
Complex second-order di�erential equations andseparabilityW. SarletDepartment of Mathematical Physics and AstronomyUniversity of Ghent, Krijgslaan 281, B-9000 Ghent, BelgiumG. ThompsonDepartment of MathematicsThe University of Toledo, Toledo OH 43606, USAAbstract. A general theory is developed about a form of maximal decoupling ofsystems of second-order ordinary di�erential equations. Such a decoupling amountsto the construction of new variables with respect to which all equations in the sys-tem are either single equations, or pairs of equations (not coupled with the rest)which constitute the real and imaginary part of a single complex equation. The the-ory originates from a natural extension of earlier results by allowing the Jacobianendomorphism of the system, which is assumed to be diagonalizable, to have bothreal and complex eigenvalues. An important tool in the analysis is the characteri-zation of complex second-order equations on the tangent bundle TM of a manifold,in terms of properties of an integrable almost complex structure living on the basemanifold M .1 IntroductionMart��nez et al [8] developed a constructive geometrical characterization of systems ofsecond-order ordinary di�erential equations (Sode) which can be completely decoupledinto a number of single second-order equations through a suitable coordinate transforma-tion. The constructive nature of the theory is re
ected in two speci�c features: �rstly,testing whether such a coordinate transformation exists, can be done, in principle, bytesting a number of purely algebraic conditions on the given data; secondly, if the systempasses all tests, the theory also shows how separation variables can be constructed.Most of the algebraic tests for separability come from conditions on a matrix �ij, the com-ponents of the so-called Jacobi endomorphism � of the given Sode; only when this tensor�eld is too trivial to provide any information, has one to appeal to other algebraic data,which in the case of autonomous systems come from the tension �eld. That � should bean important tool for getting qualitative information about the system, is geometrically1



evident because � completely determines the curvature of the non-linear connection as-sociated with the Sode (the tension provides information about homogeneity propertiesof this connection). Another application, for example, in which the analysis of � plays akey role, is the inverse problem of Lagrangian mechanics (see [3, 10]). In fact, also in thatcontext one encounters a \separable case", identi�ed by Douglas [4] for the case of twodegrees of freedom, and generalized to arbitrary n in [2]. Although Douglas's notion ofa separable case refers to a situation where partial di�erential equations for determiningthe existence of a Lagrangian for a give Sode decouple, it was shown in [2] that there isan underlying form of separability of the Sode itself behind this, which does not neces-sarily, however, preserve the second-order character of the given system and thus is lessrestrictive.The �rst condition on � for the existence of separation variables in both situations referredto above is its (pointwise) algebraic diagonalizability. For the sake of simplicity both in[8] and [2], this was understood to mean that none of the eigenvalues of the real matrix� would turn out to be complex. It is this limitation which we intend to remove herefor the case of complete separability in the sense of [8]. It will involve developing a goodunderstanding of the sometimes rather subtle interplay between the given dynamics andcertain integrable almost complex structures which can be constructed on the integralsubmanifolds of distributions, corresponding to pairs of complex conjugate eigenvalues of�.In the next section, we recall the intrinsic operations on vector �elds and forms alongthe projection � : TM ! M , which entered the separability analysis in [8], and focuson their role in characterizing invariance properties of certain type (1,1) tensor �eldson TM . We discuss almost complex structures and complex di�erential equations inSection 3. Section 4 is the main section, where we closely follow the previously establishedseparability results and investigate to what extent the theory can be adapted to allow fortensors with complex eigenvalues. As in the case of real eigenvalues, the results are fairlystraightforward when all eigenvalues are distinct, whereas much more care is needed whenthere is degeneracy. Some examples are presented in Section 5.2 The calculus along the tangent bundle projectionassociated to a second-order equation �eldConsider a system of second-order autonomous ordinary di�erential equations. It is mod-elled on a tangent bundle TM by a vector �eld� = vi @@xi + f i(x; v) @@vi : (1)As such, � de�nes a non-linear connection on � : TM !M , i.e. a horizontal distribution,locally spanned by Hi = @@xi � �ji @@vj with �ji = �12 @f j@vi : (2)2



By means of this connection, every vector �eld on TM has a unique decomposition intoa horizontal and vertical part. It will be convenient for our purposes to think of these ascoming from a vector �eld along � by a corresponding lifting process. Vector �elds along� are sections of the pull back bundle � �TM ! TM and most operations of interestresulting in vector �elds on TM , when one looks at the decomposition into horizontaland vertical components of the result, will be seen to come essentially from operationson X (� ) or V(� ) (the C1(TM)-module of di�erential forms along � ). A complete studyof derivations of scalar and vector-valued forms along � was carried out for that reasonin [6, 7]. We will frequently refer to results of those papers, but one can quickly getacquainted with the main operations that we need as follows (the reader may wish toconsult the introductions of, for example, [8, 3] for a somewhat more complete picture).Let XH, Y V denote respectively the horizontal and vertical lift of elements X;Y 2 X (� ).We have [XH; Y V ] = (DHXY )V � (DVYX)H; (3)[�;XH] = (rX)H + (�(X))V : (4)We recognize in the right-hand sides degree zero derivations DHX , DVY and r, which canbe extended to 1-forms along � by duality, and subsequently to tensor �elds along � ofarbitrary type. In fact these are covariant derivative type derivations (DHX and DVX dependC1(TM)-linearly on X); they comprise the essential ingredients of a linear connectionon � �TM ! TM , which is in some sense the linearization of the non-linear connectionde�ned by (2). The other term in (4) reveals a type (1,1) tensor �eld � along � , calledthe Jacobi endomorphism, whose components are given by�ij = �@f i@xj � �kj�ik � �(�ij ): (5)One of the main advantages conferred by this formalism is precisely that it enables �ij tobe thought of as the components of a tensor �eld. Calculations thus can be performedmore e�ciently because the redundant information is sifted out.To be able to do coordinate calculations with the derivations identi�ed above, it su�ces toknow their action on functions F on TM and on the coordinate vector �elds and 1-formson M , regarded as (basic) vector �elds and forms along � . In fact we haveDVXF = X i @F@vi ; DVX  @@xj! = 0; DVX(dxi) = 0 ; (6)DHXF = X iHi(F ); DHX  @@xj! =  Xk @�ij@vk! @@xi ; DHX(dxi) = � Xk @�ij@vk! dxj ; (7)rF = �(F ); r @@xj! = �ij @@xi ; r(dxi) = ��ijdxj : (8)Two other frequently occurring Lie bracket operations are[XV ; Y V ] = (DVXY �DVYX)V (9)[XH; Y H] = (DHXY �DHYX)H + (R(X;Y ))V ; (10)3



where R is the curvature of the connection (2) seen here as a vector-valued 2-form along� . Complementing the relation (4), we further mention:[�;XV ] = �XH + (rX)V : (11)Finally, let us recall that there exists a canonical vertical exterior derivative dV on V(� )(and on V (� ), the module of vector-valued forms along � ) de�ned independently of anyconnection. The latter allows one to de�ne a corresponding horizontal exterior derivativeas well. By way of example, if U 2 V 1(� ), dVU and dHU , both elements of V 2(� ), aregiven bydVU(X;Y ) = DVXU(Y )�DVY U(X); dHU(X;Y ) = DHXU(Y ) �DHY U(X): (12)The importance of the tensor �eld � can now be underscored by observing that it com-pletely determines the curvature and its `dynamical evolution', according to the propertiesdV� = 3R; dH� = rR: (13)Various ways of lifting elements of V 1(� ) to V 1(TM) were discussed in [7], and the Liederivative with respect to � of the lifted objects was computed in terms of correspondingactions on the original (1,1) tensor �eld along � . Not surprisingly, in all such computations,an important role is played by the Jacobi endomorphism � and the dynamical covariantderivative r. The particular lifting process of interest here is one which depends on thegiven �, and will be denoted by the same symbol J� irrespective of whether it applies tovectors, forms or endomorphisms. Thus, for X 2 X (� ), � 2 V1(� ) and U 2 V 1(� ), wehave J�X = XH + (rX)V (14)J�� = (r�)H + �V (15)J�U = UH + (rU)V ; (16)where the horizontal and vertical lift of a type (1,1) tensor �eld U along � are determinedby UH(XH) = U(X)H; UH(XV ) = U(X)V (17)UV (XH) = U(X)V ; UV (XV ) = 0 : (18)The image sets of the operator J� are interesting, if only because they contain the �-invariant objects such as symmetry vector �elds, adjoint symmetries (invariant 1-forms)and recursion operators (invariant type (1,1) tensor �elds). In fact, these image sets ofobjects on TM were identi�ed as such before in [9]: J�(X (� )) was the subset of X (TM)denoted by X�; likewise J�(V1(� )) was the set X �� and J�(V 1(� )) is just the set of type (1,1)tensor �elds on TM , which preserve X� and X ��. We know therefore that, for example,for U 2 V 1(� ), J�U 2 V 1(TM) is completely characterized by the properties:J�U � S = S � J�U; S � L�(J�U) = 0; (19)4



where S is the canonically de�ned vertical endomorphism on TM .A second reason why the image sets under J� are of interest is the fact that they generalizeand thus contain the complete lifts of �elds on the base manifold M . Adding an extracondition which will ensure that the tensor �eld along � under consideration is actuallybasic, will thus provide a characterization of tensor �elds on TM which are complete lifts.In particular, in the case of a type (1,1) tensor �eld, the extra condition to impose isL�(J�U) = 0; (20)plus smoothness on the zero section, where � is the Liouville (or dilation) vector �eld,which incidentally is the vertical lift of the canonical vector �eld T along � :� = TV ; T = vi @@xi : (21)Alternatively, expressing that U is a basic tensor �eld can be done by requiring thatDVXU = 0;8X 2 X (� ).We will, in particular, be interested here in tensor �elds which are invariant under �.Recall from [7] that L�(J�U) = 0 () rU = 0 and [U;�] = 0: (22)The same conditions of course apply to the particular case of complete lifts. For readerswho are perhaps more familiar with computations involving `honest' tensor �elds on thefull space TM let us list properties which are very easy to deduce from the analysis in [7]and give equivalent (but less transparent) representations of the two conditions in (22).We have rU = 0 , [L�S; J�U ] = 0; (23)and 8<: [L�S; J�U ] = 0[L2�S; J�U ] = 0 () 8<: rU = 0[U;�] = 0 (24)We end this section with the observation that in the case of a complete lift, i.e. whenJ�U = U c, it is easy to verify (and in fact well known, see e.g. [12]) that the Nijenhuistensor NUc is zero, if and only if NU = 0 on M .3 Complex second-order equation �eldsWe now focus on almost complex structures. If J is an almost complex structure on M ,then it is well known that J c is an almost complex structure on TM (see e.g. [12]). Byway of example of the use of the calculus summarised in the previous section, we showhow this result easily generalizes when the components of the original J are allowed todepend on points on TM . We say that J 2 V 1(� ) is an almost complex structure along �if J2 = �I. 5



Proposition 1. If J is an almost complex structure along � , then J�J is an almostcomplex structure on TM .Proof. We evaluate J�J on horizontal and vertical lifts of vector �elds along � , usingthe de�ning relation (16) and the properties (17)(18).J�J(XH) = JH(XH) + (rJ)V (XH)= J(X)H +rJ(X)Vand likewise J�J(XV ) = J(X)V :It follows that(J�J)2(XH) = JH(J(X)H +rJ(X)V ) + (rJ)V (J(X)H +rJ(X)V )= J2(X)H + J � rJ(X)V +rJ � J(X)V= �XH;since J2 = �I obviously implies J �rJ +rJ �J = 0. Showing that (J�J)2(XV ) = �XVis even more direct. 2In fact, the proof would even become a bit shorter still if one would use vector �elds ofthe form J�X and XV to generate a local basis for X (� ), using the property that for anyU 2 V 1(� ) and X 2 X (� ): J�U(J�X) = J�(UX).Computing the Nijenhuis tensor of J�J is interesting in its own right, but is much moreinvolved. Since it will turn out that the separability analysis of the next section does notrequire this level of generality, we will refrain from doing this computation here and turnto the special case where J is basic, i.e. is an almost complex structure on M . It thenfollows that if J is integrable, so is J�J = J c.Let then J be an integrable almost complex structure on M (so M has dimension 2nsay), and assume further that J satis�es the conditions (22). We wish to see what thisimplies for the given Sode �. Appealing �rst to the Newlander-Nirenberg theorem (seee.g. [1]), we know that M then is actually a complex manifold which, expressed in realterms, means that there exist coordinates (xi; yi) on M such that J takes the standardform J = @@yi 
 dxi � @@xi 
 dyi : (25)If we write (x�)1���2n for the collective coordinates and �x� = F �(x�; _x�) for the di�er-ential equations corresponding to the given �, we know that the connection coe�cients��� = �12@F �=@ _x� determine the dynamical covariant derivative r as in (8). Let us put(F �) = (f i; gi) andr @@xi = 1�ji @@xj + 2�ji @@yj = �12 @f j@ _xi @@xj � 12 @gj@ _xi @@yj (26)r @@yi = 1�jn+i @@xj + 2�jn+i @@yj = �12 @f j@ _yi @@xj � 12 @gj@ _yi @@yj : (27)6



In agreement with these notational conventions, we thus write the matrix of connectioncoe�cients formally as follows: ����� =  1�1 1�22�1 2�2 ! : (28)Regarded as endomorphism on vector �elds J itself accordingly has the matrix represen-tation J =  0 �11 0 ! (29)and let us similarly represent the matrix of components of �, as determined in (5) by����� =  1�1 1�22�1 2�2 ! : (30)Then, it is easy to verify thatrJ = 0 () ( 1�1 = 2�21�2 = �2�1 : (31)In other words, in this matrix representation rJ = 0 just means that the matrix ofconnection coe�cients commutes with J . Of course, for the remaining condition imposedby (22) on J , we likewise have[�; J ] = 0 () ( 1�1 = 2�21�2 = �2�1 : (32)Observe now �nally that the conditions (31) are equivalent to saying that@f j@ _xi = @gj@ _yi ; @f j@ _yi = �@gj@ _xi ; (33)and taking these equalities into account in the de�nition (5) of the components of �, theconditions (32) are equivalent to@f j@xi = @gj@yi ; @f j@yi = �@gj@xi : (34)Recognizing the Cauchy-Riemann conditions in (33) and (34), we are led to introduce thefollowing concept.De�nition. A second-order di�erential equation �eld � on the tangent bundle of an evendimensional manifold M is said to be complex if M admits an integrable almost complexstructure J , such that rJ = 0 and [�; J ] = 0 (or equivalently L�J c = 0).The results of the preceding calculations can then be summarized as follows.Proposition 2. For any complex � on the tangent bundle of an even dimensional mani-fold M , there exist complex coordinates zi on M such that the di�erential equations cor-responding to � represent the real and imaginary parts of a system of complex di�erentialequations �zi = F i(z; _z). 27



It is of some interest to look at the particular case where the complex Sode � is aquadratic spray with zero curvature, more speci�cally for the purpose of understandingin detail how the construction of `
at coordinates' for the real equations associated to �corresponds to the construction of 
at holomorphic coordinates for the associated complexequations �zi = F i(z; _z).A complex quadratic spray, expressed in coordinates which bring J into the form (25), isa system of second-order di�erential equations of the form�xi = f i = 12F ijk( _xj _xk � _yj _yk) + 12Gijk( _xj _yk + _xk _yj) (35)�yi = gi = 12Gijk( _yj _yk � _xj _xk) + 12F ijk( _yj _xk + _yk _xj); (36)with F ijk = F ikj; Gijk = Gikj and@F ijk@xl = �@Gijk@yl ; @F ijk@yl = @Gijk@xl : (37)The speci�c structure (35-36) of the quadratic spray, plus the above properties satis�edby its connection components are of course simply dictated by the fact that we want theCauchy-Riemann conditions (33) and (34) to be satis�ed. The corresponding complexdi�erential equations are of the form�zi = F i(z; _z) = 12F ijk _zj _zk ; (38)where F ijk = F ijk � iGijk : (39)For this complex representation of the original spray, curvature zero means that@F ijl@zk + 12F ijmFmkl � (j  ! k) = 0 : (40)This gives rise to two conditions (coming from the real and imaginary part) which, takingthe properties of the F ijl and Gijl into account, can be veri�ed to coincide identically withthe zero curvature conditions for the quadratic spray (35),(36) we started from { there arein fact 12 conditions, in principle, if one looks at all the di�erent curvature components forthe spray (35),(36), but again, from the properties of the connection components, theseeventually reduce to just two independent conditions. By the complex version of theclassical theorem about linear connections with zero torsion and curvature (see e.g. [5]),we know that there exists a holomorphic change of variables z = z(z0) to a representationwith zero connection components. In real terms, the change of variables (x; y)$ (x0; y0)therefore has a Jacobian which commutes with J . For later use, we formulate this simpleresult as a lemma.Lemma 1. Given a complex quadratic spray on the tangent bundle of an even dimensionalreal manifold M which has zero curvature, there exists a coordinate transformation whichpreserves the almost complex structure J and will transform the given Sode into trivialequations with zero right-hand side. 28



4 Separability of second-order equations when theJacobi endomorphism has complex eigenvaluesThe purpose of this section is to generalize the results of [8] about separable Sode's to thecase where the Jacobi endomorphism � of the given system is allowed to have complexeigenvalues. One should keep in mind of course that the word eigenvalue here and in whatfollows will generally refer to a (locally de�ned) function on TM .So, � at the start is an arbitrary Sode on TM and M can have arbitrary dimension. Asin [8], a large part of the analysis can be carried out in the context of diagonalizabilityand separability of type (1,1) tensor �elds U in general; the full separability of � thenemerges when we specialize to the case U = � (possibly supplemented by informationcoming from another tensor �eld, called the tension). We will closely follow the path setout in [8] and actually go through some of the features in reasonable detail again, becausewe need to assure that eigendistributions corresponding to complex eigenvalues can bedealt with in a manner that is consistent with the real parts.Firstly, we consider type (1,1) tensor �elds along � : TM ! M which are diagonalizablein an algebraic sense. To be precise: U 2 X (� ) is said to diagonalizable if for all v 2 TM ,the linear map U(v) : T�(v)M ! T�(v)M is diagonalizable and this can be done smoothlyin a neighbourhood of v, leading to eigendistributions which have constant dimension.Eigenvalues �A of U , however, could have multiplicity greater than one and are allowedthis time to be complex-valued. Naturally, since the original matrix U ij(x; v) is real valued,complex eigenvalues will come in pairs of complex conjugate ones. The eigendistributioncorresponding to �A will be denoted by DA and its dimension by dA. Such distributions,when �A is real, are spanned by vector �elds fXA�g�=1;:::;dA along � . To make a notationaldistinction, let us agree to write (�A; �A) for pairs of complex conjugate eigenvalues anddenote a local basis for their eigendistributions by fZA�g and fZA�g respectively. ThusZA� for example, as a complex vector �eld along � , is a smooth section of the complexi�edbundle � �TM 
 IC! TM . To �x notations further, we will typically write�� = �� + i��; Z� = V� + iW� (41)for the real and imaginary parts of complex eigenvalues or eigenvectors (omitting the extrasubscript A referring to the distribution in question when there is no danger of confusion).Knowing that U(Z�) = ��Z�, it then follows thatU(V�) = ��V� � ��W�; U(W�) = ��V� + ��W� : (42)De�nition. A distribution D along � , real or complex, is said to be basic when it can bespanned by vector �elds on M . A real basic distribution along � is said to be involutive,if the corresponding distribution on M is involutive.Lemma 2. A distribution D along � is basic if and only if DVX(D) � D, for all X 2 X (� ).Proof. We merely check that the arguments used in Proposition 3.3 of [8] remain validwhen D is complex. Clearly, if D is basic, it is DV -invariant. Conversely, let f ~Z�g�=1;:::;d9



be a local basis for D, and fXigi=1;:::;n a local basis for X (M). Then, we have ~Z� = �i�Xi,where the rank of the matrix of complex valued functions �i� is d. Assuming, without lossof generality, that the upper left-hand (d�d)-submatrix is regular, we can multiply by itsinverse to obtain a new local basis fZ�g�=1;:::;d for D, of the form Z� = X�+Pni=d+1 �i�Xi.It follows that for arbitrary X, DVXZ� = Pni=d+1(DVX�i�)Xi. For this to belong to D, wemust have DVX�i� = 0, meaning that the Z� (and of course also the Z� spanning D) willbe basic. 2A fairly obvious result, the proof of which remains unaltered in the presence of complexeigenvalues, is the following.Lemma 3. If D is any self-dual derivation on V (� ) and U 2 V 1(� ) is diagonalizable, thenthe eigendistributions of U are D-invariant if and only if [DU;U ] = 0. In such a case,DU is simultaneously diagonalizable and the eigenvalues of DU are the D-derivatives ofthe eigenvalues of U . 2Whenever (DA;DA) is a pair of complex conjugate eigendistributions of U , spanned by(ZA�; ZA�), we will be interested in integrability aspects of the 2dA-dimensional realdistribution DrA = sp fVA�;WA�g. That means, of course, that we have the real Jordannormal form of U in mind, rather than its diagonal form, and most of the analysis is aboutensuring that such a real Jordan form can be achieved via a coordinate transformation.Under the conditions of the preceding lemma, i.e. when DA is D-invariant, then so is DrA.In fact, we can be a bit more precise about this. If we putDZA� = dAX�=1 cA�A� ZA�; with cA�A� = aA�A� + i bA�A� ; (43)then we �nd:DVA� = dAX�=1 �aA�A�VA� � bA�A�WA�� ; DWA� = dAX�=1�bA�A�VA� + aA�A�WA�� : (44)Having diagonalized the tensor �eld U in some neighbourhood, we have a set of com-plementary distributions at our disposal, say n1 real eigendistributions DA and n2 evendimensional distributions of the type DrA, such that for each v in the neighbourhood underconsideration, we have T�(v)M = �n1A=1DA(v)�n2A=1 DrA(v) : (45)We de�ne a type (1,1) tensor �eld J along � in terms of the constructed local bases ofvector �elds for all these distributions, via the relations( J(VA�) = WA�; J(WA�) = �VA�; 8VA�;WA� 2 DrA ;J(XA�) = 0; 8XA� 2 DA : (46)Clearly, J is a degenerate almost complex structure, in the sense thatJ2���DrA = �I : (47)10



It follows from Eqns. (42) that [U; J ] = 0 : (48)Lemma 4. If U is diagonalizable and [DU;U ] = 0 for some given self-dual derivation D,then DJ = 0.Proof. From (44) and (46), it follows thatJ(DVA�) = DWA�; J(DWA�) = �DVA� : (49)As a result we get DJ(VA�) = D(JVA�)� J(DVA�) = 0 ;and likewise DJ(WA�) = 0. Obviously, for the real eigendistributions we also haveDJ(XA�) = 0. The result follows. 2We now turn to the degree zero derivations described in Eqns. (6-8). As in [8], we introducethe type (1,2) tensor �eld CVU along � , de�ned byCVU (X;Y ) = [DVXU;U ](Y ) ; (50)and recall also that the commutator of the derivations r and DVX generates DHX , accordingto the property: [r;DVX] = DVrX �DHX : (51)We thus come to the �rst main theorem.Theorem 1. Let U 2 V 1(� ) be diagonalizable and satisfy the extra conditions CVU = 0and [rU;U ] = 0. Then, there exists a coordinate transformation on M which will bringU into its real Jordan normal form in a neighbourhood of an arbitrary point of TM .Proof. From Lemma 3, CVU = 0 implies that the eigendistributions are DV -invariant,which according to Lemma 2 means that they can be spanned by basic vector �elds.Furthermore, [rU;U ] = 0 implies that they are also r-invariant and hence, from theproperty (51), also DH-invariant. Rather then continuing the reasoning with eigendistri-butions, we replace the complex eigendistributions with the real distributions denoted byDrA before and look at the direct sum decomposition (45). Naturally, we may assume nowthat a local basis fVA�;WA�g for DrA has been selected, consisting of basic vector �elds.The DH-invariance, in particular, means that for arbitrary X and for Y 2 DA (or DrA),DHXY belongs to the same distribution, implying further that for two vector �elds X;Ybelonging to two di�erent distributions, the combination DHXY �DHYX will belong to thesum of these two distributions. This will in particular be true for the basic vector �eldsspanning all distributions, but when X and Y are vector �elds on M , DHXY � DHYX isjust their Lie bracket. All associated basic distributions are therefore involutive and willbe simultaneously integrable by the Frobenius theorem (such a situation was analysed indetail in Lemma 3.4 in [8]). We may already conclude that there exist coordinates on Msuch that each of the distributions in (45) will be spanned by a corresponding number ofcoordinate vector �elds. The coordinate vector �elds spanning real eigendistributions willbe eigenvectors themselves and so U will already be diagonal in those parts. The situation11



is di�erent for the DrA, as fVA�;WA�g may so far be combinations of all coordinate vector�elds spanning the distribution.Turning our attention to the tensor �eld J de�ned by the relations (46), we prove thefollowing intermediate result.Lemma 5. If a diagonalizable U 2 V 1(� ) satis�es CVU = 0 and [rU;U ] = 0, then thecorresponding tensor �eld J is integrable.Proof. We know from Lemma 4 that under the given hypotheses on U , J will be a basictensor �eld, which further is r-invariant and from (51) also DH-invariant. Consideringthe Nijenhuis tensor NJ , we have for two of the vector �elds of type V�, possibly belongingto di�erent distributions DrA and DrB,NJ (VA�; VB�) = [WA�;WB�] + J2 ([VA�; VB�])� J ([WA�; VB�] + [VA�;WB�]) :We can write the brackets of all such basic vector �elds in terms of DH-derivatives andmake use of the properties (49) of J with respect to the appropriate DH-derivatives. Byway of example, one can writeJ ([WA�; VB�]) = J �DHWA�VB� �DHVB�WA�� = DHWA�WB� +DHVB�VA� :This way, it is easy to see that all terms will cancel out. Obviously, the computation willbe completely similar in the case of two W�-type arguments, or one V� and one W�. Theresult is trivial when both arguments are ofX�-type, because J is zero on real eigenspaces.Finally,NJ(XA�; VB�) = J2 ([XA�; VB�])� J ([XA�;WB�])= J2 �DHXA�VB� �DHVB�XA��� J �DHXA�WB� �DHWB�XA��= J2 �DHXA�VB��+DHXA�VB� = 0 ;and likewise for NJ (XA�;WB�). 2Returning now to the proof of the theorem we have, in particular, that for each of theDrA distributions, the restriction of J to that distribution will be an integrable almostcomplex structure. It follows that there exists a further coordinate transformation amongthe coordinates whose tangent �elds span the distribution, such that J jDrA is of the form(25), and this can be done for all the DrA distributions simultaneously. In other words, insuch coordinates a basis for the distribution DrA is given byVA� = @@xA� ; WA� = @@yA� : (52)One �nal remark is in order now. Writing an almost complex structure in the standardform (25), makes further calculations such as those following Eqn. (25) much easier, butwith the choice (52), the tensor �eld U does not quite acquire what one usually calls itsreal Jordan normal form. Passing from one representation to the other, however, is merelya matter of renumbering the variables. Explicitly, it corresponds to writing the basis (52)for DrA in the order VA1; WA1; : : : ; VAd; WAd : (53)12



This concludes the proof of Theorem 1. 2It is interesting to observe that whenever a Sode � admits a tensor �eld U satisfyingthe conditions of Theorem 1, we already know a number of separability properties ofthe equations with respect to the velocity variables. Indeed, since all the distributionsinvolved in the decomposition (45) are simultaneously integrable and are r-invariant, itfollows from the action of r on coordinate vector �elds (see (8)) that the connectioncomponents, in the right coordinates, will satisfy�A�B� = 0; for A 6= B : (54)This means that the `force functions' fA� in the general representation (1) of � will notdepend on the velocities vB�. Moreover, inside each of the `complex parts' of U , where Jis non-trivial and has the standard form, we know from rJ = 0 that we are in a situationas in (31). This means that the corresponding part of the di�erential equations will be ofthe form �xi = f i(: : : ; _x; _y);�yi = gi(: : : ; _x; _y);where the right-hand sides have the properties (33). There is no information, however,about the dependence on position variables. In fact, the line dots could refer to allcoordinates, including those coming from the other eigendistributions. More info will beavailable if U is the important type (1,1) tensor �eld which canonically comes with theSode, namely the Jacobi endomorphism �. Let us �rst look at the situation where thereare no further complications coming from the degeneracy (or multiplicity) of eigenvalues.Theorem 2. Suppose that � is (algebraically) diagonalizable with distinct (but possi-bly complex) eigenvalues. Assume further that � satis�es the conditions CV� = 0 and[r�;�] = 0. Then, there exist coordinates with respect to which the second-order equa-tions decouple into scalar equations (one for each real eigenvalue) and pairs of equations,not coupled with the rest, which are the real and imaginary parts of a single complexequation (one for each pair of complex conjugate eigenvalues).Proof. Using the results obtained before, applied to U = �, we already know that(54) holds in appropriate coordinates, where DA is one-dimensional for real eigenvaluesand DrA is two-dimensional for complex conjugate ones. We further know that the forcessatisfy Cauchy-Riemann conditions with respect to the velocity variables inside each DrA.Moreover, � is in real Jordan normal form. If, referring to the coordinate representation(5) of �ij , the upper index i refers to a line with a real eigenvalue, we thus have �ij =0; 8j 6= i, which, knowing that also �ij = 0 8j 6= i in that case, implies that @f i=@xj = 0,i.e. f i depends on (xi; vi) only.For each of the invariant subspaces associated to complex eigenvalues, we further exploitthe fact that according to (48) [�; J ] = 0 which, as discussed in the previous section withEqns. (32-34), eventually implies Cauchy-Riemann conditions with respect to the positionvariables as well, while independence of all others still follows from the normal form of �as above. 213



Observe that it follows from the �rst of the relations in both (12) and (13) that for anytwo eigenvectors Xk of �, corresponding to (distinct) eigenvalues �k,3R(Xi;Xj) = DVXi�(Xj)�DVXj�(Xi)= DVXi(�jXj)�DVXj(�iXi)� �(DVXiXj �DVXjXi)= (DVXi�j)Xj � (DVXj�i)Xi;where the simpli�cation in the last line comes from the fact that e.g. DVXiXj is proportionalto Xj as a result of the assumption CV� = 0. In the case of real eigenvalues, still underthe assumptions of Theorem 2, we know that the �i, in the coordinates which diagonalize�, will depend on the variables (xi; vi) only. It follows that DVXi�j = 0 for i 6= j. Forcomplex eigenvalues it may not be so obvious at �rst sight that the curvature will stillbe zero inside each block of (real) dimension 2 determined by sp fVi;Wig. However, theabove computation remains formally valid in a complex representation, with �j = ��i say.The conclusion coming from Theorem 2 is that in suitable complex coordinates we willhave Xi = @=@zi and �i will not depend on �zi, so that R is still zero. The `real version' ofthis argument (which is easy to verify explicitly) is that the curvature of a single complexSode �x = f(x; y; _x; _y)�y = g(x; y; _x; _y)is zero as a result of the Cauchy-Riemann properties (33-34) satis�ed by f and g. Wetherefore draw the following important conclusion.Corollary. Under the assumptions of Theorem 2, the curvature R of the connectiondetermined by the Sode � is zero. 2Allowing for degeneracy in the eigenvalues, a somewhat stronger condition will be neededto ensure further separability in each block. For an intermediate result then, we go backto the general discussion on type (1,1) tensor �elds U and identify, as in [8], conditionswhich will ensure that U really projects onto all distributions DA and DrA. Such a U issaid to be separable.Theorem 3. Let U 2 V 1(� ) be diagonalizable and satisfy the conditions: (i) CVU = 0, (ii)[rU;U ] = 0, (iii) dVU = 0, (iv) dHU = 0. Then U is separable and the eigenvalues ofmultiplicity greater than one moreover are constant .Proof. Let X 2 DA and Y 2 DB be any two eigenvectors of U (real or complex).Computing dVU(X;Y ) as in (12), we obtain, using the results of Lemma 3 for the casethat D is DVX or DVY : dVU(X;Y ) = (DVX�B)Y � (DVY �A)X :Since X and Y are linearly independent, the vanishing of this expression leads to thefollowing conclusions. Firstly, we have DVX�B = 0 for all X 2 DA with A 6= B. Secondly,when A = B, i.e. when the dimension of DA is at least 2 (in the sense of the complexi�edtangent space when �A is complex), then in fact DVX�A = 0 for all X 2 X (� ). Condition(iv) gives rise to exactly the same conclusions with DH-derivatives. It follows therefore14



that the only, possibly non-constant eigenvalues are the non-degenerate ones and thatin the coordinates which bring U in its normal form, these eigenvalues will depend onthe coordinates and velocities associated to the corresponding distribution only (i.e. U isseparable). 2Important remarks. We have again formally left these considerations, which are ofan algebraic nature only, in a (potentially) complex set-up. So, strictly speaking, for acomplex eigenvector Z� as in (41), DVZ� should be understood as DVV� + iDVW�. Complexeigenvalues �A likewise should be thought of as being represented as in (41). For a realeigenvalue �A acted upon by a complex DVZB�, we will then get both DVVB��A = 0 andDVWB��A = 0 (and likewise for DH -derivatives). In the case of a complex eigenvalue�A = �A + i�A it is easy to verify that DVZB��A = 0 implies that all of the functionsDVVB��A, DVWB��A, DVVB��A and DVWB��A will be zero. Hence, the same conclusions hold forthe basic vector �elds spanning the distributions DrA and for the (��; ��) which determine�� as in (41). We enter into such detail here because the result will in fact be used in thisform later on.Observe also that this result is the analogue of Theorem 4.5 in [8] and that the weakerversion in Theorem 4.4 of that paper, which characterizes separability of U only (withoutregard to the constancy of multiple eigenvalues), would equally apply in the presentcontext. That weaker version will, however, not be needed in what follows.In the case where � is the tensor �eld U under consideration, the two extra conditions(iii) and (iv), in view of (13), reduce to the vanishing of the curvature. We can safelyimpose such a restriction as part of a set of su�cient conditions for arriving at maximaldecoupling, because we know by the corollary of Theorem 2 that it is also a necessarycondition. We thus arrive at the following intermediate result.Theorem 4. If � is diagonalizable and is such that CV� = 0, [r�;�] = 0 and R = 0,then the di�erential equations split into a number of decoupled blocks, one for each real orpair of complex conjugate eigenvalues, which are constant when there is degeneracy; theblocks corresponding to complex eigenvalues give rise to complex second-order systems inthe sense de�ned in Section 3 .Proof. Theorem 3 applies and ensures that � is separable in appropriate coordinates.The normal form structure of � in those coordinates further says that �A�B� = 0 for A 6= B,while we already saw in (54) that the connection coe�cients have the same structure. Itthen follows again from the local structure (5) of � that also @fA�=@xB� = 0. Thisprovides a blockwise decoupling of the given Sode. Now the arguments about J usedin the proof of Theorem 2 also remain valid, i.e. we have rJ = 0 and [�; J ] = 0. Itfollows from the general considerations of Section 3 that for each separate block comingfrom complex conjugate eigenvalues, Cauchy-Riemann conditions of type (33-34) will besatis�ed, meaning that the projected even dimensional Sode for each such block will becomplex. 2If we want the maximal decoupling of equations, i.e. further decoupling inside each blockcoming from multiple eigenvalues, it remains to investigate separately the cases where �has one of the following two structures: � = � I or � = � I � � J , with �, � and � realconstants. Evidently, for such systems, no information about decoupling can come from15



� itself. Fortunately, there is another tensor �eld available which is the tension �eld talong � , whose components are given bytij = �ij � vk@�ij@vk : (55)It can be de�ned intrinsically from the canonical element T of X (� ), ast = �dHT : (56)The tension satis�es the identity dV t = 0. In both of the cases to be investigated, � isbasic and consequently R = 0. This is all we needed in Lemma 5.4 of [8] to concludethat rt = 0. It then follows that also dHt = 0. Therefore, if we assume that t isdiagonalizable (of course allowing for complex eigenvalues again) and that CVt = 0, thetension satis�es all assumptions of Theorem 3; we then conclude that t is separable andthat its multiple eigenvalues are constant. The coordinate transformation involved inseparating t will have no e�ect on a � which is a multiple of the identity, so let's dealwith this situation �rst. As before, it follows from the general conclusions of Theorem 1that the connection components have the property (54), A and B referring of course todi�erent eigendistributions of t now. The form of � then further implies that the `forcefunctions' fA� depend on the variables (xA�; vA�) only. If t has no multiple eigenvalueswe are �nished and reach a conclusion similar to that of Theorem 2. In the opposite case,we are reduced to analysing each subsystem corresponding to an invariant subspace withmultiple eigenvalues of t separately. The only new situation to look at here (since thecase that also t is a multiple of the identity was already analysed in [8]) is the case ofmultiple complex eigenvalues of t. In other words, we still have to investigate separatelysystems for which � = � I and t is of the form t = � I � �J , with � and � constant(choosing of course to write t in a basis such as (52), rather than labelling the vectors inthe order (53)). We postpone this analysis for a moment.When � is of the form � I � � J , more care is needed in selecting coordinates which willseparate t. We must not forget that we started from the assumption that r� commuteswith �, which implies because of Lemma 4 that rJ = 0 (and thus also that r� = 0here). As a result, the connection components have the property (31) (and the systemwhich we start from is actually a complex one). It follows from the explicit form (55) ofthe tension components that [t; J ] = 0 (and therefore also, because of the special form of�, that [t;�] = 0). The fact that t commutes with J has several consequences. Firstly,as soon as we assume that t is diagonalizable, we can be sure that the diagonalizationcan be achieved by a similarity transformation preserving J . Let A B�B A !be the matrix of such a transformation. In all generality, for a complex system of theform �xi = f i; �yi = gi ; (57)16



with the right-hand sides satisfying (33) and (34), if we pass to the complex representation�zi = F i = f i + i gi ; (58)one can easily verify the following properties. With�̂ij = �12 @F i@ _zj ; and t̂ij = �̂ij � _zk @�̂ij@ _zk ; (59)we have ��̂ij� = 1�1 + i 2�1; t̂ = 1t1 + i 2t1 : (60)Returning to the present situation, one further veri�es that A+ iB will diagonalize t̂. Ofcourse CVt = 0 will imply C V̂t = 0 as well. Likewise, withr̂ @@zk = �̂lk @@zl ; (61)we will have r̂t̂ = 0 and so on. Therefore, we can formally apply the results of Theorem 3to the system �zi = F i and its corresponding tension �eld t̂, forgetting as it were that the ziare complex variables. In this way, we are guaranteed the existence of a change of variablesz = z(z0) which will separate t̂ and this in turn implies in the real representation thatthere is a transformation (x; y)$ (x0; y0) which separates t and preserves J .Another consequence of [t; J ] = 0 is that if t has real eigenvalues, their degeneracy willbe even. In the variables (x0; y0) which separate t, we know as before that �A�B� = 0, Aand B referring to di�erent eigendistributions of t. Even in the case of real eigenvalues,their even multiplicity will imply compatibility with the given block structure of � inthe sense that it again will follow that �A�B� = 0. As a result, we have block decouplingof the complex system that we started from and all eigenvalues of t with multiplicitygreater than one (thus in particular the real ones) are constant. Whether there will befurther (full) decoupling in each block coming from multiple eigenvalues of t remains tobe analysed.The remaining situations to be looked at now can be dealt with simultaneously thanks toLemma 1 of the preceding section. The list of remaining cases reads as follows:1. Assume we have a Sode such that � = � I and t = � I�� J , with �; �; � 2 IR. Wemay further assume without loss of generality that the almost complex structure Jis integrable. Indeed, in the complete picture, this will follow by Lemma 5 from theoriginal assumptions on t, namely diagonalizability plus CVt = 0, knowing furtherthat rt = 0. The form of � further ensures that R = 0. Trivially, we also have[�; J ] = 0, while rt = 0 implies rJ = 0, so that the Sode certainly is complex.2. Assume we have � = � I � � J and also t = � I � � J , with �; �; �; � 2 IR andallowing possibly for � to be zero. Here, we can further suppose that rJ = 0 andDVXJ = 0, since this will follow in the complete picture from the original assumptionthat [r�;�] = 0 and CV� = 0. Again, we are then looking at a complex Sode fromthe start, with the further properties that R = 0 and that the tension is basic.17



As argued in [8], if the tension is basic and assumed to be smooth on the zero section,the connection will be a�ne. Explicitly, we will have�ij(x; v) = tij + �ijk(x)vk; (62)where the functions �ijk(x) de�ne a symmetric linear connection. For both cases, sinceR = 0, the Riemann curvature tensor of this linear connection will also vanish. But we arelooking here at a linear connection which can be associated to a complex quadratic spray.In view of Lemma 1, therefore, we can �nd `
at coordinates', with respect to which we willhave �ij = tij, and in such a way that J is preserved, and consequently also � and t. Withthese data, the forces now can be uniquely determined in the new variables. Labellingthese variables as (xi; yi) and the forces as (f i; gi) as in Section 3, the equations �ij = tijcan be integrated explicitly to obtain the velocity dependence of the forces, whereas thearbitrary functions of position variables, obtained in this process, subsequently get �xedas a result of the condition � = � I or � = � I �� J depending on the case at hand. Oneeasily obtains the following results:f i = �2� _xi � 2� _yi + (�2 � �2 � �)xi + (� � 2��)yi; (63)gi = 2� _xi � 2� _yi � (� � 2��)xi + (�2 � �2 � �)yi: (64)It is manifestly obvious that the equations then are decoupled into pairs of complexequations in each (xi; yi) plane. The above expressions directly cover the second caseenumerated before, including the case that t is diagonal (by putting � = 0). They alsocover the �rst case, however, for which it su�ces to put � = 0 and � = �. Note that ifwe put � = � = 0, the result is fully consistent with the real situation treated in [8].Let us summarize the results of the preceding discussion as follows.Theorem 5. Let the Sode � be such that either (i) � = �I; � 2 IR, or (ii) � =� I � � J; �; � 2 IR, where J is an almost complex structure satisfying rJ = 0 andDVXJ = 0; 8X 2 X (� ). Assume that t is diagonalizable and satis�es CVt = 0. Then theequations completely decouple. For case (i) one obtains a number of individual equations(as many as the sum of the dimensions of the real eigenspaces of t) and a number ofpairs of complex equations (as many pairs as half of the total dimension of the complexeigenspaces of t). For case (ii) where the dimension of the base manifold is necessarilyeven, the complete decoupling is into pairs of complex equations. 2Putting the partial results of Theorems 4 and 5 all together now, we obtain a set ofsu�cient conditions for an arbitrary Sode with a diagonalizable � (real or complexeigenvalues) to be maximally separable. However, for any given Sode which is given insuch a maximally separated way, i.e. is the union of a number of individual equations anda number of pairs of complex equations, it is easy to verify that all those conditions willhold true, so that they are also necessary. So, we reach the following main conclusion.Theorem 6. Let � be a Sode with Jacobi endomorphism � and tension �eld t, thena set of necessary and su�cient conditions for the existence of a coordinate transforma-tion which will maximally decouple the equations into a number of individual equationsand/or a number of pairs of complex equations, is given by: � is diagonalizable, CV� = 0,[r�;�] = 0, R = 0, t is diagonalizable and CVt = 0. 218



5 Illustrative examplesThe tests for maximal decoupling of a given system of second-order di�erential equations,as developed in the previous section, are all algebraic. We will illustrate here how they canbe used in practice. One of the main points to observe is the following: diagonalizabilityof � (or the tension) may be the hardest test to implement; therefore, although it is the�rst assumption in building up the theory, it is better in practice to leave it as the lastcondition to test. Typically one will start from a second-order system which contains anumber of free parameters (or even functions which are as yet to be determined). One willthen �rst impose the conditions R = 0, CV� = 0 and [r�;�] = 0. For functions f i(x; v)which depend polynomially on the velocities, such conditions will often give rise to alarge number of restrictions, coming from the coe�cients of independent monomials andthe diagonalizability test can be postponed until all restrictions coming from the otherrequirements have been implemented. If � turns out to be diagonalizable with distincteigenvalues, we can rely on Theorem 2; if some of the eigenvalues have multiplicity greaterthan one, we have to do some more work related to the conditions on the tension t inTheorem 6. Needless to say, all such calculations, as simple as they may be in principle,are almost impossible to carry out by hand, so that one will seek assistance from computeralgebra packages. We have made extensive use of Reduce in doing the computations forthe examples below.Quite a few examples of testing separability have already been given in previous work(see [8, 11]). We limit ourselves here to situations where the new features of the presentwork occur, i.e. cases with complex eigenvalues. For convenience, variables are labeled bylower indices in the examples.Example 1. Consider the system�x1 = �x1 + x2 + b1 _x1�x2 = �x2 � 4x1 + b2 _x2where the bi are constants. We have R = 0 and CV� = 0, whereas [r�;�] = 0, b1 = b2.� then has eigenvalues 1� 14b21�2i and one easily �nds from the eigenvectors that bringingthe system into complex form is a simple matter of rescaling the �rst variable with a factor2 here. The complex representation of the resulting system (with b = b1 = b2) then reads�z = �(1 + 2i)z + b _z :Example 2. For a system of the form�x1 = �a1x1 + b1x1x2 + _x2�x2 = �a2x2 + b2x32 � 4 _x1it is again [r�;�] = 0 which imposes restrictions, namely b1 = b2 = 0 and a1 = a2 = a say.We then have � = (1+a)I so that the tension has to be invoked to investigate potentiallyfurther decoupling. It turns out that t has eigenvalues �i and that one possible choiceof an eigenvector for example is col (�12; i). This in turn means that multiplication of x119



by �2, while leaving x2 unchanged, is a transformation which will bring t into its Jordannormal form and will accordingly produce a complex system. In complex representationone obtains the equation �z = az + 2i _z :Example 3. Starting from the system�x1 = a1x1x22 + b1x31�x2 = a2x21x2 + b2x32and excluding the trivially decoupled case a1 = a2 = 0, we have R = 0 and CV� = 0 again,while [r�;�] = 0 requires a1 = 3b2; a2 = 3b1. Here, � is not constant and is found to bediagonalizable provided that b1b2 6= 0. If b1b2 > 0, the eigenvalues are real and distinct sowe should be able to achieve complete decoupling. Indeed, the transformation~x1 = �b1 x1 +qb1b2 x2~x2 = qb1b2 x1 + b2 x2is found to result in the decoupled equations �~xi = ~x3i =bi. If b1b2 < 0, � has complexeigenvalues and the transformation ~x1 = �b1 x1~x2 = q�b1b2 x2will give rise to new equations which satisfy the Cauchy-Riemann conditions (33-34). Incomplex form, the resulting equation is�z = z3=b1 :Example 4. Leaving out the sort of preliminary analysis in which some parameters get�xed, another example which satis�es all requirements is given by�x1 = �18x21 + 78x1x2 � 78x22�x2 = �15x21 + 60x1x2 � 57x22 :� has eigenvalues �12x1+18x2�i(6x1�12x2) and one of the eigenvectors, for example, isgiven by col (13; 8�i). In such a case of constant eigenvectors, by the way, one immediatelyhas the Jacobian of a linear coordinate transformation which will bring � into its Jordanform. With the above choice, the transformation in question is of the form x = U ~x, withU =  13 08 �1 ! :The resulting complex equation is given by�z = 3(2� 3i)z2 :20



Note in passing that eigenvectors are of course determined to within a factor only. Multi-plying the original choice with (2� 3i)=13, for example, the new choice col (2� 3i; 1� 2i)would give rise to the coordinate transformationx1 = 2~x1 � 3~x2 ;x2 = ~x1 � 2~x2 ;having the e�ect of rescaling the complex equation to the form�z = 3z2 :Example 5. For an example with both real and complex eigenvalues, consider the system�x1 = _x1 + _x2 � x1 � 12x2;�x2 = _x2 � 4 _x1 � x2 + 2x1;�x3 = 12( _x1 + _x3)2 + _x3 � _x2 � x1 � 2x3 + 12x2:All conditions on � are satis�ed. Its eigenvalues are 7=4 (with multiplicity 2) and 7=4 �x1�x3. A coordinate transformation which will diagonalize � consists in replacing x3 byx1 + x3. Its e�ect is to replace the third equation by�x3 = 12 _x23 + _x3 � 2x3 :As predicted by the theory, there is partial splitting in the system so far. Continuingwith the block of the �rst two equations for which � = (7=4)I, we �nd that the tensionhas eigenvalues 12 � i and its transformation to real Jordan normal form is achieved forexample by multiplying x1 by �2. The resulting complex equation is�z = �(1 + i)z + (1 + 2i) _z :Acknowledgements. W.S. thanks the Fund for Scienti�c Research, Flanders, Belgium, forcontinuing support and the Department of Mathematics of the University of Toledo, where thisresearch was initiated, for the hospitality.References[1] S-S. Chern, Complex manifolds without potential theory: with an appendix on thegeometry of characteristic classes, (Springer, New York) (1979).[2] M. Crampin, G.E. Prince, W. Sarlet and G. Thompson, The inverse problem of thecalculus of variations: separable systems, Acta Appl. Math. (1999) to appear.[3] M. Crampin, W. Sarlet, E. Mart��nez, G.B. Byrnes and G.E. Prince, Towards a geo-metrical understanding of Douglas's solution of the inverse problem of the calculusof variations, Inverse Problems 10 (1994) 245{260.21
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