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Abstract. We investigate the notions of a connection of Finsler type and of
Berwald type on the first jet bundle J'7 of a manifold F which is fibred over RR.
Such connections are associated to a given horizontal distribution on the bundle
¥ . Jlr — E, which in particular may come from a time-dependent system of
second-order ordinary differential equations. In order to accomodate three exist-
ing constructions of a Berwald-type connection for a second-order system, we first
introduce equivalence classes of connections of Finsler and Berwald type. By ex-
ploring the differences between the existing models in more depth, we come to a new
construction which in many respects can be regarded as giving an optimal repre-
sentative of the class of Berwald-type connections. We briefly enter into two related
matters: one is the definition of connections of the type of Cartan, Chern-Rund
and Hashiguchi when a metric tensor field is given; the other one is the potential
effect of the newly acquired insights on the theory of derivations on forms along the

. . 0
projection 7y.
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1 Introduction

The Berwald connection is a well-known concept in Finsler geometry. It is in fact one of
many related linear connections which have been studied in this field of research, other
often discussed connections being for example those attributed to Chern-Rund, Cartan
and Hashiguchi (see e.g. [2, 4, 10, 16, 17]). Although a paper by Vilms [22] uses the term
Berwald connection also for a kind of linearization of a general non-linear connection on
a vector bundle, this concept has not received widespread attention outside the ‘Finsler
community’. Quite recently, however, some applications have been developed in the study
of second-order ordinary differential equations (SODE’s), see e.g. [14, 8, 19], which make
use of covariant derivative operators; these may be seen to come essentially from the
Berwald-type connection associated to the non-linear connection of the given SODE. This



by itself may be a sufficient reason for having a closer look at the relationship between
various versions of such a connection which have been discovered independently in the
literature.

A recent illuminating discussion of the relationship between different linear connections
used in Finsler geometry has been given by Szilasi [21]. All such connections in Szilasi’s
account live on the tangent bundle T(T'M) — TM of a tangent bundle 7 : TM — M.
Crampin [6] has pushed our understanding of this matter further ahead by explaining
the more concise picture where all connections are constructed on the pullback bundle
7T'M — T'M and by putting thereby the Berwald-type connection in the spotlight as the
one to which all others can be related. Similar observations were also made by Anastasiei

[1].
Given a horizontal distribution on 7'M (i.e. a possibly non-linear connection on 7 : TM —
M), with corresponding projection operators Py and Py, every vector field £ on TM

uniquely decomposes into a horizontal and vertical lift of vector fields along 7, which, as
in [8], will be called ¢ and &, respectively:

5 — fHH—I_fVV- (1)

The key point in Crampin’s analysis is the following. The covariant derivative operator

D:X(TM)x X(r) — X(7), defined by
DeX = [PH(f)vXV]v—I'[PV(f)vXH]Hv (2)

determines the unique linear connection on 7*T'M — T'M which has the properties: (i)
the restriction to fibres T, M is the canonical complete parallelism; (ii) parallel translation
along a horizontal curve is given by a rule of Lie transport. It is called the Berwald-type
connection on T*T'M determined by the given horizontal distribution.

If in particular the non-linear connection is the one canonically associated to a given
SODE on T'M, then the associated Berwald-type connection has all of its torsion tensor
fields equal to zero, except for the one whose vanishing would require that the non-linear
connection is flat. In fact, to recognize the (five) tensor fields referred to here as related
to the concept of torsion, it is helpful to move to a bigger space, i.e. to consider another
linear connection, this time defined on T(TM) — T M, which is obtained from the one
on 7'M by “doubling the formulas”, as follows:

VX" = (DeX)", VXY = (DeX)". (3)

The standard torsion tensor of this connection, Ven —V, £ —[€, 1], when decomposed into
its horizontal and vertical part for various combinations of the arguments, gives rise to
six tensor fields of type (1,2) in principle, but one of them is identically zero.

This brings us to the framework where Berwald and related connections are usually consid-
ered and gives us an opportunity to mention also the equivalent characterizing properties
by which Szilasi singles out the Berwald-type connection in his overview. If J is the
almost complex structure provided by a horizontal distribution, then a Finsler connec-

tion on T(TM) — TM is characterized by VPy; = V.J = 0. It then follows that also



V.S = 0, where S is the canonical almost tangent structure on T'M and that a Finsler
connection is completely determined if you know the covariant derivative of vertical vec-
tors. The Finsler connection is said to be of Berwald type if the vertical lifts of basic
vector fields (i.e. vector fields on M) are parallel with respect to vertical vector fields and

VYV = P ([X7,YV]).

The other type of linear connections referred to at the beginning, although they were
originally introduced merely in the framework of Finsler spaces, can be given a quite
more general meaning also (cf. [1, 6]). All they require is one extra tool, namely a metric
tensor field ¢ along 7. For example, in the case that the horizontal distribution comes
from a spray I', Crampin defines vertical and horizontal Cartan tensors by the following

relations: VX, Y, 7 € X(7),

g(CV(X7Y)7Z) = Dng(Y,Z), (4)
g(CH(X7Y)7Z) = DXHg(sz)' (5)

For completeness, we should remark here that it is the type (1,2) tensor field €, which
is related to the Cartan tensor known in Finsler geometry. The main motivation behind
the connections associated to Chern-Rund, Hashiguchi and Cartan comes from various
degrees of trying to obtain a metrical connection. Since the difference between two linear
connections is tensorial and the decomposition (1) of ¢ will, in the present context, split
this tensor field also in a vertical and horizontal component, denoted by § and 6" in [6],
new connections can be derived from the Berwald connection by making assignments for
6V and 7. In [6], for the further special case that I' is the geodesic spray of a Finsler
space, the other connections of interest are characterised as follows:

oV =0, & =1C,, (Chern-Rund)
&V =1C,, §7=0, (Hashiguchi) (6)
V=10, §"=1C,. (Cartan)

The price to pay with these modifications of the Berwald-type connection is that every
step towards the ideal of a metrical connection (the Cartan connection is fully metrical)
introduces more torsion, i.e. a larger deviation from the ideal of a maximally torsion-free
connection.

We can now come to the purpose of the present paper. Our interest comes in the first
place from the study of time-dependent second-order differential equations. The manifold
of interest for carrying such systems is the first jet bundle J'7 of a bundle 7 : £ — IR.
We are in particular interested in the fibration 7¢ : J'm — E and in the pullback bundle
70 (1E) (to replace T7*T'M). As in the framework of autonomous SODE’s, time-dependent
ones define a non-linear connection on the bundle 7¢ : J'm — FE. There are at least
three known constructions in the literature of an associated linear connection. These
were independently derived, from different perspectives, and do not make use of any
other tool than the horizontal distribution coming from the given SODE. Therefore,
they should somehow correspond to a generalized version of the concept of Berwald-
type connection. Two of these linear connections were constructed on the full space
J'7 (i.e. on the bundle T'(J'7) — J'), respectively by Massa and Pagani [15] and by



Byrnes [5]. The third construction by Crampin et al [8] is a more direct one on the
bundle 70" (75) — J'm which generalizes the definition (2). Our primary objective is to
explore a general scheme within which these three constructions can be compared and
related to each other (see Sections 2 and 3): as expressed above, they should in some
sense be equivalent and represent the ‘time-dependent generalization’ of the connection
of Berwald type associated to the given horizontal distribution on Jm. Their difference no
doubt will come from a certain freedom or undeterminacy in ‘fixing the time-component’
of the connection. In order to identify natural procedures for deciding upon the best
possible selection criteria for this matter, we shall approach the issue from the two different
characterizations of Berwald-type connections described by Crampin [6] and Szilasi [21],
respectively (Section 4). A second objective therefore is to come to an optimal definition
or characterization of the Berwald-type connection in this framework. This will lead us in
Section 5 to a new direct construction formula for a linear connection on 79" (75) — Jim,
which is more in line with the natural decomposition of X (7)) and, when lifted to the
bigger space J'7 itself, is related to the construction of Massa and Pagani. We shall also
briefly enter into the discussion of constructing Chern-Rund, Hashiguchi and Cartan type
connections in the time-dependent case.

It is somehow intriguing that the construction of horizontal and vertical covariant deriv-
ative operators, the way they were derived from the classification theory of derivations
of forms along 7¥ in [20], gave rise exactly to the same, less optimal, construction of the
linear connection of Crampin et al. The branching point in the theory of derivations in
[20] was a freedom in selecting a natural vertical exterior derivative. By way of application
of the newly acquired insights, therefore, we will discuss the reverse process in Section 6,
namely the way different choices for the linear connection on 707 (75) — J'm affect the
classification theory of derivations of forms along 9.

For completeness, we should mention that a construction of certain connections for a
time-dependent framework, in particular a Cartan-type connection, can also be found in
[18]. We shall, however, not go into the details of comparing our analysis with this work
because the general setting is different. Indeed, the carrier space in [18] is R x T'M (to
which J'7 is diffeomorphic, but not in a canonical way) and, unlike it was the case e.g.
in [20], the constructions carried out in [18] have an intrinsic meaning only for a strict
product bundle interpretation of R x T'M. In other words, it is as though one specific
trivialization of J'r is singled out and from then on coordinate transformations are not
allowed to depend on time.

2 A general scheme for lifting linear connections from

*k .
" (tp) to J'w and vice versa

We begin by recalling that 79" (7g) has a canonically defined section, the ‘total time
derivative operator’ T, and that, as a result, the module of sections of 7%"(7x) has the
following natural direct sum decomposition:

X =B @ (@), T= 0l 7)




where sections in X (7?) are annihilated by dt. Throughout this paper we shall write
X=X+ (X, dt)T for vectorfields in X'(7?). Whenever we have a (non-linear) connection
or horizontal distribution at our disposal on Jl, there is a corresponding decomposition
of X(J'r):

X(J'r) = X(x))" & X(m)" @ (T7), (8)

where T is a SODE vector field on J1m, often called the ‘associated semi-spray’ of the
given connection. Needless to say, horizontal vector fields on J!'7 may have components
both in the first and third set of the decomposition (8): for a general £ € X (J'7), we
may write

E=&"+8 = & +& +{6d)T", (9)
with £,,&, € X (7). An important remark in this respect is the following: the general-
ization from an autonomous framework to a time-dependent one in a way has two faces;
some formulas tend to carry over in a natural way by thinking of the first decomposition
in (9), as though one would formally copy the decomposition (1) with one extra dimen-
sion in the horizontal component; other features, however, tend to be better understood
if one thinks of X(7?) as the analogue of X'(7) and thus assigns a separate role to the
one-dimensional distribution spanned by T*. Most of the technicalities in what follows
(if not all) are related to this dichotomy.

We are in particular interested in the case where the connection is the one canonically
associated to a given SODE I'. Note that an advantage of the time-dependent set-up is
that T then coincides with the given I', a feature which is not in general true for the
autonomous framework. Beware, however, that if one starts from a general horizontal
distribution and looks at the SODE I'y = T the original connection need not coincide
with the SODE connection of I'y. Non-linear connections which come from a SODE are
characterized by the property that their torsion [Py, S] is zero, where S is the canonical
vertical endomorphism on J1m, given by
oo 2 0" = da' —v'd

S = ®%, = dz' — v'dt. (10)
The computation of the Nijenhuis bracket [Py, S] is easy to carry out in a basis of local
vector fields adapted to the decomposition (8). In fact, one finds that only two types of
components are not trivially zero. We list them here for later use:

—H —H =V, V —H =V, V —H ~H, V

Y) = [X 7Y]v _[Y 7X]v _[X 7Y]H7 (11)
[PHv S](THvyH) = [THvyv]v
There are no points in our analysis which could exclusively be dealt with in the case of a
SODE connection, so we will generally not specify the horizontal distribution even though
that will require sometimes reformulating previous work of other authors in such a more
general context.

Let now D be a covariant derivative operator (i.e. a linear connection) on 7"(75) which
induces a linear connection on the subbundle 79" (V 7). i.e. which satisfies the assumption

De(X (7)) C X (7)) V&€ X(J'm). (13)



This is the only restriction which is required if we want to think of situations coming from
an analogue in the tangent bundle set-up. Using the given horizontal distribution on J'x
and having the autonomous doubling model (3) in mind, we define an associated class of
linear connections on J'm by putting

VX" =(DeX)", VX' =(DeX), VT =K(¢), (14)

where K is any type (1,1) tensor field on J'm. It is easy to verify that for n € X' (J'7),
the operation

Ven = (Deify)" + (Defy)” + E((n, dt))T" + (n, dt) K (E) (15)

defines a linear connection indeed, for any choice of K. All elements of such a class have
the following easy to establish properties. Firstly,

Ve(X(x)") C X(ah)",  Ve(X(x)") C X(m)" Ve X(J'n). (16)

Secondly, if J is the (degenerate) almost complex structure on J'm, determined by
H -V

the horizontal distribution according to the following defining relations: J(X ) = X,
J(yv) S J(T?) =0, then we have

J(ngH) = ngv, J(ngv) = —VgYH, or equivalently V£J|7(J17r) =0, (17)

where ?(le) = f(w?)H fas f(w?)v.

Conversely, let V be any linear connection on J'7 having the properties (16,17), then we

define an associated class of linear connections on 70" (7) by putting:

DX = (VeX7), = (VeX ), D:T = L(¢), (18)

where L is any C'*(J'7)-linear map from X (J'7) to X (7?). Indeed, for any X € X'(7?),
the relation B
DeX = (VeX™), + €(X,dt))T + (X, di) L(€) (19)

is a linear connection on 7V7(7) for any tensorial L. Obviously, each element of the class

will have the property (13). If we take such an element and raise it to the bigger space
J1lm again according to the first procedure, we will obtain for every choice of K an element
of the same class as the V we started from. The type of connections on J!7 we encounter
in this construction are the ones we wish to call connections of Finsler type.

Definition A pair (Py, V) consisting of a horizontal distribution on J'w (represented by
its horizontal projector) and a linear connection is said to be of Finsler type if we have
the properties (16,17).

Essentially, connections of Finsler type come from a class of linear connections D on
79" (1) with property (13) and we will sometimes figuratively term the couple (P, D) as

being of Finsler type as well.

In order to obtain some equivalent characterizations of Finsler-type connections, we first
prove two simple lemmas. A preliminary notational convention is in order here: various
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types of identity tensors (operating on different vector fields) will play a role in the sequel.
The identity operator for X'(7?) will be denoted by I. We write its natural decomposition
as

I=T+dt®T, with T:H?@%. (20)
xl

Likewise, [, is the identity on X' (J'7) and I, is that part of I, which vanishes on
T".
Lemmal SoJ+4+JoS=—I,.
PROOF: From S(X*) = XV and the defining relations of .J, it follows that
S(IXY) = =XV = —Ip(XY), S(U(X"))=5(J(T")) =0,

and

J(S(X) = J(S(TH)) =0, J(S(X")) ==X =I5, (X").
The result then readily follows. a
Let now Pz be the ‘strong horizontal projector’ defined by Pg(YH) = X", Pg(yv) =
0, Pz(T") = 0, and let M be the degenerate almost product structure determined by
MXM=X", MX")=X", M(T") = 0.
Lemma2 JoPs—PzoJ =M.
PROOF: The simple proof is similar to the one of Lemma 1. a

Note that one can also obtain the relation J o P+ PgoJ = J.

Proposition 1 The following are equivalent characterizations of connections of Finsler
type:

(16) and (17) <~ V§Pﬁ|j(t]17r) = 0 and V§J|E(J17r) = 0 (21)
v P__ 1 — 0 v P__ 1 — 0
{ 3 H|X(J ) — { 3 H|X(J ) (22)
V&ﬂ?(ﬂw) =0 V£S|?(J17r) =0

PRrOOF: Making use of the information in (16), one easily finds from taking a covariant
derivative of the defining relations of Pz that (16) implies V5P§|y(ﬂw) = 0. Conversely,
this invariance implies that Pg(ngH) = ngH and Pg(ngv) = 0. The first of these
says that VgYH € f(w?)H, whereas the second only ensures that ngv € y(ﬁ?)v & (T
in a direct way. Indirectly however, using also ngv = J(ngH) and Lemma 2, we find
that 0 = J(V,X )= M(V:X") = VX —M(V:X"), which ensures that V, X  belongs
to f(w?)v anyway.

Secondly, from S(yv) = 0 and (16), it follows that VgS(yv) = 0. From S(YH) =X
and the second relation in (17), it follows that V:S(X") — S(J(VX )) = VX . Using
Lemma 1 and the information that V, X" is vertical (from (16) again), it also follows that
VgS(YH) = 0. This means that (16) and (17) imply V£S|§(J17r) = 0. For the converse,
note first that Ve Prlz ;1) = 0 implies that VX" e X(79)". Next, from VeSlxng =0
we find with the help of Lemma 1 again that

J(VeX") = J(V(S(X) = J(S(VeXT)) = (=11, — S0 J)(VX ") = =V X

Applying J to this relation, we obtain that also J(ngH) = ngv, so that véﬂ?(ﬂw) =0
indeed. This completes the proof. a
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3 The class of Berwald-type connections

The motivation for introducing the equivalence classes of linear connections of the pre-
vious section is, as indicated in the introduction, that we want to frame three existing
constructions in the literature of a linear connection associated to a given SODE within
one common scheme: that of a class of Berwald-type connections. The philosophy here
is that one has to understand first all aspects lying at the origin of the difference be-
tween these constructions, before one can decide upon an optimal selection. Now, the
Berwald-type connection for the autonomous framework, at least in its appearance on the
pullback bundle 7*T'M in [6], is defined by (2). Within the present temporary scheme of
equivalence classes of connections, we thus arrive at the following definition of the class
of Berwald-type connections.

Definition A linear connection D on 7% (1) with the property (13) belongs to the class
of Berwald-type connections with respect to a given horizontal distribution, if it satisfies

DeX = [Pu(€). X7], + [Pr(€). X7, (23)

for all X € X(70). A Finsler pair (Py,V) on J'r is said to be of Berwald type if it is
lifted via (14) from a connection on 70 (7g) with the property (23).

It is of some interest to look at the effect of the various assumptions so far discussed on
the torsion T'(&,n) = Ven — V,.& — [€,] of a pair (Py, V) on J'r. With the aid of the
decomposition in horizontal and vertical parts, all components of T' can be traced back
to tensor fields acting on X (V). We introduce notations similar to those in [6] for these
tensor fields and list them in the table below. The effect of assuming we have a connection
of Finsler-type is that (18) can be invoked to express some covariant derivatives in terms of
a D on 7V () (see the middle column). If in addition we have a connection of Berwald
type, further simplifications occur through the definition (23). For completeness: the
component T(YV,VV)H of the torsion becomes trivially zero as soon as the assumption

(16) is satisfied and is therefore not listed.

Definition Finsler Berwald
AXY)=1TX"Y"), | Dga¥ -DeX —[X V"], x* vy, -v,x, -x"vY",
RX,Y)=T7(X".Y"), -x" YN, -x" YN,
BXYV)=T(X"Y"), ~DX - [X" V'], 0
PX,YV)=T(X"Y"), DY —[X7Y], 0
SXV)=T(X"Y"), DevY —DvX - [X Y], 0

Ar(X) =T(T",X7), | DpaX — (Vg T7) —[T7,X7], | [T7,X], = (Vg#T") - [T, X],
Rr(X) =T(T", X", — (V==T") —[T7,X"], — (Vg T7) = [T7,X7],
Br(X)=T(T"X"), — (Vv T7) —[T7, X1, — (Vv T —[T", X1,
Pr(X)=T(T"X"), | DpuX — (Vv T") —[T7X'], — (Vv T7)




Perhaps one of the lines in the table requires an extra word. The S-tensor, in the case of a
Berwald-type connection, gives rise to the expression S(X,Y) = X", YH]H —[v", YH]H —
[YV,VV]V. This is manifestly zero when the arguments are basic vector fields, because
a bracket such as [X',Y"] then is vertical, and therefore S is zero for all arguments.
Note further that if the Berwald-type connection is given as a D on 70" (7x), the covariant
derivatives of T in the right column are determined by our choice of the tensor K in

(14).

A case of particular interest is the one where the given horizontal distribution comes from
a SODE connection. Indeed, in such a case we see from (11,12) that there are two further
simplifications in the torsion for a connection of Berwald type: A(X,Y) = 0 and Ax(X)
reduces to —(VYHTH)H.

Let us now discuss the three available constructions referred to above and verify whether
they are of Berwald type indeed. As a preliminary remark, we should say that all of
them were originally constructed with respect to the horizontal distribution associated
to a given SODE I', but ' sometimes only enters the picture by the fact that it is T".
We will try to make our presentation somewhat more general by adapting the original
construction to allow for any non-linear connection (or horizontal distribution) on J'r as
the starting point, although that will not be equally successful in all three cases.

The simplest construction to explain is the one by Crampin et al [8]. Essentially, it takes
the direct construction formula (2), as first introduced in [11] for autonomous SODE’s,
as the model and tries to carry it over to the time-dependent framework to construct a
linear connection on 7{"(7z). One then immediately observes that a correction term is
needed for having D, satisfying the derivation property. The defining relation of a linear

connection, valid with respect to any given horizontal distribution, thus becomes
DeX = [Py(), X7], + [Pv(£), X7], + Pu(((X, di))T. (24)

Obviously, the requirement (23) is satisfied, so we are in the class of Berwald connections.
It further follows that D;T = £,. To say something about torsion in this case, we need
to make a choice for the tensor K in (14). It looks natural here to maintain the spirit in
which the defining relation (24) was conceived by simply taking over the formula which
raises the connection to one on J'm from the autonomous framework. That is to say, we
put (as in [8])

Ven = (Denu)” + (Demp, )" (25)

It is obvious then that the first two relations in (14) are satisfied and that the tensor K
is defined by

K(¢) = VT = (D,T)" =¢,". (26)
As a result, we have Pp = 0 and also Br = 0 (since (VvaH)H =X = —[TH,YV]H),
while Ap and Ry reduce to Ay = [T, X |, — [T",X"],,, Ry = —[T*,X"],. If, in

addition, the non-linear connection comes from a SODE I, all torsion tensors which can
vanish (without restrictions on the horizontal distribution) become zero, except for Rr.

Massa and Pagani [15] have constructed a linear connection on J'm. Their way of build-
ing up the theory is somewhat harder to fit within our present approach, because a full



horizontal distribution only becomes part of the data at the final stage of the argumen-
tation, where a given SODE I is singled out. Briefly, their construction starts as follows.
First of all, among all possibly existing linear connections on J'm, Massa and Pagani
consider only those which preserve the 1-form dt, the canonical vertical endomorphism
S and (constant) parallel transport along the fibres. Explicitly, the as yet undetermined
covariant derivative will have the properties: Vedt = 0, VS = 0 and VvaV = 0, for
every X € X(7¥) and every basic Y € X(7?). With these assumptions, it is possible to
construct two projection operators, which are assumed to be completely complementary
at the subsequent stage, and are given by

Pr(n) =TT, 5(m),  Qn):=S(T(Ln)+ (n,dt)T, (27)

where T' is the torsion tensor of the linear connection to be constructed and I' is an arbitary
SODE. It is shown that Pz(n) and Q(n) do not depend on the choice of I'. Note further
that the image of () contains all vertical vectors and all possible SODE’s (which makes
sense because the difference between two SODE’s is vertical). After adopting some further
restrictions (to which we come back later), a theorem is proved concerning existence and
uniqueness of a linear connection which leaves a pre-selected SODE invariant. That SODE
in fact, when added to the image of Pz completes the horizontal distribution to which
the constructed linear connection can be thought of as being associated.

We explain now how this scheme can be slightly modified when an arbitrary horizontal
distribution is given from the outset. Then, in particular, we have the SODE T" at our
disposal, which we can use to define the operators Pz and (). In other words, we put

Pr(n) :=T(T",5()), Q) :=S(T(T",n))+ (n,dt)T". (28)

With Pg+Q = I,1, as part of the assumptions, we then have Py(n) = Pg(n)+ (n, dt)T",
and P,(n) = Q(n) — (n,dt)T". The somewhat delicate point hereby is that, since the
horizontal distribution is given, the defining relation for Pz here has to be regarded as an
implicit restriction, via the torsion, on the class of amissable linear connections we want
to consider.

Continuing now, in this modified picture, the line of reasoning of Massa and Pagani,
assume that the class of potential V’s is further restricted by requiring that they satisfy
VePz = 0 and have a curvature tensor curv which vanishes on any pair of SODE’s, or
equivalently satisfies curv(F,yv) = 0 for each SODE I' and all X. One can prove as
a minor modification of Theorem 2.2 in [15] that, with all hypotheses so far imposed,
any admissible linear connection V is now completely determined if we know VT
for an arbitrary SODE I'. The final point is to agree to fix this remaining freedom by
requiring that VouT? = 0 and V5, T" = 0 from which it follows as in [15] that
actually Ve T# = 0, V€. We thus have arrived (in a perhaps rather roundabout way)
at a prescription for a uniquely defined linear connection on J', corresponding to any
pre-assigned horizontal distribution.

A point to be observed, however, is that this construction contains a hidden restriction
which comes from the fact that the two explicit formulas for Pz and @) in (28) are assumed
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to yield complementary projectors. Indeed, from the defining relation of P, taking the
later requirement VT = 0 into account, we have

X' =T(T" X)) =V X —[T7X"],

from which it follows that
— — v
Ve X = [T# X"

v o

On the other hand, we have
0=Q(X") = S(T(T",X")) = S(VguX ") = S([T*, X)),

Using the invariance of S, this implies that

Ve X =[T7, X",

Compatibility of the two expressions for VTHYV thus requires that [Py, S](TH,YH) =0,
which is one of the conditions for having a SODE connection. In coordinates, if I', '}
denote the connection coefficients of the given horizontal distribution, this condition reads,

VIVA(TE) — T 4 Vi(Th) = 0, (29)

where V; is shorthand for d/dv'. It can be verified that this is the only compatibility
requirement coming from (28).

What remains to be verified now is whether such a connection belongs to the Berwald
class. Obviously, from the assumptions VP = 0 and V5 = 0, we will have a connection
of Finsler type and the question is whether (23) holds. It easily follows from the defining
relation for Pz in (28) and the property V T# = 0 that (23) holds for £ = T”. But
it turns out that there is an obstruction for the rest of the property to hold true. To
see this, let X, Y be basic vector fields in X'(7?). From one of the first assumptions, we
have VvaV = 0, from which it follows via (18) that also Vyv?H = 0. Next, using the
V-invariance of T*, one of the defining relations of the torsion tensor gives

T%.X"] = VpuX —T(T*,X"),
= VX —X7, (30)

where we have used the definition (28) for Py in the last line. The curvature requirement
curv (TH, XV) = 0 subsequently learns that

VYH = VYVVTH — VTHVYV + VVTHYV' (31)

Applying (31) to Y, the last two terms vanish because Y is basic and VTHYV is vertical
in view of the properties (16). To compute the remaining vector field VYVVTHYV we
proceed in coordinates. Using (30), one easily verifies that

Vpn Vi = (V;(To) + v V(T Vi
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With X' = XV, Y =YV, (X%, Y basic), we further have
Vv Vpa Y =X (Y)W 4+ Y XIVy Vpa V',
It then easily follows that
VeV = [X5 Y+ X0V (VVi(I)) + v ViV (T) Wi

As we have seen in the table of torsion components, however, T(YH, YV) = ( is a necessary
requirement for a connection to be of Berwald type and this would require here that

ViVi(To) + v*ViV;(Ty) = 0. (32)

It is easy to see through its two components B and P that the vanishing of this torsion
is also sufficient for having the Berwald condition (23). The final point to observe is that
(29) and (32) imply that

Vi(I) = Wi(ly) = 0, (33)

which is the coordinate expression for having [Py, 5] (YH,YH) = 0. We reach the rather
striking conclusion that our attempt to generalize the construction of Massa and Pagani
to arbitrary horizontal distributions only gives rise to a connection of Berwald type if
that distribution is actually a SODE connection (which then brings us back to the actual
construction in [15]).

Limiting ourselves then to the SODE case, the main difference between this connection
and the one of Crampin et al comes from the fact that here Vi, T# = 0 for all £. The
effect on the torsion is merely that Bt is no longer zero. Instead we have By = —1.

Let us come now to the third construction, which was independently set up by Byrnes
[5]. Again, the original construction was carried out starting from a SODE connection,
but we can easily generalize it here to the case of an arbitrary horizontal distribution.
Indeed, the main idea of the construction of Byrnes was simply the following: (i) define
the covariant derivatives of vector fields in X' (J'7) by looking at the formula (2) for D¢ X
on the pullback bundle in the autonomous framework and taking horizontal and vertical
lifts as appropriate; (ii) put Vpl' = 0; (iii) select the remaining derivatives of I' in such
a way that all torsion components which can be zero effectively vanish. By the nature of
the construction, therefore, this is bound to give a connection belonging to the Berwald
class. Transferred to the context of a general horizontal distribution, this idea becomes:
(i) define VgYH and ngv via (14) with DX given by (23); (ii) put Vo T = 0; (iii)
define VvaH and VYHTH in such a way that the last four torsion components in the
above table all vanish. This of course means then that the tensor K in (14) is constructed
in a rather ad hoc manner.

Going back to the special case of a SODE connection, the only difference with our analysis
of the first construction is that now also Rt = 0. Since the vertical part of the bracket
[F,YH] is determined by the so-called Jacobi endomorphism ®, which is essentially the
time-component of the curvature of the non-linear connection (see e.g. [20]), we could say
here that the construction of Byrnes boils down to choosing the tensor K in (14) as:

I((f) = EVH - (I)(EH)V (34)
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Observe that from this point of view, i.e. if one regards the V under consideration as being
constructed from a D on 7V"(7x), the selection of K that was made in the construction

of Massa and Pagani was simply K = 0.

We have now completed our programme of defining the class of Berwald-type connections
in a sufficiently general way to be able to accomodate the constructions of Crampin et
al, Massa and Pagani and Byrnes, and we have discovered the features which distinguish
these constructions in that process. Can we, on the basis of these features, find reasons
why one of these constructions should have preference over the others? If the ideal for a
Berwald-type connection would be, as in the autonomous case, to have as much torsion
zero as possible, then obviously the last construction would prevail. But it looks a lot less
natural than the first one, for example, which is based on two direct formulas: (24) for the
linear connection on 7% () and (25) for its lift to a connection on J'm. The construction
of Massa and Pagani deviates even further from the idea of maximally vanishing torsion,
but we will now argue that it has a different interesting feature which the others fail to
produce. At the start of Section 2, we have emphasized the importance of the natural
decompositions (7) and (8) of the sections under consideration. Yet, when introducing
Finsler-type connections, we required only part of that decomposition to be preserved
by the covariant derivatives: see (13) for D and (16) for V. It would seem to be a
natural assumption also to expect that these operators in addition would have the property
De((T)) C (T), respectively V¢((T#)) C (T#). In this respect, only the construction of

Massa and Pagani would be satisfactory in view of the property V T# = 0.

Going back to our definition of the class of Berwald-type connections, it is obvious that
the selection of a particular representative of the class is a matter of making a choice for
D¢ T (when it concerns a connection on 79" (7)) or for V¢T” (for a connection on J'7).
Clearly, there is much to say for giving preference to the simplest possible choice where
these vector fields would both be zero. Note, however, that this would indirectly impose
a restriction also on the freedom in lifting the connection (the choice of K in (14)) or
lowering it (the choice of L in (18)). In the next section, therefore, we will explore some
other interesting features of the theory, with an eye on discovering additional elements
which can tell us whether there is a certain degree of optimality in choosing the simplest

possible representative.

4 Further aspects of connections of Finsler and Berwald
type

Recall that the only restriction so far considered for connections on 7" (7z) was the
requirement (13). It can equivalently be expressed as Df[b(”?) = 0. If a horizontal

distribution is given and we lift the connection to one on J'm via (14), we have seen from
(21, 22) that an immediate consequence is: Ve Pgl5 1,y = Vel |31, = VeSlznn = 0.
This should not come as a surprise as all the tensor fields under consideration here can
in fact be constructed out of I via appropriate lifting operations. To be precise, we have

Pr=T"" J=T"" —T""and § = T"". These lifts, introduced in [20], are defined as
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follows for a general type (1,1) tensor field U along 7%:

UH’H(XH) — U(X)H, UH,H(YV) =0,

UTH T = U(X)", U =0, (35)
UvH(XT) =0, UYH(X ) =U(X)

UV (XH) =0, UV?V(YV) = U(y)v-

The interest of these operations is, as with the horizontal and vertical lifts of vector fields
along ¥, that every type (1,1) tensor field & on J'7 has a unique decomposition in the
form

U=U+ U5+ U5+ U, (36)

where the U; are tensor fields along 7¢ which have the following characteristics: U; is
general, Uy(X(7?)) € X(7?¥), Us(T) = 0 and Uy has the properties of Uy and Usz. For
Finsler-type connections, covariant derivatives of a ¢ on J'm should to some extent be
computable from the covariant derivatives of the U; along 7% which generate it. Ideally,
of course, the latter should preserve the characteristic properties of each of the U.

If no further restrictions are imposed on the freedom in the procedures for raising or

lowering the connection (see (14) and (18)), one can prove that for a ¢/ which maps X' (J!'r)

into itself (the corresponding U; in (36) then map X (7¥) into itself), vfz’”?(ﬂw) = 0 if

and only if DﬁUi|j( 0) = 0, :=1,...,4. But we may hope to discover natural additional
Lt

restrictions as soon as we attempt to extend the scope of such a statement beyond the
action on X (7). It turns out that the very first restriction which imposes itself in this
respect is to have the following direct link between the covariant derivatives of T and T":

VT = (D:T)". (37)

Indeed, we can state the following result which is proved in an appendix.

Proposition 2 Under the assumption (37), we have for an arbitrary type (1,1) tensor
field U on Jim

Vel(n) = DeUi(ne)™ + Dela(nu)” + DeUs(77,)" + DeUa(7,) " (38)

The meaning of the extra condition (37) is the following. If D is the connection we start
from, then the raising procedure (14) with K(¢) = D¢ T* corresponds exactly to the quite
natural expression (25). If V is the starting point, then the tensor L in (18) must be
chosen in such a way that L(£)" = VT", which is possible only if V¢ T" is horizontal.
Clearly, this is not the case for (our generalized version of) the construction of Byrnes,
which means that it is rather unnatural to pursue maximally zero torsion in the time-
dependent set-up: one should not insist on having Rt = 0. This is hardly surprising as
R, just as R itself is related to the curvature of the non-linear connection one starts
from.

Corollary 2.1 Under the assumption of Proposition 2, we have

{ DSUI(UH) =0, D£U2(77H) =0,

Vel = 0 ! !
D§U3(77v) =0, D£U4(77v) =0,

vnHvﬁV' (39)
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The proof is almost immediate. The only point to be careful about is that for the vertical
parts in (38) the immediate conclusion is that the component in X' (7?) of the correspond-
ing vector field along ¢ must be zero. But U, and U, take their values in X (7?) and the
property (13) of D then ensures that the same is true for their covariant derivatives. O

The final point to observe is that the above results do not necessarily imply that the special
features of the tensor fields U; are preserved under covariant differentiation. One of the
consequences then is that (39) in general is not sufficient to conclude that D U; = 0, Vi.
As a matter of fact, knowing that Us(T) = 0, we have D¢Us(T) = —Us(D¢T). It then
follows that DeUs(7,,) = 0, V7, implies D¢Us = 0 if and only if

DT € (T). (40)

The same is true for Uy. We thus have proved the following result.

Corollary 2.2 If (37) holds together with (40), we have VU = 0 if and only if DeU; =
0,i=1,....4 0

The linear connection (24) on 79" (7x) as constructed in [8] does not have the property

) e above considerations will prompt us to an improvement of the construction
40). The ab iderati ill prompt t mp t of th tructi
(24) in the next section.

Before doing that, however, we want to explore to what extent Crampin’s characterization
of Berwald-type connections has an analogue here and could perhaps also shed some light
on ways to select a representative of the equivalence class we introduced with (23). The
next considerations closely follow those in [6].

Let o be a curve in F which has the interval [«,b] in its domain, so o : [a,b] C R —
E, u — o(u). Consider the pullback bundle o*(.J'7) (over some open interval containing
[a,b]) and let & denote the corresponding map from *(J'7) to J'7. One easily verifies
that tangent vectors to o*(J'7) whose image under the tangent map 7'5 is horizontal in
T(J'7) constitute a 1-dimensional vector space at each point. Expressed differently, the
horizontal distribution on J'7 pulls back to a 1-dimensional distribution on o*(.J'7); this
distribution contains a unique vector field which projects onto the coordinate vector field
on IR. In coordinates (u,v') on o*(J'7), this vector field reads:

9 . . , 9

57 = == (ol (), v) 0 () + T (), v) o7 (w)) 5.

where the prime denotes differentiation with respect to u. The notation reflects the fact

that at each point the value of this vector field is the horizontal lift of the tangent vector

to o (pulled back to o*(J'7)). The integral curve of & through a point (a,w) in o*(J'7)

defines a section o : u — (u,7.(u)) of the pullback bundle, with 7/ (a) = w € J;(a)w.

In coordinates, writing the section as u + (u, X*(u)), the X* are the solutions of the
differential equations

(41)

X' = —Ti(o(u), X)o%(u) = Ti(o(u), X) o (u),  with X'(a)=w'.  (42)

By the process of Lie dragging vertical tangent vectors to J'm along the flow of &, it is
possible to define a (partial) rule of parallel transport as will now be explained. Recall first

15



that 7y : J'7 — F is an affine bundle modelled on V7, the sub-bundle of T'E consisting
of vertical tangent vectors to E., and that there is a natural vertical lift from V7 to each
V7, the set of vertical tangent vectors to J'7 at w € (7{)~*(x). Consider an element
Vo € Vo and its vertical lift v, to the starting point w of the curve o).
Y be a vertical vector field along o) which takes the initial value v, at the point w.

Representing YV in coordinates as

Let now

0
Jvt

Y]erw = Y (u) ; (43)

o (u)

The requirement L,#Y = 0 uniquely determines Y: its components must be the solutions
of the linear differential equations

or,
vk

vk

w”:—yk( (o(u), X (u)) o (u) + (a(u),X(u))af’(u)), with  Yi(a) = vi.

(44)
The value of Y for v = b defines a vertical vector at ¢/7(b) which can be thought of as
being the vertical lift of a vector v, € V7. So explicitly we put

Y|g{g(b) = VbZ{j(b)v (45)

and we can call this vector the parallel translate of v,,, along the horizontal curve o. It
does not seem to make much sense to call v, the parallel translate of v, in the case of a
non-linear connection, as the former depends on the choice of the point w through the
initial value for the differential equations (42).

When the connection is linear, the equations (44) do not depend on X(u) and thus Y
becomes independent of the choice of w. We then have a rule of parallel transport from
v, to vy. Observe, however, that we recover in this way only the rule of parallel transport
for elements in the vector spaces on which the affine fibres of J!7 are modelled. One then
still has to define parallel transport in the usual way for one specific point of J;(a)w to
complete the construction for the fibre as an affine space.

Coming back to the general case of non-linear connections, we can complete the picture
of parallel translation of vertical tangent vectors to J'7 by calling two vertical vectors in
points of the same fibre parallel if they are vertical lifts of the same element of V7. This
is what will be understood here as having complete parallelism in the fibres. Translated
to sections of the bundles under consideration, the criterion for a linear connection D on
79" (71) to have this property is that Dva = 0 for basic Y € X(a¥). Still following
closely the analysis in [6], we can now prove the following result.

Proposition 3 Given a general horizontal distribution on J'w, every linear connection

on V(1) with the properties that

1) parallel translation along a horizontal curve in J'w is given by Lie transport, in the
P g g Y port,
way explained above,

(ii) parallel translation along vertical curves is given by complete parallelism,
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belongs to the equivalence class of Berwald-type connections associated to that distribution.

PROOF: We first show that any linear D with the property (23) has the properties (i) and
(ii). That Dyvv = [YV,VH]H = 0 for a basic Y has been argued repeatedly before. We
further have D,z X = (,CC;HYV) and since L,z X is vertical, it follows that Dz X =
0& ,CC-,HYV = 0.

1%

Let us denote by ¢ the tensor which determines the difference between two connections
D and D: (&, X) = DeX — f)gX. We will prove next that if D and D both have the
required properties, they can only differ in their action on T, i.e. §(&, X) = 0. Let w be
any point of J'm, in the fibre over x say, and consider first d,,((,,v,) with an arbitrary
vy and a horizontal (,. Take any curve o in £ with © = o(a) and ¢"(a) = (,. Let Y
be the vertical vector field along ¢!’ defined by Lie dragging v, in the manner described
before. Then, by assumption, DgzY = DyzY = 0 and thus 8 (Cw,vs) = 0. Now take any
vertical vector 1, and let Y be any basic vectorfield in X' (7?) such that Y(z) = v,. Then
D, Y = f)an = 0 and hence §,,(ny,,v;) = 0. The conclusion now readily follows. O
This analysis confirms in the first place that it is acceptable to treat linear connections on
70" (7) as equivalent if the only distinction between them comes from a different action on
T. Contrary to the first part of this section, however, there are seemingly no indications
in the above characterization of Berwald-type connections, which would point towards an
optimal selection of the action on T.

5 The optimal Berwald-type connection and derived
constructions when a metric tensor field along 7}
is available

We will now attempt to come to an optimal choice of a representative of the class of
Berwald-type connections associated to an arbitrary horizontal distribution on Jlw. Ob-
viously, such a choice should combine all the good features we have encountered in dis-
cussing the different faces of the theory in the preceding sections. As we have seen, the
essence of all such connections (as soon as they are of Finsler type) lies in a connection on

7" (71). So, in the first place, we want an explicit construction formula for a connection

on 7" (75) which, unlike the explicit formula (24) of [8], does have the additional prop-
erty (40) for preserving the natural decomposition (7). Secondly, we want to decide about
an explicit rule for raising the connection to J!7 which will then determine the optimal
Berwald-type connection there. Preferably, there should also be an explicit expression for

the inverse of this rule.

As explained in Section 3, the idea of the direct construction formula (24) was simply
to copy the known formula (2) from the autonomous framework and see what correction
terms are needed to have the right derivation properties for a connection on 7%"(75). This
way, one is guaranteed to arrive at a generalization which will give back the original theory
when restricting to objects which are time-independent. There is, however, another way
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in which such an idea can be carried out: it consists in “copying the formula from the
autonomous theory” with X in the place of X and then see what correction is needed
to have a connection on 7%"(7x) again. This way, one arrives at the following explicit

formula:

DeX = [Py(€), X"), 4 [Po(€), X", + E((X, dt))T, (46)

It is immediately clear that this connection has the property (40) since it is in fact the
simplest representative for which DT = 0 for all £.

There is little doubt about the choice of an optimal lifting procedure now. Indeed, the
further aspects of Finsler-type connections explored in the preceding section have revealed
that it is advantageous to have the property (37), which will imply here that also VT =
0. The raising procedure then is just the natural one (25). Looking at the table of
torsion components of Section 3, our optimal Berwald-type connection on J's will have
B=P=8=7Pr =0 and By = —I. If in particular the horizontal distribution comes
from a SODE, we know that in addition A = 0 and we will also have here Ar = 0. In the
case of a SODE connection therefore, our optimal Berwald-type connection on J'7 is just
the linear connection constructed in [15].

There remains the question about an explicit formula for the inverse procedure of lowering
a connection on J!m to one on 7% (7). Such a formula of course must have the properties
(18) and can simply be taken to be

DeX = (VeX7),, VX €X(m). (47)

As an aside, note that there is another explicit formula by which a V on J'7 can be
lowered to a D on 79" (), namely

DX = (VeXY), + (X, dt))T, VX e X(r). (48)

In the case of our optimal Berwald-type connection on J!7, these two procedures give rise
to the same D, thanks to the property V:T* = 0. By contrast, for example, if we were to
start from the connection (24), raise it to J'm via (25) and subsequently come back to a
connection on V" (75) via the procedure (48), we would not end up with the connection

we started from, but rather with the connection (46).

Summarizing what preceeds, we come to the following formal definition.

Definition The optimal Berwald-type connection on 7" (7g), associated to a given hor-

izontal distribution on J'r, is defined explicitly by (46). The corresponding Berwald-type
connection on J'm is produced by (25).

Suppose now that we have an additional tool at our disposal, namely a symmetric type
(0,2) tensor field g along 7%, having the property ¢(T,.) = 0 and being non-singular
when restricted to X(7¥). We would like then to generalize the concepts (4-5) of the
autonomous framework to arrive in the end at suitable generalizations of connections of
the type of Cartan, Chern-Rund and Hashiguchi. It should be emphasized at this point
that the context in which we wish to achieve this is far more general than the case of
geodesic sprays on a Finsler manifold: both the horizontal distribution we start from and
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the tensor field g along =) are completely arbitrary and need not have anything to do
with each other.

Let us agree that the main point about a Cartan-type connection is that it should be
fully metrical and that the other two should be horizontically or vertically metrical only.
There is, however, not a unique way of achieving such properties, even though from now
on we agree that the Berwald-type connection we start from is fixed by (46). As we learn
for example from [18] (Chapter X, Theorem 2.4), there is a lot of freedom still in pursuing
the idea of constructing a metrical connection. One way to proceed here, for example,
would be to define Cartan-type tensor fields C, and C}, exactly as in equations (4,5), at
least when all arguments are elements of X' (7?). This may seem to be the most direct
way to proceed. We prefer, however, to define €', and (', in this general context in a
different way; it will lead to a metrical connection which is more closely related to the
work of the Miron school on what they call “generalized Lagrange spaces” (cf. [1, 18]).

Definition The vertical and horizontal Cartan tensor fields associated to the Berwald-
type connection (46) and the metric tensor field g along 7, are type (1,2) tensor fields
C, and C,, along 7}, determined by the relations

g(CV(yv ?)77) = Dy‘/g (?7 7) + D?‘/g (77 7) - D7Vg (77 ?)7 (49)
g(CH(X7?)77) = Dxug (?77) + DVHg (X77) - DEHg (X77)7 (50)
and by the following restrictions for firing the remaining time-components: C,(.,T) =
C,(T,.)=0, C (., T)=0.
0*

Thinking then of another linear connection on 7} (7g), D say, which differs from the
Berwald-type connection by the tensor field 4, i.e. such that D¢ X — DX = (£, X), we
introduce type (1,2) tensor fields 6" and 67 along =¥, defined by

S(Z,X)=46(Z",X), §(T,X)=0, (51)
(7, X) =627, X). (52)

Having optimalized the freedom in the class of Berwald-type connections by making
D¢ T = 0, we will do the same for the derived connections related to ¢ which we will now
discuss. That is to say, we choose to have also f)gT = 0, which implies that 6V(Z, T) =0
and ¢"(Z,T) = 0 (but §”(T, X) need not be zero). This selection makes the follow-
ing definitions perfectly compatible with the properties of the tensor fields €, and C,
introduced above.

Definition The Cartan-type connection on 7% (1), associated to the given metric tensor

field g along 7¢, deviates from the Berwald-type connection by
§' =10, s =10,. (53)

— 2 — 2
The Hashiguchi-type connection is likewise defined by
§' =10, 5" =0. (54)

— 2
Finally, the connection of Chern-Rund type is determined by
Y =0, " =1C,. (55)
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Proposition 4 The Cartan-type connection is metrical in the sense that f)gg =0, V¢
For the connection of Hashiguchi type we have Dgvg = 0, while for the connection of

Chern-Rund type: f)XHg =0.

PROOF: Let us see what the meaning is of, for example, the assumption 67 = %CH. We
have

Dyug(V,Z) = Dyu(g(Y.Z
Z

and all terms on the right cancel out when the defining relation (50) is used to replace the
terms involving C',. D yug further inherits the property of g of vanishing whenever one
of the arguments is T, therefore f)XHg = 0. The meaning of the assumption ¢ = %CV is
similar. The statements of the proposition now immediately follow. a

Needless to say, as in the autonomous case, making the connection more metrical has the
effect of having less of the torsion components equal to zero. Without going into the details
here, it is worth mentioning that the advantage of taking (49,50) as defining relations for
the tensors C, and C, (rather than a direct transcription of (4,5) which would have only
the first term in the right-hand side) is that more of the torsion components are still zero.
This is similar to the result for autonomous systems stated as Theorem 2.1 in Chapter X

of [18].

An interesting special case occurs when there is a direct link between the horizontal
distribution and the tensor field g, in the following sense. Consider a general (regular)
time-dependent Lagrangian system; let the horizontal distribution be the one coming from
the Euler-Lagrange equations and take (g;;(¢,x,v)) to be the Hessian of the Lagrangian
L. Then the second and third term in the right-hand side of the defining relations (49,50)
cancel each other in view of the Helmholtz conditions satisfied by the tensor field g. More-
over, since in such a case also Drg = 0, we will have C, (T, .) = 0. The effect of this
last property is that all four connections (Berwald, Cartan, Hashiguchi and Chern-Rund)
then share the same “dynamical covariant derivative operator” Dr. This feature was em-
phasized (for autonomous systems) in Crampin’s recent discussion of the second variation
formula [7], because the dynamical covariant derivative and the Jacobi endomorphism is
all one needs in such an analysis. Note, however, that if we are not in the Lagrangian
case, Dr and Dr may be different; in fact, the necessary and sufficient condition for them
to be identical is that Dprg = 0.

6 Coordinate expressions

We wish to make the different levels of generality and the diferent types of connections
which have been considered in the previous section a bit more perceptible by presenting
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a survey now of the relevant coordinate expressions in each case. This will make it easier
for the reader to compare our results with related features in, for example, the books of
Miron and Anastasiei [18] and Antonelli et al [3], where the theory is often developed
through coordinate calculations.

At the first level, all that is given is an arbitrary horizontal distribution and we can simply
express the corresponding Berwald-type connection from (46). If in addition a metric
tensor field ¢ along 7 is given, we list the coordinate expressions for the tensor fields C',
and C, defined by (49,50) and the connection coefficients for the resulting Cartan-type
connection. For a second stage, we look at the special interest case where the horizontal
distribution comes from an arbitrary SODE I' on Jl7. Finally, we have a closer look at
the particular case when both the SODE I' and the tensor field g are determined by a
regular Lagrangian function L.

So, to begin with, consider an arbitrary horizontal distribution, locally spanned by vector

fields P P P P
Hy=— —Tj(t,a,0)5—, Hi=—=——Ti(t,z,0)=—.
0 ot 0( 71'77))81)]7 i z( 71'77))81)] (56)
We have p p p
g_ Y i . J itg) Y
T = o vl (1% +'T?) et (57)
Using shorthand notations already introduced in Section 3, a straightforward applica-

tion of the defining relation (46) shows that the Berwald-type connection on 79" () is

determined by

o L0 ) D
Dpngs=nigm Dngs=Villaz, D

0

Vi

=0, (58)

where

ki = Vi(Ig) +0'Vi(TY),
and of course DprT = Dy, T = Dy, T = 0. Since we will have, by construction, DT =0
for all connections which follow, we will not repeat these zero-components below.

Assume next that a symmetric tensor field of the form g = ¢;;(¢, z,v) 0'@67 is given. Then,
it follows from (49) that the vertical Cartan tensor C, is of the form €', = CVf 0° @07 @

(0/02), with :

Oyl = " (Vo) + Vilon) = Viloiy)). (59)
The horizontal Cartan tensor, on the other hand, has a non-zero dt-component; it is of
the form p p
Cp=0Cy; 0 ®9]®@—|—0H0idt®0 ®@,
with
Cugi = =t +9" (T (g0) = 7" gmi) (60)
Culy = —(VITD) + ViTD)) + g™ (Hilg) + Hylon) = Hilgy)))
0" (g (ViTF) = VITT)) + g (VT]) = VI(IT))). (61)
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As a result, the Cartan-type connection along 7%, the way it is intrinsically defined by
(53), is determined locally by the following relations:

0 0

Dras— =[5 + 50" (D7) = 6" gus)] 57 (62)
D =[BT — Vi) + 2 (i) + Hyla) — Hila)

0 g (V) = Vi) g5 (VATY) = V(TP D)] o (63)
Do = 3™ (Vla) + Vilan) — Vitgi) o (64)

We leave it as an exercise for the reader to write down in the same way the local deter-
mining equations for the connections of Hashiguchi and of Chern-Rund type, as defined
by (54) and (55) respectively.

Coming now to the second stage, let the horizontal distribution be the one canonically
associated to a given SODE

5, 5, 5,
I'=— t
gt g b ()
This means that the coefficients in (56) are given by
| ar | |
[V = _% aJ;W Iy =—f— kafg, (66)

and that T" = I'. The two conditions which essentially determine whether a non-linear
connection is a SODE-connection, have already been mentioned in coordinates (see (29)
and (33)). They read: lié = F; and Vk(F;) = Vi(T,). The first of these has an immediate
effect on the coefficients in the equations for the associated Berwald-type connection,
which now become:

0,0 ) ) )
9w = per Prigg = Villigm Prgy =0 (67)

The second results in obvious cancellations in the horizontal covariant derivative of the

Dr = Vi(I'})

Cartan connection (still for an arbitrary metric tensor field g along 7{). We get:

9 1k | 1 kl m 0
DFax] { [J 4397 (Ngy) = 17 gmj)} 90k’ (68)
;. 5
Dgi% — égkl(Hi(glj) + Hi(gu) — Hl(g”)) paE (69)
.9 5
Dy = 50" (Vilaw) + Vilow) = Vi) 5 - (70)

Obviously, the elegance of this result is that both the horizontal and vertical covariant
derivative resemble the classical formula for the Levi-Civita connection.

Consider now finally the particular case of a Lagrangian system. That is to say, let
L(t,z,v) be a given regular Lagrangian function on J'm; then, there is an intrinsically
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defined metric tensor field ¢ along 77, whose coefficients are g;; = V;V;(L). Let further T
denote the SODE field governing the Euler-Lagrange equations, i.e. take the f¢ in (65) to

be oL 0*L 0*L
Tt Rt ). 7

PR WU RV VE WY

The Berwald-type connection remains determined by (67), but we can express the relevant
coefficients F? and V;(T'!) here in terms of the Lagrangian L. One can verify that:

0*L 0*L
Ff = %gkl (F(glj) + Dol - 8:1;’81)?) ) (72)
Virh) = 1"(UVilgn) + Hi(gu) + Hi(gy) — Hilgs)
— I Vaulgij) = T Viulgi) =TT Viu (). (73)

Turning then to the Cartan-type connection for this case, the following simplifications of
the previous situation can be verified. First of all, we obviously have V;(gi;) — Vi(g;;) = 0.
Furthermore, the property Drg = 0 means in coordinates that I'(gi;) = U] gm; + L7 gini,
from which it easily follows that the right-hand side in (68) is equal to Ff (i.e. is the same
as for the Berwald connection, as argued already in the previous section). As a result,
the Cartan-type connection for the Lagrangian case is determined by

. p 0

I P "
L0 0

ma = 50" (Hiloy) + Hila) = Hilg) 5 )
.0 0

Vg = 3 Heng "

To finish this summary of coordinate expressions, let us repeat that one should be a little
cautious in comparing our expressions with those in [18] for time-dependent Lagrangians.
The point is that the set-up is different: due to a strict separation between time and
space variables in [18], some of the concepts developed in that work loose there intrinsic
meaning within the jet bundle approach which we have adopted.

7 From covariant derivatives to exterior derivatives
and the classification of derivations

In [20] a systematic study was made of the theory and classification of derivations of
scalar and vector-valued forms along 7. A classification of such derivations, in the line
of the standard work of Frolicher and Nijenhuis [9], makes use of a vertical and horizontal
exterior derivative. For the horizontal derivative one needs a horizontal distribution,
while the vertical derivative is canonically available from the intrinsic structure of J'x.
Yet, not surprisingly, there is not just one canonically defined vertical exterior derivative:
one encounters a certain freedom in fixing the time-component. Scalar differential forms
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along 7? can be identified with semi-basic forms on J'7 and there is a natural derivation
of degree 1 on J'm which preserves semi-basic forms, namely (in the notations of [9])
ds = [is,d]. To maintain the analogy with the autonomous theory, the authors in [20]
decided to model their vertical exterior derivative d" on dg, even though this derivation
does not have the coboundary property d“? = 0. The authors were well aware of the
availability of another vertical derivation which does have that property. But from the
point of view of setting up the theory of derivations, this other one comes somehow in the
second place as it can be derived from d¥: it is the derivation di = [i7,d"]. Much later
in the story of classifying derivations, one encounters vertical and horizontal covariant
derivatives which appear to coincide with the ones coming from the linear connection

(24) in [8].

The purpose of this final section is to approach this matter from the other end. That is
to say, by way of application of the newly acquired insights, we wish to explore to what
extent the optimal choice of a Berwald-type connection adds something to the debate
about the best possible choice of a vertical exterior derivative.

Let us first discuss some generalities about the way to construct an exterior derivative from
a covariant derivative. Suppose a covariant derivative D* on 7)"(7z) is given, which has
been extended by duality to a (self-dual) degree 0 derivation on tensor fields along 7¢ (the
present discussion, by the way, applies just as well to covariant derivatives on a general
manifold). Putting [X,Y] = D%Y — Dj X, we have a bilinear (over IR) skew-symmetric
operator on X (7)) which satisfies a Leibniz rule, namely [F X, Y] = F[X,Y] —(Dy F)X,
but which need not have the Jacobi identity property. Any other bracket operator with
these properties differs from the first one by a vector-valued 2-form (torsion form) along
7. In other words, given D*, the most general skew-symmetric bracket operator with the
above Leibniz property is of the form

[Xv Y]* = D;(Y - D§/X + T*(Xv Y)v (77)

where T* is any element of V?*(7]) (the C'(J'7)-module of vector-valued 2-forms along

7). Let now w be a scalar k-form along 7¥ (notation: w € A®(7?)) or a vector-valued

k-form (then w € V*(x?)).

Proposition 5 The operator d*, defined by

k
Fw(Xoy .o, Xe) = D(=1)D¥, (w(Xoy oy Xiy ooy X2))
=0
S (D)X X)L Xoy e, Xy e, Xy, X)), (78)
0<i<j<k

is a derivation of degree 1 on \(7?) and V (x?).

PRrROOF: From the defining relation, it follows that the action of d* on functions F' on
J'm, 1-forms a and vector fields X along 7% is given by: &*F(X) = DY F, d*a(X,Y) =
Dx(a(Y)) — Dy (a(X)) — o[X,Y] ), &*X(Y) = Dy X. It is easy to verify that this

24



restricted action has the necessary properties for a derivation, i.e. we have d*(FG) =
Fd*G + Gd*F, &*(Fa) = &*F AN a4+ Fd*a and d*(FX) = Fd*X + &*F N X. Tt follows
that there is a unique derivation cz* wich coincides with d* when restricted to functions,
1-forms and vector fields. Defining dy = [ix, d*] as usual, one can create another self- dual
degree zero derivation (d* )* which is obtained from dX|/\ by imposing the duality
rule ) ) )
((dx)7Y, a) = dx ({Y, @) = (Y, dk )

VX,Y € X(7%) and a € A'(7Y). It was proved in [13] (see Prop. 3.3) that d* then has the
property

d'o(Xoy.o o, X)) = S (=1)'dy (w(Xo, ., Xiy. oo, X3))
=0
Y (D)M((d ) (X)), Xoy ey Xy, Xy X0,
0<i<j<k

One easily computes, however, that (CZ})*Y = [X,Y] . Comparison of the above result
with the defining relation (78) then shows that d* = d* and the result follows. O

We come back to the actual situation now, where we have two explicitly defined covariant
derivatives on 79" (7g) which are of Berwald type. We write the original one (24) for
this section as D and the newly introduced one (46) as D. We make a further notational
convention which has the advantage of focussing entirely on operations which involve only
tensorial objects along the projection: if £ € X'(J'7) is itself the horizontal or vertical lift

of some vector field Y € X(77), we shall write

Dy X for Dy X, and likewise Dy X for Dyv X. (79)

Such notations will make it easier to relate the discussioNn to the calculus of derivations
developed in [12, 13, 20]. Similar notations are used for D.

The difference between the two Berwald-type connections is given by DX — f)gX =
(X, dt)¢,. This translates into the following relations between horizontal and vertical
derivatives:

DEX = DX, (80)
DVYX = DyX 4+ (X,a)Y. (81)

The idea is now to let the * of the above general considerations play the role of # and V.
Clearly, if we make the same choice of torsion forms for the brackets coming from both
connections and subsequently use (78) to construct exterior derivatives, we will obtain
the same horizontal exterior derivatives d¥ and d”, but the vertical exterior derivatives
will be different.

From the general classification results of self-dual derivations in [20], we know that the
difference between Dy and f))v/ is a so-called derivation of type .. Such a derivation is
of algebraic type and consists of two parts. For a derivation of degree r, for example, we
write pg = ag — ig, where () is a type (1,1) tensor-valued r-form along ¢ ag vanishes
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on scalar forms, while 14 vanishes on vector fields. Specifically now, we derive from (81)
that .
Dy = Dy + iy, with A=dt@VY. (82)

It follows that for the dual action on 1-forms
DVo=D¥a —isa =Dya— (Y, a)dt.
Since the vertical bracket in [20] had no torsion, we take TV = 0 as well. We then have

d"a(X,Y) = Dia(Y)—Dya(X)
= DYa(Y) —DVa(X) — (X, a)Y,dt) + (Y, a)(X,dt),

so that )
dVo =d"a + igng0.

Similarly, for the action on vector fields we find

"X =d"X + a7o4X, where a7, X = (X,dl)I

In conclusion, the difference between the two vertical derivatives is expressed by

dv = dv — ith[ — a7®dt = d% — a7®dt. (83)

It may come a bit as a surprise that d” is not the same as d7. One can verify, however,

that just like d7, d” has the coboundary property d'2 = 0. Indeed, on scalar forms this
is obvious since the a.-term then does not contribute. To complete the argument, since
both terms in the right-hand side of (83) manifestly vanish on 9/dxz, it then suffices to
check that d"2T = 0. This follows easily from the fact that di'T = a7y, T = I and thus

d"T = 0. In coordinates, the action of the new d" on the local basis of 1-forms and vector
fields is given by

40" =0, d'dt =0, JV% =0, d'T=0.

xl

It would perhaps be worthwhile to enter more deeply into the question of the effect of
selecting d" as the fundamental vertical exterior derivative on the classification theory of
derivations along 7¥. This, of course, is beyond the scope of the present paper. In a sense,
one expects that the influence of such a change will be minor as long as one deals with
forms acting on X (7?). We finish our discussion by deriving a couple of properties which
express this expectation in more precise terms.

Let w be an element of A*(7?). Applying the definition of derivations of type i, (cf. [12]),
we find that

ithIw (717 s 77k—l—1) —

> (signo)w ((dt A DX o), X)) Ko@) X)) =0,

0€Sk41

2N(k — 1)
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Since derivations of type a. act trivially on scalar forms, we can conclude from this that
CZVCU (71, Ce ,7k+1) = de (71, Ce ,7k+1).

Secondly, for L € V¥(7?) we have

— — 1 , — — —
@7l (v Xia) = 77 D2 (sign o) Xoqy (LK o2y, 2 X)) d))

t0€ESk4

from which it follows that if [ takes values in X(7?), the actions of d" and d" coincide

when the resulting forms are restricted to X(7?) again.

Appendix: Proof of Proposition 2

The idea is to compute VU(n) for arbitrary ¢ and n and U in its decomposition (36).
At the start, we only assume that ¥V comes via (14) from some D with property (13); we
want to find out which further restrictions (if any) impose themselves in a natural way
for obtaining a closed form expression such as (38).

Let us start by looking in detail at the term V:U;* (), knowing that Us vanishes on T.
We have

YUy (n) = Ve (Us(7,)") = U3 ((Derig)” + (Deriy)” + €((n, dt))T™ + (3, dt) VT
= V. (Ug<m>H <U3(m) dYT™) — Us(DeTg, )" = (n, dt)U3 (VT

77\/ )) U3 77\/ dt>) TH + <U3(ﬁv)7 dt>v§TH

V)H <777dt>U (vaH)

= (Df(U3(77v)) " <U3(77v)7 dt>(DfT) + <U3(ﬁv)7 dt>v§TH

- U3(D£77V)H - <777 dt>U;H(V£TH)

= (DeUs(7,))" + (Us(,,), d)(VeT™ — (DeT)™) — (n, dt)Us ™ (VET).

Under the condition (37), this reduces to
Vel (n) = (Dels(77,))"

The computation for Uy is quite similar. Since Uy takes values in X (7?), there is in fact
a further simplification, we find:

VeUy ™ () = (DeUa(7y))" = (n, d)US™ (VETH),
from which it follows under the same assumption (37) that

VU (n) = (Dela(my))"
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For U; we have, taking this time (37) already into account,

VU () = Ve (Ui(na)™) = U ((Def)™ + &((p, dt) T + (n, dt)VT7)
= Ve (Ui(na)” + (Ui (), dt)T") — Ur(DeTg )"
— &({n. dt)) UL (T)™ = (n, d1)Uy (D T)"
= (De(Ui(n))) " + €QU (), d)YT + (Us(na), dt)VeTH = Uy (Den)*
)

= (De(Ur(nm))" = Ui(Denu)”
= DSUI(UH)H-

The computation for U, is similar, with an extra simplification again because U, takes
values in X (7?). We find
VeUs™ (1) = Delz(na)”

which completes the proof of Proposition 2. a

Note finally that the statement preceding Proposition 2 can easily be proved from the
above computations as well. Indeed, if each of the U; maps X (7?) into itself and we
restrict ourselves to such vector field arguments, none of the terms which prompted the
assumption (37) will occur.

Acknowledgements. We are indebted to Frans Cantrijn, Mike Crampin and Bavo Langerock
for useful discussions.
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