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Abstract. We recall the concept of a Lie algebroid on a vector bundle and the
associated notion of Lagrange-type equations. A heuristic calculus of variations
approach tells us what a time-dependent generalization of such equations should
look like. In order to find a geometrical model for such a generalization, the
idea of a Lie algebroid structure on a class of affine bundles is introduced.
We develop a calculus of forms on sections of such a bundle by looking at its
extended dual. It is sketched how the affine Lie algebroid axioms are equivalent
to the coboundary property of the exterior derivative in such a calculus. The
interest of the new formalism is further illustrated by the fact that one can define
a notion of prolongation of the original algebroid. We briefly discuss how this
prolongation will provide the key to various geometrical constructions which are
the analogues of the well-known geometrical aspects of second-order ordinary
differential equations in general, and Lagrangian dynamics in particular.
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1 Lie algebroid structure on a vector bundle and La-
grangian equations

Consider a vector bundle π : V →M , which comes equipped with the following tools:

• a bracket operation [ · , · ] : Sec π×Sec π → Sec π which satisfies the axioms of a real
Lie algebra;

This paper is in final form and no version of it will be submitted for publication elsewhere.
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• a linear bundle map ρ : V → TM , called anchor map, which induces a map from Sec π
to X (M) (also denoted by ρ) and is such that the following compatibility conditions
hold true ∀σ, η ∈ Sec π, f ∈ C∞(M),

[σ, f η] = f [σ, η] + ρ(σ)(f) η, (1)

[ρ(σ), ρ(η)] = ρ([σ, η]). (2)

Under such circumstances, we say that the bundle π is equipped with a Lie algebroid struc-
ture, or we simply say that π : V →M is a Lie algebroid.

Note that the condition (2) can actually be derived from (1) and the Jacobi identity satisfied
by the bracket on Sec π. Nevertheless, we will repeatedly refer to this property and actually
take it as a point of reference for the comparison between the known Lie algebroid concept
and the new one we will develop. For a general reference to the subject of Lie algebroids,
see [3].

In coordinates, if xi are coordinates on M and yα fibre coordinates on V with respect to
some local basis {eα} for Sec π, we can put

ρ(eα) = ρi
α(x)

∂

∂xi
, [eα, eβ ] = Cγ

αβ(x) eγ ,

and then the condition (2) requires that [ρ(eα), ρ(eβ)] = ρ([eα, eβ ]), which in turn is equiv-
alent to:

ρi
α

∂ρj
β

∂xi
− ρi

β

∂ρj
α

∂xi
= ρj

γC
γ
αβ . (3)

The Jacobi identity for the bracket on Sec π, making use also of the compatibility condition
(1), has the coordinate representation:∑

α,β,γ

(
ρi

α

∂Cµ
βγ

∂xi
+ Cµ

ανC
ν
βγ

)
= 0, (4)

where the summation sign stands for cyclic sums over the indicated indices.

Now, Lagrangian equations on a Lie algebroid are differential equations of the form (cf. [5])

ẋi = ρi
α(x) yα

d

dt

(
∂L

∂yα

)
= ρi

α

∂L

∂xi
− Cγ

αβy
β ∂L

∂yγ
,

(5)

with L ∈ C∞(V ). The question we want to address in this paper is: what would be an
appropriate time-dependent version of such equations? We shall first try to discover by
analytical considerations how such generalized equations should look like and subsequently
explore what the geometrical framework is for modelling them.

2 ‘Rudimentary’ calculus of variations

As a preliminary remark, note that it is easy to convince oneself that for a time-dependent
set-up, if one wants to arrive at equations which preserve their structure under time-
dependent coordinate transformations, the ‘constraint equations’ should be of the form:

ẋi = ρi
α(t, x)yα + λi(t, x). (6)
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So, let us consider the following calculus of variations problem for curves t 7→ (t, xi(t), yα(t))
in IRn+k+1 say. Assume we have a given functional

J (γ) =
∫ t2

t1

L(t, x(t), y(t))dt,

and want to find its extremals, within arbitrary one-parameter families of curves which
satisfy the constraints (6). We will proceed in a very formal way, without worrying too
much about the mathematical complications which come from constraints depending on
velocities. Formally, taking variations of the constraint equations, we get:

δẋi =
(
∂ρi

α

∂xj
yα +

∂λi

∂xj

)
δxj + ρi

αδy
α.

Multiplying these by Lagrange multipliers pi and adding the result to the variation of the
functional, one obtains (after an integration by parts on the term piδẋ

i)∫ t2

t1

[(
∂L

∂xj
− ṗj − pi

(∂ρi
α

∂xj
yα +

∂λi

∂xj

))
δxj

(
∂L

∂yα
− piρ

i
α

)
δyα

]
dt = 0

It is tacitly assumed that all variations δxi and δyα vanish at the endpoints, thereby skipping
over the mathematical complications which come from the differential equations they have
to satisfy. The traditional argument then is that one can choose the multipliers pi in such
a way that the coefficients of δxj vanish, leaving only terms in δyα, which are arbitrary,
so that those coefficients must vanish in view of the fundamental lemma of the calculus of
variations. We thus get the equations

ṗj =
∂L

∂xj
− pi

(∂ρi
α

∂xj
yα +

∂λi

∂xj

)
,

∂L

∂yα
= pjρ

j
α.

The next step one would like to take is to eliminate the pi. Taking the total time derivative
of the second equations and using the first to substitute for ṗi, one is left with a number
of terms containing pj , which will go away only if they combine in such a way that they
pick up a factor ρj

α. Therefore, an interesting situation is the case that there exist functions
Cγ

αβ(t, x) and Cα
β (t, x) such that:

ρi
α

∂ρj
β

∂xi
− ρi

β

∂ρj
α

∂xi
= ρj

γC
γ
αβ ,

∂ρj
β

∂t
+ λi

∂ρj
β

∂xi
− ρi

β

∂λj

∂xi
= ρj

αC
α
β .

(7)

These relations clearly generalize the conditions (3). The equations which result from the
elimination then are

d

dt

(
∂L

∂yα

)
= ρi

α

∂L

∂xi
− (Cγ

αβy
β − Cγ

α)
∂L

∂yγ
, (8)

and they of course have to be supplemented by the constraints (6).
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The point of this formal exercise is the following: if one carries out the same procedure in an
autonomous framework, one arrives exactly at the equations (5), with functions ρi

α(x) and
Cγ

αβ(x) satisfying the relations (3); therefore, we can feel confident that the more general
equations we derived in this section are indeed the ones we are looking for. Our programme
thus becomes: identify now an appropriate geometrical framework for generalization of the
classical notion of a Lie algebroid, which gives rise to compatibility conditions of the type
we have just encountered, and within which time-dependent Lagrange equations of the form
(8) can be accomodated.

Note in passing that we did not encounter Jacobi-type conditions in our formal analysis,
which means that it may even make sense to relax the axioms of a Lie algebroid if the
purpose merely would be to describe differential equations of the form (8), but this is a path
we do not wish to explore at present. The solution to our programme will be to introduce
the notion of Lie algebroid structure on affine bundles which are ‘anchor mapped’ into first
jet bundles, rather than tangent bundles. For that purpose, of course, one cannot take just
any affine bundle E → M ; we have to assume further that the base manifold M is fibred
over IR.

3 Affine Lie algebroids

Consider thus an affine bundle π : E →M , modelled on a vector bundle π : V →M . Assume
further we have a fibration τ : M → IR with associated jet bundle τ0

1 : J1M →M . In what
follows, we shall distinguish sections of the affine bundle from sections of the underlying
vector bundle by using boldface type for the latter.

The requirements for having a Lie algebroid structure on the bundle π are the following:

1. there exists a skew-symmetric and IR-bilinear bracket [ · , · ] on Sec π;

2. sections of π act on Sec π in such a way that, if we write [ζ,σ] ∈ Sec π for the action
of ζ ∈ Sec π on σ ∈ Sec π, we have the properties

[ζ,σ1 + σ2] = [ζ,σ1] + [ζ,σ2], [ζ + σ,η] = [ζ,η] + [σ,η], (9)
[ζ, [σ,η]] = [[ζ,σ],η] + [σ, [ζ,η]]; (10)

3. there exists an affine bundle map λ : E → J1M , with corresponding vector bundle
homomorphism ρ : V → VM , such that ∀f ∈ C∞(M)

[ζ, fσ] = f [ζ,σ] + λ(ζ)(f)σ. (11)

It follows from (9,10) that the bracket on Sec π satisfies the Jacobi identity, and it also
follows from (10) and (11) that λ and ρ, which we both will call anchor maps have the
compatibility property:

[λ(ζ), ρ(σ)] = ρ([ζ,σ]). (12)

One can now further extend the bracket operation to sections of π by putting [ζ1, ζ2] =
[ζ1, ζ2 − ζ1] and it then easily follows that we have∑

i,j,k

[[ζi, ζj ], ζk] = 0, (13)

[λ(ζ1), λ(ζ2)] = ρ([ζ1, ζ2]). (14)
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But observe that the bracket of two ‘affine sections’ is a ‘vector section’ ! Needless to say,
we regard J1M and VM as subbundles of TM , so that the bracket on the left in both (12)
and (14) is a bracket of vector fields on M .

Let us have a look at the coordinate representation of our basic conditions. Choosing a zero
section e0 ∈ Sec π and a local basis {eα} of Sec π, for m ∈M , with coordinates (t, xi), every
e ∈ Em will be of the form e = e0(m) + yα eα(m); (t, xi, yα) then are the coordinates of e.
The anchor maps are determined by the functions λi and ρi

α, defined by

λ(e0) =
∂

∂t
+ λi(t, x)

∂

∂xi
ρ(eα) = ρi

α(t, x)
∂

∂xi
. (15)

Putting
[eα, eβ ] = Cγ

αβ(t, x) eγ [e0, eα] = Cβ
α(t, x) eβ , (16)

the compatibility property (14) precisely translates into the conditions (7) we encountered
in the previous section. The Jacobi-type properties further imply:

∂Cµ
αβ

∂t
+ λi

∂Cµ
αβ

∂xi
+ Cγ

αβC
µ
γ − Cµ

αγC
γ
β + Cµ

βγC
γ
α − ρi

α

∂Cµ
β

∂xi
+ ρi

β

∂Cµ
α

∂xi
= 0 , (17)

and ∑
α,β,γ

(
ρi

α

∂Cµ
βγ

∂xi
+ Cµ

ανC
ν
βγ

)
= 0 , (18)

which generalize (4).

We wish to provide now further evidence that this set-up of an affine Lie algebroid is of
interest, by showing that it has enough of the properties which a standard Lie algebroid has,
such as the availability of a coboundary operator and the existence of a Poisson structure
on a suitable dual space.

4 Forms on Sec π

Consider π† : E† → M , the extended dual of π : E → M . Its total space is defined as the
union of spaces E†

m of affine functions on Em and π† is actually a vector bundle. For any
θ ∈ Sec π† and ζ ∈ Sec π, θ(ζ) is a function on M and if ζ0 ∈ Sec π is any reference section
and ζ = ζ0 + ζ , we have θ(ζ) = θ(ζ0) + θ(ζ) for some θ ∈ Sec π∗, where π∗ : V ∗ → M is
the dual of π. We wish to regard sections of π† as 1-forms on Sec π. Observe, however, that
there is no C∞(M)-linearity in the usual sense, but rather something like

θ(ζ0 + fζ) = θ(ζ0) + f θ(ζ). (19)

What then could k-forms be if we want to think of them as skew-symmetric maps on Sec π,
which are ‘multilinear’ in some sense?

Definition. A k-form ω ∈
∧k(π†) is a map ω : Sec π×· · ·×Sec π → C∞(M) (k arguments)

for which there exist associated maps ω0,ω, where ω0 : Sec π×Sec π×· · ·×Sec π → C∞(M)
is a skew-symmetric and C∞(M)-multilinear map in its k − 1 vector arguments, and ω is a
(standard) k-form on Sec π, such that the following properties hold:

ω0(ζ + σ, ζ1, . . . , ζk−1) = ω0(ζ, ζ1, . . . , ζk−1) + ω(σ, ζ1, . . . , ζk−1) , (20)
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and with respect to any reference section ζ0 of Sec π,

ω(ζ1, . . . , ζk) =
k∑

i=1

(−1)i−1ω0(ζ0, ζ1, . . . , ζ̂i, . . . , ζk) + ω(ζ1, . . . , ζk) . (21)

Note that one needs a reference section to compute ω(ζ1, . . . , ζk), but the important point
of course is that ω0 and ω do not depend on the choice of ζ0! One can easily verify that
this definition precisely covers the kind of construction one obtains by wedging 1-forms in
the sense of (19).

For writing down coordinate expressions of forms, observe first that there exists a global
section of π†, namely e0 : m 7→ 1 ∈ E†

m. Then, having chosen a zero section e0 of π and
a local basis {eα} for Sec π, one can consider the dual basis {eβ} of Sec π∗ and extend its
action (keeping the notation unchanged) to Sec π by eβ(ζ) = eβ(e0 +ζα eα) = ζβ . It follows
that every ω ∈

∧k(π†) is of the form

ω = 1
(k−1)! ω0µ1···µk−1 e

0 ∧ eµ1 ∧ · · · ∧ eµk−1 + 1
k! ωµ1···µk

eµ1 ∧ · · · ∧ eµk , (22)

with coefficients in C∞(M) which are skew-symmetric in all indices.

The exterior derivative of forms on Sec π can be defined by the kind of formula one expects,
namely

dω(ζ1, . . . , ζk+1) =
k+1∑
i=1

(−1)i−1λ(ζi)
(
ω(ζ1, . . . , ζ̂i, . . . , ζk+1)

)
+

∑
1≤i<j≤k+1

(−1)i+jω([ζi, ζj ], ζ1, . . . , ζ̂i, . . . , ζ̂j , . . . , ζk+1) . (23)

There are, however, a number of remarks to be made. First of all, for (23) to make sense, we
need to give a meaning also to the action of ω when the first argument is a vector section.
This is done as follows

ω(σ, ζ2, . . . , ζk) = ω(ζ1 + σ, ζ2, . . . , ζk)− ω(ζ1, ζ2, . . . , ζk), (24)

where ζ1 is arbitrary and its choice does not affect the value of the left-hand side. Secondly,
in view of our definition of forms, in order to show that dω is a form, we have to identify
a (dω)0 and a dω with all the right properties. This of course is a fairly technical matter,
but everything works fine. In fact, roughly speaking, if we define an exterior derivative of
ω0 by sort of copying (23) with suitable changes to ensure that every term has a meaning
(that is to say, replacing λ by ρ and ω by ω0 or ω where appropriate), one can prove that
(dω)0 = dω0, whereas dω is simply the familiar exterior derivative of the form ω on Sec π.

One further proves that d is a derivation of degree 1 on
∧

(π†). As a result, for coordinate
calculations, it is enough to know what d does on the basic ingredients in (22). For functions
f ∈ C∞(M), we have df(ζ) = λ(ζ)(f), from which it follows in particular that

dt = e0, (25)
dxi = λie0 + ρi

αeα. (26)
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One further finds that de0 = 0 and

deα = −Cα
β e

0 ∧ eβ − 1
2C

α
βγe

β ∧ eγ . (27)

The most important result, which we regard as further evidence that our set-up of a class
of affine Lie algebroids is of interest, is the following.

Proposition: Assume that we have a bracket operation satisfying the three axioms of the
definition of a Lie algebroid structure of the beginning of Section 3, with the exception,
however, of condition (10). Then d2 = 0 iff

∑
i,j,k [ζi, [ζj , ζk]] = 0.

Let us repeat here that the property [λ(ζ1), λ(ζ2)] = ρ([ζ1, ζ2]) then is a further consequence
of (11) and the Jacobi identity.

5 Admissible curves and pseudo-second-order dynamics

We now wish to bring some dynamics into the picture. A curve ψ in E, which is a section
of τ ◦ π, is said to be λ-admissible if λ ◦ ψ = j1(π ◦ ψ).

J1M

-π���
���*

E M

λ

?

τ

IR
@

@
@I@

@
@R

�
�

�	
ψ

In coordinates, ψ : t 7→ (t, xi(t), yα(t)) will be λ-admissible if for all t,

ẋi(t) = ρi
α(t, x(t)) yα(t) + λi(t, x(t)). (28)

Note: if θi = dxi − ẋidt are the the contact forms on J1M , and Θi = λ∗θi, we have that ψ
is λ-admissible iff ψ∗Θi = 0.

A vector field Γ ∈ X (E) is said to be a pseudo-second-order equation field (pseudo-Sode
for short) if Tπ ◦ Γ = i ◦ λ, where i : J1M ↪→ TM is the canonical injection.

TE TM

∪ ∪
-J1E J1M

-π��
���

��*

E M

λ

?

6

?

Tπ

Γ

In coordinates, such a Γ is of the form

Γ =
∂

∂t
+ (ρi

α(t, x)yα + λi(t, x))
∂

∂xi
+ fα(t, x, y)

∂

∂yα
(29)

and thus models the following type of differential equations:

ẋi = ρi
α(t, x) yα + λi(t, x), (30)

ẏα = fα(t, x, y). (31)
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Another characterization of pseudo-Sodes is that all their integral curves are λ-admissible.
A Lie algebra structure on Sec π is of course not needed for these concepts.

Let us now look at pseudo-Sodes from a slightly different angle. The defining relation in
fact states that Γ is a pseudo-Sode if and only if ∀p ∈ E, (p,Γ(p)) is a point of the pullback
bundle λ∗J1E which we henceforth denote as J1

λE, with projections as indicated in the
diagram.

-

-

? ?

E

J1
λE

J1M

J1E

λ

λ1

π2 Tπ

But if we project the point Γ(p) in the image of λ1 back to E via the projection (τ ◦ π)01,
we of course get back to the point p we started from. Putting π1 = (τ ◦π)01 ◦λ1 : J1

λE → E,
this gives rise to the following diagram in which we can regard the pseudo-Sode Γ just as
well as a section of the bundle π1 : J1

λE → E, with the property that π2 ◦ Γ = π1 ◦ Γ.

-

@
@

@R�
�

��

J1
λE E

J1E

-

@
@

@R�
�

��

E M

J1M

?

?

?

π

λ

π1

λ1

π2 π

�
���
τ

IR

@
@@R

The two triangles appearing in this diagram suggests the question: with more structure
added by assuming that π carries an affine Lie algebroid structure, is it possible to prolong
this to an affine Lie algebroid structure on π1, with λ1 in the role of anchor map? We briefly
indicate how such a prolongation can indeed be constructed. A section Z of π1 is completely
determined by its projections π2 ◦ Z : E → E and λ1 ◦ Z : E → J1E. If (t, xi, yα) are the
coordinates of a point e ∈ E (the copy of E on the right side in the diagram), and Z is a
section of π1, we will have:

π2 ◦ Z : (t, x, y) 7−→ (t, x, zα(t, x, y)),

λ1 ◦ Z : (t, x, y) 7−→
(
∂

∂t
+ (λi + ρi

αz
α)

∂

∂xi
+ Zα ∂

∂yα

)∣∣∣∣
e

.

Z then can be locally represented as

Z = E0 + zα(t, x, y)X α + Zα(t, x, y)Vα, (32)

where E0 is a properly selected zero section of the affine bundle π1 and (X α,Vα) is a local
basis for the sections of the underlying vector bundle π1. To be precise, in the representation
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of sections by their two projections, we have:

X α(e) =
(
eα(π(e)), ρi

α(t, x)
∂

∂xi

∣∣∣∣
e

)
Vα(e) =

(
0(π(e)),

∂

∂yα

∣∣∣∣
e

)
, (33)

and

E0(e) =
(
e0(π(e)),

(
∂

∂t
+ λi(t, x)

∂

∂xi

)∣∣∣∣
e

)
. (34)

One can then consistently define a bracket on Sec π1 and an action of affine sections on
vector sections, which satisfies all requirements of our definition of an affine Lie algebroid,
and is locally determined by the following expressions:

[E0,X α]1 = Cβ
αX β , [E0,Vα]1 = 0,

[X α,X β ]1 = Cγ
αβX γ , [X α,Vβ ]1 = 0, [Vα,Vβ ]1 = 0.

The fact that this all works, in perfect analogy with the situation on vector bundles, is a
second extra evidence that we are looking at an interesting mathematical extension of Lie
algebroids! To indicate why it is important to have this notion of prolongation, it suffices
to mention the following results which have been derived by Mart́ınez for the ‘autonomous
theory’ (some of these results can be found in [4], others are still unpublished). The prolonged
Lie algebroid is for the original quite similar to what the tangent bundle TM is for its base
manifold M . By this we mean that among other things: (i) there exists a notion of complete
and vertical lift from sections of the original bundle to sections of its prolongation; (ii) the
prolonged bundle carries intrinsic objects similar to the Liouville vector field and the vertical
endomorphism on a tangent bundle; (iii) (pseudo)-Sodes have intrinsic properties similar
to those of Sodes on a tangent bundle, in particular they give rise to associated non-linear
and linear connections; (iv) there exists an intrinsic geometrical construction of (pseudo)-
Sodes of Lagrangian type, which makes use of these canonically defined concepts and of an
analogue of Poincaré-Cartan type forms.

All of such properties will carry over to our affine generalization (with suitable adaptations)!

6 Discussion

We have put the emphasis on two features which we deem important for ensuring that the
newly defined structure is the right one, but there are certainly more properties of interest
which will emerge. For example, it is known that the dual of a vector bundle Lie algebroid
carries a natural Poisson structure. The same is true for our affine Lie algebroid, where it is
the extended dual E† which carries a Poisson structure. As a matter of fact, every section
σ of π can be regarded as a linear function on E†: if σ = e0 + σαeα and (t, xi, p0, pα) are
coordinates on E†, the corresponding function σ̂ on E† is given by σ̂ = p0 + pασ

α(t, x). We
can define the bracket of two such functions as {σ̂, η̂} = ̂[σ, η], further put {σ̂, f} = λ(σ)(f)
and impose the Leibniz rule for an extension to arbitrary functions.

Another remark which is worth mentioning here is that there are other ways of defining the
affine Lie algebroid structure on π : E →M and developing a calculus of forms on sections
of π. Roughly, a different approach can start from embedding the original affine bundle as
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an affine subspace in the dual of the extended dual E†, but a detailed exposition of these
ideas will be discussed elsewhere.

Given the range of applications of Lie algebroid structures (see e.g. [1, 2]), there is no
doubt that our affine generalization will be relevant for applications where an explicit time-
dependence is required. We wish to finish here by returning to our starting point and give
a sort of preview of a more geometrically justified ‘calculus of variations’.

Recall that in a geometrical approach to calculus of variations (for autonomous second-order
equations), vector fields along a curve take over the role of variations; they can be lifted to
vector fields along the lifted curve in the tangent bundle.

For our present needs, a similar construction will work as follows. Starting from a section
σ of π along a curve in M , and its image

X(t) = ρi
α(t, x(t))σα(t)

∂

∂xi

under the anchor map ρ, one can define a lift to a vector field along any λ-admissible curve
in E, of the form

Y (t) = ρi
α(t, x(t))σα(t)

∂

∂xi
+
(
σ̇α(t)− (Cα

βγ(t, x(t))yγ(t)− Cα
β (t, x(t)))σβ(t)

) ∂

∂yα
.

The calculus of variations problem can then be defined directly as the search for curves in
M , with the property that ∫ t2

t1

Y (L)(t)dt = 0,

for arbitrary σ along that curve with zero endpoints.

Working out the details of such geometrical construction will require the intrinsic features
of the prolonged Lie algebroid on π1.
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