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1 Introduction

In a number of recent publications [8, 9, 10, 12], Rauch-Wojciechowski, Marciniak and
Lundmark have discussed an interesting class of systems of second-order ordinary differ-
ential equations, whose members, when viewed as classical mechanical systems, are in
a sense completely integrable. These systems originally generated interest because they
are derived from the stationary flows of soliton-type evolution equations; but they have
more recently been studied in their own right because they include well-known cases of
integrable bi-Hamiltonian systems and cases where the Hamilton-Jacobi equation sepa-
rates. Of these papers we will refer most often to [9], which contains the most general
exposition of the theory which we seek to develop further here. In particular, [9] deals
with systems with n of degrees of freedom, and therefore subsumes (at least so far as
the issues we intend to discuss are concerned) [12], which is largely restricted to systems
with two degrees of freedom.

The systems of second-order equations under consideration take the general form of
Lagrange’s equations in mechanics,

i(@T) LT,
dt \og') ~ dg ~ "

where T is the kinetic energy function and the ‘generalized forces’ (); need not be
derivable from a potential energy function. In all the publications mentioned above
the kinetic energy is taken to have the Fuclidean form, T' = %z(q’l)?; we however will



deal with the more general situation in which 7 is derived from a Riemannian metric,
T= %gijqi(jj. In addition, the systems are required to possess quadratic integrals of the
motion, of a special kind, called by Lundmark integrals of cofactor type. Of particular
interest are those systems which possess two independent quadratic integrals of cofactor
type: such a system can be regarded as the restriction of a bi-Hamiltonian flow on a

phase space of one more dimension, and has a further hierarchy of integrals in involution.

As we have just pointed out, the primary aim of our paper is to derive in the Riemannian
case results which parallel those that Lundmark et al. have obtained in the Euclidean
one. In doing so we extend the range of application of their theory, of course. However, in
justifying our efforts we would put greater emphasis on the increased level of geometrical
insight we have achieved into the results of the group in Linképing. In particular, we
claim to have considerably clarified, by generalizing them,

1. the concept and properties of a cofactor system;

2. the origin of the so-called ‘fundamental equation’ involved in the definition of a
cofactor pair system; and

3. the construction of the bi-Hamiltonian structure associated with a cofactor pair
system.

Several of the methods we use here were developed in a recent paper on bi-Hamiltonian
systems and conformal Killing tensors [3], which was concerned with a certain class of
conservative systems whose Hamilton-Jacobi equations separate; we will briefly indicate
how such systems can be regarded as a subset of the cofactor pair systems discussed
here.

The Linkdping group refer to the differential equations they consider as ‘Newton equa-
tions of quasi-Lagrangian type’, because in the Fuclidean case it turns out that when
there is a quadratic first integral F the equations can formally be cast into the form
d/dt(OF/0¢")+0FE/dq' = 0, which resembles Lagrange’s equations but has a wrong sign.
This is, in our opinion, a complete artifact of the systems under consideration, which
has nothing to do with the fundamental issues which are at stake. In fact, the more
general systems on Riemannian spaces we will introduce simply do not have this very
non-intrinsic property. We have therefore decided to describe them as ‘non-conservative
Lagrangian systems’ instead. In doing so we are conscious that our work, together
with that of Rauch-Wojciechowski, Marciniak, Lundmark and others in this field, is
closely connected with the researches of Bertrand and Darboux in the second half of the
nineteenth century, which are summarised by Whittaker in articles 151 and 152 of [14].

The structure of the paper is as follows. In Section 2 we recall some aspects of Poisson
structures for later use. We concentrate in particular on the construction of a non-
standard Poisson structure on 7*Q out of the complete lift of a type (1,1) tensor field



on (). In Section 3, we take a non-conservative Lagrangian system as the starting point
and investigate under what circumstances it has a quasi-Hamiltonian representation with
respect to such a non-standard Poisson structure. This leads us to an interesting class of
special conformal Killing tensors JJ, which are discussed in more detail in the next section.
The main result in that section is that the cofactor tensor of such a J is a Killing tensor.
Coming back then to the idea we started from, and inspired by the work of Lundmark
[9] in the Euclidean case, we more formally introduce the notion of a cofactor system
in Section 5 and complete the discussion of its quasi-Hamiltonian representation. In
Section 6, we show how a cofactor system can also be given a Hamiltonian representation
on an extended manifold. Section 7 is about cofactor pair systems, that is, systems
which have a double cofactor representation. We show how this leads to a gauged
bi-differential calculus which provides an intrinsic generalization of the ‘fundamental
equations’ referred to above. We further establish complete integrability by exploiting
the double Poisson structure on the extended space. Finally, we briefly explain the
relation between this work and recent work on the separability of the Hamilton-Jacobi
equation.

2 Poisson structures

It will be convenient to recall some generalities here about Poisson structures, which
will at the same time serve to fix the sign conventions which we will adopt.

A Poisson structure on a manifold M is a bivector field II which satisfies [II,11] = 0,
where [-, -] is the Schouten bracket. The associated Poisson bracket of functions f, ¢
is given by {f, ¢} = II(df, dg); the vanishing of the Schouten bracket entails the Jacobi
identity for the Poisson bracket. Also associated with such a bivector field is a map P of
1-forms to vector fields on M, given by (P(«), 8) = Il(«, §) for any pair of 1-forms «, f3.
The vector field P(dh) is the Hamiltonian vector field corresponding to the Hamiltonian
function h. The Poisson structure is non-singular if its Poisson map is.

Two Poisson structures 11y, Il are compatible if [II;,[Is] = 0. When this condition
holds, aqIly + aslls is Poisson for any constants a; and as. The collection of Poisson
bivectors aqIly + aslls is called a Poisson pencil.

Let ¢: M — M be a diffeomorphism. For any bivector field 11 on M we can use ¢*, the
map of forms induced by ¢, to transform II into a new bivector field II, by

(Iy) (@, B) = ¢~ " IL(¢"ax, 6" 3)..

This is the natural extension to bivector fields of the map of vector fields induced by a
diffeomorphism. The corresponding transform Py of the map P is given as a linear map
T:M — T, M,z e M, by

P¢|x — ¢*x o P|¢_1(1’) © gb;



There is no guarantee that II; will be Poisson even when II is: we will deal with a case in
which it is below. For the present, merely note that if ¢ and  are two diffeomorphisms
then H(bow = (H¢)¢ and likewise P(bow = (P¢)¢.

The cotangent bundle T*@ of a manifold () has a standard Poisson bivector Il whose
expression in terms of standard coordinates (¢*, p;) is

Jd A Jd
dp; 0q"

Iy =

The corresponding Poisson map Iy is given in terms of the canonical symplectic form w
by Fo(a)iw = —a.

Let J be a non-singular type (1, 1) tensor field on Q. It defines a diffeomorphism J of
T*() which is fibre preserving and linear on fibres, given by j(qi,pi) = (q¢', J!p;) (note
that J acts here on covectors, that is to say, it is its adjoint that is involved). The
bivector field (Ilp); = II; is a Poisson bivector if and only if the torsion, or Nijenhuis
tensor, Ny of J is zero. When this is the case 11; is compatible with 11y, and we obtain
an example of a Poisson-Nijenhuis structure. The corresponding Poisson map Py is
given by P; = Jo Ph=FKo J*, where J is the complete lift of J, a type (1,1) tensor
field on T*Q, and J* is its adjoint (acting on 1-forms).

In the sequel we will carry out several coordinate calculations involving these constructs,
in situations where we have a symmetric connection at our disposal. We therefore give
coordinate representations of them using bases of local vector fields and 1-forms adapted
to the connection, given by

J J J

pk Xi7 a_
dgi T Op; op;

for vector fields, where Ff; = Fﬁ» are the connection coefficients, and
dq', dp; —Tiprdg’ =7

for 1-forms; these are dual bases. The indices ¢, j, k etc. range over 1,2, ..., n = dim M,
and the Einstein summation convention is in force. Then

. 9 P
_ i . J , k.
J = J] (Xz & dq + 8])]‘ & 772) + (J 7 = J]|2) Pk 8])2'

The vertical bar divides off the differentiation index in a covariant differential from the
other indices. The condition Nj; = 0 can be written

k { {
JE (= J4) = ik =

In order to calculate Hamiltonian vector fields with respect to Py it is enough to know
J since one can use either of the formulae P; = Jo Fyand Py = Fyo J* it is useful to



remember that for a symmetric connection Fy can be written

0

P, =
0 op;

A X;.

However, to facilitate comparison with [9, 10, 12] we give the formula for P;:

9,9
PR o, dp;’

28 1 k k
Fr=Jig "X~z (7 = 75)

Finally, we will have occasion to discuss situations where we have more than one type
(1,1) tensor field at our disposal. In the first place, suppose that J has vanishing torsion,
and that A is another type (1, 1) tensor field such that JA also has vanishing torsion
(where J A is the type (1,1) tensor field whose components are J};A?, that is, JA is the
composition J o A acting on vector fields). Then Il;4 is a Poisson bivector. It can be
expressed in terms of I1; by means of the formula Iy = (Ily)s with ¢ = A, =T
note that since A and J act on T*(Q) by their adjoints, JA=AoJ. Thus Tlj4 = (I1y) 4-
It follows that for any Hamiltonian function H,

Pia(d(A=YH)) = A.Py(dH).

Secondly, suppose that J and K both have vanishing torsion and that [.J, K] = 0 where
[, -] here is the Nijenhuis bracket. Then aJ + bK has vanishing torsion for all constants
a and b, so that P, 7145 is a Poisson map for all ¢ and b; and from the formula for Py
we see that P,j15 = aPy+ bPxg. Thus aPy 4+ bPr is a Poisson pencil in this case.

3 Non-conservative Lagrangian systems

A geometrical description of the kind of general Lagrange equations mentioned in the
introduction can be obtained as follows. Let S denote the canonical vertical endomor-
phism on a tangent bundle T@ and I' a second-order differential equation field. As was
described in [13], ' represents a non-conservative Lagrangian system, if there exists a
1-form ¢ = dL —pon T'Q), where L is a regular Lagrangian and p is semi-basic, such that
Lr(S*(¢)) = ¢. It is easy to verify that, in coordinates (¢, u') on T'Q, this requirement

means that
() oy,
ou’ aq"

where the M; are the components of p (the minus sign here is a matter of convention).
We shall consider the particular case in which the non-conservative forces —M; do not
depend on the velocities, so that p is a 1-form on @; and L is a pure kinetic energy
Lagrangian. The latter means that the base manifold ) is assumed to be Riemannian
(or pseudo-Riemannian) with metric tensor ¢ = (g;;), and that L =T = %gijuiuj. If




jik are the Christoffel symbols for the corresponding Levi-Civita connection, and if we
put M* = giij as is usual, the resulting second-order differential equation field is of

the form 9 9
_ i Y ik ;
F_uaqi (ijuu —I—M)aui.
Another way of characterizing such vector fields is to say that I' = I'g — M"Y, where T'g
is the geodesic field for the connection and MY is the vertical lift of a vector field M on

Q.

We will show that it is possible, in certain interesting cases, to find a quasi-Hamiltonian
representation for such a system; that is to say, to represent it as a scalar multiple of a
Hamiltonian vector field. However, we will not assume that the Poisson structure with
respect to which this vector field is Hamiltonian is the standard one; instead, we will
look for a suitable Poisson structure of the form I1; defined by some type (1,1) tensor
field J on ) whose torsion vanishes.

We use ¢ to define a diffeomorphism §: 7€) — T*Q by p; = gijuj. We will denote by r
the transform of I' by ¢, that is, I' = g,I". We have

. B 0
I' =q¢"p; X; — M, ,
9P op;

where the X; are the vector fields on T*() adapted to the connection specified above.

Equip T*Q with a Poisson structure 11y and Poisson map Pj as described earlier. We
wish to determine under what circumstances one can find a J with Ny = 0 such that
the given system satisfies FI' = Pj(dH) for some functions F and H. We will now
solve this problem under the assumption that H is quadratic in the momenta, so that
H= %Aijpipj + V for some symmetric tensor A and function V' on ); we will further
assume that A is non-singular.

For such H we find, after a little calculation, that

s , , : oV
Py(dH) = JiA piX; [(%JfA]ku - () - Jﬂi)AM) pivk +J] 3—(]]]

d
op; '

For this to equal FT' we must first have
JLATR = gl

Thus F must be a function on (), so that the quadratic and zeroth-order terms in the
other coefficients must be equated separately. As a result, we require that

T = (= T AN + (U = i) A
7 _ .
Z,_qij = FM,.



On lowering the index 7 in the first condition we see that J;; is a scalar multiple of the
inverse of A¥, and so is symmetric because A" is. By differentiating this equation and
multiplying by J twice we obtain

v OF
JPTETA = 5

— S =PI
q

The second condition therefore can equivalently be replaced by

0
dq!

F

p —— "I = (Jz'lJmnu + glmJI?(Ji]Tl - Jl]Ti) + gy (J2|l Jﬁz)) :

We now use the assumption that Ny = 0 to rearrange the last four terms; when this
is done, the first term on the left-hand side cancels, and after some indices have been
lowered we obtain

3_F
dq!

The part of this equation symmetric in ¢ and j gives

Jipd! = F(Jp i+ T Ty — I T im0)-

Jije = 3 (Qigix + @igir)

where we have written

;OF
F 8(]]
The skew-symmetric part is then automatically satisfied. It further follows from the
formula for J;;, that c, = (Jf) |, or @ = e;dq" = d(tr J). Hence, if J;;;, has the required
structure, the «a; are actually determined, so that the relations J] OF/0¢’ = Fo; should
be seen as equations for admissible functions F.

a; =

We next show that a particular solution for F' is det.J. We have

det J = ~§itiawin pit gio . yin.

l J1J2---Jn "1 T2

where 5;1;2; Z]" is the generalized Kronecker delta (see for example [7]). Thus

0 detJ = ! iz

J Jn
8—qk (n_l)' JJ2-Jn Z|kJ2JZn

Now .
i3 in 77 In __ /vt
A Jin —Cj

(n_ 1)! Jj2-dn " 12

is the cofactor tensor of .J, which satisfies

JLCF = (det J)dt.



So we may write
0 4 , ,
Jﬁa—qkdetJ = JfC}Jﬂk = LIFCHd] + o/ gy)
= %(Jijcjl‘al + JZkC,ial) = (det J)ay,
where we have used the fact that C;; is symmetric, which follows from the symmetry of
Jij.

Now suppose that I’ is any solution: we show that F is a constant multiple of det J. We
have

1 _.0F 1 0
—J— == J! — det J,
F o og YT Qet g ¢ gl ¢

from which it follows that 9 P
d¢o \detJ

Once we have fixed a J in a quasi-Hamiltonian representation FI' = Py(dH) for the given

and so I = kdet .J.

system, multiplying F’ by a constant factor is a quite irrelevant degree of freedom, since
it can be compensated for by adapting the Hamiltonian. So without loss of generality
we can take F' = det J, whence the first condition on J becomes J,iAjk = (det J)gij7
and identifies A; as the cofactor tensor of JJZ Finally, there is a restriction on the
non-conservative forces, which must have the form

OV
o -1 9%
M; = (det J)~1J: 5

for some function V on Q.

We shall come back to the formulation of the conclusions of this analysis in Section 5,
after looking in more detail at the special kind of tensor fields J it has revealed.

4 Special conformal Killing tensors

A tensor J which satisfies the condition Ji;;, = %(oeigjk + a;¢) for some a; has very
interesting properties. In the first place, Ji;r) = o9 p) (brackets denote symmetriza-
tion), which says that J is a conformal Killing tensor of ¢; and furthermore oo = av;dg" is
exact, so it is a conformal Killing tensor of gradient type. In the course of the argument
in the previous section it was assumed that the torsion of J vanishes (this was necessary
to ensure that Il; is Poisson): but in fact the vanishing of the torsion is an easy con-
sequence of the defining condition. Moreover, as we showed in [3], a conformal Killing



tensor whose torsion vanishes and which has functionally independent eigenfunctions
must necessarily satisfy this condition. A symmetric type (0, 2) tensor J on () such that

Jijik = 3(aigjn + jgix)
will therefore be called a special conformal Killing tensor. In the Euclidean case a tensor

is a special conformal Killing tensor if and only if it is an elliptic coordinates matrix in
Lundmark’s terminology [9], or a planar inertia tensor in Benenti’s [1].

We will deal only with special conformal Killing tensors which are non-singular. The
inverse of a type (1, 1) tensor will be denoted by an overbar when we need to use indices.

The determinant of a type (1, 1) tensor is a scalar (this is not so for a type (2,0) or (0, 2)
tensor), so whenever we use determinants it is to be assumed that the corresponding
tensor is in type (1,1) form. This applies also to the formula A = (det.J)J ™!, which
may be used to define the cofactor tensor of J when it is non-singular. Elsewhere, the

usual rules for raising and lowering indices apply. Thus for example A;; = (det J)J;;: it
is symmetric if .J is.

When .J is special conformal Killing, by taking the covariant derivative of the equation
Aile] = (detJ)g;; and using the defining condition one can deduce that

Ajjje = (det J) (jijjkl — S - %jujjk) o,

from which one easily derives the following remarkable property of any special conformal
Killing tensor.

Proposition 1 The cofactor tensor of a non-singular special conformal Killing tensor
is a Killing tensor.

Proof Tt follows immediately from the formula above that A = 0. O
Note further that A has the same eigenvectors as J.

A special conformal Killing tensor J may be used to define a couple of differential
operators with nice properties. In the first place, we can form the operator dy in the
sense of Frolicher-Nijenhuis theory [5]: this is the derivation of degree 1 of the exterior
algebra A(Q) of forms on @, over the algebra C*(Q) of real-valued C'* functions on @,
which anti-commutes with the exterior derivative d (i.e. is a derivation of type d.), and
whose action on C*(Q) is given by dj f = J*(df). Furthermore, d; has the coboundary
property dj? = 0 because the torsion N is zero. What is more, since by assumption .J is
non-singular, dj satisfies a Poincaré lemma: that is to say, for a k-form €, the condition
dj0 = 0 is sufficient as well as necessary for the local existence of a (k — 1)-form ¢ such
that 8 = djp. This result can be found in a paper of Willmore [15].

In the previous section we came across an interesting property in which d; is involved.
We showed there that if J is a special conformal Killing tensor, F' = detJ satisfies



Jg@F/aqj = Fo; where a = d(trJ). Hence,
dj(detJ) = (detJ)a = (det J)d(trJ).

(In fact this holds for any tensor .JJ whose torsion vanishes.) By acting with d; on both
sides, it further easily follows that dyja = 0, that is, djd(trJ) = 0. (In fact for any
tensor J whose torsion vanishes, dy(trJ) = Ld(trJ?).)

These properties enable us to define the following differential operator Dj, which also
acts on forms # on (; Dy will turn out to have an important role in relation to the
fundamental equation mentioned in the introduction.

D60 = (det J)" dy((det J)0) = dsf + o A 6.

Note that D is not a derivation (in the sense of Frélicher-Nijenhuis), but it is clear from
the first expression that D satisfies D;? = 0, so it is an example of a (scalar) gauged
differential operator, in the terminology of [4]. Moreover, we see that once again D ;8 = 0
is a sufficient condition for there to be a form ¢ (locally) such that § = D j¢: we have
dy((det J)8) = 0, so there is a ¢’ such that (det.J)d = dj¢’, whence ¢ = (det J)~t¢/
satisfies Dy = 6.

Note finally that the condition on the non-conservative forces derived in the previous
section can now be written in coordinate-free form with the aid of the 1-form p = M;dq’
of the beginning of that section. The condition reads

p=(det J) td;V = Dy((detJ)~'V).

Hence, in order for the non-conservative Lagrangian system I to have a quasi-Hamiltonian
representation as described in the previous section, there must be a function V' =
(det J)~'V such that u = D;V’. But so long as we are concerned only with local
considerations, this is equivalent to the condition Dju = 0.

5 Cofactor systems

We can now describe explicitly the class of non-conservative Lagrangian systems ' we
are analysing: they are those determined by a metric tensor g which admits a special
conformal Killing tensor J, and a 1-form p on the configuration manifold ) such that
Djp = 0. Systems of this type, in the Euclidean case, are what Lundmark calls cofactor
systems, though he does not define them in quite the same way; we will use the same
terminology even though it doesn’t really match our definition.

Definition A non-conservative system [' on T'(), generated by a metric tensor field ¢
and a 1-form g on @), is said to be a cofactor system, if ¢ admits a non-singular special
conformal Killing tensor J and p satisfies Dju = 0.

10



The results of the preceding sections can now be summarized as follows.

Theorem 2 A non-conservative system I' on T'Q) determined by the couple (g, i) on @,
has a quasi-Hamiltonian representation FT' = Pj(dH), where J is a type (1, 1) tensor
field on @ and H is a function on 7*() quadratic in momenta, if and only if it is a
cofactor system.

Proof The argument developed in Section 3 proves the following assertion: the condition
FT = Pj(dH) with H quadratic, assuming N; = 0, is equivalent to the requirements for
having a cofactor system. But as we observed in Section 4, a special conformal Killing
tensor automatically has zero torsion. Therefore, conversely, every cofactor system has
a quasi-Hamiltonian representation of the desired type. a

Notice that for a special conformal Killing tensor

: 0 0
P; = J?—/\Xi—loqp‘—a‘pi—/\—.
. 4( J J )8])2 8]7]'

Lundmark et al. approach the analysis of non-conservative Lagrangian systems by
discussing the conditions under which such a system has a quadratic first integral
E = %Aijuiuj + V. Any cofactor system has a quasi-Hamiltonian representation with
a quadratic Hamiltonian, which then is necessarily conserved, but the cofactor systems
are a subclass of the non-conservative Lagrangian systems with quadratic integrals. We
will complete the picture by identifying exactly which of the properties or conditions we
have encountered entail that the function £ = %Aijuiuj +V is a constant of the motion.

We have

I'(E) = %Aiﬂkuiujuk — (Aiij — g};) u'
Thus, in order that I'(E) be zero, A must satisfy A¢ijipy = 0, which is to say that it
must be a Killing tensor. Moreover, we must have A"y = dV. As we have seen, the first
condition is satisfied automatically when A is the cofactor tensor of a special conformal
Killing tensor (but of course there may be Killing tensors which are not of this type),
and the restriction on g then takes the form g = Dj((det.J)~'V). These remarks are
supposed to explain the origins of the name ‘cofactor system’.

We will also take this opportunity to comment on the use of the term ‘quasi-Lagrangian’
to describe non-conservative Lagrangian systems with quadratic integrals in the Euclid-
ean case. Note that the commutator of any second-order equation field I' = u*0/dq" +
fro/0ut on TQ with 9/’ is given by
[ s, ] 0 oo
"owi|  0¢r O¢r Out’
It follows that for any first integral I of I' we will have
(8E> oF dft OF
F - —
ou?

¢y~ Oud oul”

11



Hence, if the right-hand sides of the given equations (i.e. the functions f*) are velocity
independent, it will trivially be the case that every first integral F leads to a relation
which formally looks like Euler-Lagrange equations with the wrong sign. In the Euclid-
ean case, in Cartesian coordinates, the right-hand sides are indeed velocity independent.
However, if the space is not Euclidean the equations will certainly not have this feature;
indeed, they will not even in the Euclidean case if curvilinear coordinates are used. On
the other hand, as we have already seen and will see further in what follows, the systems
we are considering do have all the intrinsic features which explain the essential properties
of what were called quasi-Lagrangian systems in [9, 10, 12]. It seems to us, therefore,
that the fact that the systems considered there have quasi-Lagrangian representations
is not significant.

Given the prominent role played by the function %Aij w'u/+V in the concept of a cofactor
system, one might naturally ask why one should not, to obtain a quasi-Hamiltonian
representation, map TQ to T*Q by u' Aijuj rather than u' — gijuj. To do so
is equivalent to carrying out the map A on T*Q. Note that since JA = (det J)1,
and the torsion of a multiple of the identity vanishes, Pj4 is certainly a Poisson map.
The dynamics is transformed to A.I'. In Section 2 we showed that Py (d(A~"*H)) =
A, Py(dH). 1t follows that

(det J)A*f = A*PJ(dH) = PJA(d(A_l*H))v

which is to say that AT is quasi-Hamiltonian with respect to Pys = Pgets)r, With
Hamiltonian

AT H = (det J)"L T H = (det J) " (2 AT JF T pepy + V) = LT pip; + (det J) 7V

This formulation, in the Euclidean case, is essentially that given by the second of the
two non-standard Poisson structures in [10].

Once one has noticed this trick one realises that there are other possible ways of obtain-
ing aggasi—Hamiltonian representation of a cofactor system. Indeed, by applying the
map J~1 one sees that there is a quasi-Hamiltonian representation with respect to the
standard Poisson structure. However, when we come to discuss cofactor pair systems
these alternatives will not do, because they will associate different vector fields on 7@
with the original vector field I' on T'Q): it is far better to stick with the single vector
field [ = g« on T*(Q) and represent it in quasi-Hamiltonian form with respect to two
Poisson structures.

6 Hamiltonian structure for a cofactor system

We now show how to represent a cofactor system as a Hamiltonian vector field with
respect to a Poisson structure defined on an extended manifold. This involves an appli-

12



cation of what is in fact a general construction which applies to any quasi-Hamiltonian
vector field. This construction is the subject of the following theorem.

Theorem 3 Let II be a Poisson bivector on a manifold M, and Z a vector field on
M with the property that there is a nowhere-vanishing function F such that FZ is a
Hamiltonian vector field with respect to 11, with Hamiltonian function H. Then there is
a Poisson bivector IT on M x R which projects onto II, and a vector field, Hamiltonian
with respect to IT, whose restriction to the zero section is Z. Furthermore, H + zF is a
Casimir of IT (where z is the coordinate on R).

Proof Let 7 denote the projection m: M X R — M. We can extend Il to M x R
simply by ignoring z: that is, for 1-forms on M we put ll(7*a, 7*3) = [l(«, ), while
H(dz,-) = 0 (so that z is a Casimir for I1). We consider a bivector of the form

. d
H_H+(Z+zW)A£,

where W is a vector field independent of z (that is, (W,dz) = 0 and Ly/5.W = 0),

and seek a W for which II is Poisson. If we find one then the Hamiltonian vector field
corresponding to —z will be Z 4+ zW, agreeing with Z on z = 0; and the projection of I
to M will be II (or in other words = will be a Poisson map). We require that [11, T1] = 0.
Now for any bivector field €2 and vector fields X, Y,

Q+XAY,Q+ X AY]=[Q,Q+2(LxQAY =X ALyQ - X AY A[X,Y]),

so we require that

J J J
For any bivector field 2, function f and vector field V|
LivQ= fLyQ -V AS(df),

where S is the map of 1-forms corresponding to 2. So [f[, f[] = 0 is equivalent to

)
(LM + 2LwI) A 5= ZAW A 5.

The conditions for II to be Poisson are
LAl=ZAW, Lwll=0.

Now Z = F~1P(dH), where P is the Poisson map corresponding to II, so (since the Lie
derivative of II by a Hamiltonian vector field is zero)

Lzl = —P(dH) A P(dF~) = F7*P(dH) A P(dF),
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so both requirements are satisfied if
W = I~ P(dF).

That is to say,

. . ) . )
=1+ (74 2F 1P(dF))/\£:H—|—F 'P(dH + zdF) A 5

is a Poisson tensor on M x IR.

It follows by a direct calculation that H + zF is a Casimir of 1. a

It is useful to note, for future reference, that in fact the bivector 14 (k2 4 zW)A0/0z is
Poisson for every constant k; or what amounts to the same thing, Il is compatible with
the (highly degenerate) Poisson bivector Z A d/0z. This is established by the following
computation:

- 0 ~ 0 .
0

0 0 0

0 0
= (UANWIA——ZAN|IWA—]=0.
( ) 0z ( 8,2)
Of course the Hamiltonian vector field corresponding to —z for this modified Poisson
structure restricts on z = 0 not to Z but to a constant multiple of it.

Returning to the case of a given cofactor system, we may use the construction in the
theorem above to represent [' as the restriction to z = 0 of a Hamiltonian vector field
on T*() x IR. The function F in this case is det.J, which is a function on . The
Hamiltonian vector field associated with detJ by I is —(ds(detJ))" = —(det.J)a".
Thus

ﬂJ:HJ+(f—ZaV)A%,

or in other words

) d
Pr = J—AX; - ey i -
J J; ap; A glaip; —ajp )8 D op;
g d d d
i, .
+9Yp; Xi A 5, (M; 4+ za) o A 5,

This agrees with the Poisson structure for a cofactor system in the n-dimensional Fuclid-
ean case given in [9] and in 2 dimensions in [12], and is the obvious generalization once
one has realised that introducing the metric involves using the basis adapted to the
connection.
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Note that the Hamiltonian representation of the given cofactor system on 7@ x IR is

['—za" =Ty — (u+ 20)";

so it is obtained by a kind of deformation of the non-conservative forces.

7 Cofactor pair systems

We now consider non-conservative Lagrangian systems which are of cofactor type in two
ways — what Lundmark calls cofactor pair systems.

Suppose that the metric ¢ admits two independent special conformal Killing tensors .J
and K. The condition for a given system [' = I'g — MY to be of cofactor type (at least
locally) with respect to both J and K is that Dju = Dgp = 0. We must examine the
relation between the operators Dy and Dg.

If J and K are two special conformal Killing tensors then clearly aJ+bK is also a special
conformal Killing tensor for any constants a, b, with corresponding 1-form aa+b3, where
a=d(trJ), § =d(tr K). Using the representation D ;0 = dj0 + o A\  we see that

Dayjiox = aDj+bDk;
since Dj? = Dg? = Dyyypic? = 0, it follows that
DD+ DgDjy=0.

It is worth pointing out that it also follows that the Nijenhuis bracket [.J, K] vanishes,
and that djf + dga = 0. (Incidentally, for any pair of tensors such that [J, K] = 0,
dj(tr K)+ dg(trJ) =d(tr JK).)

There are functions V/ and W’ such that p = DV’ = DW', where V = (det J)V’
and W = (det K)WW' are the ‘potentials’ in the quadratic integrals of I'. These functions

satisfy
DJDKW/ =0 and DKDJV/ = 0;

since DyDg + DDy =0, they are both solutions of the same equation,
DjDg¢ = 0.

This is the generalization of the so-called ‘fundamental equation’ of [8, 9, 12]. In view
of the anti-commutativity of the operators D; and Dy, the 2-form D ;D g ¢ is obviously
skew-symmetric in J and K. It is given in terms of the components of J and K by

DyDxé = (JEK oy + 3585 — KFag)op + ((JEBe)); + ;) ) da’ A dg'.
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The term involving a covariant derivative of J*# may not seem to have the required
skew-symmetry property at first sight, but is essentially dj3, which is equal to —dg .

We leave it to the reader to verify that this covariant fundamental equation reduces
exactly to the one Lundmark put forward in coordinates for the Euclidean case. It
suffices to take for the matrix J an expression of the form J;; = aq;q; + b;q; + b;¢; + ¢;;
(the position of the indices is rather irrelevant in the Euclidean case, so we write them
here as lower indices); accordingly, o; = 2(aq; + b;).

We now establish the complete integrability of a cofactor pair system. Since Dgjyprp =
aDju+bDgu = 0, the vector field I' corresponding to the given cofactor pair system is
the restriction to z = 0 of the Hamiltonian vector field of —z for the Poisson structure

. . 0
(a,b) = Myyrpx + (I = z(ac” +08%)) A g

for every @ and b. Note that this is not the same as
a(H —I—(f—zoev)/\g) +b(H '—I—(f—zﬂv)Ai)
J 0z K 0z

except when a+b = 1, so this does not define a Poisson pencil as written. This is a minor
difficulty, which can be dealt with by adding (e + b — 1)f A0D/0z to f[(a7 b), and using
the standard results about Poisson pencils to prove complete integrability; however, it
seems interesting, and more pleasing, to establish complete integrability directly.

We write A(a,b) for the cofactor tensor of a.J + bK. It is a homogeneous polynomial of
degree n — 1 in a, b (where n = dim Q). Let V' (a,b) be a solution of D, jipx ((det(a] +
bK) 'V (a,b)) = p or equivalently dV(a,b) = A(a,b)*u; it is again a homogeneous
polynomial in a and b of degree n — 1. We set

Ala,b) = Z A(m)a”_mbm_l, Via,b) = Z V(m)a”_mbm_l

m=1 m=1
and thereby define n functions H,,) on T7Q), m =1,2,...,n by
Hmy = 3400 PiPi + Vim):

Note that Hyy is the Hamiltonian function for (det J)f with respect to 17, and Hy,)
the Hamiltonian function for (det K)I' with respect to Ilx.

Theorem 4 The functions H,,) are first integrals of ' which are in involution with
respect to the Poisson brackets associated with I1; and Ilgk.

Proof We know that

Cl(a,b) = H(a,b)+ zdet(a] + bK) = £ A(a,b)p;p; + V (a,b) + z det(a] + bK)
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is a Casimir of f[(a7 b), and r— z(aaV + b4Y) is a Hamiltonian vector field, for every «
and b. So in particular (I' — z(aa” +03"))C(a,b) = 0. Now H (a,b) = >7 1 H(y). On
setting z = 0 we find that H,,) is a first integral of [ for m=1,2,...,n. Now set

det(aJ +bK) = Aga" b’
=0

It then follows from the fact that C'(a,b) is a Casimir that (on 7*Q)
{'7 H(m)}J + {'7 H(m—l)}]&" = A(m)f

for 2 < m < n, while {-, Hy)}s = (det J)f and {-, H,}x = (det K)f (which just
confirms that [ is Hamiltonian up to a scalar factor for the Poisson brackets determined
by both .J and K). It follows that

{Hy, Hio Yo+ {H vy His—1) b e = Ay (Hy) = 0

for 1 <r <nand 2 < s <n, from which the usual kind of induction argument leads to
the H(,,) being in involution with respect to both Poisson brackets. a

We make some final observations now, which will establish a link between our new results
and related work in Hamilton-Jacobi theory. The cofactor tensor of aJ +bK is a Killing
tensor for every a, b (or at least those for which aJ +bK is non-singular). It follows that
A(m) is a Killing tensor for each m. In particular, if K = I, and if J has functionally
independent eigenfunctions, we generate from the one special conformal Killing tensor n
independent Killing tensors, one of which is g and another of which is the cofactor tensor
of J; and since the eigenvectors of aJJ + bI are the same as the eigenvectors of J, these
Killing tensors have the same eigenvectors. Furthermore, they commute pairwise in the
sense of their corresponding quadratic functions having vanishing Poisson bracket (in
this case, {-, -}k is the standard Poisson bracket). It follows that these Killing tensors
form a Stickel system (for full details see [2]). Moreover, I is the Hamiltonian flow of
the Hamiltonian %gijpipj + V, where D;dV = 0; it then follows by results of [3] and
[6] that the Hamilton-Jacobi equation for this Hamiltonian is separable in orthogonal
coordinates.

The fact that the existence of a special conformal Killing tensor leads to the orthogonal
separability of the Hamilton-Jacobi equation for the geodesic flow was first pointed
out by Benenti in [1]. The more general case, in which there is a potential, has been
discussed from points of view close to that of the present paper in [3] and [6]. In [6]
a bi-Hamiltonian structure was introduced, essentially equivalent to the Poisson pencil

I, 74p7. In [3] the special nature of the conformal Killing tensor which plays such a
central role in the theory was investigated.
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8 Conclusions

As is often the case, the generalization of the results of [8, 9, 10, 12] has led to the
clarification of several of the concepts and methods used in these papers. In particular,
the Poisson structures introduced there have been shown to be examples of two general
constructions: first, the construction of a Poisson-Nijenhuis structure on a cotangent
bundle via the complete lift of a type (1, 1) tensor with vanishing torsion, which is well-
known; and second, the ‘lifting’ of a Poisson structure and a quasi-Hamiltonian vector
field to an extended space which is the subject of Theorem 3 above. This latter result
appears to be new. It should be noted that it is not dependent on the existence of a bi-
Hamiltonian or quasi-bi-Hamiltonian structure, but only on a single quasi-Hamiltonian
vector field. Nevertheless, it clearly has potential application in the field of quasi-
bi-Hamiltonian systems (as defined for example in [11]), of which the case K = [
discussed at the end of the last section is an example. Indeed, the results obtained
here for a particular class of what might be called bi-quasi-Hamiltonian systems should
be capable of generalization to provide a theory of such systems. We are currently
investigating this possibility. It is noteworthy that the differential operators Dy and Dy
play an important role here, so that the theory of cofactor pairs provides an example
of a gauged bi-differential calculus in the sense of [4]; this seems to us to be likely to
be a feature of the general theory of bi-quasi-Hamiltonian systems we have in mind.
Finally, from the opposite point of view as one might say, the properties of cofactor
tensors of special conformal Killing tensors have not been noticed before in published
accounts of Benenti’s theory of inertia tensors and the orthogonal separability of the
Hamilton-Jacobi equation, so far as we are aware. A paper on this subject, [2], is in
preparation. In [6], Ibort et al. speculate that there is ‘a deep relation, still to be
worked out, between the geometry of Killing tensors on a Riemannian manifold and the
geometry of a particular class of Poisson manifolds’. It seems to us that this remarkable
property of special conformal Killing tensors is part of this deep geometrical structure.
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