
A class of non-conservative Lagrangian systems onRiemannian manifoldsM. CrampinDepartment of Applied Mathematics, The Open University,Walton Hall, Milton Keynes MK7 6AA, UKW. SarletDepartment of Mathematical Physics and Astronomy, Ghent University,Krijgslaan 281, B{9000 Gent, BelgiumNovember 30, 20001 IntroductionIn a number of recent publications [8, 9, 10, 12], Rauch-Wojciechowski, Marciniak andLundmark have discussed an interesting class of systems of second-order ordinary di�er-ential equations, whose members, when viewed as classical mechanical systems, are ina sense completely integrable. These systems originally generated interest because theyare derived from the stationary 
ows of soliton-type evolution equations; but they havemore recently been studied in their own right because they include well-known cases ofintegrable bi-Hamiltonian systems and cases where the Hamilton-Jacobi equation sepa-rates. Of these papers we will refer most often to [9], which contains the most generalexposition of the theory which we seek to develop further here. In particular, [9] dealswith systems with n of degrees of freedom, and therefore subsumes (at least so far asthe issues we intend to discuss are concerned) [12], which is largely restricted to systemswith two degrees of freedom.The systems of second-order equations under consideration take the general form ofLagrange's equations in mechanics,ddt �@T@ _qi�� @T@qi = Qi;where T is the kinetic energy function and the `generalized forces' Qi need not bederivable from a potential energy function. In all the publications mentioned abovethe kinetic energy is taken to have the Euclidean form, T = 12P( _qi)2; we however will1



deal with the more general situation in which T is derived from a Riemannian metric,T = 12gij _qi _qj . In addition, the systems are required to possess quadratic integrals of themotion, of a special kind, called by Lundmark integrals of cofactor type. Of particularinterest are those systems which possess two independent quadratic integrals of cofactortype: such a system can be regarded as the restriction of a bi-Hamiltonian 
ow on aphase space of one more dimension, and has a further hierarchy of integrals in involution.As we have just pointed out, the primary aim of our paper is to derive in the Riemanniancase results which parallel those that Lundmark et al. have obtained in the Euclideanone. In doing so we extend the range of application of their theory, of course. However, injustifying our e�orts we would put greater emphasis on the increased level of geometricalinsight we have achieved into the results of the group in Link�oping. In particular, weclaim to have considerably clari�ed, by generalizing them,1. the concept and properties of a cofactor system;2. the origin of the so-called `fundamental equation' involved in the de�nition of acofactor pair system; and3. the construction of the bi-Hamiltonian structure associated with a cofactor pairsystem.Several of the methods we use here were developed in a recent paper on bi-Hamiltoniansystems and conformal Killing tensors [3], which was concerned with a certain class ofconservative systems whose Hamilton-Jacobi equations separate; we will brie
y indicatehow such systems can be regarded as a subset of the cofactor pair systems discussedhere.The Link�oping group refer to the di�erential equations they consider as `Newton equa-tions of quasi-Lagrangian type', because in the Euclidean case it turns out that whenthere is a quadratic �rst integral E the equations can formally be cast into the formd=dt(@E=@ _qi)+@E=@qi = 0, which resembles Lagrange's equations but has a wrong sign.This is, in our opinion, a complete artifact of the systems under consideration, whichhas nothing to do with the fundamental issues which are at stake. In fact, the moregeneral systems on Riemannian spaces we will introduce simply do not have this verynon-intrinsic property. We have therefore decided to describe them as `non-conservativeLagrangian systems' instead. In doing so we are conscious that our work, togetherwith that of Rauch-Wojciechowski, Marciniak, Lundmark and others in this �eld, isclosely connected with the researches of Bertrand and Darboux in the second half of thenineteenth century, which are summarised by Whittaker in articles 151 and 152 of [14].The structure of the paper is as follows. In Section 2 we recall some aspects of Poissonstructures for later use. We concentrate in particular on the construction of a non-standard Poisson structure on T �Q out of the complete lift of a type (1,1) tensor �eld2



on Q. In Section 3, we take a non-conservative Lagrangian system as the starting pointand investigate under what circumstances it has a quasi-Hamiltonian representation withrespect to such a non-standard Poisson structure. This leads us to an interesting class ofspecial conformal Killing tensors J , which are discussed in more detail in the next section.The main result in that section is that the cofactor tensor of such a J is a Killing tensor.Coming back then to the idea we started from, and inspired by the work of Lundmark[9] in the Euclidean case, we more formally introduce the notion of a cofactor systemin Section 5 and complete the discussion of its quasi-Hamiltonian representation. InSection 6, we show how a cofactor system can also be given a Hamiltonian representationon an extended manifold. Section 7 is about cofactor pair systems, that is, systemswhich have a double cofactor representation. We show how this leads to a gaugedbi-di�erential calculus which provides an intrinsic generalization of the `fundamentalequations' referred to above. We further establish complete integrability by exploitingthe double Poisson structure on the extended space. Finally, we brie
y explain therelation between this work and recent work on the separability of the Hamilton-Jacobiequation.2 Poisson structuresIt will be convenient to recall some generalities here about Poisson structures, whichwill at the same time serve to �x the sign conventions which we will adopt.A Poisson structure on a manifold M is a bivector �eld � which satis�es [�;�] = 0,where [�; �] is the Schouten bracket. The associated Poisson bracket of functions f , gis given by ff; gg = �(df; dg); the vanishing of the Schouten bracket entails the Jacobiidentity for the Poisson bracket. Also associated with such a bivector �eld is a map P of1-forms to vector �elds onM , given by hP (�); �i = �(�; �) for any pair of 1-forms �, �.The vector �eld P (dh) is the Hamiltonian vector �eld corresponding to the Hamiltonianfunction h. The Poisson structure is non-singular if its Poisson map is.Two Poisson structures �1, �2 are compatible if [�1;�2] = 0. When this conditionholds, a1�1 + a2�2 is Poisson for any constants a1 and a2. The collection of Poissonbivectors a1�1 + a2�2 is called a Poisson pencil.Let �:M !M be a di�eomorphism. For any bivector �eld � on M we can use ��, themap of forms induced by �, to transform � into a new bivector �eld �� by(��)(�; �) = ��1��(���; ���):This is the natural extension to bivector �elds of the map of vector �elds induced by adi�eomorphism. The corresponding transform P� of the map P is given as a linear mapT �xM ! TxM , x 2M , by P�jx = ��x � P j��1(x) � ��x:3



There is no guarantee that �� will be Poisson even when � is: we will deal with a case inwhich it is below. For the present, merely note that if � and  are two di�eomorphismsthen ��� = (� )� and likewise P�� = (P )�.The cotangent bundle T �Q of a manifold Q has a standard Poisson bivector �0 whoseexpression in terms of standard coordinates (qi; pi) is�0 = @@pi ^ @@qi :The corresponding Poisson map P0 is given in terms of the canonical symplectic form !by P0(�) ! = ��.Let J be a non-singular type (1; 1) tensor �eld on Q. It de�nes a di�eomorphism Ĵ ofT �Q which is �bre preserving and linear on �bres, given by Ĵ(qi; pi) = (qi; Jji pj) (notethat J acts here on covectors, that is to say, it is its adjoint that is involved). Thebivector �eld (�0)Ĵ = �J is a Poisson bivector if and only if the torsion, or Nijenhuistensor, NJ of J is zero. When this is the case �J is compatible with �0, and we obtainan example of a Poisson-Nijenhuis structure. The corresponding Poisson map PJ isgiven by PJ = ~J � P0 = P0 � ~J�, where ~J is the complete lift of J , a type (1; 1) tensor�eld on T �Q, and ~J� is its adjoint (acting on 1-forms).In the sequel we will carry out several coordinate calculations involving these constructs,in situations where we have a symmetric connection at our disposal. We therefore givecoordinate representations of them using bases of local vector �elds and 1-forms adaptedto the connection, given by @@qi + �kijpk @@pj = Xi; @@pifor vector �elds, where �kij = �kji are the connection coe�cients, anddqi; dpi � �kijpkdqj = �ifor 1-forms; these are dual bases. The indices i, j, k etc. range over 1; 2; : : : ; n = dimM ,and the Einstein summation convention is in force. Then~J = J ij  Xi 
 dqj + @@pj 
 �i!+ �Jkijj � Jkjji� pk @@pi 
 dqj :The vertical bar divides o� the di�erentiation index in a covariant di�erential from theother indices. The condition NJ = 0 can be writtenJkl �J lijj � J ljji� = J ljJkijl � J liJkjjl:In order to calculate Hamiltonian vector �elds with respect to PJ it is enough to know~J since one can use either of the formulae PJ = ~J � P0 and PJ = P0 � ~J�; it is useful to4



remember that for a symmetric connection P0 can be writtenP0 = @@pi ^Xi:However, to facilitate comparison with [9, 10, 12] we give the formula for PJ :PJ = J ij @@pj ^Xi � 12 �Jkijj � Jkjji� pk @@pi ^ @@pj :Finally, we will have occasion to discuss situations where we have more than one type(1; 1) tensor �eld at our disposal. In the �rst place, suppose that J has vanishing torsion,and that A is another type (1; 1) tensor �eld such that JA also has vanishing torsion(where JA is the type (1; 1) tensor �eld whose components are J ikAkj , that is, JA is thecomposition J � A acting on vector �elds). Then �JA is a Poisson bivector. It can beexpressed in terms of �J by means of the formula ��� = (� )� with � = Â,  = Ĵ :note that since A and J act on T �Q by their adjoints, dJA = Â � Ĵ . Thus �JA = (�J)Â.It follows that for any Hamiltonian function H ,PJA(d(Â�1�H)) = Â�PJ(dH):Secondly, suppose that J and K both have vanishing torsion and that [J;K] = 0 where[�; �] here is the Nijenhuis bracket. Then aJ + bK has vanishing torsion for all constantsa and b, so that PaJ+bK is a Poisson map for all a and b; and from the formula for PJwe see that PaJ+bK = aPJ + bPK . Thus aPJ + bPK is a Poisson pencil in this case.3 Non-conservative Lagrangian systemsA geometrical description of the kind of general Lagrange equations mentioned in theintroduction can be obtained as follows. Let S denote the canonical vertical endomor-phism on a tangent bundle TQ and � a second-order di�erential equation �eld. As wasdescribed in [13], � represents a non-conservative Lagrangian system, if there exists a1-form � = dL�� on TQ, where L is a regular Lagrangian and � is semi-basic, such thatL�(S�(�)) = �. It is easy to verify that, in coordinates (qi; ui) on TQ, this requirementmeans that �� @L@ui�� @L@qi = �Mi;where the Mi are the components of � (the minus sign here is a matter of convention).We shall consider the particular case in which the non-conservative forces �Mi do notdepend on the velocities, so that � is a 1-form on Q; and L is a pure kinetic energyLagrangian. The latter means that the base manifold Q is assumed to be Riemannian(or pseudo-Riemannian) with metric tensor g = (gij), and that L = T = 12gijuiuj . If5



� ijk are the Christo�el symbols for the corresponding Levi-Civita connection, and if weput M i = gijMj as is usual, the resulting second-order di�erential equation �eld is ofthe form � = ui @@qi � �� ijkujuk +M i� @@ui :Another way of characterizing such vector �elds is to say that � = �0 �MV , where �0is the geodesic �eld for the connection and MV is the vertical lift of a vector �eld M onQ.We will show that it is possible, in certain interesting cases, to �nd a quasi-Hamiltonianrepresentation for such a system; that is to say, to represent it as a scalar multiple of aHamiltonian vector �eld. However, we will not assume that the Poisson structure withrespect to which this vector �eld is Hamiltonian is the standard one; instead, we willlook for a suitable Poisson structure of the form �J de�ned by some type (1; 1) tensor�eld J on Q whose torsion vanishes.We use g to de�ne a di�eomorphism ĝ:TQ! T �Q by pi = gijuj . We will denote by �̂the transform of � by ĝ, that is, �̂ = ĝ��. We have�̂ = gijpjXi �Mi @@pi ;where the Xi are the vector �elds on T �Q adapted to the connection speci�ed above.Equip T �Q with a Poisson structure �J and Poisson map PJ as described earlier. Wewish to determine under what circumstances one can �nd a J with NJ = 0 such thatthe given system satis�es F �̂ = PJ(dH) for some functions F and H . We will nowsolve this problem under the assumption that H is quadratic in the momenta, so thatH = 12Aijpipj + V for some symmetric tensor A and function V on Q; we will furtherassume that A is non-singular.For such H we �nd, after a little calculation, thatPJ(dH) = J ikAjkpjXi � ��12J liAjk jl � (Jjijl � Jjlji)Akl� pjpk + Jji @V@qj � @@pi :For this to equal F �̂ we must �rst haveJ ikAjk = Fgij :Thus F must be a function on Q, so that the quadratic and zeroth-order terms in theother coe�cients must be equated separately. As a result, we require thatJ liAjkjl = (Jjijl � Jjlji)Akl + (Jkijl � Jklji)AjlJji @V@qj = FMi: 6



On lowering the index i in the �rst condition we see that Jij is a scalar multiple of theinverse of Aij , and so is symmetric because Aij is. By di�erentiating this equation andmultiplying by J twice we obtainJmj Jnk J liAjk jl = @F@qlJmnJ li � FJ liJmnjl:The second condition therefore can equivalently be replaced by@F@qlJmnJ li = F �J liJmn jl + glmJnk (Jkijl � Jklji) + glnJmk (Jkijl � Jklji)� :We now use the assumption that NJ = 0 to rearrange the last four terms; when thisis done, the �rst term on the left-hand side cancels, and after some indices have beenlowered we obtain @F@qlJjkJ li = F (J lkJijjl + J ljJikjl � J liJjkjl):The part of this equation symmetric in i and j givesJijjk = 12(�igjk + �jgik)where we have written �i = 1F Jji @F@qj :The skew-symmetric part is then automatically satis�ed. It further follows from theformula for Jijjk that �k = (J ii )jk, or � = �idqi = d(trJ). Hence, if Jijjk has the requiredstructure, the �i are actually determined, so that the relations Jji @F=@qj = F�i shouldbe seen as equations for admissible functions F .We next show that a particular solution for F is det J . We havedetJ = 1n!�i1i2:::inj1j2:::jnJj1i1 Jj2i2 � � �Jjnin ;where �i1i2:::inj1j2:::jn is the generalized Kronecker delta (see for example [7]). Thus@@qk detJ = 1(n � 1)!�ii2:::injj2:::jnJjijkJj2i2 � � �Jjnin :Now 1(n� 1)!�ii2:::injj2:::jnJj2i2 � � �Jjnin = Cijis the cofactor tensor of J , which satis�esJ ikCkj = (detJ)�ij :7



So we may write Jki @@qk det J = Jki CljJjljk = 12Jki Clj(�l�jk + �jgkl)= 12(Jji Clj�l + Jki Clk�l) = (det J)�i;where we have used the fact that Cij is symmetric, which follows from the symmetry ofJij .Now suppose that F is any solution: we show that F is a constant multiple of det J . Wehave 1F Jji @F@qj = �i = 1det J Jji @@qj det J;from which it follows that Jji @@qj � Fdet J � = 0;and so F = k det J .Once we have �xed a J in a quasi-Hamiltonian representation F �̂ = PJ (dH) for the givensystem, multiplying F by a constant factor is a quite irrelevant degree of freedom, sinceit can be compensated for by adapting the Hamiltonian. So without loss of generalitywe can take F = det J , whence the �rst condition on J becomes J ikAjk = (detJ)gij ,and identi�es Aij as the cofactor tensor of J ij . Finally, there is a restriction on thenon-conservative forces, which must have the formMi = (detJ)�1Jji @V@qjfor some function V on Q.We shall come back to the formulation of the conclusions of this analysis in Section 5,after looking in more detail at the special kind of tensor �elds J it has revealed.4 Special conformal Killing tensorsA tensor J which satis�es the condition Jijjk = 12(�igjk + �jgik) for some �i has veryinteresting properties. In the �rst place, J(ijjk) = �(igjk) (brackets denote symmetriza-tion), which says that J is a conformal Killing tensor of g; and furthermore � = �idqi isexact, so it is a conformal Killing tensor of gradient type. In the course of the argumentin the previous section it was assumed that the torsion of J vanishes (this was necessaryto ensure that �J is Poisson): but in fact the vanishing of the torsion is an easy con-sequence of the de�ning condition. Moreover, as we showed in [3], a conformal Killing8



tensor whose torsion vanishes and which has functionally independent eigenfunctionsmust necessarily satisfy this condition. A symmetric type (0; 2) tensor J on Q such thatJijjk = 12(�igjk + �jgik)will therefore be called a special conformal Killing tensor . In the Euclidean case a tensoris a special conformal Killing tensor if and only if it is an elliptic coordinates matrix inLundmark's terminology [9], or a planar inertia tensor in Benenti's [1].We will deal only with special conformal Killing tensors which are non-singular. Theinverse of a type (1; 1) tensor will be denoted by an overbar when we need to use indices.The determinant of a type (1; 1) tensor is a scalar (this is not so for a type (2; 0) or (0; 2)tensor), so whenever we use determinants it is to be assumed that the correspondingtensor is in type (1; 1) form. This applies also to the formula A = (detJ)J�1, whichmay be used to de�ne the cofactor tensor of J when it is non-singular. Elsewhere, theusual rules for raising and lowering indices apply. Thus for example Aij = (detJ) �Jij : itis symmetric if J is.When J is special conformal Killing, by taking the covariant derivative of the equationAijJjl = (detJ)gil and using the de�ning condition one can deduce thatAijjk = (det J) � �Jij �Jkl � 12 �Jik �Jjl � 12 �Jil �Jjk��l;from which one easily derives the following remarkable property of any special conformalKilling tensor.Proposition 1 The cofactor tensor of a non-singular special conformal Killing tensoris a Killing tensor.Proof It follows immediately from the formula above that A(ijjk) = 0. 2Note further that A has the same eigenvectors as J .A special conformal Killing tensor J may be used to de�ne a couple of di�erentialoperators with nice properties. In the �rst place, we can form the operator dJ in thesense of Fr�olicher-Nijenhuis theory [5]: this is the derivation of degree 1 of the exterioralgebra V(Q) of forms on Q, over the algebra C1(Q) of real-valued C1 functions on Q,which anti-commutes with the exterior derivative d (i.e. is a derivation of type d�), andwhose action on C1(Q) is given by dJf = J�(df). Furthermore, dJ has the coboundaryproperty dJ2 = 0 because the torsionNJ is zero. What is more, since by assumption J isnon-singular, dJ satis�es a Poincar�e lemma: that is to say, for a k-form �, the conditiondJ� = 0 is su�cient as well as necessary for the local existence of a (k� 1)-form ' suchthat � = dJ'. This result can be found in a paper of Willmore [15].In the previous section we came across an interesting property in which dJ is involved.We showed there that if J is a special conformal Killing tensor, F = detJ satis�es9



Jji @F=@qj = F�i where � = d(trJ). Hence,dJ (detJ) = (detJ)� = (det J)d(trJ):(In fact this holds for any tensor J whose torsion vanishes.) By acting with dJ on bothsides, it further easily follows that dJ� = 0, that is, dJd(trJ) = 0. (In fact for anytensor J whose torsion vanishes, dJ(trJ) = 12d(trJ2).)These properties enable us to de�ne the following di�erential operator DJ , which alsoacts on forms � on Q; DJ will turn out to have an important role in relation to thefundamental equation mentioned in the introduction.DJ� = (detJ)�1dJ((detJ)�) = dJ� + � ^ �:Note thatDJ is not a derivation (in the sense of Fr�olicher-Nijenhuis), but it is clear fromthe �rst expression that DJ satis�es DJ 2 = 0, so it is an example of a (scalar) gaugeddi�erential operator, in the terminology of [4]. Moreover, we see that once againDJ� = 0is a su�cient condition for there to be a form ' (locally) such that � = DJ': we havedJ((detJ)�) = 0, so there is a '0 such that (detJ)� = dJ'0, whence ' = (det J)�1'0satis�es DJ' = �.Note �nally that the condition on the non-conservative forces derived in the previoussection can now be written in coordinate-free form with the aid of the 1-form � =Midqiof the beginning of that section. The condition reads� = (det J)�1dJV = DJ((detJ)�1V ):Hence, in order for the non-conservative Lagrangian system � to have a quasi-Hamiltonianrepresentation as described in the previous section, there must be a function V 0 =(detJ)�1V such that � = DJV 0. But so long as we are concerned only with localconsiderations, this is equivalent to the condition DJ� = 0.5 Cofactor systemsWe can now describe explicitly the class of non-conservative Lagrangian systems � weare analysing: they are those determined by a metric tensor g which admits a specialconformal Killing tensor J , and a 1-form � on the con�guration manifold Q such thatDJ� = 0. Systems of this type, in the Euclidean case, are what Lundmark calls cofactorsystems, though he does not de�ne them in quite the same way; we will use the sameterminology even though it doesn't really match our de�nition.De�nition A non-conservative system � on TQ, generated by a metric tensor �eld gand a 1-form � on Q, is said to be a cofactor system, if g admits a non-singular specialconformal Killing tensor J and � satis�es DJ� = 0.10



The results of the preceding sections can now be summarized as follows.Theorem 2 A non-conservative system � on TQ determined by the couple (g; �) on Q,has a quasi-Hamiltonian representation F �̂ = PJ (dH), where J is a type (1; 1) tensor�eld on Q and H is a function on T �Q quadratic in momenta, if and only if it is acofactor system.Proof The argument developed in Section 3 proves the following assertion: the conditionF �̂ = PJ(dH) with H quadratic, assuming NJ = 0, is equivalent to the requirements forhaving a cofactor system. But as we observed in Section 4, a special conformal Killingtensor automatically has zero torsion. Therefore, conversely, every cofactor system hasa quasi-Hamiltonian representation of the desired type. 2Notice that for a special conformal Killing tensorPJ = J ij @@pj ^Xi � 14(�ipj � �jpi) @@pi ^ @@pj :Lundmark et al. approach the analysis of non-conservative Lagrangian systems bydiscussing the conditions under which such a system has a quadratic �rst integralE = 12Aijuiuj + V . Any cofactor system has a quasi-Hamiltonian representation witha quadratic Hamiltonian, which then is necessarily conserved, but the cofactor systemsare a subclass of the non-conservative Lagrangian systems with quadratic integrals. Wewill complete the picture by identifying exactly which of the properties or conditions wehave encountered entail that the function E = 12Aijuiuj+V is a constant of the motion.We have �(E) = 12Aijjkuiujuk � �AijM j � @V@qi�ui:Thus, in order that �(E) be zero, A must satisfy A(ijjk) = 0, which is to say that itmust be a Killing tensor. Moreover, we must have A�� = dV . As we have seen, the �rstcondition is satis�ed automatically when A is the cofactor tensor of a special conformalKilling tensor (but of course there may be Killing tensors which are not of this type),and the restriction on � then takes the form � = DJ((detJ)�1V ). These remarks aresupposed to explain the origins of the name `cofactor system'.We will also take this opportunity to comment on the use of the term `quasi-Lagrangian'to describe non-conservative Lagrangian systems with quadratic integrals in the Euclid-ean case. Note that the commutator of any second-order equation �eld � = ui@=@qi +f i@=@ui on TQ with @=@uj is given by��; @@uj � = � @@qj � @f i@qj @@ui :It follows that for any �rst integral E of � we will have�� @E@uj�+ @E@qj = �@f i@uj @E@ui :11



Hence, if the right-hand sides of the given equations (i.e. the functions f i) are velocityindependent, it will trivially be the case that every �rst integral E leads to a relationwhich formally looks like Euler-Lagrange equations with the wrong sign. In the Euclid-ean case, in Cartesian coordinates, the right-hand sides are indeed velocity independent.However, if the space is not Euclidean the equations will certainly not have this feature;indeed, they will not even in the Euclidean case if curvilinear coordinates are used. Onthe other hand, as we have already seen and will see further in what follows, the systemswe are considering do have all the intrinsic features which explain the essential propertiesof what were called quasi-Lagrangian systems in [9, 10, 12]. It seems to us, therefore,that the fact that the systems considered there have quasi-Lagrangian representationsis not signi�cant.Given the prominent role played by the function 12Aijuiuj+V in the concept of a cofactorsystem, one might naturally ask why one should not, to obtain a quasi-Hamiltonianrepresentation, map TQ to T �Q by ui 7! Aijuj rather than ui 7! gijuj . To do sois equivalent to carrying out the map Â on T �Q. Note that since JA = (detJ)I ,and the torsion of a multiple of the identity vanishes, PJA is certainly a Poisson map.The dynamics is transformed to Â��̂. In Section 2 we showed that PJA(d(Â�1�H)) =Â�PJ(dH). It follows that(detJ)Â��̂ = Â�PJ (dH) = PJA(d(Â�1�H));which is to say that Â��̂ is quasi-Hamiltonian with respect to PJA = P(detJ)I , withHamiltonianÂ�1�H = (det J)�1Ĵ�H = (det J)�1(12AijJki J ljpkpl + V ) = 12J ijpipj + (detJ)�1V:This formulation, in the Euclidean case, is essentially that given by the second of thetwo non-standard Poisson structures in [10].Once one has noticed this trick one realises that there are other possible ways of obtain-ing a quasi-Hamiltonian representation of a cofactor system. Indeed, by applying themap dJ�1 one sees that there is a quasi-Hamiltonian representation with respect to thestandard Poisson structure. However, when we come to discuss cofactor pair systemsthese alternatives will not do, because they will associate di�erent vector �elds on T �Qwith the original vector �eld � on TQ: it is far better to stick with the single vector�eld �̂ = ĝ�� on T �Q and represent it in quasi-Hamiltonian form with respect to twoPoisson structures.6 Hamiltonian structure for a cofactor systemWe now show how to represent a cofactor system as a Hamiltonian vector �eld withrespect to a Poisson structure de�ned on an extended manifold. This involves an appli-12



cation of what is in fact a general construction which applies to any quasi-Hamiltonianvector �eld. This construction is the subject of the following theorem.Theorem 3 Let � be a Poisson bivector on a manifold M , and Z a vector �eld onM with the property that there is a nowhere-vanishing function F such that FZ is aHamiltonian vector �eld with respect to �, with Hamiltonian function H . Then there isa Poisson bivector �̂ on M � IR which projects onto �, and a vector �eld, Hamiltonianwith respect to �̂, whose restriction to the zero section is Z. Furthermore, H + zF is aCasimir of �̂ (where z is the coordinate on IR).Proof Let � denote the projection �:M � IR ! M . We can extend � to M � IRsimply by ignoring z: that is, for 1-forms on M we put �(���; ���) = �(�; �), while�(dz; �) = 0 (so that z is a Casimir for �). We consider a bivector of the form�̂ = � + (Z + zW ) ^ @@z ;where W is a vector �eld independent of z (that is, hW; dzi = 0 and L@=@zW = 0),and seek a W for which �̂ is Poisson. If we �nd one then the Hamiltonian vector �eldcorresponding to �z will be Z+ zW , agreeing with Z on z = 0; and the projection of �̂toM will be � (or in other words � will be a Poisson map). We require that [�̂; �̂] = 0.Now for any bivector �eld 
 and vector �elds X , Y ,[
 +X ^ Y;
+X ^ Y ] = [
;
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�X ^ Y ^ [X; Y ]);so we require thatLZ+zW� ^ @@z = (Z + zW ) ^ @@z ^ (�W ) = Z ^W ^ @@z :For any bivector �eld 
, function f and vector �eld V ,LfV 
 = fLV 
� V ^ S(df);where S is the map of 1-forms corresponding to 
. So [�̂; �̂] = 0 is equivalent to(LZ�+ zLW�) ^ @@z = Z ^W ^ @@z :The conditions for �̂ to be Poisson areLZ� = Z ^W; LW� = 0:Now Z = F�1P (dH), where P is the Poisson map corresponding to �, so (since the Liederivative of � by a Hamiltonian vector �eld is zero)LZ� = �P (dH)^ P (dF�1) = F�2P (dH)^ P (dF );13



so both requirements are satis�ed ifW = F�1P (dF ):That is to say,�̂ = � + �Z + zF�1P (dF )� ^ @@z = � + F�1P (dH + zdF ) ^ @@zis a Poisson tensor on M � IR.It follows by a direct calculation that H + zF is a Casimir of �̂. 2It is useful to note, for future reference, that in fact the bivector �+(kZ+zW )^@=@z isPoisson for every constant k; or what amounts to the same thing, �̂ is compatible withthe (highly degenerate) Poisson bivector Z ^ @=@z. This is established by the followingcomputation:��̂; Z ^ @@z � = LZ�̂ ^ @@z � Z ^ L@=@z�̂= �LZ�+ z[Z;W ]^ @@z�^ @@z � Z ^ �� @@z ; Z + zW� ^ @@z�= (Z ^W ) ^ @@z � Z ^ �W ^ @@z� = 0:Of course the Hamiltonian vector �eld corresponding to �z for this modi�ed Poissonstructure restricts on z = 0 not to Z but to a constant multiple of it.Returning to the case of a given cofactor system, we may use the construction in thetheorem above to represent �̂ as the restriction to z = 0 of a Hamiltonian vector �eldon T �Q � IR. The function F in this case is detJ , which is a function on Q. TheHamiltonian vector �eld associated with det J by �J is �(dJ(detJ))V = �(det J)�V .Thus �̂J = �J + (�̂� z�V ) ^ @@z ;or in other words P̂J = J ij @@pj ^Xi � 14(�ipj � �jpi) @@pi ^ @@pj+ gijpjXi ^ @@z � (Mi + z�i) @@pi ^ @@z :This agrees with the Poisson structure for a cofactor system in the n-dimensional Euclid-ean case given in [9] and in 2 dimensions in [12], and is the obvious generalization onceone has realised that introducing the metric involves using the basis adapted to theconnection. 14



Note that the Hamiltonian representation of the given cofactor system on T �Q� IR is�̂� z�V = �̂0 � (�+ z�)V ;so it is obtained by a kind of deformation of the non-conservative forces.7 Cofactor pair systemsWe now consider non-conservative Lagrangian systems which are of cofactor type in twoways | what Lundmark calls cofactor pair systems.Suppose that the metric g admits two independent special conformal Killing tensors Jand K. The condition for a given system � = �0 �MV to be of cofactor type (at leastlocally) with respect to both J and K is that DJ� = DK� = 0. We must examine therelation between the operators DJ and DK .If J and K are two special conformal Killing tensors then clearly aJ+bK is also a specialconformal Killing tensor for any constants a, b, with corresponding 1-form a�+b�, where� = d(trJ), � = d(trK). Using the representation DJ� = dJ� + � ^ � we see thatDaJ+bK = aDJ + bDK ;since DJ2 = DK2 = DaJ+bK2 = 0, it follows thatDJDK +DKDJ = 0:It is worth pointing out that it also follows that the Nijenhuis bracket [J;K] vanishes,and that dJ� + dK� = 0. (Incidentally, for any pair of tensors such that [J;K] = 0,dJ(trK) + dK(trJ) = d(trJK).)There are functions V 0 and W 0 such that � = DJV 0 = DKW 0, where V = (detJ)V 0and W = (detK)W 0 are the `potentials' in the quadratic integrals of �. These functionssatisfy DJDKW 0 = 0 and DKDJV 0 = 0;since DJDK +DKDJ = 0, they are both solutions of the same equation,DJDK� = 0:This is the generalization of the so-called `fundamental equation' of [8, 9, 12]. In viewof the anti-commutativity of the operators DJ and DK , the 2-form DJDK� is obviouslyskew-symmetric in J and K. It is given in terms of the components of J and K byDJDK� = �Jki Klj�jkl + 32(Jki �j �Kki �j)�jk + �(Jki �k)jj + �i�j��dqi ^ dqj :15



The term involving a covariant derivative of J�� may not seem to have the requiredskew-symmetry property at �rst sight, but is essentially dJ�, which is equal to �dK�.We leave it to the reader to verify that this covariant fundamental equation reducesexactly to the one Lundmark put forward in coordinates for the Euclidean case. Itsu�ces to take for the matrix J an expression of the form Jij = aqiqj + biqj + bjqi + cij(the position of the indices is rather irrelevant in the Euclidean case, so we write themhere as lower indices); accordingly, �i = 2(aqi + bi).We now establish the complete integrability of a cofactor pair system. Since DaJ+bK� =aDJ�+ bDK� = 0, the vector �eld �̂ corresponding to the given cofactor pair system isthe restriction to z = 0 of the Hamiltonian vector �eld of �z for the Poisson structure�̂(a; b) = �aJ+bK + (�̂� z(a�V + b�V )) ^ @@zfor every a and b. Note that this is not the same asa��J + (�̂� z�V ) ^ @@z�+ b��K + (�̂� z�V ) ^ @@z�except when a+b = 1, so this does not de�ne a Poisson pencil as written. This is a minordi�culty, which can be dealt with by adding (a + b� 1)�̂ ^ @=@z to �̂(a; b), and usingthe standard results about Poisson pencils to prove complete integrability; however, itseems interesting, and more pleasing, to establish complete integrability directly.We write A(a; b) for the cofactor tensor of aJ + bK. It is a homogeneous polynomial ofdegree n� 1 in a, b (where n = dimQ). Let V (a; b) be a solution of DaJ+bK((det(aJ +bK)�1V (a; b)) = � or equivalently dV (a; b) = A(a; b)��; it is again a homogeneouspolynomial in a and b of degree n � 1. We setA(a; b) = nXm=1A(m)an�mbm�1; V (a; b) = nXm=1V(m)an�mbm�1and thereby de�ne n functions H(m) on T �Q, m = 1; 2; : : : ; n byH(m) = 12Aij(m)pipj + V(m):Note that H(1) is the Hamiltonian function for (det J)�̂ with respect to �J , and H(n)the Hamiltonian function for (detK)�̂ with respect to �K .Theorem 4 The functions H(m) are �rst integrals of �̂ which are in involution withrespect to the Poisson brackets associated with �J and �K .Proof We know thatC(a; b) = H(a; b) + z det(aJ + bK) = 12A(a; b)ijpipj + V (a; b) + z det(aJ + bK)16



is a Casimir of �̂(a; b), and �̂ � z(a�V + b�V ) is a Hamiltonian vector �eld, for every aand b. So in particular (�̂� z(a�V + b�V ))C(a; b) � 0. Now H(a; b) =Pnm=1H(m). Onsetting z = 0 we �nd that H(m) is a �rst integral of �̂ for m = 1; 2; : : : ; n. Now setdet(aJ + bK) = nXl=0�(l)an�lbl:It then follows from the fact that C(a; b) is a Casimir that (on T �Q)f�; H(m)gJ + f�; H(m�1)gK = �(m)�̂for 2 � m � n, while f�; H(1)gJ = (det J)�̂ and f�; H(n)gK = (detK)�̂ (which justcon�rms that �̂ is Hamiltonian up to a scalar factor for the Poisson brackets determinedby both J and K). It follows thatfH(r); H(s)gJ + fH(r); H(s�1)gK = �(m)�̂(H(r)) = 0for 1 � r � n and 2 � s � n, from which the usual kind of induction argument leads tothe H(m) being in involution with respect to both Poisson brackets. 2We make some �nal observations now, which will establish a link between our new resultsand related work in Hamilton-Jacobi theory. The cofactor tensor of aJ +bK is a Killingtensor for every a, b (or at least those for which aJ+bK is non-singular). It follows thatA(m) is a Killing tensor for each m. In particular, if K = I , and if J has functionallyindependent eigenfunctions, we generate from the one special conformal Killing tensor nindependent Killing tensors, one of which is g and another of which is the cofactor tensorof J ; and since the eigenvectors of aJ + bI are the same as the eigenvectors of J , theseKilling tensors have the same eigenvectors. Furthermore, they commute pairwise in thesense of their corresponding quadratic functions having vanishing Poisson bracket (inthis case, f�; �gK is the standard Poisson bracket). It follows that these Killing tensorsform a St�ackel system (for full details see [2]). Moreover, �̂ is the Hamiltonian 
ow ofthe Hamiltonian 12gijpipj + V , where DJdV = 0; it then follows by results of [3] and[6] that the Hamilton-Jacobi equation for this Hamiltonian is separable in orthogonalcoordinates.The fact that the existence of a special conformal Killing tensor leads to the orthogonalseparability of the Hamilton-Jacobi equation for the geodesic 
ow was �rst pointedout by Benenti in [1]. The more general case, in which there is a potential, has beendiscussed from points of view close to that of the present paper in [3] and [6]. In [6]a bi-Hamiltonian structure was introduced, essentially equivalent to the Poisson pencil�̂aJ+bI . In [3] the special nature of the conformal Killing tensor which plays such acentral role in the theory was investigated.17



8 ConclusionsAs is often the case, the generalization of the results of [8, 9, 10, 12] has led to theclari�cation of several of the concepts and methods used in these papers. In particular,the Poisson structures introduced there have been shown to be examples of two generalconstructions: �rst, the construction of a Poisson-Nijenhuis structure on a cotangentbundle via the complete lift of a type (1; 1) tensor with vanishing torsion, which is well-known; and second, the `lifting' of a Poisson structure and a quasi-Hamiltonian vector�eld to an extended space which is the subject of Theorem 3 above. This latter resultappears to be new. It should be noted that it is not dependent on the existence of a bi-Hamiltonian or quasi-bi-Hamiltonian structure, but only on a single quasi-Hamiltonianvector �eld. Nevertheless, it clearly has potential application in the �eld of quasi-bi-Hamiltonian systems (as de�ned for example in [11]), of which the case K = Idiscussed at the end of the last section is an example. Indeed, the results obtainedhere for a particular class of what might be called bi-quasi-Hamiltonian systems shouldbe capable of generalization to provide a theory of such systems. We are currentlyinvestigating this possibility. It is noteworthy that the di�erential operators DJ and DKplay an important role here, so that the theory of cofactor pairs provides an exampleof a gauged bi-di�erential calculus in the sense of [4]; this seems to us to be likely tobe a feature of the general theory of bi-quasi-Hamiltonian systems we have in mind.Finally, from the opposite point of view as one might say, the properties of cofactortensors of special conformal Killing tensors have not been noticed before in publishedaccounts of Benenti's theory of inertia tensors and the orthogonal separability of theHamilton-Jacobi equation, so far as we are aware. A paper on this subject, [2], is inpreparation. In [6], Ibort et al. speculate that there is `a deep relation, still to beworked out, between the geometry of Killing tensors on a Riemannian manifold and thegeometry of a particular class of Poisson manifolds'. It seems to us that this remarkableproperty of special conformal Killing tensors is part of this deep geometrical structure.References[1] S. Benenti Inertia tensors and St�ackel systems in the Euclidean spaces Rend. delSem. Mat. Torino 50 (1992) 1{20[2] M. Crampin Conformal Killing tensors with vanishing torsion and the separationof variables in the Hamilton-Jacobi equation for geodesics (in preparation)[3] M. Crampin, W. Sarlet and G. Thompson Bi-di�erential calculi, bi-Hamiltoniansystems and conformal Killing tensors J. Phys. A: Math. Gen. (to appear)[4] A. Dimakis and F. M�uller-Hoissen Bi-di�erential calculi and integrable models J.Phys. A: Math. Gen. 33 (2000) 957{97418
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