al. For all h € C~(1T%Q), we have
ix,di = —d;h.

Proof. Making use (consecutively) of the commutator identity [ix,i;] =
iJ(X)v the definition of d; and the relations just mentioned, we find

djh = Zjdh: —ijithOZ _ZXhlde—l_lj(Xh)dO
—ithj0 — ithij0 + iXh,CJv do
= —ithje—ith<ij0—iJvd0) = —ithJH. a

Lemma A2. J is symmetric with respect to df, i.e. for all vector fields X, Y
on T we have

a9 (X, J(¥)) =do (J(x),Y).
Proof. Using the first mentioned property, we have
Contracting this with X; and interchanging the first two contractions in
each term, we obtain
ij(X)ithO = —iXithj0 + iXiXhide-

Using Lemma Al and the commutator [ix,7;] in the last term, we obtain
the desired property for Y = Xj. But since a local frame of vector fields on
T*() can be constructed out of Hamiltonian vector fields, the result follows
for arbitrary Y. a

Recalling now that for a general type (1,1) tensor field U, ipw(X,Y) =
w(U(X),Y) +w(X,U(Y)), the symmetry of J with respect to w enables us
to eliminate the vector field argument X from the defining relation of .J,
and we obtain ¢ ;df = 2 L j0dfl = 2 di ;6. Hence, we have

wi = dj0 = diz0 = dJ*,

which is the same as d(.J*6), as considered in Section 2.
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