
Di�erent forms of separability of second-orderequationsW. SarletDepartment of Mathematical Physics and AstronomyGhent University, Krijgslaan 281, B-9000 Ghent, Belgium1 Introduction: a classical exampleBy way of introducing the subject of this contribution, consider the motion of a chargedparticle in a constant electromagnetic �eld, for which the governing force is the Lorentzforce F = e (E+v�B). As is customarily done in most textbooks, we teach our studentsthat a clever way to simplify the problem of integrating the equations of motion is tochoose e.g. the z-axis of an inertial frame of reference along the constant magnetic �eldB. This way, the di�erential equations to be solved are of the formm�x = eEx + e _yB;m�y = eEy � e _xB;m�z = eEz;and actually have two characteristic features (apart from being linear) which greatlysimplify the problem. Indeed, �rst of all, the equation for z is decoupled from the restof the system and secondly, the remaining two equations happen to combine into a singlecomplex equation for � = x+ iy.Suppose, however, that no special reference frame would be selected from the outset. Theequations of motion then would be of the form�q1 = a1 + b3 _q2 � b2 _q3;�q2 = a2 + b1 _q3 � b3 _q1; (1)�q3 = a3 + b2 _q1 � b1 _q2;for some constants ai; bi. The question we want to address is the following: if a system ofdi�erential equations is given in a form such as (1), how would one �gure out that specialcoordinates exist which produce decoupling of the equations in the above sense?There are of course two aspects which a general approach to such a question must beable to tackle, if it wants to be of any practical value. Firstly, concerning the existenceproblem, the practical issue is whether we can test by means of procedures on the given1



data whether suitable coordinates exist. Secondly, if they exist, we should be able to�gure out how to construct them.We shall show in what follows that a quite general problem which encompasses the oneintroduced above, is that of complete decoupling of a general system of second-order ordi-nary di�erential equations. This problem was �rst addressed by Mart��nez et al in [1]. Itssolution requires knowing about the di�erential geometry related to second-order equa-tions. In particular, the tests for the existence of suitable decoupling coordinates turnout to be of an algebraic nature and involve certain intrinsically de�ned endomorphismsassociated to the given system. Diagonalizability of the corresponding matrices is a keyissue in the theory. In [1], where the focus was on complete decoupling into individualequations, we were led to assume that all eigenfunctions of the matrices under consid-eration were real. In recent work, in collaboration with Gerard Thompson [2], we havediscovered how to cope also with the occurrence of complex eigenfunctions. The type ofmaximal decoupling which corresponds to such cases is exactly of the kind that we cansee in the example of charged particle motion. Before presenting a brief survey of thetheory here, we shall illustrate on this example what the practical implementation of thetheory does.2 The theory at workThe �rst important object to analyse in searching for maximal decoupling, is a type (1,1)tensor �eld �, called the Jacobi endomorphism. Its matrix representation, in the case ofsystem (1), is given by � = 14 0B@ b22 + b23 �b1b2 �b1b3�b1b2 b21 + b23 �b2b3�b1b3 �b2b3 b21 + b22 1CAand happens to be symmetric. The test properties to be satis�ed are that � must bealgebraically diagonalizable (which is obviously the case here), and that some \di�erentialconcomitants" of � (see later) must vanish. Also these are easy to verify for the exampleat hand. The theory then guarantees simultaneous integrability of all eigendistributions of�, which in turn means that � is actually diagonalizable via a coordinate transformation.Here, � has the double eigenvalue �1 = �2 = 14b2 (with b2 = P b2i ), and �3 = 0. Aneigenvector for �3 is the vector b; all vectors orthogonal to b are eigenvectors for �1 = �2.Let us choose, for example, a matrix of eigenvectors which are orthonormal as follows(with l = qb21 + b22) U = 1bl 0B@ b2b b1b3 b1l�b1b b2b3 b2l0 �l2 b3l 1CA 2 SO(3):The coordinate transformation q = U Q diagonalizes � and in fact transforms the givensystem into �Q1 = b _Q2 + 1l (a1b2 � a2b1);2



�Q2 = �b _Q1 + 1bl h(a1b1 + a2b2)b3 � l2a3i ; (2)�Q3 = 1bX aibi;which is seen to have the desired features of decoupling!The choice of this transformation matrix U , however, is slightly misleading! It is a coinci-dence here that � has properties which suggest to select eigenvectors in a special way andthere is no reason to expect from our theory that passing to the Q-variables will achievethe maximal features of decoupling. Assume, for example, that we do not insist on nor-malizing the eigenvectors and make the following alternative choice of a transformationmatrix: ~U = 0B@ b2 b1b3 b1�b1 b2b3 b20 �(b21 + b22) b3 1CA :Then, the transformation q = ~U ~Q gives rise to the system�~Q1 = b2 _~Q2 + 1l2 (a1b2 � a2b1); nonumber (3)�~Q2 = � _~Q1 + 1b2l2 h(a1b1 + a2b2)b3 � l2a3i ; (4)�~Q3 = 1b2 X aibi;and the �rst two equations this time do not combine into a single complex equation! Whatthen should be done next?The answer can be found in the analysis of another tensor with intrinsic meaning: theso-called tension �eld t. In the original q-coordinates, t has the matrix representationt = 12 0B@ 0 �b3 b2b3 0 �b1�b2 b1 0 1CA ;whereas in the new variables ~Q, we have~� = 14 0B@ b2 0 00 b2 00 0 0 1CA ~t = 12 0B@ 0 �b2 01 0 00 0 0 1CA :The problem is that the transition q! ~Q has not, in some sense, simultaneously diagonal-ized � and t . Our theory in fact guarantees now that there exists another transformationwhich will bring t in real Jordan normal form. To construct it, we have to integrate thedistributions spanned by the real and imaginary parts of the complex eigenvectors of t.If we do so, we will be led to consider the further transformation ~Q1 = b Q̂2; ~Q2 = Q̂1. Ithas the e�ect of transforming equations (4) into the form�̂Q1 = �b _̂Q2 + 1b2l2 h(a1b1 + a2b2)b3 � l2a3i ;3



; �̂Q2 = b _̂Q1 + 1bl2 (a1b2 � a2b1); (5)�̂Q3 = 1b2 X aibi;which has all the desired characteristics even though (5) is not the same as our �rst luckydraw (2).Remarks: t has to be looked at only when � has multiple eigenvalues. In this example,� has real eigenvalues and the complex nature of the �nal decoupling in fact comes fromthe complex eigenvalues of t.3 Sketch of the theoryA. GeneralitiesAn autonomous system of second-order di�erential equations (Sode for short)�qi = f i(q; _q) i = 1; : : : ; n; (6)is governed by a vector �eld � = vi @@qi + f i(q; v) @@vi (7)on the tangent bundle TM of a manifold M . It de�nes a horizontal distribution on TM ,locally spanned by the vector �eldsHi = @@qi � �ji @@vj ; where �ji = �12 @f j@vi : (8)This \non-linear connection" on � : TM ! M in turn de�nes a linear connection onthe pull-back bundle � �TM ! TM . [The linear connection under consideration actuallyis one of \Berwald type" and Berwald-type connections are well known in the contextof Finsler geometry.] Our Sode-Berwald-type connection essentially has three con-stituents: a horizontal and vertical covariant derivative and what we call the dynamicalcovariant derivative r. These are degree zero derivations of (vector-valued) forms alongthe projection � : TM !M .To �x some notations and basic formulas, we write X (� ) for the set of vector �elds along� . Locally, an element X 2 X (� ) is of the formX = X i(q; v) @@qi : (9)Such an X can be horizontally and vertically lifted to vector �elds XH and XV on TM ,de�ned by XH = X iHi; XV = X i Vi = X i @@vi : (10)4



A concise way to see the covariant derivative operators DVX , DHX and r come into thepicture is to look at the identities (see for example [1])[XH; Y V ] = (DHXY )V � (DVYX)H (11)[�;XH] = (rX)H + �(X)V ; (12)which should be understood as follows. A vector �eld such as [XH; Y V ] on TM has aunique decomposition into a vertical and horizontal part, each of which is a correspondinglift of a certain vector �eld along � . By looking at the way the latter are related to theoriginal X;Y 2 X (� ), one discovers the action of the horizontal covariant derivativeoperators on the C1(TM)-module X (� ). In the same way, the second relation identi�esthe dynamical covariant derivative in its horizontal part, whereas its vertical part turns outto depend linearly on X and this way de�nes the Jacobi endomorphism �. In coordinates,with F 2 C1(TM), we haveDVX(F ) = XV (F ); DHX = XH(F ); r(F ) = �(F ); (13)DVX @@qi = 0; DHX @@qi = XV (�ji ) @@qj ; r @@qi = �ji @@qj ; (14)whereas the action on 1-forms along � then follows by duality. The Jacobi endomorphism�, a type (1,1) tensor �eld along � , has components�ij = �@f i@qj � �ik�kj � �(�ij): (15)It is of interest to observe that � completely determines the curvature R of the non-linearconnection. Indeed, we have:3R(X;Y ) = DVX�(Y )�DVY�(X) = dV�(X;Y ) = !: (16)The tension t is the type (1,1) tensor �eld along � , with componentstij = �ij � vk@�ij@vk : (17)One way of de�ning it intrinsically is ast = �dHT (or �dVrT); (18)where T = vi@=@qi is the canonical vector �eld along � and the horizontal exterior deriva-tive dH can be de�ned in a way which is similar to the dV in (16). The way the tensor �elds� and t are introduced here, as type (1,1) tensor �elds along � , is taken from the studyof derivations of forms along � in [3, 4]. We refer to these papers for a more thoroughdiscussion of their properties. Note, however, that coordinate expressions of the sametensor �elds were obtained, through the method of equivalence, as early as in the workof Kosambi [5], Cartan [6] and Chern [7], to which other speakers in the same session arereferring. 5



For a general type (1,1) tensor 	 along � , we de�ne the `concomitant' CV	 (a type (1,2)tensor �eld along � ) by CV	(X;Y ) = [DVX	;	](Y ): (19)We are now ready to describe the main results about separability of Sodes.B. Complete decoupling of a second-order systemFor a good picture of the meaning of all assumptions involved in the main theorem aboutdecoupling, we will present the path to the �nal result in three distinct stages.(H1) Assume that � is diagonalizable and satis�es the conditions CV� = 0 and [r�;�] = 0.Theorem 1 Under the hypothesis (H1), if all eigenfunctions of � are distinct , thereexist coordinates with respect to which the equations decouple into scalar equations (onefor each real eigenfunction) and pairs of equations which are the real and imaginary partsof a complex equation (one for each pair of complex conjugate eigenfunctions).Note that the construction of appropriate separation coordinates boils down to integratingdistributions which are Frobenius integrable. It is further worthwhile to observe that itfollows from the assumptions in Theorem 1 that the curvature is zero.When � has degenerate eigenvalues (real or complex), the situation becomes more com-plicated and we should start by imposing zero curvature as additional hypothesis:(H2) Assume that R = 0.The immediate result from this extra assumption is that degenerate eigenvalues of �necessarily must be constant. Without any further assumptions at this stage, one canshow that at least a form of partial decoupling will apply:� for each real eigenvalue with multiplicity k, a k-dimensional subsystem will decouplefrom the rest in suitable variables;� for each complex eigenvalue with multiplicity k, there will be a corresponding com-plex subsystem of dimension 2k, which is not coupled with the rest.If we then insist on having further decoupling inside each of these subsystems, it is quiteclear that � will not have any further insight to o�er, so that we have to turn to anothersource of information which is the tension!(H3) Assume t is diagonalizable and CVt = 0.Theorem 2 Under the assumptions (H1), (H2) and (H3), there exist coordinates whichwill maximally decouple the given Sode into a number of individual equations and anumber of pairs of complex equations. 6



The conditions for maximal decoupling are necessary and su�cient. Also, pairs of complexequations will occur as soon as either � or t have complex eigenvalues.Before discussing some features of the proof of these results, it is worth mentioning thefollowing intrinsic characterization of complex Sodes: a second-order vector �eld �on the tangent bundle of an even dimensional manifold M is complex, if M admits anintegrable almost complex structure J , such thatrJ = 0; and [�; J ] = 0: (20)In the case of pairs of complex eigenvalues (�; �) of �, if we denote a basis of corre-sponding eigenvectors by fZA; ZAg, with ZA = VA + iWA, let us agree that the term`eigendistribution' in the enumeration which follows refers to sp fVA;WAg.� The assumption CV� = 0 entails that all eigendistributions of � are DV -invariant,which means that they are spanned by vector �elds on M .� The r-invariance of the eigendistributions which follows from the commutation of� and r� then further guarantees that the eigendistributions are simultaneouslyintegrable.� Putting J(VA) = WA; J(WA) = �VA, we de�ne an almost complex structurefor each block coming from complex eigenfunctions and prove that J is integrable,i.e. that its Nijenhuis torsion NJ is zero. As a result, the Newlander-Nirenbergtheorem applies and gives rise to holomorphic coordinates for each almost complexsubmanifold.� A further consequence of the condition [r�;�] = 0 is that the connection coe�cients�ij , relating to di�erent eigendistributions are zero. This leads to decoupling w.r.t.velocity coordinates between the distinct blocks and Cauchy-Riemann conditionsw.r.t. velocity variables inside each block coming from complex eigenfunctions.� When the eigenvalues are non-degenerate, the transformation of � to real Jordanform gives rise to decoupling w.r.t. position variables as well, plus the remainingCauchy-Riemann conditions for the complex parts.� Whenever an eigenvalue is degenerate, R = 0 guarantees that it is constant, so weare down to studying systems for which either � = � I or � = � I � � J (with � or�; � constant). At this point, the tension comes into play.� The assumptions on t now lead to a similar integrability analysis for its `eigendistri-butions'. This involves a number of extra technicalities when also t has degenerateeigenvalues, upon which we will not further dwell here.7



4 Some further examplesLet us �rst return to the example of charged particle motion and put the theory to a �naltest now by ignoring all physical insight and routinely apply what the above describedprocedures dictate.Starting from the original system (1), having obtained the eigenvalues of �, we now makethe simplest possible choice of eigenvectors, leading to the transformation matrixU = 0B@ 0 �b3 b1b3 0 b2�b2 b1 b3 1CA :The coordinate transformation q = UQ produces the new system:�Q1 = �b1b2b3 _Q1 + b21 + b23b3 _Q2 + � � ��Q2 = b1b2b3 _Q2 � b22 + b23b3 _Q1 + � � � (21)�Q3 = 1b2 X aibi;where the dots refer to constant terms which are quite irrelevant for our discussion. We ob-serve that everything the theory predicts holds true: the equation for the non-degenerateeigenvalue is decoupled from the rest, but there is no reason why anything further could besaid about the �rst two equations. We observe that they are NOT the real and imaginaryparts of a complex equation.In the Q-variables, � becomes diagonal as it should, butt = 12b3 0B@ b1b2 �(b21 + b23) 0b22 + b23 �b1b2 00 0 0 1CA :The eigenvalues of t are �12ib. The real and imaginary parts of a set of correspondingbasic eigenvectors dictate the further transformation Q = ~U ~Q, with~U = 0B@ b21 + b23 0 0b1b2 b3b 00 0 1 1CA :The corresponding system in ~Q-variables now becomes:�~Q1 = b _~Q2 + a2(b21 + b23)� b2(a1b1 + a3b3)b3b2(b21 + b23) ;�~Q2 = �b _~Q1 + a3b1 � a1b3b3b(b21 + b23) ; (22)�~Q3 = 1b2 X aibi; 8



which has all the features predicted by the theory indeed!Let us conclude by giving also a couple of examples of non-linear systems, taken from [2].Consider the system �q1 = a1 q1q22 + b1 q13�q2 = a2 q12q2 + b2 q23Excluding the trivial case a1 = a2 = 0 (for which the system would be decoupled fromthe outset), we have R = 0 and CV� = 0, while [r�;�] = 0 requires thata1 = 3 b2; a2 = 3 b1:If b1b2 > 0, � has real and distinct eigenvalues. The transformationQ1 = �b1 q1 +qb1b2 q2Q2 = qb1b2 q1 + b2 q2reduces the system to �Q1 = Q13=b1 ; �Q2 = Q23=b2 :If b1b2 < 0, � has complex eigenvalues and the transformationQ1 = �b1 q1Q2 = q�b1b2 q2will result in the complex equation�z = z3=b1; with z = Q1 + iQ2:Finally, consider the system�q1 = _q1 + _q2 � q1 � 12q2;�q2 = _q2 � 4 _q1 � q2 + 2q1;�q3 = 12( _q1 + _q3)2 + _q3 � _q2 � q1 � 2q3 + 12q2:Certain numerical factors in these equations are chosen already in such a way that allconditions on � are satis�ed. The eigenvalues of � are: 7=4 (with multiplicity 2) and7=4 � q1 � q3. Replacing q3 by q1 + q3 diagonalizes � and transforms the third equationinto �q3 = 12 _q23 + _q3 � 2q3 :Again, as the theory predicts, there is a partial decoupling so far.For the subsystem of the �rst two equations, we now have � = (7=4)I. The tension haseigenvalues 12 � i, and its transformation to real Jordan normal form is achieved simplyby multiplying q1 by �2.It is easy to verify | but making use of computer algebra procedures is highly recom-mended for such calculations | that the resulting complex equation now reads:�z = �(1 + i)z + (1 + 2i) _z :9
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