
The Berwald-type connection associated totime-dependent second-order di�erential equationsT. Mestdag and W. SarletDepartment of Mathematical Physics and AstronomyGhent University, Krijgslaan 281, B-9000 Ghent, BelgiumAbstract. We investigate the notions of a connection of Finsler type and ofBerwald type on the �rst jet bundle J1� of a manifold E which is �bred over IR.Such connections are associated to a given horizontal distribution on the bundle�01 : J1� ! E, which in particular may come from a time-dependent system ofsecond-order ordinary di�erential equations. In order to accomodate three exist-ing constructions of a Berwald-type connection for a second-order system, we �rstintroduce equivalence classes of connections of Finsler and Berwald type. By ex-ploring the di�erences between the existing models in more depth, we come to a newconstruction which in many respects can be regarded as giving an optimal repre-sentative of the class of Berwald-type connections. We brie
y enter into two relatedmatters: one is the de�nition of connections of the type of Cartan, Chern-Rundand Hashiguchi when a metric tensor �eld is given; the other one is the potentiale�ect of the newly acquired insights on the theory of derivations on forms along theprojection �01.AMS-classi�cation: 58B20, 53C60Suggested running head: `Berwald-type connections { time-dependent case'1 IntroductionThe Berwald connection is a well-known concept in Finsler geometry. It is in fact one ofmany related linear connections which have been studied in this �eld of research, otheroften discussed connections being for example those attributed to Chern-Rund, Cartanand Hashiguchi (see e.g. [2, 4, 10, 16, 17]). Although a paper by Vilms [22] uses the termBerwald connection also for a kind of linearization of a general non-linear connection ona vector bundle, this concept has not received widespread attention outside the `Finslercommunity'. Quite recently, however, some applications have been developed in the studyof second-order ordinary di�erential equations (Sode's), see e.g. [14, 8, 19], which makeuse of covariant derivative operators; these may be seen to come essentially from theBerwald-type connection associated to the non-linear connection of the given Sode. This1



by itself may be a su�cient reason for having a closer look at the relationship betweenvarious versions of such a connection which have been discovered independently in theliterature.A recent illuminating discussion of the relationship between di�erent linear connectionsused in Finsler geometry has been given by Szilasi [21]. All such connections in Szilasi'saccount live on the tangent bundle T (TM) ! TM of a tangent bundle � : TM ! M .Crampin [6] has pushed our understanding of this matter further ahead by explainingthe more concise picture where all connections are constructed on the pullback bundle� �TM ! TM and by putting thereby the Berwald-type connection in the spotlight as theone to which all others can be related. Similar observations were also made by Anastasiei[1].Given a horizontal distribution on TM (i.e. a possibly non-linear connection on � : TM !M), with corresponding projection operators PH and PV , every vector �eld � on TMuniquely decomposes into a horizontal and vertical lift of vector �elds along � , which, asin [8], will be called �H and �V , respectively:� = �HH + �V V : (1)The key point in Crampin's analysis is the following. The covariant derivative operatorD : X (TM)�X (� )! X (� ), de�ned byD�X = [PH(�);XV ]V + [PV (�);XH ]H; (2)determines the unique linear connection on � �TM ! TM which has the properties: (i)the restriction to �bres TxM is the canonical complete parallelism; (ii) parallel translationalong a horizontal curve is given by a rule of Lie transport. It is called the Berwald-typeconnection on � �TM determined by the given horizontal distribution.If in particular the non-linear connection is the one canonically associated to a givenSode on TM , then the associated Berwald-type connection has all of its torsion tensor�elds equal to zero, except for the one whose vanishing would require that the non-linearconnection is 
at. In fact, to recognize the (�ve) tensor �elds referred to here as relatedto the concept of torsion, it is helpful to move to a bigger space, i.e. to consider anotherlinear connection, this time de�ned on T (TM) ! TM , which is obtained from the oneon � �TM by \doubling the formulas", as follows:r�XH = (D�X)H; r�XV = (D�X)V : (3)The standard torsion tensor of this connection, r���r��� [�; �], when decomposed intoits horizontal and vertical part for various combinations of the arguments, gives rise tosix tensor �elds of type (1,2) in principle, but one of them is identically zero.This brings us to the framework where Berwald and related connections are usually consid-ered and gives us an opportunity to mention also the equivalent characterizing propertiesby which Szilasi singles out the Berwald-type connection in his overview. If J is thealmost complex structure provided by a horizontal distribution, then a Finsler connec-tion on T (TM) ! TM is characterized by rPH = rJ = 0. It then follows that also2



rS = 0, where S is the canonical almost tangent structure on TM and that a Finslerconnection is completely determined if you know the covariant derivative of vertical vec-tors. The Finsler connection is said to be of Berwald type if the vertical lifts of basicvector �elds (i.e. vector �elds on M) are parallel with respect to vertical vector �elds andrXHY V = PV ([XH; Y V ]).The other type of linear connections referred to at the beginning, although they wereoriginally introduced merely in the framework of Finsler spaces, can be given a quitemore general meaning also (cf. [1, 6]). All they require is one extra tool, namely a metrictensor �eld g along � . For example, in the case that the horizontal distribution comesfrom a spray �, Crampin de�nes vertical and horizontal Cartan tensors by the followingrelations: 8X;Y;Z 2 X (� ),g(CV (X;Y ); Z) = DXV g (Y;Z); (4)g(CH(X;Y ); Z) = DXHg (Y;Z): (5)For completeness, we should remark here that it is the type (1,2) tensor �eld CV whichis related to the Cartan tensor known in Finsler geometry. The main motivation behindthe connections associated to Chern-Rund, Hashiguchi and Cartan comes from variousdegrees of trying to obtain a metrical connection. Since the di�erence between two linearconnections is tensorial and the decomposition (1) of � will, in the present context, splitthis tensor �eld also in a vertical and horizontal component, denoted by �V and �H in [6],new connections can be derived from the Berwald connection by making assignments for�V and �H. In [6], for the further special case that � is the geodesic spray of a Finslerspace, the other connections of interest are characterised as follows:�V = 0; �H = 12CH; (Chern-Rund)�V = 12CV ; �H = 0; (Hashiguchi)�V = 12CV ; �H = 12CH: (Cartan) (6)The price to pay with these modi�cations of the Berwald-type connection is that everystep towards the ideal of a metrical connection (the Cartan connection is fully metrical)introduces more torsion, i.e. a larger deviation from the ideal of a maximally torsion-freeconnection.We can now come to the purpose of the present paper. Our interest comes in the �rstplace from the study of time-dependent second-order di�erential equations. The manifoldof interest for carrying such systems is the �rst jet bundle J1� of a bundle � : E ! IR.We are in particular interested in the �bration �01 : J1� ! E and in the pullback bundle�01�(�E) (to replace � �TM). As in the framework of autonomous Sode's, time-dependentones de�ne a non-linear connection on the bundle �01 : J1� ! E. There are at leastthree known constructions in the literature of an associated linear connection. Thesewere independently derived, from di�erent perspectives, and do not make use of anyother tool than the horizontal distribution coming from the given Sode. Therefore,they should somehow correspond to a generalized version of the concept of Berwald-type connection. Two of these linear connections were constructed on the full spaceJ1� (i.e. on the bundle T (J1�) ! J1�), respectively by Massa and Pagani [15] and by3



Byrnes [5]. The third construction by Crampin et al [8] is a more direct one on thebundle �01�(�E) ! J1� which generalizes the de�nition (2). Our primary objective is toexplore a general scheme within which these three constructions can be compared andrelated to each other (see Sections 2 and 3): as expressed above, they should in somesense be equivalent and represent the `time-dependent generalization' of the connectionof Berwald type associated to the given horizontal distribution on J1�. Their di�erence nodoubt will come from a certain freedom or undeterminacy in `�xing the time-component'of the connection. In order to identify natural procedures for deciding upon the bestpossible selection criteria for this matter, we shall approach the issue from the two di�erentcharacterizations of Berwald-type connections described by Crampin [6] and Szilasi [21],respectively (Section 4). A second objective therefore is to come to an optimal de�nitionor characterization of the Berwald-type connection in this framework. This will lead us inSection 5 to a new direct construction formula for a linear connection on �01�(�E)! J1�,which is more in line with the natural decomposition of X (�01) and, when lifted to thebigger space J1� itself, is related to the construction of Massa and Pagani. We shall alsobrie
y enter into the discussion of constructing Chern-Rund, Hashiguchi and Cartan typeconnections in the time-dependent case.It is somehow intriguing that the construction of horizontal and vertical covariant deriv-ative operators, the way they were derived from the classi�cation theory of derivationsof forms along �01 in [20], gave rise exactly to the same, less optimal, construction of thelinear connection of Crampin et al . The branching point in the theory of derivations in[20] was a freedom in selecting a natural vertical exterior derivative. By way of applicationof the newly acquired insights, therefore, we will discuss the reverse process in Section 6,namely the way di�erent choices for the linear connection on �01�(�E) ! J1� a�ect theclassi�cation theory of derivations of forms along �01.For completeness, we should mention that a construction of certain connections for atime-dependent framework, in particular a Cartan-type connection, can also be found in[18]. We shall, however, not go into the details of comparing our analysis with this workbecause the general setting is di�erent. Indeed, the carrier space in [18] is IR � TM (towhich J1� is di�eomorphic, but not in a canonical way) and, unlike it was the case e.g.in [20], the constructions carried out in [18] have an intrinsic meaning only for a strictproduct bundle interpretation of IR � TM . In other words, it is as though one speci�ctrivialization of J1� is singled out and from then on coordinate transformations are notallowed to depend on time.2 A general scheme for lifting linear connections from�01�(�E) to J1� and vice versaWe begin by recalling that �01�(�E) has a canonically de�ned section, the `total timederivative operator' T, and that, as a result, the module of sections of �01�(�E) has thefollowing natural direct sum decomposition:X (�01) � X (�01)� hTi; T = @@t + vi @@xi (7)4



where sections in X (�01) are annihilated by dt. Throughout this paper we shall writeX = X+ hX; dtiT for vector�elds in X (�01). Whenever we have a (non-linear) connectionor horizontal distribution at our disposal on J1�, there is a corresponding decompositionof X (J1�): X (J1�) � X (�01)H �X (�01)V � hTHi; (8)where TH is a Sode vector �eld on J1�, often called the `associated semi-spray' of thegiven connection. Needless to say, horizontal vector �elds on J1� may have componentsboth in the �rst and third set of the decomposition (8): for a general � 2 X (J1�), wemay write � = �HH + �V V = �HH + �V V + h�; dtiTH; (9)with �H; �V 2 X (�01). An important remark in this respect is the following: the general-ization from an autonomous framework to a time-dependent one in a way has two faces;some formulas tend to carry over in a natural way by thinking of the �rst decompositionin (9), as though one would formally copy the decomposition (1) with one extra dimen-sion in the horizontal component; other features, however, tend to be better understoodif one thinks of X (�01) as the analogue of X (� ) and thus assigns a separate role to theone-dimensional distribution spanned by TH. Most of the technicalities in what follows(if not all) are related to this dichotomy.We are in particular interested in the case where the connection is the one canonicallyassociated to a given Sode �. Note that an advantage of the time-dependent set-up isthat TH then coincides with the given �, a feature which is not in general true for theautonomous framework. Beware, however, that if one starts from a general horizontaldistribution and looks at the Sode �0 = TH, the original connection need not coincidewith the Sode connection of �0. Non-linear connections which come from a Sode arecharacterized by the property that their torsion [PH; S] is zero, where S is the canonicalvertical endomorphism on J1�, given byS = �i 
 @@vi ; �i = dxi � vidt: (10)The computation of the Nijenhuis bracket [PH; S] is easy to carry out in a basis of localvector �elds adapted to the decomposition (8). In fact, one �nds that only two types ofcomponents are not trivially zero. We list them here for later use:[PH; S](XH; Y H) = [XH; Y V ]V V � [Y H;XV ]V V � [XH; Y H]HV ; (11)[PH; S](TH;XH) = [TH;XV ]V V � [TH;XH]HV : (12)There are no points in our analysis which could exclusively be dealt with in the case of aSode connection, so we will generally not specify the horizontal distribution even thoughthat will require sometimes reformulating previous work of other authors in such a moregeneral context.Let now D be a covariant derivative operator (i.e. a linear connection) on �01�(�E) whichinduces a linear connection on the subbundle �01�(V �), i.e. which satis�es the assumptionD�(X (�01)) � X (�01) 8� 2 X (J1�): (13)5



This is the only restriction which is required if we want to think of situations coming froman analogue in the tangent bundle set-up. Using the given horizontal distribution on J1�and having the autonomous doubling model (3) in mind, we de�ne an associated class oflinear connections on J1� by puttingr�XH = (D�X)H; r�XV = (D�X)V ; r�TH = K(�); (14)where K is any type (1,1) tensor �eld on J1�. It is easy to verify that for � 2 X (J1�),the operation r�� = (D��H)H + (D��V )V + �(h�; dti)TH + h�; dtiK(�) (15)de�nes a linear connection indeed, for any choice of K. All elements of such a class havethe following easy to establish properties. Firstly,r�(X (�01)H) � X (�01)H; r�(X (�01)V ) � X (�01)V 8� 2 X (J1�): (16)Secondly, if J is the (degenerate) almost complex structure on J1�, determined bythe horizontal distribution according to the following de�ning relations: J(XH) = XV ,J(XV ) = �XH, J(TH) = 0, then we haveJ(r�XH) = r�XV ; J(r�XV ) = �r�XH; or equivalently r�J jX(J1�) = 0; (17)where X (J1�) � X (�01)H �X (�01)V .Conversely, let r be any linear connection on J1� having the properties (16,17), then wede�ne an associated class of linear connections on �01�(�E) by putting:D�X = (r�XH)H = (r�XV )V ; D�T = L(�); (18)where L is any C1(J1�)-linear map from X (J1�) to X (�01). Indeed, for any X 2 X (�01),the relation D�X = (r�XH)H + �(hX; dti)T + hX; dtiL(�) (19)is a linear connection on �01�(�E) for any tensorial L. Obviously, each element of the classwill have the property (13). If we take such an element and raise it to the bigger spaceJ1� again according to the �rst procedure, we will obtain for every choice of K an elementof the same class as the r we started from. The type of connections on J1� we encounterin this construction are the ones we wish to call connections of Finsler type.De�nition A pair (PH ;r) consisting of a horizontal distribution on J1� (represented byits horizontal projector) and a linear connection is said to be of Finsler type if we havethe properties (16,17).Essentially, connections of Finsler type come from a class of linear connections D on�01�(�E) with property (13) and we will sometimes �guratively term the couple (PH;D) asbeing of Finsler type as well.In order to obtain some equivalent characterizations of Finsler-type connections, we �rstprove two simple lemmas. A preliminary notational convention is in order here: various6



types of identity tensors (operating on di�erent vector �elds) will play a role in the sequel.The identity operator for X (�01) will be denoted by I. We write its natural decompositionas I = I + dt
T; with I = �i 
 @@xi : (20)Likewise, IJ1� is the identity on X (J1�) and IJ1� is that part of IJ1� which vanishes onTH.Lemma 1 S � J + J � S = �IJ1�.Proof: From S(XH) = XV and the de�ning relations of J , it follows thatS(J(XV )) = �XV = �IJ1�(XV ); S(J(XH)) = S(J(TH)) = 0;and J(S(XV )) = J(S(TH)) = 0; J(S(XH)) = �XH = �IJ1�(XH):The result then readily follows. 2Let now PH be the `strong horizontal projector' de�ned by PH(XH) = XH; PH(XV ) =0; PH(TH) = 0, and let M be the degenerate almost product structure determined byM(XH) = XV ; M(XV ) = XH; M(TH) = 0.Lemma 2 J � PH � PH � J = M .Proof: The simple proof is similar to the one of Lemma 1. 2Note that one can also obtain the relation J � PH + PH � J = J .Proposition 1 The following are equivalent characterizations of connections of Finslertype: (16) and (17) () r�PH jX(J1�) = 0 and r�J jX (J1�) = 0: (21)( r�PHjX (J1�) = 0r�J jX(J1�) = 0 () ( r�PHjX (J1�) = 0r�SjX(J1�) = 0 (22)Proof: Making use of the information in (16), one easily �nds from taking a covariantderivative of the de�ning relations of PH that (16) implies r�PHjX (J1�) = 0. Conversely,this invariance implies that PH(r�XH) = r�XH and PH(r�XV ) = 0. The �rst of thesesays that r�XH 2 X (�01)H, whereas the second only ensures that r�XV 2 X (�01)V �hTHiin a direct way. Indirectly however, using also r�XV = J(r�XH) and Lemma 2, we �ndthat 0 = J(r�XH)�M(r�XH) = r�XV �M(r�XH), which ensures that r�XV belongsto X (�01)V anyway.Secondly, from S(XV ) = 0 and (16), it follows that r�S(XV ) = 0. From S(XH) = XVand the second relation in (17), it follows that r�S(XH)� S(J(r�XV )) = r�XV . UsingLemma 1 and the information that r�XV is vertical (from (16) again), it also follows thatr�S(XH) = 0. This means that (16) and (17) imply r�SjX (J1�) = 0. For the converse,note �rst that r�PHjX (J1�) = 0 implies that r�XH 2 X (�01)H. Next, from r�SjX (J1�) = 0we �nd with the help of Lemma 1 again thatJ(r�XV ) = J(r�(S(XH))) = J(S(r�XH)) = (�IJ1� � S � J)(r�XH) = �r�XH:Applying J to this relation, we obtain that also J(r�XH) = r�XV , so thatr�J jX(J1�) = 0indeed. This completes the proof. 27



3 The class of Berwald-type connectionsThe motivation for introducing the equivalence classes of linear connections of the pre-vious section is, as indicated in the introduction, that we want to frame three existingconstructions in the literature of a linear connection associated to a given Sode withinone common scheme: that of a class of Berwald-type connections. The philosophy hereis that one has to understand �rst all aspects lying at the origin of the di�erence be-tween these constructions, before one can decide upon an optimal selection. Now, theBerwald-type connection for the autonomous framework, at least in its appearance on thepullback bundle � �TM in [6], is de�ned by (2). Within the present temporary scheme ofequivalence classes of connections, we thus arrive at the following de�nition of the classof Berwald-type connections.De�nition A linear connection D on �01�(�E) with the property (13) belongs to the classof Berwald-type connections with respect to a given horizontal distribution, if it satis�esD�X = [PH(�);XV ]V + [PV (�);XH]H; (23)for all X 2 X (�01). A Finsler pair (PH ;r) on J1� is said to be of Berwald type if it islifted via (14) from a connection on �01�(�E) with the property (23).It is of some interest to look at the e�ect of the various assumptions so far discussed onthe torsion T (�; �) = r�� �r�� � [�; �] of a pair (PH;r) on J1�. With the aid of thedecomposition in horizontal and vertical parts, all components of T can be traced backto tensor �elds acting on X (�01). We introduce notations similar to those in [6] for thesetensor �elds and list them in the table below. The e�ect of assuming we have a connectionof Finsler-type is that (18) can be invoked to express some covariant derivatives in terms ofa D on �01�(�E) (see the middle column). If in addition we have a connection of Berwaldtype, further simpli�cations occur through the de�nition (23). For completeness: thecomponent T (XV ; Y V )H of the torsion becomes trivially zero as soon as the assumption(16) is satis�ed and is therefore not listed.De�nition Finsler BerwaldA(X;Y ) = T (XH ; Y H)H DXHY � DYHX � [XH; Y H ]H [XH; Y V ]V � [Y H ; XV ]V � [XH; Y H ]HR(X;Y ) = T (XH ; Y H)V � [XH ; Y H ]V � [XH ; Y H ]VB(X;Y ) = T (XH ; Y V )H � DY VX � [XH ; Y V ]H 0P(X;Y ) = T (XH ; Y V )V DXHY � [XH ; Y V ]V 0S(X;Y ) = T (XV ; Y V )V DXV Y �DY VX � [XV ; Y V ]V 0AT(X) = T (TH ; XH)H DTHX � (rXHTH)H � [TH ; XH]H [TH ; XV ]V � (rXHTH)H � [TH ; XH ]HRT(X) = T (TH ; XH)V � (rXHTH)V � [TH ; XH]V � (rXHTH)V � [TH ; XH]VBT(X) = T (TH ; XV )H � (rXV TH)H � [TH ; XV ]H � (rXV TH)H � [TH ; XV ]HPT(X) = T (TH; XV )V DTHX � (rXV TH)V � [TH ; XV ]V � (rXV TH)V8



Perhaps one of the lines in the table requires an extra word. The S-tensor, in the case of aBerwald-type connection, gives rise to the expression S(X;Y ) = [XV ; Y H]H�[Y V ;XH]H�[XV ; Y V ]V . This is manifestly zero when the arguments are basic vector �elds, becausea bracket such as [XV ; Y H] then is vertical, and therefore S is zero for all arguments.Note further that if the Berwald-type connection is given as a D on �01�(�E), the covariantderivatives of TH in the right column are determined by our choice of the tensor K in(14).A case of particular interest is the one where the given horizontal distribution comes froma Sode connection. Indeed, in such a case we see from (11,12) that there are two furthersimpli�cations in the torsion for a connection of Berwald type: A(X;Y ) = 0 and AT(X)reduces to �(rXHTH)H.Let us now discuss the three available constructions referred to above and verify whetherthey are of Berwald type indeed. As a preliminary remark, we should say that all ofthem were originally constructed with respect to the horizontal distribution associatedto a given Sode �, but � sometimes only enters the picture by the fact that it is TH.We will try to make our presentation somewhat more general by adapting the originalconstruction to allow for any non-linear connection (or horizontal distribution) on J1� asthe starting point, although that will not be equally successful in all three cases.The simplest construction to explain is the one by Crampin et al [8]. Essentially, it takesthe direct construction formula (2), as �rst introduced in [11] for autonomous Sode's,as the model and tries to carry it over to the time-dependent framework to construct alinear connection on �01�(�E). One then immediately observes that a correction term isneeded for having D� satisfying the derivation property. The de�ning relation of a linearconnection, valid with respect to any given horizontal distribution, thus becomesD�X = [PH(�);XV ]V + [PV (�);XH]H + PH(�)(hX; dti)T: (24)Obviously, the requirement (23) is satis�ed, so we are in the class of Berwald connections.It further follows that D�T = �V . To say something about torsion in this case, we needto make a choice for the tensor K in (14). It looks natural here to maintain the spirit inwhich the de�ning relation (24) was conceived by simply taking over the formula whichraises the connection to one on J1� from the autonomous framework. That is to say, weput (as in [8]) r�� = (D��H)H + (D��V )V : (25)It is obvious then that the �rst two relations in (14) are satis�ed and that the tensor Kis de�ned by K(�) = r�TH = (D�T)H = �V H: (26)As a result, we have PT = 0 and also BT = 0 (since (rXVTH)H = X = �[TH;XV ]H),while AT and RT reduce to AT = [TH;XV ]V � [TH;XH]H, RT = �[TH;XH]V . If, inaddition, the non-linear connection comes from a Sode �, all torsion tensors which canvanish (without restrictions on the horizontal distribution) become zero, except for RT.Massa and Pagani [15] have constructed a linear connection on J1�. Their way of build-ing up the theory is somewhat harder to �t within our present approach, because a full9



horizontal distribution only becomes part of the data at the �nal stage of the argumen-tation, where a given Sode � is singled out. Brie
y, their construction starts as follows.First of all, among all possibly existing linear connections on J1�, Massa and Paganiconsider only those which preserve the 1-form dt, the canonical vertical endomorphismS and (constant) parallel transport along the �bres. Explicitly, the as yet undeterminedcovariant derivative will have the properties: r�dt = 0, r�S = 0 and rXV Y V = 0, forevery X 2 X (�01) and every basic Y 2 X (�01). With these assumptions, it is possible toconstruct two projection operators, which are assumed to be completely complementaryat the subsequent stage, and are given byPH(�) := T (�; S(�)); Q(�) := S(T (�; �)) + h�; dti�; (27)where T is the torsion tensor of the linear connection to be constructed and � is an arbitarySode. It is shown that PH(�) and Q(�) do not depend on the choice of �. Note furtherthat the image of Q contains all vertical vectors and all possible Sode's (which makessense because the di�erence between two Sode's is vertical). After adopting some furtherrestrictions (to which we come back later), a theorem is proved concerning existence anduniqueness of a linear connection which leaves a pre-selected Sode invariant. That Sodein fact, when added to the image of PH completes the horizontal distribution to whichthe constructed linear connection can be thought of as being associated.We explain now how this scheme can be slightly modi�ed when an arbitrary horizontaldistribution is given from the outset. Then, in particular, we have the Sode TH at ourdisposal, which we can use to de�ne the operators PH and Q. In other words, we putPH(�) := T (TH; S(�)); Q(�) := S(T (TH; �)) + h�; dtiTH: (28)With PH +Q = IJ1� as part of the assumptions, we then have PH(�) = PH(�)+ h�; dtiTH,and PV (�) = Q(�) � h�; dtiTH. The somewhat delicate point hereby is that, since thehorizontal distribution is given, the de�ning relation for PH here has to be regarded as animplicit restriction, via the torsion, on the class of amissable linear connections we wantto consider.Continuing now, in this modi�ed picture, the line of reasoning of Massa and Pagani,assume that the class of potential r's is further restricted by requiring that they satisfyr�PH = 0 and have a curvature tensor curv which vanishes on any pair of Sode's, orequivalently satis�es curv(�;XV ) = 0 for each Sode � and all X . One can prove asa minor modi�cation of Theorem 2.2 in [15] that, with all hypotheses so far imposed,any admissible linear connection r is now completely determined if we know r�THfor an arbitrary Sode �. The �nal point is to agree to �x this remaining freedom byrequiring that rTHTH = 0 and r@=@viTH = 0 from which it follows as in [15] thatactually r�TH = 0; 8�. We thus have arrived (in a perhaps rather roundabout way)at a prescription for a uniquely de�ned linear connection on J1�, corresponding to anypre-assigned horizontal distribution.A point to be observed, however, is that this construction contains a hidden restrictionwhich comes from the fact that the two explicit formulas for PH and Q in (28) are assumed10



to yield complementary projectors. Indeed, from the de�ning relation of PH, taking thelater requirement r�TH = 0 into account, we haveXH = T (TH;XV ) = rTHXV � [TH;XV ];from which it follows that rTHXV = [TH;XV ]V V :On the other hand, we have0 = Q(XH) = S(T (TH;XH)) = S(rTHXH)� S([TH;XH]):Using the invariance of S, this implies thatrTHXV = [TH;XH]HV :Compatibility of the two expressions for rTHXV thus requires that [PH; S](TH;XH) = 0,which is one of the conditions for having a Sode connection. In coordinates, if �l0;�lkdenote the connection coe�cients of the given horizontal distribution, this condition reads,vjVk(�ij)� �ik + Vk(�i0) = 0; (29)where Vi is shorthand for @=@vi. It can be veri�ed that this is the only compatibilityrequirement coming from (28).What remains to be veri�ed now is whether such a connection belongs to the Berwaldclass. Obviously, from the assumptions r�PH = 0 and r�S = 0, we will have a connectionof Finsler type and the question is whether (23) holds. It easily follows from the de�ningrelation for PH in (28) and the property r�TH = 0 that (23) holds for � = TH. Butit turns out that there is an obstruction for the rest of the property to hold true. Tosee this, let X;Y be basic vector �elds in X (�01). From one of the �rst assumptions, wehave rXV Y V = 0, from which it follows via (18) that also rXV Y H = 0. Next, using ther-invariance of TH, one of the de�ning relations of the torsion tensor gives[TH;XV ] = rTHXV � T (TH;XV );= rTHXV �XH; (30)where we have used the de�nition (28) for PH in the last line. The curvature requirementcurv (TH;XV ) = 0 subsequently learns thatrXH = rXVrTH �rTHrXV +rrTHXV : (31)Applying (31) to Y V , the last two terms vanish because Y is basic and rTHXV is verticalin view of the properties (16). To compute the remaining vector �eld rXVrTHY V weproceed in coordinates. Using (30), one easily veri�es thatrTHVj = (Vj(�l0) + vkVj(�lk))Vl:11



With XV = X iVi; Y V = Y iVi (X i; Y i basic), we further haverXVrTHY V = XH(Y i)Vi + Y iXjrVjrTHV i:It then easily follows thatrXHY V = [XH; Y V ] +XjY i �ViVj(�l0) + vkViVj(�lk)� Vl:As we have seen in the table of torsion components, however, T (XH; Y V ) = 0 is a necessaryrequirement for a connection to be of Berwald type and this would require here thatViVj(�l0) + vkViVj(�lk) = 0: (32)It is easy to see through its two components B and P that the vanishing of this torsionis also su�cient for having the Berwald condition (23). The �nal point to observe is that(29) and (32) imply that Vk(�il)� Vl(�ik) = 0; (33)which is the coordinate expression for having [PH; S](XH; Y H) = 0. We reach the ratherstriking conclusion that our attempt to generalize the construction of Massa and Paganito arbitrary horizontal distributions only gives rise to a connection of Berwald type ifthat distribution is actually a Sode connection (which then brings us back to the actualconstruction in [15]).Limiting ourselves then to the Sode case, the main di�erence between this connectionand the one of Crampin et al comes from the fact that here r�TH = 0 for all �. Thee�ect on the torsion is merely that BT is no longer zero. Instead we have BT = �I.Let us come now to the third construction, which was independently set up by Byrnes[5]. Again, the original construction was carried out starting from a Sode connection,but we can easily generalize it here to the case of an arbitrary horizontal distribution.Indeed, the main idea of the construction of Byrnes was simply the following: (i) de�nethe covariant derivatives of vector �elds in X (J1�) by looking at the formula (2) for D�Xon the pullback bundle in the autonomous framework and taking horizontal and verticallifts as appropriate; (ii) put r�� = 0; (iii) select the remaining derivatives of � in sucha way that all torsion components which can be zero e�ectively vanish. By the nature ofthe construction, therefore, this is bound to give a connection belonging to the Berwaldclass. Transferred to the context of a general horizontal distribution, this idea becomes:(i) de�ne r�XH and r�XV via (14) with D�X given by (23); (ii) put rTHTH = 0; (iii)de�ne rXVTH and rXHTH in such a way that the last four torsion components in theabove table all vanish. This of course means then that the tensor K in (14) is constructedin a rather ad hoc manner.Going back to the special case of a Sode connection, the only di�erence with our analysisof the �rst construction is that now also RT = 0. Since the vertical part of the bracket[�;XH] is determined by the so-called Jacobi endomorphism �, which is essentially thetime-component of the curvature of the non-linear connection (see e.g. [20]), we could sayhere that the construction of Byrnes boils down to choosing the tensor K in (14) as:K(�) = �V H � �(�H)V : (34)12



Observe that from this point of view, i.e. if one regards ther under consideration as beingconstructed from a D on �01�(�E), the selection of K that was made in the constructionof Massa and Pagani was simply K = 0.We have now completed our programme of de�ning the class of Berwald-type connectionsin a su�ciently general way to be able to accomodate the constructions of Crampin etal , Massa and Pagani and Byrnes, and we have discovered the features which distinguishthese constructions in that process. Can we, on the basis of these features, �nd reasonswhy one of these constructions should have preference over the others? If the ideal for aBerwald-type connection would be, as in the autonomous case, to have as much torsionzero as possible, then obviously the last construction would prevail. But it looks a lot lessnatural than the �rst one, for example, which is based on two direct formulas: (24) for thelinear connection on �01�(�E) and (25) for its lift to a connection on J1�. The constructionof Massa and Pagani deviates even further from the idea of maximally vanishing torsion,but we will now argue that it has a di�erent interesting feature which the others fail toproduce. At the start of Section 2, we have emphasized the importance of the naturaldecompositions (7) and (8) of the sections under consideration. Yet, when introducingFinsler-type connections, we required only part of that decomposition to be preservedby the covariant derivatives: see (13) for D and (16) for r. It would seem to be anatural assumption also to expect that these operators in addition would have the propertyD�(hTi) � hTi, respectively r�(hTHi) � hTHi. In this respect, only the construction ofMassa and Pagani would be satisfactory in view of the property r�TH = 0.Going back to our de�nition of the class of Berwald-type connections, it is obvious thatthe selection of a particular representative of the class is a matter of making a choice forD�T (when it concerns a connection on �01�(�E)) or for r�TH (for a connection on J1�).Clearly, there is much to say for giving preference to the simplest possible choice wherethese vector �elds would both be zero. Note, however, that this would indirectly imposea restriction also on the freedom in lifting the connection (the choice of K in (14)) orlowering it (the choice of L in (18)). In the next section, therefore, we will explore someother interesting features of the theory, with an eye on discovering additional elementswhich can tell us whether there is a certain degree of optimality in choosing the simplestpossible representative.4 Further aspects of connections of Finsler and BerwaldtypeRecall that the only restriction so far considered for connections on �01�(�E) was therequirement (13). It can equivalently be expressed as D�IjX(�01) = 0. If a horizontaldistribution is given and we lift the connection to one on J1� via (14), we have seen from(21, 22) that an immediate consequence is: r�PHjX (J1�) = r�J jX(J1�) = r�SjX (J1�) = 0.This should not come as a surprise as all the tensor �elds under consideration here canin fact be constructed out of I via appropriate lifting operations. To be precise, we havePH = IH;H, J = IH;V � IV ;H and S = IH;V . These lifts, introduced in [20], are de�ned as13



follows for a general type (1,1) tensor �eld U along �01:UH;H(XH) = U(X)H; UH;H(XV ) = 0;UH;V (XH) = U(X)V ; UH;V (XV ) = 0;UV ;H(XH) = 0; UV ;H(XV ) = U(X)H;UV ;V (XH) = 0; UV ;V (XV ) = U(X)V : (35)The interest of these operations is, as with the horizontal and vertical lifts of vector �eldsalong �01, that every type (1,1) tensor �eld U on J1� has a unique decomposition in theform U = UH;H1 + UH;V2 + UV ;H3 + UV ;V4 ; (36)where the Ui are tensor �elds along �01 which have the following characteristics: U1 isgeneral, U2(X (�01)) � X (�01), U3(T) = 0 and U4 has the properties of U2 and U3. ForFinsler-type connections, covariant derivatives of a U on J1� should to some extent becomputable from the covariant derivatives of the Ui along �01 which generate it. Ideally,of course, the latter should preserve the characteristic properties of each of the Ui.If no further restrictions are imposed on the freedom in the procedures for raising orlowering the connection (see (14) and (18)), one can prove that for a U which maps X (J1�)into itself (the corresponding Ui in (36) then map X (�01) into itself), r�UjX (J1�) = 0 ifand only if D�UijX (�01) = 0; i = 1; : : : ; 4. But we may hope to discover natural additionalrestrictions as soon as we attempt to extend the scope of such a statement beyond theaction on X (�01). It turns out that the very �rst restriction which imposes itself in thisrespect is to have the following direct link between the covariant derivatives of T and TH:r�TH = (D�T)H: (37)Indeed, we can state the following result which is proved in an appendix.Proposition 2 Under the assumption (37), we have for an arbitrary type (1,1) tensor�eld U on J1�r�U(�) = D�U1(�H)H +D�U2(�H)V +D�U3(�V )H +D�U4(�V )V : (38)The meaning of the extra condition (37) is the following. If D is the connection we startfrom, then the raising procedure (14) with K(�) = D�TH corresponds exactly to the quitenatural expression (25). If r is the starting point, then the tensor L in (18) must bechosen in such a way that L(�)H = r�TH, which is possible only if r�TH is horizontal.Clearly, this is not the case for (our generalized version of) the construction of Byrnes,which means that it is rather unnatural to pursue maximally zero torsion in the time-dependent set-up: one should not insist on having RT = 0. This is hardly surprising asRT, just as R itself is related to the curvature of the non-linear connection one startsfrom.Corollary 2.1 Under the assumption of Proposition 2, we haver�U = 0 , ( D�U1(�H) = 0; D�U2(�H) = 0;D�U3(�V ) = 0; D�U4(�V ) = 0; 8�H; �V : (39)14



The proof is almost immediate. The only point to be careful about is that for the verticalparts in (38) the immediate conclusion is that the component in X (�01) of the correspond-ing vector �eld along �01 must be zero. But U2 and U4 take their values in X (�01) and theproperty (13) of D then ensures that the same is true for their covariant derivatives. 2The �nal point to observe is that the above results do not necessarily imply that the specialfeatures of the tensor �elds Ui are preserved under covariant di�erentiation. One of theconsequences then is that (39) in general is not su�cient to conclude that D�Ui = 0; 8i.As a matter of fact, knowing that U3(T) = 0, we have D�U3(T) = �U3(D�T). It thenfollows that D�U3(�V ) = 0; 8�V implies D�U3 = 0 if and only ifD�T 2 hTi: (40)The same is true for U4. We thus have proved the following result.Corollary 2.2 If (37) holds together with (40), we have r�U = 0 if and only if D�Ui =0; i = 1; : : : ; 4. 2The linear connection (24) on �01�(�E) as constructed in [8] does not have the property(40). The above considerations will prompt us to an improvement of the construction(24) in the next section.Before doing that, however, we want to explore to what extent Crampin's characterizationof Berwald-type connections has an analogue here and could perhaps also shed some lighton ways to select a representative of the equivalence class we introduced with (23). Thenext considerations closely follow those in [6].Let � be a curve in E which has the interval [a; b] in its domain, so � : [a; b] � IR !E; u 7! �(u). Consider the pullback bundle ��(J1�) (over some open interval containing[a; b]) and let ~� denote the corresponding map from ��(J1�) to J1�. One easily veri�esthat tangent vectors to ��(J1�) whose image under the tangent map T ~� is horizontal inT (J1�) constitute a 1-dimensional vector space at each point. Expressed di�erently, thehorizontal distribution on J1� pulls back to a 1-dimensional distribution on ��(J1�); thisdistribution contains a unique vector �eld which projects onto the coordinate vector �eldon IR. In coordinates (u; vi) on ��(J1�), this vector �eld reads:_�H = @@u � ��i0(�(u); v)�00(u) + �ij(�(u); v)�j0(u)� @@vi ; (41)where the prime denotes di�erentiation with respect to u. The notation re
ects the factthat at each point the value of this vector �eld is the horizontal lift of the tangent vectorto � (pulled back to ��(J1�)). The integral curve of _�H through a point (a;w) in ��(J1�)de�nes a section �Hw : u 7! (u; �Hw(u)) of the pullback bundle, with �Hw(a) = w 2 J1�(a)�.In coordinates, writing the section as u 7! (u;X i(u)), the X i are the solutions of thedi�erential equationsX i0 = ��i0(�(u);X)�00(u)� �ij(�(u);X)�j0(u); with X i(a) = wi: (42)By the process of Lie dragging vertical tangent vectors to J1� along the 
ow of _�H, it ispossible to de�ne a (partial) rule of parallel transport as will now be explained. Recall �rst15



that �01 : J1� ! E is an a�ne bundle modelled on V �, the sub-bundle of TE consistingof vertical tangent vectors to E, and that there is a natural vertical lift from Vx� to eachVw�01, the set of vertical tangent vectors to J1� at w 2 (�01)�1(x). Consider an elementva 2 V�(a)� and its vertical lift vaVw to the starting point w of the curve �Hw . Let nowY be a vertical vector �eld along �Hw which takes the initial value vaVw at the point w.Representing Y in coordinates asY j�Hw (u) = Y i(u) @@vi ������Hw (u) ; (43)The requirement L _�HY = 0 uniquely determines Y : its components must be the solutionsof the linear di�erential equationsY i0 = �Y k  @�i0@vk (�(u);X(u))�00(u) + @�ij@vk (�(u);X(u))�j 0(u)! ; with Y i(a) = via:(44)The value of Y for u = b de�nes a vertical vector at �Hw (b) which can be thought of asbeing the vertical lift of a vector vb 2 V�(b)�. So explicitly we putY j�Hw (b) = vbV�Hw (b); (45)and we can call this vector the parallel translate of vaVw along the horizontal curve �Hw . Itdoes not seem to make much sense to call vb the parallel translate of va in the case of anon-linear connection, as the former depends on the choice of the point w through theinitial value for the di�erential equations (42).When the connection is linear, the equations (44) do not depend on X(u) and thus Ybecomes independent of the choice of w. We then have a rule of parallel transport fromva to vb. Observe, however, that we recover in this way only the rule of parallel transportfor elements in the vector spaces on which the a�ne �bres of J1� are modelled. One thenstill has to de�ne parallel transport in the usual way for one speci�c point of J1�(a)� tocomplete the construction for the �bre as an a�ne space.Coming back to the general case of non-linear connections, we can complete the pictureof parallel translation of vertical tangent vectors to J1� by calling two vertical vectors inpoints of the same �bre parallel if they are vertical lifts of the same element of V �. Thisis what will be understood here as having complete parallelism in the �bres. Translatedto sections of the bundles under consideration, the criterion for a linear connection D on�01�(�E) to have this property is that DXV Y = 0 for basic Y 2 X (�01). Still followingclosely the analysis in [6], we can now prove the following result.Proposition 3 Given a general horizontal distribution on J1�, every linear connectionon �01�(�E) with the properties that(i) parallel translation along a horizontal curve in J1� is given by Lie transport, in theway explained above,(ii) parallel translation along vertical curves is given by complete parallelism,16



belongs to the equivalence class of Berwald-type connections associated to that distribution.Proof: We �rst show that any linear D with the property (23) has the properties (i) and(ii). That DXV Y = [XV ; Y H]H = 0 for a basic Y has been argued repeatedly before. Wefurther have D _�HX = (L _�HXV )V and since L _�HXV is vertical, it follows that D _�HX =0, L _�HXV = 0.Let us denote by � the tensor which determines the di�erence between two connectionsD and ~D: �(�;X) = D�X � ~D�X. We will prove next that if D and ~D both have therequired properties, they can only di�er in their action on T, i.e. �(�;X) = 0. Let w beany point of J1�, in the �bre over x say, and consider �rst �w(�w; vx) with an arbitraryvx and a horizontal �w. Take any curve � in E with x = �(a) and _�H(a) = �w. Let Ybe the vertical vector �eld along �Hw de�ned by Lie dragging vxVw in the manner describedbefore. Then, by assumption, D _�HY = ~D _�HY = 0 and thus �w(�w; vx) = 0. Now take anyvertical vector �w and let Y be any basic vector�eld in X (�01) such that Y (x) = vx. ThenD�wY = ~D�wY = 0 and hence �w(�w; vx) = 0. The conclusion now readily follows. 2This analysis con�rms in the �rst place that it is acceptable to treat linear connections on�01�(�E) as equivalent if the only distinction between them comes from a di�erent action onT. Contrary to the �rst part of this section, however, there are seemingly no indicationsin the above characterization of Berwald-type connections, which would point towards anoptimal selection of the action on T.5 The optimal Berwald-type connection and derivedconstructions when a metric tensor �eld along �01is availableWe will now attempt to come to an optimal choice of a representative of the class ofBerwald-type connections associated to an arbitrary horizontal distribution on J1�. Ob-viously, such a choice should combine all the good features we have encountered in dis-cussing the di�erent faces of the theory in the preceding sections. As we have seen, theessence of all such connections (as soon as they are of Finsler type) lies in a connection on�01�(�E). So, in the �rst place, we want an explicit construction formula for a connectionon �01�(�E) which, unlike the explicit formula (24) of [8], does have the additional prop-erty (40) for preserving the natural decomposition (7). Secondly, we want to decide aboutan explicit rule for raising the connection to J1� which will then determine the optimalBerwald-type connection there. Preferably, there should also be an explicit expression forthe inverse of this rule.As explained in Section 3, the idea of the direct construction formula (24) was simplyto copy the known formula (2) from the autonomous framework and see what correctionterms are needed to have the right derivation properties for a connection on �01�(�E). Thisway, one is guaranteed to arrive at a generalization which will give back the original theorywhen restricting to objects which are time-independent. There is, however, another way17



in which such an idea can be carried out: it consists in \copying the formula from theautonomous theory" with X in the place of X and then see what correction is neededto have a connection on �01�(�E) again. This way, one arrives at the following explicitformula: D�X = [PH(�);XV ]V + [PV (�);XH]H + �(hX; dti)T: (46)It is immediately clear that this connection has the property (40) since it is in fact thesimplest representative for which D�T = 0 for all �.There is little doubt about the choice of an optimal lifting procedure now. Indeed, thefurther aspects of Finsler-type connections explored in the preceding section have revealedthat it is advantageous to have the property (37), which will imply here that also r�TH =0. The raising procedure then is just the natural one (25). Looking at the table oftorsion components of Section 3, our optimal Berwald-type connection on J1� will haveB = P = S = PT = 0 and BT = �I. If in particular the horizontal distribution comesfrom a Sode, we know that in addition A = 0 and we will also have here AT = 0. In thecase of a Sode connection therefore, our optimal Berwald-type connection on J1� is justthe linear connection constructed in [15].There remains the question about an explicit formula for the inverse procedure of loweringa connection on J1� to one on �01�(�E). Such a formula of course must have the properties(18) and can simply be taken to beD�X = (r�XH)H; 8X 2 X (�01): (47)As an aside, note that there is another explicit formula by which a r on J1� can belowered to a D on �01�(�E), namelyD�X = (r�XV )V + �(hX; dti)T; 8X 2 X (�01): (48)In the case of our optimal Berwald-type connection on J1�, these two procedures give riseto the same D, thanks to the property r�TH = 0. By contrast, for example, if we were tostart from the connection (24), raise it to J1� via (25) and subsequently come back to aconnection on �01�(�E) via the procedure (48), we would not end up with the connectionwe started from, but rather with the connection (46).Summarizing what preceeds, we come to the following formal de�nition.De�nition The optimal Berwald-type connection on �01�(�E), associated to a given hor-izontal distribution on J1�, is de�ned explicitly by (46). The corresponding Berwald-typeconnection on J1� is produced by (25).Suppose now that we have an additional tool at our disposal, namely a symmetric type(0,2) tensor �eld g along �01, having the property g(T; : ) = 0 and being non-singularwhen restricted to X (�01). We would like then to generalize the concepts (4-5) of theautonomous framework to arrive in the end at suitable generalizations of connections ofthe type of Cartan, Chern-Rund and Hashiguchi. It should be emphasized at this pointthat the context in which we wish to achieve this is far more general than the case ofgeodesic sprays on a Finsler manifold: both the horizontal distribution we start from and18



the tensor �eld g along �01 are completely arbitrary and need not have anything to dowith each other.Let us agree that the main point about a Cartan-type connection is that it should befully metrical and that the other two should be horizontically or vertically metrical only.There is, however, not a unique way of achieving such properties, even though from nowon we agree that the Berwald-type connection we start from is �xed by (46). As we learnfor example from [18] (Chapter X, Theorem 2.4), there is a lot of freedom still in pursuingthe idea of constructing a metrical connection. One way to proceed here, for example,would be to de�ne Cartan-type tensor �elds CV and CH exactly as in equations (4,5), atleast when all arguments are elements of X (�01). This may seem to be the most directway to proceed. We prefer, however, to de�ne CV and CH in this general context in adi�erent way; it will lead to a metrical connection which is more closely related to thework of the Miron school on what they call \generalized Lagrange spaces" (cf. [1, 18]).De�nition The vertical and horizontal Cartan tensor �elds associated to the Berwald-type connection (46) and the metric tensor �eld g along �01, are type (1,2) tensor �eldsCV and CH along �01, determined by the relationsg(CV (X;Y ); Z) = DXV g (Y ;Z) + DY V g (X;Z)�DZV g (X;Y ); (49)g(CH(X;Y ); Z) = DXHg (Y ;Z) + DY Hg (X;Z) �DZHg (X;Z); (50)and by the following restrictions for �xing the remaining time-components: CV ( : ;T) =CV (T; : ) = 0; CH( : ;T) = 0.Thinking then of another linear connection on �01�(�E), D̂ say, which di�ers from theBerwald-type connection by the tensor �eld �, i.e. such that D̂�X � D�X = �(�;X), weintroduce type (1,2) tensor �elds �V and �H along �01, de�ned by�V (Z;X) = �(ZV ;X); �V (T;X) = 0; (51)�H(Z;X) = �(ZH;X): (52)Having optimalized the freedom in the class of Berwald-type connections by makingD�T = 0, we will do the same for the derived connections related to g which we will nowdiscuss. That is to say, we choose to have also D̂�T = 0, which implies that �V (Z;T) = 0and �H(Z;T) = 0 (but �H(T;X) need not be zero). This selection makes the follow-ing de�nitions perfectly compatible with the properties of the tensor �elds CV and CHintroduced above.De�nition The Cartan-type connection on �01�(�E), associated to the given metric tensor�eld g along �01, deviates from the Berwald-type connection by�V = 12CV ; �H = 12CH: (53)The Hashiguchi-type connection is likewise de�ned by�V = 12CV ; �H = 0: (54)Finally, the connection of Chern-Rund type is determined by�V = 0; �H = 12CH: (55)19



Proposition 4 The Cartan-type connection is metrical in the sense that D̂�g = 0; 8�.For the connection of Hashiguchi type we have D̂XV g = 0, while for the connection ofChern-Rund type: D̂XHg = 0.Proof: Let us see what the meaning is of, for example, the assumption �H = 12CH. Wehave D̂XHg (Y ;Z) = D̂XH (g(Y ;Z))� g(D̂XHY ;Z)� g(Y ; D̂XHZ)= DXH (g(Y ;Z))� g(DXHY ;Z)� g(Y ;DXHZ)� g(�H(X;Y ); Z)� g(Y ; �H(X;Z))= DXHg (Y ;Z)� 12 �g(CH(X;Y ); Z) + g(Y ;CH(X;Z)� ;and all terms on the right cancel out when the de�ning relation (50) is used to replace theterms involving CH. D̂XHg further inherits the property of g of vanishing whenever oneof the arguments is T, therefore D̂XHg = 0. The meaning of the assumption �V = 12CV issimilar. The statements of the proposition now immediately follow. 2Needless to say, as in the autonomous case, making the connection more metrical has thee�ect of having less of the torsion components equal to zero. Without going into the detailshere, it is worth mentioning that the advantage of taking (49,50) as de�ning relations forthe tensors CV and CH (rather than a direct transcription of (4,5) which would have onlythe �rst term in the right-hand side) is that more of the torsion components are still zero.This is similar to the result for autonomous systems stated as Theorem 2.1 in Chapter Xof [18].An interesting special case occurs when there is a direct link between the horizontaldistribution and the tensor �eld g, in the following sense. Consider a general (regular)time-dependent Lagrangian system; let the horizontal distribution be the one coming fromthe Euler-Lagrange equations and take (gij(t; x; v)) to be the Hessian of the LagrangianL. Then the second and third term in the right-hand side of the de�ning relations (49,50)cancel each other in view of the Helmholtz conditions satis�ed by the tensor �eld g. More-over, since in such a case also D�g = 0, we will have CH(T; : ) = 0. The e�ect of thislast property is that all four connections (Berwald, Cartan, Hashiguchi and Chern-Rund)then share the same \dynamical covariant derivative operator" D�. This feature was em-phasized (for autonomous systems) in Crampin's recent discussion of the second variationformula [7], because the dynamical covariant derivative and the Jacobi endomorphism isall one needs in such an analysis. Note, however, that if we are not in the Lagrangiancase, D� and D̂� may be di�erent; in fact, the necessary and su�cient condition for themto be identical is that DTHg = 0.6 Coordinate expressionsWe wish to make the di�erent levels of generality and the diferent types of connectionswhich have been considered in the previous section a bit more perceptible by presenting20



a survey now of the relevant coordinate expressions in each case. This will make it easierfor the reader to compare our results with related features in, for example, the books ofMiron and Anastasiei [18] and Antonelli et al [3], where the theory is often developedthrough coordinate calculations.At the �rst level, all that is given is an arbitrary horizontal distribution and we can simplyexpress the corresponding Berwald-type connection from (46). If in addition a metrictensor �eld g along �01 is given, we list the coordinate expressions for the tensor �elds CVand CH de�ned by (49,50) and the connection coe�cients for the resulting Cartan-typeconnection. For a second stage, we look at the special interest case where the horizontaldistribution comes from an arbitrary Sode � on J1�. Finally, we have a closer look atthe particular case when both the Sode � and the tensor �eld g are determined by aregular Lagrangian function L.So, to begin with, consider an arbitrary horizontal distribution, locally spanned by vector�elds H0 = @@t � �j0(t; x; v) @@vj ; Hi = @@xi � �ji (t; x; v) @@vj : (56)We have TH = @@t + vi @@xi � ��j0 + vi�ji� @@vj : (57)Using shorthand notations already introduced in Section 3, a straightforward applica-tion of the de�ning relation (46) shows that the Berwald-type connection on �01�(�E) isdetermined by DTH @@xj = �kj @@xk ; DHi @@xj = Vj(�ki ) @@xk ; DVi @@xj = 0; (58)where �kj = Vj(�k0) + vlVj(�lk);and of course DTHT = DHiT = DViT = 0. Since we will have, by construction, D�T = 0for all connections which follow, we will not repeat these zero-components below.Assume next that a symmetric tensor �eld of the form g = gij(t; x; v) �i
�j is given. Then,it follows from (49) that the vertical Cartan tensor CV is of the form CV = CV kij �i 
 �j 
(@=@xk), with CV kij = gkl�Vi(glj) + Vj(gli)� Vl(gij)�: (59)The horizontal Cartan tensor, on the other hand, has a non-zero dt-component; it is ofthe form CH = CHkij �i 
 �j 
 @@xk + CHk0i dt
 �i 
 @@xk ;with CHk0i = ��ki + gkl�TH(gli)� �ml gmi�; (60)CHkij = ��Vi(�kj ) + Vj(�ki )�+ gkl�Hi(glj) +Hj(gli)�Hl(gij)�+ gkl�gim(Vj(�ml )� Vl(�mj )) + gjm(Vi(�ml )� Vl(�mi ))�: (61)21



As a result, the Cartan-type connection along �01, the way it is intrinsically de�ned by(53), is determined locally by the following relations:D̂TH @@xj = h12�kj + 12gkl (TH(glj)� �ml gmj)i @@xk ; (62)D̂Hi @@xj = h12�Vj(�ki )� Vi(�kj )�+ 12gkl�Hi(glj) +Hj(gli)�Hl(gij)�+ gkl�gim(Vj(�ml )� Vl(�mj )) + gjm(Vi(�ml ) � Vl(�mi ))�i @@xk ; (63)D̂Vi @@xj = 12gkl�Vi(glj) + Vj(gli)� Vl(gij)� @@xk : (64)We leave it as an exercise for the reader to write down in the same way the local deter-mining equations for the connections of Hashiguchi and of Chern-Rund type, as de�nedby (54) and (55) respectively.Coming now to the second stage, let the horizontal distribution be the one canonicallyassociated to a given Sode � = @@t + vi @@xi + f i(t; x; v) @@vi: (65)This means that the coe�cients in (56) are given by�ji = �12 @f j@vi ; �j0 = �f j � vk�jk; (66)and that TH = �. The two conditions which essentially determine whether a non-linearconnection is a Sode-connection, have already been mentioned in coordinates (see (29)and (33)). They read: �ij = �ij and Vk(�ij) = Vj(�ik). The �rst of these has an immediatee�ect on the coe�cients in the equations for the associated Berwald-type connection,which now become:D� @@xj = �kj @@xk ; DHi @@xj = Vj(�ki ) @@xk ; DVi @@xj = 0: (67)The second results in obvious cancellations in the horizontal covariant derivative of theCartan connection (still for an arbitrary metric tensor �eld g along �01). We get:D̂� @@xj = h12�kj + 12gkl (�(glj)� �ml gmj)i @@xk ; (68)D̂Hi @@xj = 12gkl�Hi(glj) +Hj(gli)�Hl(gij)� @@xk ; (69)D̂Vi @@xj = 12gkl�Vi(glj) + Vj(gli)� Vl(gij)� @@xk : (70)Obviously, the elegance of this result is that both the horizontal and vertical covariantderivative resemble the classical formula for the Levi-Civita connection.Consider now �nally the particular case of a Lagrangian system. That is to say, letL(t; x; v) be a given regular Lagrangian function on J1�; then, there is an intrinsically22



de�ned metric tensor �eld g along �01, whose coe�cients are gij = ViVj(L). Let further �denote the Sode �eld governing the Euler-Lagrange equations, i.e. take the f i in (65) tobe f i = gij  @L@xj � vk @2L@xk@vj � @2L@t@vj! : (71)The Berwald-type connection remains determined by (67), but we can express the relevantcoe�cients �kj and Vj(�ki ) here in terms of the Lagrangian L. One can verify that:�kj = 12gkl  �(glj) + @2L@vl@xj � @2L@xl@vj! ; (72)Vj(�ki ) = 12gkl��Vj(gli) +Hj(gli) +Hi(glj)�Hl(gij)� �ml Vm(gij)� �mj Vm(gli)� �mi Vm(glj)�: (73)Turning then to the Cartan-type connection for this case, the following simpli�cations ofthe previous situation can be veri�ed. First of all, we obviously have Vj(gli)�Vl(gij) = 0.Furthermore, the property D�g = 0 means in coordinates that �(glj) = �ml gmj + �mj gml,from which it easily follows that the right-hand side in (68) is equal to �kj (i.e. is the sameas for the Berwald connection, as argued already in the previous section). As a result,the Cartan-type connection for the Lagrangian case is determined byD̂� @@xj = �kj @@xk ; (74)D̂Hi @@xj = 12gkl�Hi(glj) +Hj(gli)�Hl(gij)� @@xk ; (75)D̂Vi @@xj = 12gklVi(glj) @@xk : (76)To �nish this summary of coordinate expressions, let us repeat that one should be a littlecautious in comparing our expressions with those in [18] for time-dependent Lagrangians.The point is that the set-up is di�erent: due to a strict separation between time andspace variables in [18], some of the concepts developed in that work loose there intrinsicmeaning within the jet bundle approach which we have adopted.7 From covariant derivatives to exterior derivativesand the classi�cation of derivationsIn [20] a systematic study was made of the theory and classi�cation of derivations ofscalar and vector-valued forms along �01. A classi�cation of such derivations, in the lineof the standard work of Fr�olicher and Nijenhuis [9], makes use of a vertical and horizontalexterior derivative. For the horizontal derivative one needs a horizontal distribution,while the vertical derivative is canonically available from the intrinsic structure of J1�.Yet, not surprisingly, there is not just one canonically de�ned vertical exterior derivative:one encounters a certain freedom in �xing the time-component. Scalar di�erential forms23



along �01 can be identi�ed with semi-basic forms on J1� and there is a natural derivationof degree 1 on J1� which preserves semi-basic forms, namely (in the notations of [9])dS = [iS; d]. To maintain the analogy with the autonomous theory, the authors in [20]decided to model their vertical exterior derivative dV on dS , even though this derivationdoes not have the coboundary property dV 2 = 0. The authors were well aware of theavailability of another vertical derivation which does have that property. But from thepoint of view of setting up the theory of derivations, this other one comes somehow in thesecond place as it can be derived from dV : it is the derivation dVI = [iI; dV ]. Much laterin the story of classifying derivations, one encounters vertical and horizontal covariantderivatives which appear to coincide with the ones coming from the linear connection(24) in [8].The purpose of this �nal section is to approach this matter from the other end. That isto say, by way of application of the newly acquired insights, we wish to explore to whatextent the optimal choice of a Berwald-type connection adds something to the debateabout the best possible choice of a vertical exterior derivative.Let us �rst discuss some generalities about the way to construct an exterior derivative froma covariant derivative. Suppose a covariant derivative D? on �01�(�E) is given, which hasbeen extended by duality to a (self-dual) degree 0 derivation on tensor �elds along �01 (thepresent discussion, by the way, applies just as well to covariant derivatives on a generalmanifold). Putting [X;Y ]? = D?XY �D?YX, we have a bilinear (over IR) skew-symmetricoperator on X (�01) which satis�es a Leibniz rule, namely [FX; Y ]? = F [X;Y ]?�(D?Y F )X,but which need not have the Jacobi identity property. Any other bracket operator withthese properties di�ers from the �rst one by a vector-valued 2-form (torsion form) along�01. In other words, given D?, the most general skew-symmetric bracket operator with theabove Leibniz property is of the form[X;Y ]? = D?XY �D?YX + T ?(X;Y ); (77)where T ? is any element of V 2(�01) (the C1(J1�)-module of vector-valued 2-forms along�01). Let now ! be a scalar k-form along �01 (notation: ! 2 Vk(�01)) or a vector-valuedk-form (then ! 2 V k(�01)).Proposition 5 The operator d?, de�ned byd?!(X0; : : : ;Xk) = kXi=0(�1)iD?Xi(!(X0; : : : ; X̂i; : : : ;Xk))+ X0�i<j�k(�1)i+j!([Xi;Xj]?;X0; : : : ; X̂i; : : : ; X̂j ; : : : ;Xk); (78)is a derivation of degree 1 on V(�01) and V (�01).Proof: From the de�ning relation, it follows that the action of d? on functions F onJ1�, 1-forms � and vector �elds X along �01 is given by: d?F (X) = D?XF , d?�(X;Y ) =D?X(�(Y )) � D?Y (�(X)) � �([X;Y ]?), d?X(Y ) = D?YX. It is easy to verify that this24



restricted action has the necessary properties for a derivation, i.e. we have d?(FG) =Fd?G + Gd?F , d?(F�) = d?F ^ � + Fd?� and d?(FX) = F d?X + d?F ^ X. It followsthat there is a unique derivation d̂? wich coincides with d? when restricted to functions,1-forms and vector �elds. De�ning d̂?X = [iX; d̂?] as usual, one can create another self-dualdegree zero derivation (d̂?X)� which is obtained from d̂?X jV1(�01) by imposing the dualityrule h(d̂?X)�Y; �i = d̂?X(hY; �i) � hY; d̂?X�i8X;Y 2 X (�01) and � 2 V1(�01). It was proved in [13] (see Prop. 3.3) that d̂? then has thepropertyd̂?!(X0; : : : ;Xk) = kXi=0(�1)id̂?Xi(!(X0; : : : ; X̂i; : : : ;Xk))+ X0�i<j�k(�1)i+j!((d̂?Xi)�(Xj);X0; : : : ; X̂i; : : : ; X̂j; : : :Xk):One easily computes, however, that (d̂?X)�Y = [X;Y ]?. Comparison of the above resultwith the de�ning relation (78) then shows that d̂? � d? and the result follows. 2We come back to the actual situation now, where we have two explicitly de�ned covariantderivatives on �01�(�E) which are of Berwald type. We write the original one (24) forthis section as D and the newly introduced one (46) as ~D. We make a further notationalconvention which has the advantage of focussing entirely on operations which involve onlytensorial objects along the projection: if � 2 X (J1�) is itself the horizontal or vertical liftof some vector �eld Y 2 X (�01), we shall writeDHYX for DY HX; and likewise DVYX for DY VX: (79)Such notations will make it easier to relate the discussion to the calculus of derivationsdeveloped in [12, 13, 20]. Similar notations are used for ~D.The di�erence between the two Berwald-type connections is given by D�X � ~D�X =hX; dti�V . This translates into the following relations between horizontal and verticalderivatives: DHYX = ~DHYX; (80)DVYX = ~DVYX + hX; dtiY : (81)The idea is now to let the ? of the above general considerations play the role of H and V .Clearly, if we make the same choice of torsion forms for the brackets coming from bothconnections and subsequently use (78) to construct exterior derivatives, we will obtainthe same horizontal exterior derivatives dH and ~dH, but the vertical exterior derivativeswill be di�erent.From the general classi�cation results of self-dual derivations in [20], we know that thedi�erence between DVY and ~DVY is a so-called derivation of type ��. Such a derivation isof algebraic type and consists of two parts. For a derivation of degree r, for example, wewrite �Q = aQ � iQ, where Q is a type (1,1) tensor-valued r-form along �01; aQ vanishes25



on scalar forms, while iA vanishes on vector �elds. Speci�cally now, we derive from (81)that DVY = ~DVY + �A; with A = dt
 Y : (82)It follows that for the dual action on 1-formsDVY � = ~DVY � � iA� = ~DVY �� hY ; �idt:Since the vertical bracket in [20] had no torsion, we take ~T V = 0 as well. We then havedV�(X;Y ) = DVX�(Y )�DVY �(X)= ~DVX�(Y )� ~DVY �(X)� hX;�ihY; dti + hY ; �ihX; dti;so that dV� = ~dV�+ idt^I�:Similarly, for the action on vector �elds we �nddVX = ~dVX + aI
dtX; where aI
dtX = hX; dti I:In conclusion, the di�erence between the two vertical derivatives is expressed by~dV = dV � idt^I � aI
dt = dVI � aI
dt: (83)It may come a bit as a surprise that ~dV is not the same as dVI . One can verify, however,that just like dVI , ~dV has the coboundary property ~dV 2 = 0. Indeed, on scalar forms thisis obvious since the a�-term then does not contribute. To complete the argument, sinceboth terms in the right-hand side of (83) manifestly vanish on @=@xi, it then su�ces tocheck that ~dV 2T = 0. This follows easily from the fact that dVI T = aI
dtT = I and thus~dVT = 0. In coordinates, the action of the new ~dV on the local basis of 1-forms and vector�elds is given by ~dV �i = 0; ~dV dt = 0; ~dV @@xi = 0; ~dVT = 0:It would perhaps be worthwhile to enter more deeply into the question of the e�ect ofselecting ~dV as the fundamental vertical exterior derivative on the classi�cation theory ofderivations along �01. This, of course, is beyond the scope of the present paper. In a sense,one expects that the in
uence of such a change will be minor as long as one deals withforms acting on X (�01). We �nish our discussion by deriving a couple of properties whichexpress this expectation in more precise terms.Let ! be an element of Vk(�01). Applying the de�nition of derivations of type i� (cf. [12]),we �nd thatidt^I! (X1; : : : ;Xk+1) =12!(k � 1)! X�2Sk+1(sign�)! �(dt ^ I)(X�(1);X�(2));X�(3); : : : ;X�(k+1)� = 0:26



Since derivations of type a� act trivially on scalar forms, we can conclude from this that~dV! (X1; : : : ;Xk+1) = dV! (X1; : : : ;Xk+1):Secondly, for L 2 V k(�01) we haveaI
dtL (X1; : : : ;Xk+1) = 1k! X�2Sk+1(sign �)X�(1) �hL(X�(2); : : : ;X�(k+1)); dti� ;from which it follows that if L takes values in X (�01), the actions of ~dV and dV coincidewhen the resulting forms are restricted to X (�01) again.Appendix: Proof of Proposition 2The idea is to compute r�U(�) for arbitrary � and � and U in its decomposition (36).At the start, we only assume that r comes via (14) from some D with property (13); wewant to �nd out which further restrictions (if any) impose themselves in a natural wayfor obtaining a closed form expression such as (38).Let us start by looking in detail at the term r�UV ;H3 (�), knowing that U3 vanishes on T.We haver�UV ;H3 (�) = r� �U3(�V )H�� UV ;H3 �(D��H)H + (D��V )V + �(h�; dti)TH + h�; dtir�TH�= r� �U3(�V )H + hU3(�V ); dtiTH�� U3(D��V )H � h�; dtiUV ;H3 (r�TH)= �D�(U3(�V ))�H + � (hU3(�V ); dti)TH + hU3(�V ); dtir�TH� U3(D��V )H � h�; dtiUV ;H3 (r�TH)= (D�(U3(�V )))H � hU3(�V ); dti(D�T)H + hU3(�V ); dtir�TH� U3(D��V )H � h�; dtiUV ;H3 (r�TH)= (D�U3(�V ))H + hU3(�V ); dti(r�TH � (D�T)H)� h�; dtiUV ;H3 (r�TH):Under the condition (37), this reduces tor�UV ;H3 (�) = (D�U3(�V ))H:The computation for U4 is quite similar. Since U4 takes values in X (�01), there is in facta further simpli�cation, we �nd:r�UV ;V4 (�) = (D�U4(�V ))V � h�; dtiUV ;V4 (r�TH);from which it follows under the same assumption (37) thatr�UV ;V4 (�) = (D�U4(�V ))V :27
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