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1 Introduction: a classical example

By way of introducing the subject of this contribution, consider the motion of a charged
particle in a constant electromagnetic field, for which the governing force is the Lorentz
force F = e(E+4+v x B). As is customarily done in most textbooks, we teach our students
that a clever way to simplify the problem of integrating the equations of motion is to
choose e.g. the z-axis of an inertial frame of reference along the constant magnetic field
B. This way, the differential equations to be solved are of the form

mi = ek, +eyB,
my = elb, —exB,

mz = ek,

and actually have two characteristic features (apart from being linear) which greatly
simplify the problem. Indeed, first of all, the equation for z is decoupled from the rest
of the system and secondly, the remaining two equations happen to combine into a single
complex equation for { = = + 1y.

Suppose, however, that no special reference frame would be selected from the outset. The
equations of motion then would be of the form

Gi = a1+ bsga — bags,
Go = az+b1gs — bsqy, (1)
gs = as+ bagy — biga,

for some constants a;, b;. The question we want to address is the following: if a system of
differential equations is given in a form such as (1), how would one figure out that special
coordinates exist which produce decoupling of the equations in the above sense?

There are of course two aspects which a general approach to such a question must be
able to tackle, if it wants to be of any practical value. Firstly, concerning the existence
problem, the practical issue is whether we can test by means of procedures on the given



data whether suitable coordinates exist. Secondly, if they exist, we should be able to
figure out how to construct them.

We shall show in what follows that a quite general problem which encompasses the one
introduced above, is that of complete decoupling of a general system of second-order ordi-
nary differential equations. This problem was first addressed by Martinez et al in [1]. Its
solution requires knowing about the differential geometry related to second-order equa-
tions. In particular, the tests for the existence of suitable decoupling coordinates turn
out to be of an algebraic nature and involve certain intrinsically defined endomorphisms
associated to the given system. Diagonalizability of the corresponding matrices is a key
issue in the theory. In [1], where the focus was on complete decoupling into individual
equations, we were led to assume that all eigenfunctions of the matrices under consid-
eration were real. In recent work, in collaboration with Gerard Thompson [2], we have
discovered how to cope also with the occurrence of complex eigenfunctions. The type of
maximal decoupling which corresponds to such cases is exactly of the kind that we can
see in the example of charged particle motion. Before presenting a brief survey of the
theory here, we shall illustrate on this example what the practical implementation of the
theory does.

2 The theory at work

The first important object to analyse in searching for maximal decoupling, is a type (1,1)
tensor field ®, called the Jacobi endomorphism. Its matrix representation, in the case of
system (1), is given by

D242 —biby  —bibs
(I) — Z —blbg b% —|— b% —bzbg
—bibs  —bbs b2+ b2

and happens to be symmetric. The test properties to be satisfied are that ® must be
algebraically diagonalizable (which is obviously the case here), and that some “differential
concomitants” of @ (see later) must vanish. Also these are easy to verify for the example
at hand. The theory then guarantees simultaneous integrability of all eigendistributions of
®, which in turn means that @ is actually diagonalizable via a coordinate transformation.

Here, ® has the double eigenvalue Ay = Ay = ibz (with 0 = 3°0b?), and A3 = 0. An
eigenvector for A3 is the vector b; all vectors orthogonal to b are eigenvectors for A\; = A,.
Let us choose, for example, a matrix of eigenvectors which are orthonormal as follows
(with [ = /b} + b3)

1 bab  bibs byl

0 =% byl

The coordinate transformation ¢ = U ) diagonalizes ® and in fact transforms the given
system into

. . 1
Q1 = bQy+ 7(61152 — axby),
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. : 1
Qs = —bQi+ bl {(albl + azby)bs — lza?’} ’ (2)

. 1
Q3 = i > aibi,
which is seen to have the desired features of decoupling!

The choice of this transformation matrix U, however, is slightly misleading! It is a coinci-
dence here that ® has properties which suggest to select eigenvectors in a special way and
there is no reason to expect from our theory that passing to the ()-variables will achieve
the maximal features of decoupling. Assume, for example, that we do not insist on nor-
malizing the eigenvectors and make the following alternative choice of a transformation
matrix:
bz blbg bl
U= =bi by by
0 (B2 by

Then, the transformation ¢ = U Q gives rise to the system
é1 = Qz (Cl1bz — azby ), nonumber (3)

1
1 W {(albl —|— a262)63 — l2a3} 5 (4)

: 1
Q3 = b_QZQibiv

and the first two equations this time do not combine into a single complex equation! What
then should be done next?

ézZ_Q‘|‘

The answer can be found in the analysis of another tensor with intrinsic meaning: the
so-called tension field t. In the original g-coordinates, t has the matrix representation

1 0 —bs by
t = 5 b3 0 — bl 5
—by by 0

whereas in the new variables (), we have

(00 R AU
b=-[0 v 0 t=5(1 0 0
0 0 0 0 0 0

The problem is that the transition ¢ — ) has not, in some sense, simultaneously diagonal-
ized ® and t . Our theory in fact guarantees now that there exists another transformation
which will bring t in real Jordan normal form. To construct it, we have to integrate the
distributions spanned by the real and imaginary parts of the Complex eigenvectors of t.
If we do so, we will be led to consider the further transformation Q; = b Qz, Qs = Q1 It
has the effect of transforming equations (4) into the form

Ql = bQ2 W {(albl —|— a262)63 — l2a3} 5
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p 1
~  Qy = bQ;+ ﬁ(alb? - a2bl)v (5)

1
Q3 — b_2 Z aibiv
which has all the desired characteristics even though (5) is not the same as our first lucky
draw (2).

Remarks: t has to be looked at only when ® has multiple eigenvalues. In this example,
® has real eigenvalues and the complex nature of the final decoupling in fact comes from
the complex eigenvalues of t.

3 Sketch of the theory

A. Generalities

An autonomous system of second-order differential equations (SODE for short)

qZ:fZ(Q7q‘) Z: 17"'7n7 (6)
is governed by a vector field
0 : 0
F =" . ¢ -
Vg Tl e g5 (7)

on the tangent bundle 7'M of a manifold M. It defines a horizontal distribution on T'M,
locally spanned by the vector fields

0

9 Loy
Ovi’

2 0u (8)

f where Ff =
This “non-linear connection” on 7 : "M — M in turn defines a linear connection on
the pull-back bundle 7*T'M — T'M. [The linear connection under consideration actually
is one of “Berwald type” and Berwald-type connections are well known in the context
of Finsler geometry.] Our SODE—Berwald—type connection essentially has three con-
stituents: a horizontal and vertical covariant derivative and what we call the dynamical

covariant derivative V. These are degree zero derivations of (vector-valued) forms along
the projection 7: TM — M.

To fix some notations and basic formulas, we write X'(7) for the set of vector fields along
7. Locally, an element X € X(7) is of the form
X = X(g.0)5 )
= V)—:.
“0) 50
Such an X can be horizontally and vertically lifted to vector fields X* and XV on T'M,

defined by
0

ovt’

X?=X"H;, X' =X'Vi=X' (10)



A concise way to see the covariant derivative operators DY, DY and V come into the
picture is to look at the identities (see for example [1])

[(X* Y] = (DRY)” — (DyX)” (11)
0, X7 = (VX)" +o(X)", (12)

which should be understood as follows. A vector field such as [ X7, YV] on T'M has a
unique decomposition into a vertical and horizontal part, each of which is a corresponding
lift of a certain vector field along 7. By looking at the way the latter are related to the
original X,Y € AX(7), one discovers the action of the horizontal covariant derivative
operators on the C*(T M )-module X' (7). In the same way, the second relation identifies
the dynamical covariant derivative in its horizontal part, whereas its vertical part turns out
to depend linearly on X and this way defines the Jacobi endomorphism ®. In coordinates,

with /'€ C~(T M), we have

DX (F)=X"(F), DY =X"(F), V(F)=TI(), (13)
P RS B
X aqi _07 DX aqi =X (Fi)aqjv van - Fz aqjv (14)

whereas the action on 1-forms along 7 then follows by duality. The Jacobi endomorphism
®, a type (1,1) tensor field along 7, has components

af

i Pk i
0y —T(I%). (15)
It is of interest to observe that ® completely determines the curvature R of the non-linear
connection. Indeed, we have:

3R(X,Y)=D\o(Y)— D;@(X)( = d"®(X,Y) = ) (16)

The tension t is the type (1,1) tensor field along 7, with components

: : or
7 7 k

One way of defining it intrinsically is as
t=—a"LT (or —avv' D), (18)

where T = v'd/dq" is the canonical vector field along 7 and the horizontal exterior deriva-
tive d” can be defined in a way which is similar to the d" in (16). The way the tensor fields
¢ and t are introduced here, as type (1,1) tensor fields along 7, is taken from the study
of derivations of forms along 7 in [3, 4]. We refer to these papers for a more thorough
discussion of their properties. Note, however, that coordinate expressions of the same
tensor fields were obtained, through the method of equivalence, as early as in the work
of Kosambi [5], Cartan [6] and Chern [7], to which other speakers in the same session are
referring.



For a general type (1,1) tensor W along 7, we define the ‘concomitant’ Cy (a type (1,2)

tensor field along 7) by
Cy(X,Y) = [Dx W, ¥](Y). (19)

We are now ready to describe the main results about separability of SODE:s.
B. Complete decoupling of a second-order system

For a good picture of the meaning of all assumptions involved in the main theorem about
decoupling, we will present the path to the final result in three distinct stages.

(Hy1) Assume that @ is diagonalizable and satisfies the conditions C'y = 0 and [V®, @] = 0.

Theorem 1 Under the hypothesis (Hy), if all eigenfunctions of ® are distinct, there
exist coordinates with respect to which the equations decouple into scalar equations (one
for each real eigenfunction) and pairs of equations which are the real and imaginary parts
of a complex equation (one for each pair of complex conjugate eigenfunctions).

Note that the construction of appropriate separation coordinates boils down to integrating
distributions which are Frobenius integrable. It is further worthwhile to observe that it
follows from the assumptions in Theorem 1 that the curvature is zero.

When ¢ has degenerate eigenvalues (real or complex), the situation becomes more com-
plicated and we should start by imposing zero curvature as additional hypothesis:

(Hz) Assume that R = 0.

The immediate result from this extra assumption is that degenerate eigenvalues of @
necessarily must be constant. Without any further assumptions at this stage, one can
show that at least a form of partial decoupling will apply:

o for each real eigenvalue with multiplicity &, a k-dimensional subsystem will decouple
from the rest in suitable variables;

o for each complex eigenvalue with multiplicity &, there will be a corresponding com-
plex subsystem of dimension 2k, which is not coupled with the rest.

If we then insist on having further decoupling inside each of these subsystems, it is quite
clear that ® will not have any further insight to offer, so that we have to turn to another
source of information which is the tension!

(Hs) Assume t is diagonalizable and CE = 0.

Theorem 2 Under the assumptions (Hy), (Hz) and (H3), there exist coordinates which

will maximally decouple the given SODE into a number of individual equations and a
number of pairs of complex equations.



The conditions for maximal decoupling are necessary and sufficient. Also, pairs of complex
equations will occur as soon as either ® or t have complex eigenvalues.

Before discussing some features of the proof of these results, it is worth mentioning the
following intrinsic characterization of complex SODEs: a second-order vector field T
on the tangent bundle of an even dimensional manifold M is complex, if M admits an
integrable almost complex structure J, such that

VJ=0, and [®,J]=0. (20)

In the case of pairs of complex eigenvalues (A, A) of @, if we denote a basis of corre-
sponding eigenvectors by {Z4,Z4}, with Z4 = V4 + iWy4, let us agree that the term
‘eigendistribution’ in the enumeration which follows refers to sp{Va, W4 }.

o The assumption C'y = 0 entails that all eigendistributions of ® are DY-invariant,
which means that they are spanned by vector fields on M.

e The V-invariance of the eigendistributions which follows from the commutation of
® and V® then further guarantees that the eigendistributions are simultaneously
integrable.

e Putting J(V4) = Wa, J(Wa) = —V4, we define an almost complex structure
for each block coming from complex eigenfunctions and prove that .J is integrable,
i.e. that its Nijenhuis torsion N; is zero. As a result, the Newlander-Nirenberg
theorem applies and gives rise to holomorphic coordinates for each almost complex
submanifold.

e A further consequence of the condition [V®, ®] = 0 is that the connection coefficients
F;, relating to different eigendistributions are zero. This leads to decoupling w.r.t.
velocity coordinates between the distinct blocks and Cauchy-Riemann conditions
w.r.t. velocity variables inside each block coming from complex eigenfunctions.

o When the eigenvalues are non-degenerate, the transformation of ® to real Jordan
form gives rise to decoupling w.r.t. position variables as well, plus the remaining
Cauchy-Riemann conditions for the complex parts.

o Whenever an eigenvalue is degenerate, R = ( guarantees that it is constant, so we
are down to studying systems for which either ® = [ or ® = o 1 — 3 .J (with g or
a, 3 constant). At this point, the tension comes into play.

e The assumptions on t now lead to a similar integrability analysis for its ‘eigendistri-
butions’. This involves a number of extra technicalities when also t has degenerate
eigenvalues, upon which we will not further dwell here.



4 Some further examples

Let us first return to the example of charged particle motion and put the theory to a final
test now by ignoring all physical insight and routinely apply what the above described
procedures dictate.

Starting from the original system (1), having obtained the eigenvalues of ®, we now make
the simplest possible choice of eigenvectors, leading to the transformation matrix

0 —bs b
U — bg 0 bg
—by by b3

The coordinate transformation ¢ = U() produces the new system:

. bb, . b2+ b2 .
0, = —£Q1—I- 1 3Q2_|_...
bs bs
biby - b + b3 .

Q2 = & Q2 Qi+ (21)

. 1
Qs = " > abi,

where the dots refer to constant terms which are quite irrelevant for our discussion. We ob-
serve that everything the theory predicts holds true: the equation for the non-degenerate
eigenvalue is decoupled from the rest, but there is no reason why anything further could be
said about the first two equations. We observe that they are NOT the real and imaginary

bs

parts of a complex equation.

In the @)-variables, ® becomes diagonal as it should, but

bib, —(b]+0%) 0
L S
205 0 0 0

The eigenvalues of t are £1ib. The real and imaginary parts of a set of corresponding

basic eigenvectors dictate the further transformation Q = U Q, with

) B4+b: 0 0
U — blbg bgb 0
0 0 1

The corresponding system in Q-variables now becomes:

ag(b% + b%) — bz(albl + Clgbg)
b3b*(bi + b3) ’

Clgbl — Cllbg

bsb(bf + b3)’
1
Q?, — b_QZQibiv

Q1 = bé2‘|‘

Qz = _bé1‘|‘ (22)



which has all the features predicted by the theory indeed!
Let us conclude by giving also a couple of examples of non-linear systems, taken from [2].

Consider the system
G = a1 12’ + b1 gi®
G2 =arqi’qz + b ¢°

Excluding the trivial case a; = a3 = 0 (for which the system would be decoupled from
the outset), we have R = 0 and C§ = 0, while [V®, ®] = 0 requires that

ay = 3 b, ay = 30by.

If b1by > 0, ® has real and distinct eigenvalues. The transformation

Q1= —brq1 + /b1b2q2

Q2 = 1/biba g1 + b2 2

Ql = QIS/bl ) Qz = QzS/bz-
If b1by < 0, ® has complex eigenvalues and the transformation

Ql =—b 1

Q2= 1/—bibyq
will result in the complex equation

z= 23/61, with 2z = Ql + ZQQ

reduces the system to

Finally, consider the system

G= G+@—a-— 50,
@2 = G—4q — @+ 2q,
gz = %(6}14-(}3)24-9'3—@2—91 —2q3 + %(D-

Certain numerical factors in these equations are chosen already in such a way that all
conditions on @ are satisfied. The eigenvalues of ® are: 7/4 (with multiplicity 2) and
7/4 — q1 — g3. Replacing ¢z by ¢ + g3 diagonalizes ® and transforms the third equation
into

. _ 1 -2 .
g3 = 595 + ¢35 — 2¢3..
Again, as the theory predicts, there is a partial decoupling so far.

For the subsystem of the first two equations, we now have ® = (7/4)/. The tension has
eigenvalues % + ¢, and its transformation to real Jordan normal form is achieved simply
by multiplying ¢; by —2.

It is easy to verify — but making use of computer algebra procedures is highly recom-
mended for such calculations — that the resulting complex equation now reads:

E=—1+0)z+(1420)2.
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