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Abstract. A general theory is developed about a form of maximal decoupling of
systems of second-order ordinary differential equations. Such a decoupling amounts
to the construction of new variables with respect to which all equations in the sys-
tem are either single equations, or pairs of equations (not coupled with the rest)
which constitute the real and imaginary part of a single complex equation. The the-
ory originates from a natural extension of earlier results by allowing the Jacobian
endomorphism of the system, which is assumed to be diagonalizable, to have both
real and complex eigenvalues. An important tool in the analysis is the characteri-
zation of complex second-order equations on the tangent bundle T'M of a manifold,
in terms of properties of an integrable almost complex structure living on the base
manifold M.

1 Introduction

Martinez et al [8] developed a constructive geometrical characterization of systems of
second-order ordinary differential equations (SODE) which can be completely decoupled
into a number of single second-order equations through a suitable coordinate transforma-
tion. The constructive nature of the theory is reflected in two specific features: firstly,
testing whether such a coordinate transformation exists, can be done, in principle, by
testing a number of purely algebraic conditions on the given data; secondly, if the system
passes all tests, the theory also shows how separation variables can be constructed.

Most of the algebraic tests for separability come from conditions on a matrix CI);, the com-
ponents of the so-called Jacobi endomorphism ® of the given SODE; only when this tensor
field is too trivial to provide any information, has one to appeal to other algebraic data,
which in the case of autonomous systems come from the tension field. That ® should be
an important tool for getting qualitative information about the system, is geometrically



evident because ® completely determines the curvature of the non-linear connection as-
sociated with the SODE (the tension provides information about homogeneity properties
of this connection). Another application, for example, in which the analysis of ® plays a
key role, is the inverse problem of Lagrangian mechanics (see [3, 10]). In fact, also in that
context one encounters a “separable case”, identified by Douglas [4] for the case of two
degrees of freedom, and generalized to arbitrary n in [2]. Although Douglas’s notion of
a separable case refers to a situation where partial differential equations for determining
the existence of a Lagrangian for a give SODE decouple, it was shown in [2] that there is
an underlying form of separability of the SODE itself behind this, which does not neces-
sarily, however, preserve the second-order character of the given system and thus is less
restrictive.

The first condition on ® for the existence of separation variables in both situations referred
to above is its (pointwise) algebraic diagonalizability. For the sake of simplicity both in
[8] and [2], this was understood to mean that none of the eigenvalues of the real matrix
® would turn out to be complex. It is this limitation which we intend to remove here
for the case of complete separability in the sense of [§]. It will involve developing a good
understanding of the sometimes rather subtle interplay between the given dynamics and
certain integrable almost complex structures which can be constructed on the integral
submanifolds of distributions, corresponding to pairs of complex conjugate eigenvalues of

o.

In the next section, we recall the intrinsic operations on vector fields and forms along
the projection 7 : T"M — M, which entered the separability analysis in [8], and focus
on their role in characterizing invariance properties of certain type (1,1) tensor fields
on T'M. We discuss almost complex structures and complex differential equations in
Section 3. Section 4 is the main section, where we closely follow the previously established
separability results and investigate to what extent the theory can be adapted to allow for
tensors with complex eigenvalues. As in the case of real eigenvalues, the results are fairly
straightforward when all eigenvalues are distinct, whereas much more care is needed when
there is degeneracy. Some examples are presented in Section 5.

2 The calculus along the tangent bundle projection
associated to a second-order equation field

Consider a system of second-order autonomous ordinary differential equations. It is mod-
elled on a tangent bundle T'M by a vector field

F—v%—l—f(x,v)%. (1)

As such, I' defines a non-linear connection on 7 : T'"M — M, i.e. a horizontal distribution,
locally spanned by

9 ‘ , ofi
H =—— F]»—], with I = _%8vi : (2)




By means of this connection, every vector field on T'M has a unique decomposition into
a horizontal and vertical part. It will be convenient for our purposes to think of these as
coming from a vector field along 7 by a corresponding lifting process. Vector fields along
7 are sections of the pull back bundle 7*T'M — T'M and most operations of interest
resulting in vector fields on T'M, when one looks at the decomposition into horizontal
and vertical components of the result, will be seen to come essentially from operations
on X(7) or A(7) (the C~(TM)-module of differential forms along 7). A complete study
of derivations of scalar and vector-valued forms along 7 was carried out for that reason
in [6, 7]. We will frequently refer to results of those papers, but one can quickly get
acquainted with the main operations that we need as follows (the reader may wish to
consult the introductions of, for example, [8, 3] for a somewhat more complete picture).

Let X* YV denote respectively the horizontal and vertical lift of elements X, Y € X(7).
We have

(X7, ¥"] = (DxY)" —(DyX)", (3)
[FX7] = (VX)" +(2(X))". (4)

We recognize in the right-hand sides degree zero derivations D%, Dy and V, which can
be extended to 1-forms along 7 by duality, and subsequently to tensor fields along 7 of
arbitrary type. In fact these are covariant derivative type derivations (D% and D% depend
C>=(T M )-linearly on X); they comprise the essential ingredients of a linear connection
on ™*T'M — TM, which is in some sense the linearization of the non-linear connection
defined by (2). The other term in (4) reveals a type (1,1) tensor field ® along 7, called
the Jacobi endomorphism, whose components are given by
. o fi . .

ol = —a—ij—rfr;—r(r;). (5)
One of the main advantages conferred by this formalism is precisely that it enables CI)é to
be thought of as the components of a tensor field. Calculations thus can be performed
more efficiently because the redundant information is sifted out.

To be able to do coordinate calculations with the derivations identified above, it suffices to
know their action on functions F' on T'"M and on the coordinate vector fields and 1-forms
on M, regarded as (basic) vector fields and forms along 7. In fact we have

OF d :
v _ 1 v _Z ) v Ty —
DXF_X(%“ Dy (8:1;7) =0, DX(dz")=0, (6)
: ) arL\ o . or ,
H _ T IT. I I kK~ "7 H (AN kK~ "g

DY F = X"H,(F), D% (8:1;7) = (X 81}’“) 5 D% (dz') = (X avk) dz?,  (7)
VE=T(F), V R V(da') = —Tda? (8)

B ’ dai |~ I 9at AR

Two other frequently occurring Lie bracket operations are

(XY, Y] = (DxY - DyX)" (9)
(X7 V7] = (DYY —DyX)" + (R(X,Y))", (10)
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where R is the curvature of the connection (2) seen here as a vector-valued 2-form along
7. Complementing the relation (4), we further mention:

[0, XY] = —X¥ + (VX)". (11)

Finally, let us recall that there exists a canonical vertical exterior derivative d on A(T)
(and on V(7), the module of vector-valued forms along 7) defined independently of any
connection. The latter allows one to define a corresponding horizontal exterior derivative

as well. By way of example, if U € V!(7), d"U and d”U, both elements of V?(7), are
given by

d'U(X,Y)=DYU(Y)=DVU(X), d"U(X,Y)=DEU(Y)=-DIU(X). (12

The importance of the tensor field ® can now be underscored by observing that it com-
pletely determines the curvature and its ‘dynamical evolution’, according to the properties

d'®=3R,  d"® =VE. (13)

Various ways of lifting elements of V*!(7) to V!(T'M) were discussed in [7], and the Lie
derivative with respect to I' of the lifted objects was computed in terms of corresponding
actions on the original (1,1) tensor field along 7. Not surprisingly, in all such computations,
an important role is played by the Jacobi endomorphism ® and the dynamical covariant
derivative V. The particular lifting process of interest here is one which depends on the
given [', and will be denoted by the same symbol Jr irrespective of whether it applies to
vectors, forms or endomorphisms. Thus, for X € X(7), a € A'(7) and U € Vi(r), we
have

JX = X7 (VX) (14)
Jra = (Voz)H + oY (15)
JrU = U" +(VU), (16)

where the horizontal and vertical lift of a type (1,1) tensor field U along 7 are determined

by

UH(XT) = U(X)", UH(XY) = U(X)" (17)
UV(X") = U(X),  UY(XY)=0. (18)

I
=

The image sets of the operator Jr are interesting, if only because they contain the I'-
invariant objects such as symmetry vector fields, adjoint symmetries (invariant 1-forms)
and recursion operators (invariant type (1,1) tensor fields). In fact, these image sets of
objects on T'M were identified as such before in [9]: Jp(X (7)) was the subset of X'(TM)
denoted by Ap; likewise Jr(A'(7)) was the set Xj* and Jr(V(7)) is just the set of type (1,1)
tensor fields on T'M, which preserve Ap and AT. We know therefore that, for example,
for U € Vi(7), JrU € VYT M) is completely characterized by the properties:

JrUo S =SoJrlU,  SoLlp(JrlU) =0, (19)



where S is the canonically defined vertical endomorphism on T'M.

A second reason why the image sets under Jr are of interest is the fact that they generalize
and thus contain the complete lifts of fields on the base manifold M. Adding an extra
condition which will ensure that the tensor field along 7 under consideration is actually
basic, will thus provide a characterization of tensor fields on T'M which are complete lifts.
In particular, in the case of a type (1,1) tensor field, the extra condition to impose is

La(JrU) =0, (20)

plus smoothness on the zero section, where A is the Liouville (or dilation) vector field,
which incidentally is the vertical lift of the canonical vector field T along 7:

T = o 0

A=TY .
’ oxt

(21)

Alternatively, expressing that U is a basic tensor field can be done by requiring that
DYU =0,vX € X(7).

We will, in particular, be interested here in tensor fields which are invariant under T'.

Recall from [7] that
,CF(JFU) =0 <~ VU =0 and [U, (I)] = 0. (22)

The same conditions of course apply to the particular case of complete lifts. For readers
who are perhaps more familiar with computations involving ‘honest’ tensor fields on the
full space T'M let us list properties which are very easy to deduce from the analysis in [7]
and give equivalent (but less transparent) representations of the two conditions in (22).

We have

VU=0 <& [,CFS, JFU] =0, (23)
and
[LrS, JrU] =0 VU =0
— (24)
(£35S, JrU] =0 (U, ] =0

We end this section with the observation that in the case of a complete lift, i.e. when
JrU = U°, it is easy to verify (and in fact well known, see e.g. [12]) that the Nijenhuis
tensor Ny« is zero, if and only if Ny = 0 on M.

3 Complex second-order equation fields

We now focus on almost complex structures. If J is an almost complex structure on M,
then it is well known that J¢ is an almost complex structure on TM (see e.g. [12]). By
way of example of the use of the calculus summarised in the previous section, we show
how this result easily generalizes when the components of the original J are allowed to
depend on points on T'M. We say that J € V!(7) is an almost complex structure along T
if J2=—1.



Proposition 1. If J is an almost complex structure along 7, then JrJ is an almost
complex structure on T'M.

PRrOOF. We evaluate JrJ on horizontal and vertical lifts of vector fields along 7, using
the defining relation (16) and the properties (17)(18).

JrJ(X7) = JHXT) 4+ (VI)T(XT)
= J(X)"4+VJ(X)"

and likewise

JrJ(XY) = J(X)V.
It follows that

(JrJ)*(X™) JHI( X))+ VIX)) (V) (J(X)T+VI(X))
= JHX)"+JoVJ(X) +VJoJ(X)"

= X7

since J? = —1I obviously implies J o VJ +V.JoJ = 0. Showing that (JpJ)*(X") = - XV

is even more direct. O

In fact, the proof would even become a bit shorter still if one would use vector fields of
the form JrX and XV to generate a local basis for X(7), using the property that for any
UeVir)and X € X(7): JrU(JrX) = Jp(UX).

Computing the Nijenhuis tensor of JrJ is interesting in its own right, but is much more
involved. Since it will turn out that the separability analysis of the next section does not
require this level of generality, we will refrain from doing this computation here and turn
to the special case where J is basic, i.e. is an almost complex structure on M. It then
follows that if .J is integrable, so is JpJ = J°.

Let then J be an integrable almost complex structure on M (so M has dimension 2n
say), and assume further that .J satisfies the conditions (22). We wish to see what this
implies for the given SODE I'. Appealing first to the Newlander-Nirenberg theorem (see
e.g. [1]), we know that M then is actually a complex manifold which, expressed in real
terms, means that there exist coordinates (z',y') on M such that J takes the standard

form
0 0

= — @de' — — @dy. 25

If we write (2%)i1<a<2n for the collective coordinates and #* = Fo(2? 3% for the differ-
ential equations corresponding to the given I', we know that the connection coefficients

J

I's = —%aFa/a:i;ﬁ determine the dynamical covariant derivative V as in (8). Let us put
(F*) = (f',¢") and
d L O .0 afr o dg’ 0
Vo R WA FX MR EX W (26)
d -0 -0 afr o dg’ 0
\% - = IF] = QF] —:—l ——l - . 27
dy g T T T2 00 00 20y 0y (27)
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In agreement with these notational conventions, we thus write the matrix of connection
coefficients formally as follows:

1 1
al _ F1 FZ
()= (o 1) (29)
Regarded as endomorphism on vector fields J itself accordingly has the matrix represen-

tation
0 —1
(0 »

and let us similarly represent the matrix of components of @, as determined in (5) by

1 1
ay _ (I)l (I)Q

(03) = (ot 20 ) - (30

Then, it is easy to verify that

1 2
o Fl — FQ

V=0 < { T, — T, (31)
In other words, in this matrix representation V.J = 0 just means that the matrix of

connection coefficients commutes with JJ. Of course, for the remaining condition imposed
by (22) on J, we likewise have

1 2
. (I)l — (I)Q
[(I)v‘]] =0 — { 1(1)2 — _2(1)1 (32)
Observe now finally that the conditions (31) are equivalent to saying that
aft og’ afi g’

ot 0y 0y dF

and taking these equalities into account in the definition (5) of the components of @, the
conditions (32) are equivalent to

af’ B g’ af’ B _agj
oyt dyi — Oat’

(34)

oxt

Recognizing the Cauchy-Riemann conditions in (33) and (34), we are led to introduce the
following concept.

Definition. A second-order differential equation field I' on the tangent bundle of an even
dimensional manifold M s said to be complex if M admits an integrable almost complex

structure J, such that V.J =0 and [®,J] =0 (or equivalently LrJ®=0).
The results of the preceding calculations can then be summarized as follows.

Proposition 2. For any complex I' on the tangent bundle of an even dimensional mani-
fold M, there exist complex coordinates z' on M such that the differential equations cor-
responding to I' represent the real and imaginary parts of a system of complex differential
equations 2 = Fi(z, ). O



It is of some interest to look at the particular case where the complex SODE I' is a
quadratic spray with zero curvature, more specifically for the purpose of understanding
in detail how the construction of ‘flat coordinates’ for the real equations associated to I’
corresponds to the construction of flat holomorphic coordinates for the associated complex
equations 3' = F(z, 2).

A complex quadratic spray, expressed in coordinates which bring .J into the form (25), is
a system of second-order differential equations of the form

i =g = %ij@fy‘ — i >+%F5k<y‘x + i), (36)
with Fi = Fi., G =G, and

OF, B _8G§k OF, B oG,
ozl Oyl oyt Oxl

(37)

The specific structure (35-36) of the quadratic spray, plus the above properties satisfied
by its connection components are of course simply dictated by the fact that we want the
Cauchy-Riemann conditions (33) and (34) to be satisfied. The corresponding complex
differential equations are of the form

=Tz, 2) = AF 5 (38)
where ' ' '
ik = Fip =1 G (39)
For this complex representation of the original spray, curvature zero means that
OF, i
a;+f = (j+—k)=0. (40)

This gives rise to two conditions (coming from the real and imaginary part) which, taking
the properties of the FZZ and G]l into account, can be verified to coincide identically with
the zero curvature conditions for the quadratlc spray (35),(36) we started from — there are
in fact 12 conditions, in principle, if one looks at all the different curvature components for
the spray (35),(36), but again, from the properties of the connection components, these
eventually reduce to just two independent conditions. By the complex version of the
classical theorem about linear connections with zero torsion and curvature (see e.g. [5]),
we know that there exists a holomorphic change of variables z = z(2’) to a representation
with zero connection components. In real terms, the change of variables (z,y) < (2/,y)
therefore has a Jacobian which commutes with J. For later use, we formulate this simple
result as a lemma.

Lemma 1. Given a complex quadratic spray on the tangent bundle of an even dimensional
real manifold M which has zero curvature, there exvists a coordinate transformation which
preserves the almost complex structure J and will transform the given SODE into trivial
equations with zero right-hand side. a



4 Separability of second-order equations when the
Jacobi endomorphism has complex eigenvalues

The purpose of this section is to generalize the results of [8] about separable SODE’s to the
case where the Jacobi endomorphism @ of the given system is allowed to have complex
eigenvalues. One should keep in mind of course that the word eigenvalue here and in what
follows will generally refer to a (locally defined) function on T'M.

So, I' at the start is an arbitrary SODE on T'"M and M can have arbitrary dimension. As
in [8], a large part of the analysis can be carried out in the context of diagonalizability
and separability of type (1,1) tensor fields U in general; the full separability of I' then
emerges when we specialize to the case U = & (possibly supplemented by information
coming from another tensor field, called the tension). We will closely follow the path set
out in [8] and actually go through some of the features in reasonable detail again, because
we need to assure that eigendistributions corresponding to complex eigenvalues can be
dealt with in a manner that is consistent with the real parts.

Firstly, we consider type (1,1) tensor fields along 7 : TM — M which are diagonalizable
in an algebraic sense. To be precise: U € X(7) is said to diagonalizable if for all v € T'M,
the linear map U(v) : TryM — T;yM is diagonalizable and this can be done smoothly
in a neighbourhood of v, leading to eigendistributions which have constant dimension.
Eigenvalues p4 of U, however, could have multiplicity greater than one and are allowed
this time to be complex-valued. Naturally, since the original matrix U;(l‘, v) is real valued,
complex eigenvalues will come in pairs of complex conjugate ones. The eigendistribution
corresponding to g4 will be denoted by D4 and its dimension by d4. Such distributions,
when (14 is real, are spanned by vector fields { X4, }a=1,.. 4, along 7. To make a notational
distinction, let us agree to write (A4, A4) for pairs of complex conjugate eigenvalues and
denote a local basis for their eigendistributions by {Z,} and {Z 4.} respectively. Thus
7 4o for example, as a complex vector field along 7, is a smooth section of the complexified
bundle 7*T'M @ C — TM. To fix notations further, we will typically write

Ao = pPa + 104, Zo, =V, +1W, (41)

for the real and imaginary parts of complex eigenvalues or eigenvectors (omitting the extra
subscript A referring to the distribution in question when there is no danger of confusion).

Knowing that U(Z,) = Ay Z4, it then follows that

UVy) = paVa — 0aWa, UW,) =0V + paWa . (42)

Definition. A distribution D along T, real or complex, is said to be basic when it can be
spanned by vector fields on M. A real basic distribution along T is said to be involutive,
if the corresponding distribution on M is involutive.

Lemma 2. A distribution D along 7 is basic if and only if D% (D) C D, for all X € X (7).

PROOF. We merely check that the arguments used in Proposition 3.3 of [8] remain valid
when D is complex. Clearly, if D is basic, it is DV-invariant. Conversely, let {Z,}o=1..4



be a local basis for D, and {X,};=1,.., a local basis for X(M). Then, we have — A X,
where the rank of the matrix of complex valued functions A’ is d. Assuming, without loss
of generality, that the upper left-hand (d x d)-submatrix is regular, we can multiply by its
inverse to obtain a new local basis {7, },=1,..q for D, of the form 7, = X, + D imdr1 UZYXZ'.
It follows that for arbitrary X, D% Z, = 3L, (D% 0?)X;. For this to belong to D, we
must have D% o! = 0, meaning that the Z, (and of course also the Z, spanning D) will
be basic. O

A fairly obvious result, the proof of which remains unaltered in the presence of complex
eigenvalues, is the following.

Lemma 3. If D is any self-dual derivation on V(1) and U € V(1) is diagonalizable, then
the eigendistributions of U are D-invariant if and only if [DU,U] = 0. In such a case,
DU s simultaneously diagonalizable and the eigenvalues of DU are the D-derivatives of
the eigenvalues of U. O

Whenever (D4, Dy) is a pair of complex conjugate eigendistributions of U, spanned by
(ZAQ,7AQ), we will be interested in integrability aspects of the 2d4-dimensional real
distribution D’y = sp{Vaa, Was}. That means, of course, that we have the real Jordan
normal form of U in mind, rather than its diagonal form, and most of the analysis is about
ensuring that such a real Jordan form can be achieved via a coordinate transformation.
Under the conditions of the preceding lemma, i.e. when D4 is D-invariant, then so is D.
In fact, we can be a bit more precise about this. If we put

da
DZao = 4’ Zap,  with ) =ai? +iby7 (43)
/=1
then we find:
ia A A & A A
DV, = Z (aAg\/Aﬁ — bAQWAg) , DW,, = Z (bAgvAg + aAQWAﬁ) . (44)
B=1 £=1

Having diagonalized the tensor field U in some neighbourhood, we have a set of com-
plementary distributions at our disposal, say n; real eigendistributions D4 and ny even
dimensional distributions of the type D", such that for each v in the neighbourhood under
consideration, we have

TryM = @3, Dav) UL, Diy(v). (45)

We define a type (1,1) tensor field J along 7 in terms of the constructed local bases of
vector fields for all these distributions, via the relations

J(Viaa) =Waa, JWas) = —Vae, V Vi, Wa, € Dy, (46)
J(XAQ):O, VX4 €Dy,
Clearly, J is a degenerate almost complex structure, in the sense that
2 —
_— I. (47)

A
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It follows from Eqns. (42) that
[U,J]=0. (48)

Lemma 4. [f U is diagonalizable and [DU,U] = 0 for some given self-dual derivation D,
then DJ = 0.

PROOF. From (44) and (46), it follows that
J(DVas) = DWaq, J(DWy,) = =DV, . (49)

As a result we get

DJ(Viaa) = D(JVay) — J(DVaa) = 0,

and likewise DJ(Wa4,) = 0. Obviously, for the real eigendistributions we also have
DJ(X4,) = 0. The result follows. 0O

We now turn to the degree zero derivations described in Eqns. (6-8). Asin [§], we introduce
the type (1,2) tensor field Cf; along 7, defined by

Co(X,Y) = [DXU, UN(Y), (50)

and recall also that the commutator of the derivations V and DY generates DY, according
to the property:
[V,Dk] = Dyx — DX . (51)

We thus come to the first main theorem.

Theorem 1. Let U € V(1) be diagonalizable and satisfy the extra conditions C}; = 0
and [VU, U] = 0. Then, there exists a coordinate transformation on M which will bring
U into its real Jordan normal form in a neighbourhood of an arbitrary point of T M.

PrOOF. From Lemma 3, C}; = 0 implies that the eigendistributions are DY-invariant,
which according to Lemma 2 means that they can be spanned by basic vector fields.
Furthermore, [VU,U] = 0 implies that they are also V-invariant and hence, from the
property (51), also D”-invariant. Rather then continuing the reasoning with eigendistri-
butions, we replace the complex eigendistributions with the real distributions denoted by
D’y before and look at the direct sum decomposition (45). Naturally, we may assume now
that a local basis {Va,, Wa, } for D7, has been selected, consisting of basic vector fields.
The D"-invariance, in particular, means that for arbitrary X and for Y € Dy (or D7),
DYY belongs to the same distribution, implying further that for two vector fields X, Y
belonging to two different distributions, the combination DY — Dif X will belong to the
sum of these two distributions. This will in particular be true for the basic vector fields
spanning all distributions, but when X and Y are vector fields on M, D¥Y — Dy X is
just their Lie bracket. All associated basic distributions are therefore involutive and will
be simultaneously integrable by the Frobenius theorem (such a situation was analysed in
detail in Lemma 3.4 in [8]). We may already conclude that there exist coordinates on M
such that each of the distributions in (45) will be spanned by a corresponding number of
coordinate vector fields. The coordinate vector fields spanning real eigendistributions will
be eigenvectors themselves and so U will already be diagonal in those parts. The situation

11



is different for the D7y, as {Vaa, Waa} may so far be combinations of all coordinate vector
fields spanning the distribution.

Turning our attention to the tensor field J defined by the relations (46), we prove the
following intermediate result.

Lemma 5. If a diagonalizable U € V(1) satisfies Cf; = 0 and [VU,U] = 0, then the

corresponding tensor field J is integrable.

ProOOF. We know from Lemma 4 that under the given hypotheses on U, J will be a basic
tensor field, which further is V-invariant and from (51) also D”-invariant. Considering
the Nijenhuis tensor Ay, we have for two of the vector fields of type V,,, possibly belonging
to different distributions D’ and Djp,

Ni(Vaa, Vg) = [Waa, Was] + J? ([Vaa, Vb)) — J ((Waa, Ves] + [Viaa, Wag)) -

We can write the brackets of all such basic vector fields in terms of D”-derivatives and
make use of the properties (49) of J with respect to the appropriate D”-derivatives. By
way of example, one can write

J ((Waa, Vagl) = J (D, Vs — DY, Wan) = Diy, W+ DY, Via .

This way, it is easy to see that all terms will cancel out. Obviously, the computation will
be completely similar in the case of two W,-type arguments, or one V,, and one Wjs. The
result is trivial when both arguments are of X,-type, because .J is zero on real eigenspaces.
Finally,

N3(Xaa,Ves) = J*([Xaa: Vis]) = J ([Xaa, Whs])
= J*(D¥, Vs — D¥, Xua) —J (DX, Wrs— Dii Xaa)
= J*(D¥,.Ves) + D%, Vs =0,

and likewise for Nj(X 4., Wgs). a

Returning now to the proof of the theorem we have, in particular, that for each of the
D', distributions, the restriction of J to that distribution will be an integrable almost
complex structure. It follows that there exists a further coordinate transformation among
the coordinates whose tangent fields span the distribution, such that J{p- is of the form
(25), and this can be done for all the D7, distributions simultaneously. In other words, in
such coordinates a basis for the distribution D’ is given by

0 0
Via = =— Wayo = :
A A A

OxAa’ (52)
One final remark is in order now. Writing an almost complex structure in the standard
form (25), makes further calculations such as those following Eqn. (25) much easier, but
with the choice (52), the tensor field U does not quite acquire what one usually calls its
real Jordan normal form. Passing from one representation to the other, however, is merely
a matter of renumbering the variables. Explicitly, it corresponds to writing the basis (52)
for D7 in the order
Var, War, oo, Vag, Wag. (53)
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This concludes the proof of Theorem 1. a

It is interesting to observe that whenever a SODE I' admits a tensor field U satisfying
the conditions of Theorem 1, we already know a number of separability properties of
the equations with respect to the velocity variables. Indeed, since all the distributions
involved in the decomposition (45) are simultaneously integrable and are V-invariant, it
follows from the action of V on coordinate vector fields (see (8)) that the connection
components, in the right coordinates, will satisfy

Ig3=0, for A#B. (54)

This means that the ‘force functions’ f4° in the general representation (1) of ' will not
depend on the velocities vP?. Moreover, inside each of the ‘complex parts’ of U, where J
is non-trivial and has the standard form, we know from V.J = 0 that we are in a situation
as in (31). This means that the corresponding part of the differential equations will be of
the form

o= f(..,3,9),

Jo= g'(...2,9),

where the right-hand sides have the properties (33). There is no information, however,
about the dependence on position variables. In fact, the line dots could refer to all
coordinates, including those coming from the other eigendistributions. More info will be
available if U is the important type (1,1) tensor field which canonically comes with the
SODE, namely the Jacobi endomorphism ®. Let us first look at the situation where there
are no further complications coming from the degeneracy (or multiplicity) of eigenvalues.

Theorem 2. Suppose that ® is (algebraically) diagonalizable with distinet (but possi-
bly complex) eigenvalues. Assume further that ® satisfies the conditions Cg = 0 and
VO, ®] = 0. Then, there exist coordinates with respect to which the second-order equa-
tions decouple into scalar equations (one for each real eigenvalue) and pairs of equations,
not coupled with the rest, which are the real and imaginary parts of a single complex
equation (one for each pair of complex conjugate eigenvalues).

Proor. Using the results obtained before, applied to U = ®, we already know that
(54) holds in appropriate coordinates, where Dy is one-dimensional for real eigenvalues
and D’ is two-dimensional for complex conjugate ones. We further know that the forces
satisfy Cauchy-Riemann conditions with respect to the velocity variables inside each D;.
Moreover, @ is in real Jordan normal form. If, referring to the coordinate representation
(5) of CI);, the upper index 1 refers to a line with a real eigenvalue, we thus have CI)é =
0, Vj # 1, which, knowing that also I'; = 0 Vj # 1 in that case, implies that df*/dz’ = 0,
i.e. f* depends on (z',v') only.

For each of the invariant subspaces associated to complex eigenvalues, we further exploit
the fact that according to (48) [®,.J] = 0 which, as discussed in the previous section with
Eqns. (32-34), eventually implies Cauchy-Riemann conditions with respect to the position
variables as well, while independence of all others still follows from the normal form of ®
as above. O
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Observe that it follows from the first of the relations in both (12) and (13) that for any
two eigenvectors X of ®, corresponding to (distinct) eigenvalues Ay,

BR(X:, X;) = DX ¢(X;) - Dy o(X;)
D, (A X;) — Dx, (AXi) — ®(Dy, X; — Dy Xi)
= (Dx,A)X; — (Dx,\) X,

where the simplification in the last line comes from the fact that e.g. D% X is proportional
to X; as a result of the assumption C'y = 0. In the case of real eigenvalues, still under
the assumptions of Theorem 2, we know that the A;, in the coordinates which diagonalize
®, will depend on the variables (z',v%) only. It follows that DY A; = 0 for 7 # j. For
complex eigenvalues it may not be so obvious at first sight that the curvature will still
be zero inside each block of (real) dimension 2 determined by sp {V;, W;}. However, the
above computation remains formally valid in a complex representation, with \; = \; say.
The conclusion coming from Theorem 2 is that in suitable complex coordinates we will
have X; = 9/dz* and ); will not depend on z', so that R is still zero. The ‘real version’ of
this argument (which is easy to verify explicitly) is that the curvature of a single complex
SODE

i o= flx,y,&,9)
§ = g(z,y,2,9)

is zero as a result of the Cauchy-Riemann properties (33-34) satisfied by f and ¢g. We
therefore draw the following important conclusion.

Corollary. Under the assumptions of Theorem 2, the curvature R of the connection
determined by the SODE I' is zero. O

Allowing for degeneracy in the eigenvalues, a somewhat stronger condition will be needed
to ensure further separability in each block. For an intermediate result then, we go back
to the general discussion on type (1,1) tensor fields U and identify, as in [§], conditions
which will ensure that U really projects onto all distributions D4 and D’;. Such a U is
said to be separable.

Theorem 3. Let U € V(1) be diagonalizable and satisfy the conditions: (i) CY; =0, (ii)
VU, U]l =0, (iit) d"U =0, (iv) d"U = 0. Then U is separable and the eigenvalues of

multiplicity greater than one moreover are constant.

PROOF. Let X € Dy and Y € Dg be any two eigenvectors of U (real or complex).
Computing dVU(X,Y") as in (12), we obtain, using the results of Lemma 3 for the case
that D is D% or Dy

FUKY) = (D) Y — (D gun) X

Since X and Y are linearly independent, the vanishing of this expression leads to the
following conclusions. Firstly, we have D% pup = 0 for all X € Dy with A # B. Secondly,
when A = B, i.e. when the dimension of Dy is at least 2 (in the sense of the complexified
tangent space when g4 is complex), then in fact D{ps = 0 for all X € X(7). Condition
(iv) gives rise to exactly the same conclusions with D*-derivatives. It follows therefore
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that the only, possibly non-constant eigenvalues are the non-degenerate ones and that
in the coordinates which bring U in its normal form, these eigenvalues will depend on
the coordinates and velocities associated to the corresponding distribution only (i.e. U is
separable). O

IMPORTANT REMARKS. We have again formally left these considerations, which are of
an algebraic nature only, in a (potentially) complex set-up. So, strictly speaking, for a
complex eigenvector Z, as in (41), DY should be understood as Dy, + 7Dy, . Complex
eigenvalues A4 likewise should be thought of as being represented as in (41). For a real
eigenvalue p14 acted upon by a complex Dy, we will then get both Dy, p4 = 0 and
Dyy, pa = 0 (and likewise for D*-derivatives). In the case of a complex eigenvalue
Aa = pa + 104 it is easy to verify that DEBﬁ)\A = 0 implies that all of the functions
Dy, .pa: Dy, pa, Dy, o4 and Dy o4 will be zero. Hence, the same conclusions hold for
the basic vector fields spanning the distributions D’ and for the (p,, 0,) which determine
Ao as in (41). We enter into such detail here because the result will in fact be used in this
form later on.

Observe also that this result is the analogue of Theorem 4.5 in [§] and that the weaker
version in Theorem 4.4 of that paper, which characterizes separability of U only (without
regard to the constancy of multiple eigenvalues), would equally apply in the present
context. That weaker version will, however, not be needed in what follows.

In the case where ® is the tensor field U under consideration, the two extra conditions
(iii) and (iv), in view of (13), reduce to the vanishing of the curvature. We can safely
impose such a restriction as part of a set of sufficient conditions for arriving at maximal
decoupling, because we know by the corollary of Theorem 2 that it is also a necessary
condition. We thus arrive at the following intermediate result.

Theorem 4. [f ® is diagonalizable and is such that Cg =0, [V, ®] =0 and R =0,
then the differential equations split into a number of decoupled blocks, one for each real or
pair of complex conjugate eigenvalues, which are constant when there is degeneracy; the
blocks corresponding to complex eigenvalues give rise to complexr second-order systems in
the sense defined in Section 3.

PROOF. Theorem 3 applies and ensures that ® is separable in appropriate coordinates.
The normal form structure of ® in those coordinates further says that q)é% =0for A# B,
while we already saw in (54) that the connection coefficients have the same structure. It
then follows again from the local structure (5) of ® that also 9f4*/9xP% = 0. This
provides a blockwise decoupling of the given SODE. Now the arguments about J used
in the proof of Theorem 2 also remain valid, i.e. we have V.J = 0 and [®,J] = 0. It
follows from the general considerations of Section 3 that for each separate block coming
from complex conjugate eigenvalues, Cauchy-Riemann conditions of type (33-34) will be
satisfied, meaning that the projected even dimensional SODE for each such block will be
complex. a

If we want the maximal decoupling of equations, i.e. further decoupling inside each block
coming from multiple eigenvalues, it remains to investigate separately the cases where ®
has one of the following two structures: ® =yl or & = pI — o J, with p, p and o real
constants. Evidently, for such systems, no information about decoupling can come from
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¢ itself. Fortunately, there is another tensor field available which is the tension field t
along 7, whose components are given by

: : o
T TV k
ti=1%—v a—vi (55)
It can be defined intrinsically from the canonical element T of X(7), as
t=—d"T. (56)

The tension satisfies the identity d“t = 0. In both of the cases to be investigated, ® is
basic and consequently R = 0. This is all we needed in Lemma 5.4 of [§] to conclude
that Vt = 0. It then follows that also d”t = 0. Therefore, if we assume that t is
diagonalizable (of course allowing for complex eigenvalues again) and that C{ = 0, the
tension satisfies all assumptions of Theorem 3; we then conclude that t is separable and
that its multiple eigenvalues are constant. The coordinate transformation involved in
separating t will have no effect on a ® which is a multiple of the identity, so let’s deal
with this situation first. As before, it follows from the general conclusions of Theorem 1
that the connection components have the property (54), A and B referring of course to
different eigendistributions of t now. The form of ® then further implies that the “force
functions’ f4* depend on the variables (2% v4*) only. If t has no multiple eigenvalues
we are finished and reach a conclusion similar to that of Theorem 2. In the opposite case,
we are reduced to analysing each subsystem corresponding to an invariant subspace with
multiple eigenvalues of t separately. The only new situation to look at here (since the
case that also t is a multiple of the identity was already analysed in [8]) is the case of
multiple complex eigenvalues of t. In other words, we still have to investigate separately
systems for which ® = p [ and t is of the form t = o — #J, with « and 3 constant
(choosing of course to write t in a basis such as (52), rather than labelling the vectors in
the order (53)). We postpone this analysis for a moment.

When @ is of the form p I — o J, more care is needed in selecting coordinates which will
separate t. We must not forget that we started from the assumption that V® commutes
with @, which implies because of Lemma 4 that V.J = 0 (and thus also that V& = 0
here). As a result, the connection components have the property (31) (and the system
which we start from is actually a complex one). It follows from the explicit form (55) of
the tension components that [t,.J] = 0 (and therefore also, because of the special form of
®, that [t,®] = 0). The fact that t commutes with .J has several consequences. Firstly,
as soon as we assume that t is diagonalizable, we can be sure that the diagonalization
can be achieved by a similarity transformation preserving J. Let

[ 1)

be the matrix of such a transformation. In all generality, for a complex system of the
form

=1 i=g, (57)
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with the right-hand sides satisfying (33) and (34), if we pass to the complex representation
HoFo=fiyig, (58)

one can easily verify the following properties. With

A 8.7:2 2 Al kafw
we have N
(M) ='Ty+i%0y, t="ti+i%. (60)

Returning to the present situation, one further verifies that A +iB will diagonalize t. Of
course Cy" = 0 will imply €Y = 0 as well. Likewise, with
~ 0

V—:ﬁa

we will have VE = 0 and so on. Therefore, we can formally apply the results of Theorem 3
to the system #* = F' and its corresponding tension field £, forgetting as it were that the z*
are complex variables. In this way, we are guaranteed the existence of a change of variables
z = z(2') which will separate t and this in turn implies in the real representation that
there is a transformation (x,y) <> (2/,y") which separates t and preserves .J.

Another consequence of [t,.J] = 0 is that if t has real eigenvalues, their degeneracy will
be even. In the variables (2/,y’) which separate t, we know as before that Fg% =0, A
and B referring to different eigendistributions of t. Even in the case of real eigenvalues,
their even multiplicity will imply compatibility with the given block structure of ® in
the sense that it again will follow that q)é% = 0. As a result, we have block decoupling
of the complex system that we started from and all eigenvalues of t with multiplicity
greater than one (thus in particular the real ones) are constant. Whether there will be
further (full) decoupling in each block coming from multiple eigenvalues of t remains to
be analysed.

The remaining situations to be looked at now can be dealt with simultaneously thanks to
Lemma 1 of the preceding section. The list of remaining cases reads as follows:

1. Assume we have a SODE such that ® =yl and t = oI — (3 J, with g, o, 5 € IR. We
may further assume without loss of generality that the almost complex structure J
is integrable. Indeed, in the complete picture, this will follow by Lemma 5 from the
original assumptions on t, namely diagonalizability plus C}" = 0, knowing further
that Vt = 0. The form of ® further ensures that B = 0. Trivially, we also have
[®,.J] =0, while Vt = 0 implies V.J = 0, so that the SODE certainly is complex.

2. Assume we have ® = pl — o J and also t = ol — 3J, with p,0,a,8 € IR and
allowing possibly for  to be zero. Here, we can further suppose that V.J = 0 and
D% .J = 0, since this will follow in the complete picture from the original assumption
that [V®,®] =0 and Cy = 0. Again, we are then looking at a complex SODE from
the start, with the further properties that £ = 0 and that the tension is basic.
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As argued in [8], if the tension is basic and assumed to be smooth on the zero section,
the connection will be affine. Explicitly, we will have

F;(l‘, v) = t; + F;k(:p)vk, (62)

where the functions ;k(:p) define a symmetric linear connection. For both cases, since
R = 0, the Riemann curvature tensor of this linear connection will also vanish. But we are
looking here at a linear connection which can be associated to a complex quadratic spray.
In view of Lemma 1, therefore, we can find ‘flat coordinates’, with respect to which we will
have F; = t;, and in such a way that J is preserved, and consequently also ® and t. With
these data, the forces now can be uniquely determined in the new variables. Labelling
these variables as (2°,y‘) and the forces as (f,¢‘) as in Section 3, the equations F; = t;
can be integrated explicitly to obtain the velocity dependence of the forces, whereas the
arbitrary functions of position variables, obtained in this process, subsequently get fixed
as a result of the condition ® =yl or & = p I — o J depending on the case at hand. One
easily obtains the following results:

o= 20" =285 4 (8* — o’ — p)a’ + (o — 208y, (63)

g = 20i' —2ay — (0 —2af)2" + (5* — o —p)y". (64)

It is manifestly obvious that the equations then are decoupled into pairs of complex
equations in each (x' y') plane. The above expressions directly cover the second case
enumerated before, including the case that t is diagonal (by putting 8 = 0). They also
cover the first case, however, for which it suffices to put ¢ = 0 and p = . Note that if
we put # = o = 0, the result is fully consistent with the real situation treated in [8].

Let us summarize the results of the preceding discussion as follows.

Theorem 5. Let the SODE I' be such that either (i) ® = pl, p € R, or (i) ® =
pl —aclJ, p,o € R, where J is an almost complex structure satisfying VJ = 0 and
D%J =0, VX € X(7). Assume that t is diagonalizable and satisfies C{ = 0. Then the
equations completely decouple. For case (i) one obtains a number of individual equations
(as many as the sum of the dimensions of the real eigenspaces of t) and a number of
pairs of complex equations (as many pairs as half of the total dimension of the complex
eigenspaces of t). For case (ii) where the dimension of the base manifold is necessarily
even, the complete decoupling is into pairs of complex equations. a

Putting the partial results of Theorems 4 and 5 all together now, we obtain a set of
sufficient conditions for an arbitrary SODE with a diagonalizable ® (real or complex
eigenvalues) to be maximally separable. However, for any given SODE which is given in
such a maximally separated way, i.e. is the union of a number of individual equations and
a number of pairs of complex equations, it is easy to verify that all those conditions will
hold true, so that they are also necessary. So, we reach the following main conclusion.

Theorem 6. Let I' be a SODE with Jacobi endomorphism ® and tension field t, then
a set of necessary and sufficient conditions for the existence of a coordinate transforma-
tion which will maximally decouple the equations into a number of individual equations
and/or a number of pairs of complex equations, is given by: ® is diagonalizable, Cy =0,

[VO. 9] =0, R=0, t is diagonalizable and C{ = 0. O
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5 Illustrative examples

The tests for maximal decoupling of a given system of second-order differential equations,
as developed in the previous section, are all algebraic. We will illustrate here how they can
be used in practice. One of the main points to observe is the following: diagonalizability
of ® (or the tension) may be the hardest test to implement; therefore, although it is the
first assumption in building up the theory, it is better in practice to leave it as the last
condition to test. Typically one will start from a second-order system which contains a
number of free parameters (or even functions which are as yet to be determined). One will
then first impose the conditions R = 0, Cy = 0 and [V®, ®] = 0. For functions f'(z,v)
which depend polynomially on the velocities, such conditions will often give rise to a
large number of restrictions, coming from the coefficients of independent monomials and
the diagonalizability test can be postponed until all restrictions coming from the other
requirements have been implemented. If ® turns out to be diagonalizable with distinct
eigenvalues, we can rely on Theorem 2; if some of the eigenvalues have multiplicity greater
than one, we have to do some more work related to the conditions on the tension t in
Theorem 6. Needless to say, all such calculations, as simple as they may be in principle,
are almost impossible to carry out by hand, so that one will seek assistance from computer
algebra packages. We have made extensive use of Reduce in doing the computations for
the examples below.

Quite a few examples of testing separability have already been given in previous work
(see [8, 11]). We limit ourselves here to situations where the new features of the present
work occur, i.e. cases with complex eigenvalues. For convenience, variables are labeled by
lower indices in the examples.

ExXAMPLE 1. Consider the system

Ty = —x1F x4 by

i’g = —T9 — 41’1 + szﬁg

where the b; are constants. We have R = 0 and C§ = 0, whereas [V®,®] =0 & by = bs.
® then has eigenvalues 1 — $b{ £27 and one easily finds from the eigenvectors that bringing
the system into complex form is a simple matter of rescaling the first variable with a factor
2 here. The complex representation of the resulting system (with b = by = by) then reads

Z=—(14+2)z+bz.

EXAMPLE 2. For a system of the form
Ty = —ayry + by + Iy
i’g = —d2X9 + bgl’g — 41’1

it is again [V®, ®] = 0 which imposes restrictions, namely b; = by = 0 and a1 = a3 = a say.
We then have ® = (1 +a)/ so that the tension has to be invoked to investigate potentially
further decoupling. It turns out that t has eigenvalues 4+: and that one possible choice
of an eigenvector for example is col (—%, ¢). This in turn means that multiplication of x;
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by —2, while leaving x5 unchanged, is a transformation which will bring t into its Jordan
normal form and will accordingly produce a complex system. In complex representation
one obtains the equation

z=az+ 2iz.

EXAMPLE 3. Starting from the system
il = Clll’ll’% + bll’:f
i’g = Clzl’%l’g + bgl’g

and excluding the trivially decoupled case a; = a3 = 0, we have R = 0 and Cy = 0 again,
while [V®, ®] = 0 requires a; = 3by, ay = 3b;. Here, ® is not constant and is found to be
diagonalizable provided that b;by = 0. If b1by > 0, the eigenvalues are real and distinct so
we should be able to achieve complete decoupling. Indeed, the transformation

T = _bl 1 + blbg L9

Ty = /bibyxi 4+ by

is found to result in the decoupled equations #; = 2 /b;. If biby < 0, ® has complex
eigenvalues and the transformation

1 = —bl 1
Ty = \/ —byby x4

will give rise to new equations which satisfy the Cauchy-Riemann conditions (33-34). In
complex form, the resulting equation is

5223/61.

EXAMPLE 4. Leaving out the sort of preliminary analysis in which some parameters get
fixed, another example which satisfies all requirements is given by

iy = —18x% 4 T8z xq — 7823
iy = —1527 4 602,29 — 575,

® has eigenvalues —12x1 4 1825 +i(621 — 1223) and one of the eigenvectors, for example, is
given by col (13,8—1). In such a case of constant eigenvectors, by the way, one immediately
has the Jacobian of a linear coordinate transformation which will bring ® into its Jordan
form. With the above choice, the transformation in question is of the form = = Uz, with

13 0
U= ( 30 ) |
The resulting complex equation is given by

2 =3(2-31)".
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Note in passing that eigenvectors are of course determined to within a factor only. Multi-
plying the original choice with (2 — 3¢)/13, for example, the new choice col (2 —3i, 1 — 21)
would give rise to the coordinate transformation

1 = 25/’1 — 35/’2 5

o = =%1 — 25/’2 5
having the effect of rescaling the complex equation to the form

5 =322,

EXAMPLE 5. For an example with both real and complex eigenvalues, consider the system

. _ . . 1

Ty = T+ T2 — Ty — 5T,

Ty = 29— 4T — 19 + 224,

. 1 . . 2 . . 1
Tz = 5(51?1—|-51?3) + 3 — 12 — v — 2w3 + .

All conditions on @ are satisfied. Its eigenvalues are 7/4 (with multiplicity 2) and 7/4 —
1 — x3. A coordinate transformation which will diagonalize ® consists in replacing x5 by
x1 + 3. Its effect is to replace the third equation by

. 1.2 .
T3 = 51’3—|—$3—2$3.

As predicted by the theory, there is partial splitting in the system so far. Continuing
with the block of the first two equations for which ® = (7/4)1, we find that the tension
has eigenvalues £ + i and its transformation to real Jordan normal form is achieved for
example by multiplying =1 by —2. The resulting complex equation is

E=—1+0)z+(1420)2.
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