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Abstra
t. We introdu
e the notion of a Lie algebroid stru
ture on an aÆne bundlewhose base manifold is �bred over IR. It is argued that this is the framework whi
hone needs for 
oming to a time-dependent generalization of the theory of Lagrangiansystems on Lie algebroids. An extensive dis
ussion is given of a way one 
an think offorms a
ting on se
tions of the aÆne bundle. It is further shown that the aÆne Liealgebroid stru
ture gives rise to a 
oboundary operator on su
h forms. The 
on
eptof admissible 
urves and dynami
al systems whose integral 
urves are admissible,brings an asso
iated aÆne bundle into the pi
ture, on whi
h one 
an de�ne in anatural way a prolongation of the original aÆne Lie algebroid stru
ture.
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1 Introdu
tionThere has been a lot of interest re
ently in the study of dynami
al systems whi
h have aLie algebroid as 
arrying spa
e (see e.g. [1, 2, 3, 8, 10, 13℄). A Lie algebroid is a ve
torbundle � : V ! M , whi
h 
omes equipped with two operators. To begin with, thereis a bra
ket operation on Se
(�), the set of se
tions of �, whi
h provides it with a realLie algebra stru
ture . Se
ondly, there is a linear bundle map � : V ! TM , 
alled thean
hor map, whi
h establishes a Lie algebra homomorphism between Se
(�) and the realLie algebra of ve
tor �elds on M and does this in su
h a way that there is a 
ertain
ompatibility also with the module stru
ture over C1(M). To be pre
ise, we have[�(�); �(�)℄ = �([�; �℄) and [�; f �℄ = f [�; �℄ + �(�)(f) �;for all �; � 2 Se
(�) and f 2 C1(M).Weinstein's paper on Lagrangian me
hani
s and groupoids [13℄ roused new interest intothe �eld of algebroids and groupoids. Weinstein introdu
es `Lagrangian systems' on a Liealgebroid by means of a Legendre-type map from V to V �, asso
iated to a given fun
tionL on V . The lo
al 
oordinate expression of su
h equations reads:_xi = �i�(x)y�;ddt � �L�y�� = �i� �L�xi � C
��y� �L�y
 ; (1)where the xi are 
oordinates onM , y� are �bre 
oordinates on V and the C
�� are stru
turefun
tions 
oming from the Lie algebroid stru
ture. Appli
ations for su
h model equations
an be found e.g. in the theory of systems with symmetries on prin
ipal �bre bundles andin rigid body dynami
s. Note that, more generally, equations of the form_xi = �i�(x)y�;_y� = f�(x; y); (2)were 
alled \se
ond-order equations on a Lie algebroid" by Weinstein. They are indeed,to some extent, the analogues of se
ond-order dynami
s on a tangent bundle. It is 
lear,however, that these equations truly are se
ond-order di�erential equations only when thebase manifold and the �bres have the same dimension and � is inje
tive. We will thereforerather 
all them `pseudo-se
ond-order ordinary di�erential equations', pseudo-Sodes forshort. Weinstein also raised the question whether there would be a geometri
al wayof de�ning equations of the form (1), mu
h in the line of the geometri
al 
onstru
tionof 
lassi
al Lagrange equations, whi
h makes use of the intrinsi
 stru
tures living on atangent bundle.One of us has re
ently resolved this issue [10℄ by introdu
ing a kind of lifted Lie algebroid,where suitable analogues 
an be introdu
ed of the dilation ve
tor �eld and the verti
alendomorphism on a tangent bundle.In the present paper, we wish to set the stage for an appropriate generalization of thistheory to non-autonomous systems of di�erential equations. We believe that, for exam-ple at the level of pseudo-se
ond-order equations, the right generalization is not just a2



matter of allowing the fun
tions �i� and f� to depend on time, but rather should produ
eequations of the form: _xi = �i�(t; x)y� + �i(t; x)_y� = f�(t; x; y) (3)The reason for this simply is that we wish the stru
ture of the equations to be invariantunder time-dependent 
oordinate transformations. As for Lagrange-type equations, ouronly 
on
ern at the moment is to have an idea of what a time-dependent generalizationof (1) should look like. Now, there is a way of developing a kind of formal 
al
ulus ofvariations approa
h whi
h leads to equations of the form (1), and in whi
h the �rst set ofequations are treated as 
onstraints. We have shown in [12℄ that if su
h an approa
h isadopted when the Lagrangian is allowed to depend on time and the 
onstraints are as in(3), one obtains equations of the form_xi = �i�(t; x)y� + �i(t; x);ddt � �L�y�� = �i� �L�xi � (C
��y� � C
�) �L�y
 (4)where the fun
tions �i�, �i, C
��, C
� satisfy the relations�i���j��xi � �i� ��j��xi = �j
C
��; (5)��j��t + �i��j��xi � �i� ��j�xi = �j�C�� : (6)Thus, we want to address the question of explaining the nature of the 
onditions (5,6),whi
h presumably should again have something to do with a Lie algebroid stru
ture.Inspired by these analyti
al 
onsiderations, we will introdu
e the notion of a Lie algebroidstru
ture on an aÆne bundle � : E ! M , where the base manifold M in addition isassumed to be �bred over IR. For the present paper, we will limit ourselves to a numberof basi
 features of su
h a theory. In parti
ular, we shall show in Se
tion 3 that our de�ningrelations for an aÆne Lie algebroid are fully 
onsistent with the expe
tation of being ableto develop an exterior di�erential 
al
ulus of se
tions of the extended dual of this bundle(and its exterior produ
ts). We shall further show in Se
tion 4 that ve
tor �elds on E,whose integral 
urves are `admissible 
urves' and whi
h in fa
t model di�erential equationsof the pseudo-Sode type, 
an be identi�ed in a natural way with spe
ial se
tions of akind of prolongation of the original aÆne bundle. This then brings us to a �nal test,for this paper, of the internal 
oheren
e of the newly de�ned stru
tures: we will verifyin Se
tion 5 whether the prolongation of a Lie algebroid, as 
onstru
ted in [10℄ for theve
tor bundle situation, 
arries over to the present more general situation.The �nal se
tion lists a number of other topi
s of interest, whi
h will be the subje
t offorth
oming publi
ations. One of our obje
tives is to arrive at an intrinsi
 geometri
al
onstru
tion of the time-dependent Lagrangian equations of type (4). For the time being,however, the 
onditions (5,6) merely serve as ben
hmarks, to be met by our model of anaÆne Lie algebroid. 3



The basi
 ingredients for our theory are an aÆne bundle � : E ! M , where the basemanifoldM is further �bred over IR. In Se
tion 2, we de�ne the 
on
ept of a Lie algebroidon �. In Se
tion 3, we show that the axioms for su
h a Lie algebroid stru
ture give riseto a 
onsistent development of an exterior 
al
ulus on se
tions of the extended dual of E.In Se
tion 4, we dis
uss a spe
ial 
lass of 
urves on E, whi
h are said to be admissible bythe an
hor map and we look into the 
on
ept of dynami
al systems whose integral 
urvesall belong to this spe
ial 
lass. In Se
tion 5, we de�ne the prolongation �1 : J1�E ! E of� : E !M and show that it inherits the Lie algebroid stru
ture from �.2 AÆne Lie algebroidsLet M be an (n + 1)-dimensional smooth manifold, whi
h is �bred over IR, � : M ! IR.We denote the �rst jet bundle of � by � 01 : J1M ! M . It is an aÆne bundle modelledon the bundle of tangent ve
tors to M whi
h are verti
al with respe
t to � ; this ve
torbundle will be denoted by � 01 : VM ! M . To �x notations further, if � : E ! M is anaÆne bundle and � : V ! M its asso
iated ve
tor bundle, se
tions of � will be denotedby ordinary Greek 
hara
ters, whereas boldfa
e Greek type will be used for se
tions of �.De�nition 1. An aÆne Lie algebroid over M is an aÆne bundle � : E ! M , with thefollowing properties:1. Se
(�), the set of se
tions of the ve
tor bundle � : V !M on whi
h E is modelled,is equipped with a skew-symmetri
 and bilinear (over IR) bra
ket [�; �℄;2. the aÆne spa
e Se
(�) a
ts by derivations on the real algebra Se
(�), that is to say,if the same bra
ket notation [�;�℄ is used to denote the way � 2 Se
(�) a
ts on� 2 Se
(�), we have [�;�℄ 2 Se
(�) and[�;�1 + �2℄=[�;�1℄ + [�;�2℄; [� + �;�℄ = [�;�℄ + [�;�℄; (7)[�; [�;�℄℄ = [[�;�℄;�℄ + [�; [�;�℄℄; (8)3. there exists an aÆne bundle map � : E ! J1M (over the identity on M), with
orresponding ve
tor bundle homomorphism � : V ! VM , su
h that the following
ompatibility 
ondition holds for all f 2 C1(M),[�; f�℄ = f [�;�℄ + �(�)(f)�: (9)Both the aÆne map � : E ! J1M and its linear part � : V ! VM will be 
alled an
hormaps.Note that we make no notational distin
tion between, on the one hand, the aÆne andlinear an
hor maps, regarded as maps between total spa
es of bundles, and their a
tionon se
tions of bundles on the other hand. Needless to say, for the interpretation of the4



bra
ket in the left-hand side of (12), both �(�) and �(�) are regarded as ve
tor �elds onM .Let us derive some further properties whi
h follow from this de�nition. First of all, if werepla
e � in (8) by � + �, for an arbitrary � 2 Se
(�), it follows that 8�;�;� 2 Se
(�):[�; [�;�℄℄ = [[�;�℄;�℄ + [�; [�;�℄℄: (10)This means, in view of the �rst hypothesis, that the bra
ket on Se
(�) a
tually providesSe
(�) with a real Lie algebra stru
ture. Se
ondly, making the same substitution for � in(9), re
alling that �(� + �) = �(�) + �(�), it follows that[�; f�℄ = f [�;�℄ + �(�)(f)�: (11)This means that the linear an
hor map � : V ! VM de�nes a Lie algebra homomorphismfrom Se
(�) into the real Lie algebra of verti
al ve
tor �elds on M , and that we have a
lassi
al Lie algebroid stru
ture on the ve
tor bundle � : V ! M (although its image
annot rea
h the whole of TM). Thirdly, repla
ing � by f� in (8) and making use of (9)and (11), one obtains the additional 
ompatibility property[�(�); �(�)℄ = �([�;�℄); (12)from whi
h it further follows that[�(�); �(�)℄ = � ([�;�℄) : (13)Remark: for an alternative and equivalent de�nition of an aÆne Lie algebroid, we 
ouldimpose �rst the Lie algebra stru
ture (10) of the bra
ket on Se
(�), together with the
ompatibility 
ondition (11) for the an
hor map �, and subsequently require that theproperties (7-9) hold true for at least one � 2 Se
(�) and for an aÆne map � : E ! J1Mwhose linear part is �. It then follows that su
h properties hold for all �.We 
an now further extend the bra
ket operation to Se
(�), as follows.De�nition 2. (i) For � 2 Se
(�) and � 2 Se
(�), we put [�; �℄ = �[�;�℄.(ii) For every two se
tions �1; �2 2 Se
(�) with �12 = �2 � �1: [�1; �2℄ = [�1; �12℄.Observe that the extended bra
ket in (ii) is a map from Se
(�) � Se
(�) to Se
(�).As we will show below, it has Lie algebra type properties, whi
h 
ould justify talkingabout an \aÆne Lie algebra stru
ture", were it not that this term is in use already in theliterature, with an entirely di�erent meaning. The extended bra
ket also has Lie algebroidtype properties with respe
t to the an
hor maps � and �.Proposition 1. The bra
ket [�; �℄ : Se
(�)�Se
(�)! Se
(�), has the following properties:[�1; �2 + �℄ = [�1; �2℄ + [�1;�℄; (14)[�1; �2℄ = �[�2; �1℄; (15)[[�1; �2℄; �3℄ + [[�2; �3℄; �1℄ + [[�3; �1℄; �2℄ = 0; (16)�([�1; �2℄) = [�(�1); �(�2)℄: (17)5



Proof: The �rst property follows immediately from the de�nition and (7). Next, wehave [�2; �1℄ = [�2; �21℄ = �[�1+�12; �12℄ = �[�1; �2℄. For the Ja
obi identity, using a simplesummation sign to indi
ate the 
y
li
 sum over the three se
tions in ea
h summand, wehave X[[�1; �2℄; �3℄ =X[[�1; �2℄; �2 + �23℄ =X[[�1; �2℄; �23℄;in view of the linearity properties and the skew-symmetry of the bra
ket. Substitutingsubsequently �1 + �12 for �2, we obtainX[[�1; �2℄; �3℄ =X[[�1; �12℄; �23℄;whi
h is zero in view of (8). Finally, the 
ompatibility property (17) easily follows in thesame way from the de�nition of the extended bra
ket and (12).To understand what an aÆne Lie algebroid stru
ture means in 
oordinates, let us 
oordi-natize E in the usual way, as follows: t denotes the 
oordinate on IR; (xi)1�i�n are �bre
oordinates onM ; we further 
hoose a lo
al se
tion e0 of � to play the role of zero se
tionand a lo
al basis (e�)1���k for Se
(�). Then, if e is a point in the �bre Em over m 2M ,it 
an be written in the form: e = e0(m)+ y�e�(m); (t; xi; y�) are 
oordinates of e ((t; xi)being the 
oordinates of m).We have [e�; e�℄ = C
��(t; x)e
; [e0; e�℄ = C��(t; x)e�; (18)for some stru
ture fun
tions C
�� = �C
�� and C�� on M . The aÆne map � and its linearpart � are fully determined by�(e0) = ��t + �i(t; x) ��xi ; �(e�) = �i�(t; x) ��xi : (19)The further 
hara
terization of the Lie algebroid stru
ture now has the following 
oordi-nate translation. The derivation property (8) and the resulting Ja
obi identity (10) meanthat we have: �C����t + �i�C����xi + C
��C�
 = C��
C
� � C��
C
� + �i��C���xi � �i� �C���xi ; (20)X�;�;
��i��C��
�xi + C���C��
� = 0; (21)where the summation this time refers to a 
y
li
 sum over �; �; 
 and also the 
ompatibility
onditions (9),(11) have been invoked. Finally, the properties (12) and (13), for whi
hit is suÆ
ient to express that [�(e0); �(e�)℄ = �([e0; e�℄) and [�(e�); �(e�)℄ = �([e�; e�℄),require that ��j��t + �i��j��xi � �i� ��j�xi = C�� �j�; (22)�i���j��xi � �i� ��j��xi = C
���j
 : (23)6



These are pre
isely the relations (5) and (6) we en
ountered in the Introdu
tion, in the
ontext of Lagrangian equations of type (4).It is of some interest to look at the way the various stru
ture and an
hor map fun
tionstransform under 
oordinate transformations. There are two distin
t levels in making a
hange of 
oordinates on E, whi
h we will des
ribe separately. Firstly, we 
ould 
hoosea di�erent (lo
al) zero se
tion e0 and a di�erent lo
al basis e� for Se
(�): say that e� =A��e� and e0 = e0+B�e�. This amounts to making an aÆne 
hange of 
oordinates in the�bres of the form: y� = A��(t; x)y� +B�(t; x). Putting [e�; e�℄ = C
��e
, [e0; e�℄ = C��e�,and also �(e0) = ��t+�i ��xi , �(e�) = �j� ��xj , one 
an verify that the following transformationrules apply: �i� = A���i�; �i = �i � B��i�;and further C
��A�
 = C�
�A
�A�� + �i��A���xi � �i� �A���xi ;C
�A�
 = C��A�� + C�
�B
A�� + �A���t + �i�A���xi � �i� �B��xi :At a di�erent level, one 
an make a 
hange of 
oordinates onM , of the form: t0 = t; x0i =x0i(t; x). This has an e�e
t on the an
hor map fun
tions of the form:�0j� = �i��x0j�xi ; �0j = �x0j�t + �i�x0j�xi :A general 
hange of adapted 
oordinates is of 
ourse a 
omposition of the two stepsdes
ribed above.3 Exterior 
al
ulus on an aÆne Lie algebroidWe �rst re
all some features of the by now standard theory of Lie algebroids on a ve
torbundle (see [9℄). Considering se
tions of exterior powers of the dual bundle, one getsa notion of forms on se
tions of the ve
tor bundle, on whi
h an exterior derivative 
anbe de�ned whi
h involves the Lie algebroid bra
ket and the an
hor map. It then turnsout that the Ja
obi identity of the Lie algebroid bra
ket and the 
ompatibility with thebra
ket of ve
tor �elds via the an
hor map are exa
tly the 
onditions for this exteriorderivative to have the 
o-boundary property d2 = 0 (see also [6, 7, 10℄). In our opinion,su
h a feature in itself gives a strong indi
ation that the generalization from Lie algebrato Lie algebroid is indeed a meaningful step. We shall therefore investigate in this se
tionwhether a similar support 
an be dete
ted for our extension to Lie algebroids on aÆnebundles.The extended dual of the aÆne spa
e Em is the spa
e of real valued aÆne fun
tions onEm and will be denoted by Eym. The union of these spa
es over all points m 2 M givesus a bundle �y : Ey !M say. Although this is in fa
t a ve
tor bundle, we are interested7



in the a
tion of its se
tions (and se
tions of its exterior powers) on se
tions of the aÆnebundle �. This brings some subtleties into the pi
ture whi
h need to be investigated insuÆ
ient detail. We will write �� : V � !M for the dual bundle of � and also use boldfa
etype for its se
tions (and the se
tions of its exterior powers). Now, to begin with, if � isa se
tion of �y and � 2 Se
(�), �(�) is a fun
tion on M de�ned by �(�)(m) = �m(�m).�m being an aÆne fun
tion on Em, there exists an asso
iated element �m 2 V �m su
h that8em 2 Em; �m 2 Vm, we have �m(em + �m) = �m(em) + �m(�m). Expressed in slightlydi�erent terms and now at the level of se
tions again, a � 2 Se
(�y) is su
h that thereexist a �0 2 Se
(�y) and a � 2 Se
(��), su
h that for all � 2 Se
(�):�(�) = �0(�0) + �(�); (24)where �0 is any se
tion and then � = �0 + � . The two 
omposing elements �0 (whi
hin fa
t is simply � itself here) and � do not depend on the 
hoi
e of �0. With se
tionsof �y as our notion of 1-forms on Se
(�), there is of 
ourse no linearity with respe
t tomultipli
ation by fun
tions on M . We 
an now 
ome in a similar way to the following
on
ept of k-forms on Se
(�) (thereby taking for granted that the meaning of a k-formon a ve
tor bundle su
h as Se
(�) is known).De�nition 3. A k-form on the aÆne bundle Se
(�) (k � 1) is a map ! : Se
(�) �� � ��Se
(�) ! C1(M), for whi
h there exists a k-form ! on the asso
iated ve
tor bundleSe
(�) and a map !0 : Se
(�) � Se
(�) � � � � � Se
(�) ! C1(M) with the followingproperties:1. !0 is skew-symmetri
 and C1(M)-linear in its k � 1 ve
tor arguments;2. 8� 2 Se
(�) and 8�; �j 2 Se
(�), we have!0(� + �; �1; : : : ; �k�1) = !0(�; �1; : : : ; �k�1) + !(�; �1; : : : ; �k�1); (25)3. 8�i 2 Se
(�), if we 
hoose an arbitrary �0 2 Se
(�) and put �i = �0 + �i, we have!(�1; : : : ; �k) = kXi=1 (�1)i�1!0(�0; �1; : : : ; �̂i; : : : ; �k) + !(�1; : : : ; �k): (26)There are a number of properties to be 
he
ked to make sure that this de�nition makessense. First of all, one 
an verify that with two di�erent 
hoi
es of a referen
e se
tion, �0and � 00 for example, related through �0 = � 00 + �, it follows from the se
ond requirementthat kXi=1 (�1)i�1!0(�0; �1; : : : ; �̂i; : : : ; �k) + !(�1; : : : ; �k)= kXi=1 (�1)i�1!0(� 00; �01; : : : ; �̂ 0i; : : : ; �0k) + !(� 01; : : : ; � 0k):8



Se
ondly, the two elements !0 and ! whi
h make up ! are unique. Indeed, assumingthere would be a se
ond 
ouple !00 and !0 making up the same !, it follows by 
hoosing�0 = �1 (su
h that �1 = 0) that !0 = !00, after whi
h it is 
lear that also ! = !0. Note�nally that the de�nition implies that ! itself is skew-symmetri
 in all its arguments.The set of forms on Se
(�), whi
h we will denote by V(�y), is a module over the ringC1(M), whi
h also 
onstitutes the set of 0-forms. The wedge produ
t of two forms isde�ned in the usual way. By way of example, if � and � are 1-forms, we have(� ^ �)(�1; �2) = �(�1)�(�2)� �(�2)�(�1);whi
h for every 
hoi
e of a referen
e se
tion �0 gives rise to:(� ^ �)(�1; �2) = �(�0)�(�2 � �1)� �(�0)�(�2 � �1)+ (� ^ �)(�1; �2): (27)It follows that � ^ � is the 2-form on Se
(�) 
orresponding to � ^ �, and(� ^ �)0(�;�) = �(�)�(�)� �(�)�(�): (28)Similarly, for the wedge produ
t of three 1-forms, we have(� ^ � ^ 
)0(�; �1; �2) = ��(�)(� ^ 
) + �(�)(
 ^�) + 
(�)(� ^ �)�(�1; �2): (29)These examples suggest to formalize the representation of k-forms a bit further. As apreliminary remark, it may sometimes be of interest to extend the interpretation of theoperator !0 in su
h a way that its single aÆne se
tion argument need not ne
essarilybe the �rst. This 
an simply be a
hieved by de
laring !0 to be skew-symmetri
 in allits arguments (but still C1(M)-linear in its ve
tor arguments only). More importantly,we shall take the sum of !0-terms in (26) to de�ne another operator, denoted by !0, asfollows:!0(�1; : : : ; �k) = kXi=1 (�1)i�1!0(�0; �1; : : : ; �̂i; : : : ; �k) = kXi=1 !0(�1; : : : ; ��0i ; : : : ; �k); (30)where the se
ond expression takes the above remark into a

ount and the symbol ��0ithen indi
ates that �0 has been inserted in the i-th argument. The other important new
onvention we will adopt is to regard ! also as a
ting on aÆne se
tions:!(�1; : : : ; �k) = !(�1; : : : ; �k): (31)This way, we 
an formally write ! = !0 + !; (32)whereby it is to be understood that the two 
omposing terms !0 and ! are not k-formson Se
(�) by themselves. In fa
t, to 
ompute their value when a
ting on k se
tions �i, areferen
e se
tion �0 has to be 
hosen, but as argued above, the value of the sum !0 + !in the end does not depend on that 
hoi
e. 9



The rather formal looking de
omposition (32) now greatly fa
ilitates the representationof wedge produ
ts and will make the general 
oordinate representation of a form moretransparant. For example, the result (29) means that(� ^ � ^ 
)0 = �0 
 (� ^ 
) + �0 
 (
 ^ �) + 
0 
 (� ^ �); (33)whi
h then implies from (30) that(� ^ � ^ 
)0 = �0 ^ � ^ 
 +� ^ �0 ^ 
 +� ^ � ^ 
0; (34)as expe
ted. More generally, it follows dire
tly from the de�ning formula for wedgeprodu
ts that for ! = !0 + ! and � = �0 + �:! ^ � = !0 ^ �0 + !0 ^ �+ ! ^ �0 + ! ^ �; (35)where the sum of the �rst three terms is (! ^ �)0.Suppose that, for a 
oordinatization of E, we have 
hosen a zero se
tion e0 and a lo
albasis of ve
tor se
tions e�. Denote by fe�g the dual basis for Se
(��). There exists aglobal se
tion of �y whi
h for ea
h m sele
ts in Eym the 
onstant fun
tion 1. We will 
allit e0. The lo
al zero se
tion e0 of Se
(�) 
an now play the role of the referen
e se
tion �0in our general 
onsiderations. Writing � = e0 + ��e� for an arbitrary se
tion �, we havefor ea
h 1-form �: �(�) = �(e0) + ���(e�). Putting �(e�) = �� and �(e0) = �0, we seethat � has the lo
al representation � = �0e0 + ��e�; (36)where, in agreement with the general de
omposition (32), e� has to be regarded now asa
ting on Se
(�) and �0 = �0e0. To be pre
ise, puttinge� = e0 + e�; (37)the a
tion of e� on aÆne se
tions, whi
h 
an be given a meaning only after introdu
inga referen
e se
tion, is determined by:e�(e0) = 0; e�(e�) = Æ��: (38)There is another slight abuse of notation in (36) sin
e �0 
ould have a double meaning:in (36) it represents a lo
al fun
tion on M , whereas it also 
ould refer to the operatorintrodu
ed in (24) and more generally in De�nition 3. We will, however, seldom use thenotation �0 in the latter sense when dealing with 
oordinate 
al
ulations, so that themeaning will always be 
lear from the 
ontext.Let us now see how all these notations �t together when we start wedging 1-forms. Fortwo 1-forms � = �0 +� and � = �0 + � we �nd, for example from (28) and (30), that(� ^ �)0 = �0 ^ � � �0 ^ �: (39)This is in agreement with the general formula (35) sin
e obviously �0^�0 = 0. Expressing� and � with respe
t to the basis (e0; e�), we �nd� ^ � = (�0�
 � �0�
) e0 ^ e
 + 12(�
�Æ � �Æ�
) e
 ^ eÆ: (40)10



Similarly, for the wedge produ
t of three 1-forms with lo
al representations of the form(36), we obtain� ^ � ^ 
 = 12��0(��
� � ��
�) + �0(
��� � 
���)+ 
0(���� � ����)�e0 ^ e� ^ e� + � ^ � ^ 
: (41)It should now be 
lear without going into any further detail that a general k-form onSe
(�) lo
ally has the following representation,! = 1(k � 1)! !0�1����k�1 e0 ^ e�1 ^ � � � ^ e�k�1 + 1k! !�1����k e�1 ^ � � � ^ e�k ; (42)where the 
oeÆ
ients are fun
tions on M , whi
h are skew-symmetri
 in all their indi
es(in
luding the zero for the �rst term); we have!0�1����k�1 = !(e0; e�1 ; : : : ; e�k�1); (43)!�1����k = !(e�1 ; : : : ; e�k)� kXi=1 !�1����0i ����k ; (44)where �0i again means that the index �i has been repla
ed by 0.Before arriving at our main goal, the development of an exterior 
al
ulus on forms, wewill re
all a few generalities about derivations. Derivations on V(�y) are de�ned in theusual way. Following the standard work of Fr�oli
her and Nijenhuis [5℄, one easily showsthat derivations are lo
al operators and that they are 
ompletely determined by theira
tion on fun
tions and 1-forms. The 
ommutator of two derivations Di, of degree ri say,is again a derivation, of degree r1 + r2, de�ned by[D1; D2℄ = D1 ÆD2 � (�1)r1r2D2 ÆD1: (45)Perhaps the simplest type of derivation is 
ontra
tion with a se
tion.De�nition 4. For ! 2 Vk(�y) and � 2 Se
(�), i�! 2 Vk�1(�y) is de�ned byi�!(�1; : : : ; �k�1) = !(�; �1; : : : �k�1): (46)The proof that this is a derivation of degree �1 is standard and does not depend on thepe
ularities of our present theory. But perhaps we have to 
onvin
e ourselves in the �rstpla
e that i�! is indeed a form in the sense of De�nition 3.Proposition 2. i�! is a (k� 1)-form whi
h, in the sense of the general de�ning relation(26), is determined by an operator (i�!)0 and a k-form i�! on Se
(�), de�ned as follows:for all �i 2 Se
(�), �0 2 Se
(�),(i�!)0(�0; �2; : : : �k�1) = �!0(�0; � ; �2; : : :�k�1); where � = � � �0; (47)i�!(�2; : : : ; �k) = !0(�; �2; : : : ; �k): (48)We further have the property (with �1 = �):i�!(�2; : : : ; �k) = kXi=1 (�1)i�1 (i�!0) (�1; : : : ; �̂i; : : : ; �k): (49)11



Proof: A dire
t 
omputation, using (46) and (26), givesi�!(�2; : : : ; �k) = !(�; �2; : : : ; �k)= !0(�0; �2; : : : ; �k) + k�1Xj=1(�1)j!0(�0; � ; �2; : : : ; �̂j; : : : ; �k) + !(�;�2; : : : ; �k)= k�1Xj=1(�1)j!0(�0; � ; �2; : : : ; �̂j; : : : ; �k) + !0(�; �2; : : : ; �k);from whi
h we are led to introdu
e (i�!)0 and i�! as in (47) and (48). It is then straight-forward to verify that these two operators are linked by a property of type (25), so the�rst statement follows. Observe that, with an obvious meaning for 
ontra
tion of theoperator !0 with �, we 
an write: i�! = i�!0. The somewhat pe
uliar feature of theadditional property is that i�! 
an be 
ompletely 
omputed from i�!0. To prove this weagain start from (26) to write (with �1 = �)i�!(�2; : : : ; �k) = kXi=1 (�1)i�1!0(�0; �1; : : : ; �̂i; : : : ; �k) + !(�1; : : : ; �k):This time, we substitute �1 � �1 for �0 and observe that the se
ond part of the suminvolving !0, in view of (25) then pre
isely 
an
els the last term.Before we 
an arrive now at the de�nition of an exterior derivative operator, we need togive a meaning also to the value of a k-form !, when say its �rst argument is taken to bea ve
tor se
tion.De�nition 5. If ! is a k-form on Se
(�), then for � 2 Se
(�) and �i 2 Se
(�), we put!(�; �2; : : : ; �k) = !(�1 + �; �2; : : : ; �k)� !(�1; �2; : : : ; �k); (50)where �1 is 
hosen arbitrarily.For this to make sense of 
ourse, we need to be sure that the result does not depend onthe 
hoi
e of �1. Now, if we evaluate the right-hand side of the de�ning relation by using(26), we obtain!(�; �2; : : : ; �k) = !(�; �2; : : : ; �k) + kXi=2 (�1)i�1!0(�0;�; �2; : : : ; �̂i; : : : ; �k): (51)The right-hand side of this expli
it expression makes no mentioning of �1 anymore. Itmight seem at �rst sight that we have shifted the problem, be
ause it does depend on thereferen
e se
tion �0. However, we have argued before that (26) does not depend on the
hoi
e of su
h a referen
e se
tion, when
e our newly de�ned 
on
ept makes sense.The expli
it formula (51) further shows that i�! is well de�ned as a (k � 1)-form, inthe sense of De�nition 3. The �rst term on the right identi�es its asso
iated form onSe
(�), whereas the se
ond term, upon swapping the �rst two arguments, reveals that(i�!)0 = i�!0. As for lo
al 
omputations, it follows from the de�nition (50) that e0(�) =0, whereas the e� a
t on � simply as duals of Se
(�).12



De�nition 6. The exterior derivative of !, denoted by d! is de�ned byd!(�1; : : : ; �k+1) = k+1Xi=1 (�1)i�1�(�i)�!(�1; : : : ; �̂i; : : : ; �k+1)�+ X1�i<j�k+1(�1)i+j!([�i; �j℄; �1; : : : ; �̂i; : : : ; �̂j; : : : ; �k+1): (52)Note �rst that we are making use of de�nition 5 in the se
ond term on the right, be
ausethe bra
ket of two aÆne se
tions is a ve
tor se
tion. It is fairly obvious that d! is skew-symmetri
 in all its arguments. To justify the de�nition, however, we should be able toidentify an operator (d!)0 and a related (k+1)-form d! on Se
(�), su
h that d! satis�esan expression of type (26). We of 
ourse have an exterior derivative at our disposal forthe k-form ! on Se
(�) whi
h we denote by d also. We know that d! has a property oftype (52) (or 
an be de�ned that way), with ve
tor se
tions repla
ing aÆne se
tions and� as an
hor map instead of �.De�nition 7. For !0 : Se
(�) � Se
(�) � � � � � Se
(�) ! C1(M), we de�ne d!0, anoperator of the same type, but depending on one more ve
tor se
tion, byd!0(�; �2; : : : ; �k+1) = �(�)�!(�2; : : : ; �k+1)�+ k+1Xi=2 (�1)i�1�(�i)�!0(�; �2; : : : ; �̂i; : : : ; �k+1)�+ k+1Xj=2(�1)j+1!([�; �j℄; �2; : : : ; �̂j; : : : ; �k+1)� X2�i<j�k+1(�1)i+j!0(�; [�i; �j℄; �2; : : : ; �̂i; : : : ; �̂j; : : : ; �k+1): (53)This expression may look rather exoti
 at �rst, but it is obtained by formally 
opying thede�nition (52) and writing in that pro
ess either � or �, and either !0 or !, in su
h a waythat every term in the right-hand side has a proper meaning. There are two importantobservations to be made here. First of all, the required linearity of d!0 in its ve
torarguments relies on the properties (9) and (11) of our Lie algebroid bra
ket. Se
ondly,repla
ing the aÆne se
tion � in the de�nition by � + �, we �nd:d!0(� + �; �2; : : : ; �k+1) = d!0(�; �2; : : : ; �k+1) + d!(�; �2; : : : ; �k+1): (54)We thus know what to expe
t for the de
omposition (26) of d! and this is 
on�rmed bythe following result.Proposition 3. We have (d!)0 = d!0 and d! = d!.The proof, whi
h involves a rather te
hni
al but straightforward 
al
ulation, is given inthe appendix. 13



It is of some interest to work out some simple 
ases in detail. For a fun
tion f 2 C1(M),df is de�ned by df(�) = �(�)(f) = �(�0)(f) + �(�)(f); (55)from whi
h we learn that (df)0 = df (as expe
ted) and df(�) = �(�)(f). If � is a 1-form,the de�ning relation (52) for its exterior derivative readsd�(�1; �2) = �(�1)(�(�2))� �(�2)(�(�1))� �([�1; �2℄): (56)Introdu
ing an arbitrary referen
e se
tion �0, it is easy to verify that this 
an be rewrittenas d�(�1; �2) = (d�)0(�0; �2)� (d�)0(�0; �1) + d�(�1; �2); (57)where d� = d� and(d�)0(�;�) = �(�)(�(�))� �(�)(�(�))� �([�;�℄): (58)This is in perfe
t agreement with the results of Proposition 3 and De�nition 7.Con
erning derivation properties, it is trivial to verify that for the produ
t of fun
tions:d(fg) = fdg + gdf . Also, from (56) applied to f� we get:d(f�)(�1; �2) = �(�1)(f�(�2))� �(�2)(f�(�1))� f�([�1; �2℄)= df(�1)�(�2)� df(�2)�(�1) + f��(�1)(�(�2))� �(�2)(�(�1))� �([�1; �2℄)�;from whi
h we 
on
lude that d(f�) = f d� + df ^ �: (59)Re
alling now the general statements about derivations we made before, we 
an 
on
ludethat there exists a unique derivation d̂ on V(�y), of degree 1, whi
h 
oin
ides with our don fun
tions and 1-forms. If we 
an show that d̂! = d! for an arbitrary ! 2 V(�y), wewill know that the operator d de�ned by (52) is a derivation. To this end, let us introdu
ed̂� = [i� ; d̂℄;whi
h, as 
ommutator of two derivations, is itself a derivation of degree 0 on V(�y). Weextend the a
tion of d̂� to Se
(�) `by duality'. That is to say, for � 2 Se
(�), d̂�� isde�ned by requiring that for all � 2 V1(�y):hd̂��; �i = d̂�(�(�))� d̂��(�): (60)It is easy to see that d̂�� is skew-symmetri
 in � and �, so that it makes sense to introdu
ea bra
ket notation for it: [�; �℄^ = d̂��. We now re
all a result proved in [11℄ whi
h,although stated there in an entirely di�erent 
ontext, has a quite universal validity.Lemma 1. Given a derivation d̂ of degree 1, and introdu
ing d̂� and [�; �℄^ as above, wehave for all ! 2 Vk(�y):d̂!(�1; : : : ; �k+1) = k+1Xi=1 (�1)i�1d̂�i�!(�1; : : : ; �̂i; : : : ; �k+1)�+ X1�i<j�k+1(�1)i+j!([�i; �j℄^; �1; : : : ; �̂i; : : : ; �̂j; : : : ; �k+1):14



To show that d̂! = d! now, it suÆ
es to verify that d̂�f = �(�)(f) on fun
tions, and thatthe bra
ket [ ; ℄^ 
oin
ides with the Lie algebroid bra
ket. We have d̂�f = i� d̂f = i�df =�(�)(f), and for all � 2 V1(�y)h[�; �℄^; �i = hd̂��; �i = �(�)(�(�))� d̂�(�; �)� d̂i��(�)= �(�)(�(�))� �(�)(�(�))� d�(�; �) = �([�; �℄);from whi
h the desired result follows.We now rea
h the main question whi
h is about the relationship between d2 and the
ompatibility requirements in the de�nition of an aÆne Lie algebroid. To appre
iate themeaning of the following lemma, we take a step ba
k and assume now that the bra
ket[�i; �j℄ �guring in the de�nition (52) of d satis�es the `Leibniz-type property' (9) withrespe
t to the module stru
ture of Se
(�) (and the resulting property (11)), but no further
ompatibility or Lie algebra 
onditions a priori. Remember that the property (9) of thebra
ket was ne
essary to make sure that d! is a form in the �rst pla
e.Lemma 2. For all ! 2 Vk(�y) and �i 2 Se
(�), we haved2!(�1; : : : ; �k+2) =X1�i<j�k+2(�1)i+j��([�i; �j℄)� [�(�i); �(�j)℄��!(�1; : : : ; �̂i; : : : ; �̂j; : : : ; �k+2)�+ X1�i<j<l�k+2(�1)i+j+l!(Pi;j;l[�i; [�j; �l℄℄; �1; : ; �̂i; : ; �̂j; : ; �̂l; : ; �k+2); (61)(where the smaller summation sign of 
ourse refers again to a 
y
li
 sum over the threeindi
es involved).In fa
t this lemma, with suitable adaptations, also has a rather universal validity. For
ompleteness, we in
lude a proof in Appendix A.Proposition 4. The exterior derivative has the property d2 = 0 if and only if the bra
ketfurther satis�es the Ja
obi identity (16) (or equivalently (8)).Proof: If (9) and (16) hold true, we also have (8) and know from previous 
onsiderationsthat (12) then holds as well. The above lemma this way trivially implies d2 = 0. Forthe 
onverse, we observe that d2f = 0, for f 2 C1(M), implies (17), from whi
h itsubsequently follows that d2� = 0, with � 2 V1(�y), implies (16).It remains now to list 
oordinate expressions for the basi
 exterior derivatives. Let (t; xi)as before be 
oordinates on M . For their exterior derivatives we obtain the following: forall � 2 Se
(�), dt(�) = �(�)(t) = 1; dxi(�) = �(�)(xi);from whi
h it follows that dt = 0 and dxi(�) = �(�)(xi) (and of 
ourse (dt)0 =dt; (dxi)0 = dxi). In terms of the general representation (36) of a 1-form, we thushave: dt = e0; (62)dxi = �ie0 + �i�e�: (63)15



Obviously, we have de0 = 0. We further 
al
ulate, making use, for example, of (43,44),the general formula (56) and the 
oordinate expressions (18), thatde� = �C�� e0 ^ e� � 12C��
e� ^ e
 : (64)It is instru
tive to verify that expressing the properties d2e� = 0 and d2xi = 0 is indeedequivalent to the requirements (20,21) and (22,23), respe
tively.To 
omplete the pi
ture of basi
 derivations on V(�y), we have a 
loser look at theanalogue of the 
lassi
al Lie derivative.De�nition 8. For every � 2 Se
(�), the derivation d� of degree zero is de�ned asd� = [i� ; d℄ = i� Æ d+ d Æ i� : (65)So, sin
e d� is de�ned as a 
ommutator of derivations, we know that it will itself be aderivation of degree zero: d�(! ^ �) = d�! ^ �+ ! ^ d��: (66)Likewise, we 
an rely on proofs similar to those in the standard theory to 
on
lude thatthe following 
ommutator properties will hold true:[d� ; i�℄ = i[�;�℄; [d� ; d℄ = 0; [d� ; d�℄ = d[�;�℄: (67)Note, however, that a Lie-type derivation with respe
t to a ve
tor se
tion turns up in thelast property, and this is indeed well de�ned also as: d� = [i�; d℄. It is further natural toextend the a
tion of d� to Se
(�) by duality, i.e. to require that a property of type (60)holds true. It then follows, as expe
ted, that for �; � 2 Se
(�),d�� = [�; �℄: (68)As a result of su
h an extension, d� has Leibniz-type properties also with respe
t to theevaluation of forms on the appropriate number of aÆne (or ve
tor) se
tions; the followingproperty, whi
h 
ould be veri�ed by a dire
t 
omputation from the de�nition of d� , thusbe
omes self-evident:d�!(�1; : : : ; �k) = �(�)�!(�1; : : : ; �k)� + kXj=1(�1)j!([�; �j℄; �1; : : : ; �̂j; : : : ; �k): (69)In the interest of doing 
omputations, we list the Lie-type derivatives of fun
tions f 2C1(M) and the lo
al basis of 1-forms. For � = e0 + ��e�,d�f = �(�)(f); d�e0 = 0; d�e� = C�� ��e0 � C��e� + C��
�
e� + d��:For future developments, it may be of some interest, �nally, to list what the two 
omposingparts of d�! are, in the sense of the de�ning relation (26) of forms.16



Proposition 5. For ! 2 Vk(�y), we have(d�!)0(�0; �1; : : : ; �k�1) = �(�)�!0(�0; �1; : : : ; �k�1)�� !([�; �0℄; �1; : : : ; �k�1)+ k�1Xj=1(�1)j!0(�0; [�; �j℄; �1; : : : ; �̂j; : : : ; �k�1); (70)d�!(�1; : : : ; �k) = �(�)�!(�1; : : : ; �k)�+ k�1Xj=1(�1)j!([�; �j℄; �1; : : : ; �̂j : : : ; �k): (71)These are exa
tly the sort of expressions one expe
ts. The proof is a matter of a di-re
t 
omputation, starting from the formula (69) and using the de
ompositions (26) and(51). It further requires manipulations of double sums of the same nature as those inAppendix A.4 �-admissible 
urves and dynami
sAs we expressed in the introdu
tion, the model of aÆne Lie algebroids we are developingshould in the �rst pla
e o�er an environment in whi
h one 
an a

omodate the time-dependent Lagrange-type equations (4). At present, we wish to look in more detail at thegeometri
 nature of the more general dynami
al systems, whi
h we 
all pseudo-se
ond-order equations, and are those des
ribed by di�erential equations of the form (3). For thispurpose in fa
t, we do not need the full ma
hinery of algebroids: it suÆ
es to assume thatE is an aÆne bundle over M and � : E ! J1M an aÆne bundle map over the identity.De�nition 9. A 
urve  in E, whi
h is a se
tion of � Æ �, is said to be �-admissible, if� Æ  = j1(� Æ  ).One 
ould say that  is the �-prolongation of a 
urve in M . In 
oordinates, we have : t 7! (t; xi(t); y�(t)); with _xi(t) = �i(t; x(t)) + �i�(t; x(t)) y�(t):Note in passing that, not unexpe
tedly, one 
an 
hara
terize �-admissibility via a 
on
eptof 
onta
t forms: putting �i = ���i, where the �i are the 
onta
t forms on J1M , we havethat  is a �-admissible 
urve in E if and only if  ��i = 0.Pseudo-se
ond-order equation �elds on E are ve
tor �elds whose integral 
urves all are�-admissible 
urves. As in the standard theory of Sodes on a tangent bundle or �rst jetbundle, however, there is a simple dire
t 
hara
terization of su
h ve
tor �elds.De�nition 10. � 2 X (E) is a pseudo-se
ond-order equation �eld ifT� Æ � = i Æ �;where i is the inje
tion of J1M into TM . 17



Clearly, in 
oordinates, a pseudo-Sode is of the form� = ��t + (�i(t; x) + �i�(t; x)y�) ��xi + f�(t; x; y) ��y� ; (72)for some fun
tions f�, and it is obvious that all its integral 
urves will be �-admissible.The following diagram visualizes the notions of �-admissible 
urves and pseudo-Sodes.TE TM[ [-J1E J1M-���������*E M�?6 ?T�� �IR����I����R ����	 An important point now, however, is that there is a natural way of interpreting the ve
tor�eld � as se
tion of a di�erent bundle.From the above de�nition, it is 
lear that a pseudo-Sode is a
tually a se
tion of (� Æ�)01 :J1E ! E, with the additional property that for all p 2 E, T�jJ1E(�(p)) = �(p). Anequivalent way of saying the same thing, by de�nition of the 
on
ept of a pullba
k bundle,is that (p;�(p)) is a point of ��J1E, with J1E regarded as �bred over J1M via T�jJ1E.From now on, we will write J1�E for ��J1E, and denote its two proje
tions as indi
atedin the following diagram:
--? ?EJ1�E J1MJ1E�

�1�2 T�If we �nally put �1 = (� Æ �)01 Æ �1, there is yet another way of expressing the 
hara
teri-zation of a pseudo-Sode. Indeed, from the trivial observation that (� Æ �)01(�(p)) = p =�2((p;�(p))), it follows that a pseudo-Sode � 
an be regarded also as a se
tion of thebundle �1 : J1�E ! E, with the property that �2 Æ � = �1 Æ �.The various spa
es and proje
tions, des
ribed in this dis
ussion, are depi
ted in the dia-gram of the next se
tion. This diagram immediately suggests the following question: ifwe put more stru
ture into the s
heme by assuming now again that � : E ! M 
arriesan aÆne Lie algebroid stru
ture, is it possible to prolong this stru
ture to the bundle�1 : J1�E ! E, in su
h a way of 
ourse that �1 be
omes the an
hor map of the indu
edaÆne Lie algebroid? 18



5 Prolongation of aÆne Lie algebroidsWe shall now look in more detail at the bundle �1 : J1�E ! E. Its total spa
e is themanifold J1�E = ��J1E = f(q; Z) 2 E � J1E j �(q) = T�jJ1E(Z)g;but the �bration we want to fo
us on is not one of the proje
tions whi
h de�ne J1�E, butrather the map �1 = (� Æ �)01 Æ �1. As su
h, we are looking at an aÆne bundle, modelledon the ve
tor bundle �1 : V�E ! E, with total spa
eV�E = f(v;V ) 2 V � V E j �(v) = T�jV E(V )g:The aÆne bundles involved, and their underlying ve
tor bundles are illustrated below.
-����R�����J1�E EJ1E
-����R�����E MJ1M? ? ?�� �01�1�1 (� Æ �)01�2 � ������ IR����R -����R�����V�E EV E

-����R�����V MVM? ? ?�� �1�1�2 � ������ IR����R
A se
tion Z of �1 is 
ompletely determined on
e we know the maps �2 Æ Z : E ! Eand �1 Æ Z : E ! J1E. Likewise, ve
tor se
tions Z of �1 are determined by �2 Æ Z and�1 ÆZ. For example, let e 2 E be a point with 
oordinates (t; xi; y�), so that (t; xi) arethe 
oordinates of �(e) 2 M and e has the representation e = e0 + y�e�. If then Z is ase
tion of �1, we will have:�2 Æ Z : (t; x; y) 7�! (t; x; z�(t; x; y));�1 Æ Z : (t; x; y) 7�! � ��t + (�i + �i�z�) ��xi + Z� ��y������ e ;and determining Z in 
oordinates of 
ourse amounts to assigning the fun
tions (z�; Z�)on E.It is worthwhile looking at the representation of su
h a Z with respe
t to suitably sele
tedlo
al se
tions of �1 and �1, whi
h will exhibit the aÆne stru
ture of �1 and are adapted tothe basis whi
h was sele
ted to 
oordinatize E. To this end, we introdu
e two sets of lo
alse
tions X � and V� of �1 whi
h will span Se
(�1), and sele
t a zero se
tion E0 as follows.The V� span `verti
al se
tions' and are determined by: �2 ÆV� = 0, while for e 2 Em welet �1 Æ V�(e) be the tangent ve
tor to the 
urve s 7! e + s e�(m) in Em. Verti
ality isan intrinsi
 property whereas, as usual, there is no intrinsi
 notion of horizontality. Thedetermination of the X � and E0 will therefore rely on pure 
oordinate arguments. For the19



proje
tion onto V we put �2 ÆX � = e� Æ � and then, �xing �1 ÆX � (as a ve
tor �eld onE) further requires making a pres
ription for the verti
al 
omponents, whi
h we simplytake to be zero. Similarly, for the 
hoi
e of a zero se
tion, we 
ould take any ve
tor �eldon E whi
h proje
ts under T� onto �(e0) 2 X (M) (and as su
h de�nes also a se
tion of�1), but we will �x it also by taking the verti
al 
omponents to be zero. Thus we have:X �(e) = �e�(�(e)); �i�(t; x) ��xi ����e� V�(e) = �0(�(e)); ��y� ����e� ; (73)and E0(e) = �e0(�(e)); � ��t + �i(t; x) ��xi�����e� : (74)The general se
tion Z of �1 then has the lo
al representation:Z = E0 + z�(t; x; y)X � + Z�(t; x; y)V�: (75)Note that pseudo-Sodes, as dis
ussed in the previous se
tion, are pre
isely those se
tions� of �1, for whi
h z�(t; x; y) = y�.Let now E be equipped with an aÆne Lie algebroid stru
ture. To be in line with thenotations we used in De�nition 1, we will from now on also write �1(Z) instead of �1 ÆZ,and likewise for the �2-proje
tion and the 
orresponding proje
tions of ve
tor se
tions.We wish to establish that there is an indu
ed Lie algebroid stru
ture on the aÆne bundle�1. To this end, following the s
heme of De�nition 1, we have to identify a bra
ket on �1and an a
tion of aÆne se
tions on ve
tor se
tions, su
h that all the ne
essary requirementsare met. The idea is to de�ne su
h bra
kets by requiring roughly that its two proje
tionsare determined by the known bra
kets of the proje
ted se
tions. But there are somete
hni
al 
ompli
ations whi
h we will address now.For Z1;Z2 2 Se
(�1), a preliminary observation is that the Lie bra
ket of their imageunder �1 (whi
h gives rise to ve
tor �elds on E), belongs to the image of �1. A 
oordinate
al
ulation 
an 
on�rm this. Putting�1(Zi) = z�i �j� ��xj + Z�i ��y� ;we have [�1(Z1); �1(Z2)℄ = ��1(Z1)(z�2 )� �1(Z2)(z�1 )��j� ��xj+ �z�2 �1(Z1)(�j�)� z�1 �1(Z2)(�j�)� ��xj + � � � ��y� :The �rst term on the right manifestly belongs to the image of �1, whereas the last termis irrelevant for that purpose. The middle term 
an be rewritten asz�2 z�1  �j� ��i��xj � �j���i��xj! ��xi ;20



whi
h is seen to belong to the image of �1 in view of the property (23). It is thereforenatural to impose right away that the bra
ket [�; �℄1 under 
onstru
tion, whi
h of 
ourseis required to be skew-symmetri
 and IR-bilinear, should satisfy�1 �[Z1;Z2℄1� = [�1(Z1); �1(Z2)℄: (76)This will have for 
onsequen
e that for Fi 2 C1(E),�1 �[F1Z1; F2Z2℄1� =F1F2 [�1(Z1); �1(Z2)℄ + F1 �1(Z1)(F2) �1(Z2)� F2 �1(Z2)(F1) �1(Z1):It remains then to make sure that the proje
tion under �2 
an be spe
i�ed in a 
ompatibleway. The above 
oordinate 
al
ulation to some extent illustrates how one should pro
eed.If we apply T� to the pre
eding equality, we get (pointwise)T� ��1 �[F1Z1; F2Z2℄1�� = (F1F2)T� �[�1(Z1); �1(Z2)℄�+ F1 �1(Z1)(F2) �(�2(Z2))� F2 �1(Z2)(F1) �(�2(Z1)):In general, the �(�2(Zi)) are ve
tor �elds along � for whi
h there is no standard Lie bra
ketavailable. If the Zi are proje
table, however, meaning that there exist �i 2 Se
(�) su
hthat �2 ÆZi = �i Æ �, the ve
tor �elds �1(Zi) on E are �-related to the ve
tor �elds �(�i)onM . Hen
e, the 
orresponding bra
kets are also �-related, meaning that for proje
tableZi, we 
an put �2 �[Z1;Z2℄1� = [�2(Z1); �2(Z2)℄; (77)and then the property (13) (whi
h in 
oordinates gives (23)) ensures thatT� ��1 �[Z1;Z2℄1�� = � Æ �2 �[Z1;Z2℄1�as it should. The expression for T� (�1 ([F1Z1; F2Z2℄1)) further shows that the �2 and�1 proje
tions of the bra
ket under 
onstru
tion will still mat
h up if for proje
table Ziand for any Fi 2 C1(E), we de�ne�2 �[F1Z1; F2Z2℄1� = F1F2 [�2(Z1); �2(Z2)℄+ F1 �1(Z1)(F2) �2(Z2)� F2 �1(Z2)(F1) �2(Z1): (78)It then follows that[F1Z1; F2Z2℄1 = F1F2 [Z1;Z2℄1 + F1 �1(Z1)(F2)Z2 � F2 �1(Z2)(F1)Z1; (79)sin
e both sides have the same �2 and �1 proje
tions.The �nal point to observe now is that se
tions of �1 (lo
ally) are �nitely generated, overthe ring C1(E), by proje
table se
tions. Hen
e, the de�ning relations (76) and (78) aresuÆ
ient to de�ne the bra
ket [�; �℄1 on ve
tor se
tions. The property (79) will hold byextension for all ve
tor se
tions and the bra
ket will satisfy the Ja
obi identity as a resultof the Ja
obi identity of the Lie algebroid bra
ket we start from and the same identity forve
tor �elds on E. 21



To de�ne the a
tion of Z 2 Se
(�1) on V 2 Se
(�1), we pro
eed in exa
tly the samemanner. First, one easily veri�es that the Lie bra
ket of �1(Z) and �1(V ) belongs to theimage of �1, this time in view of the properties (22) and (23). Hen
e, it makes sense toput �1 �[Z;V ℄1� = [�1(Z); �1(V )℄; (80)and we of 
ourse require the bra
ket [�; �℄1 to have linearity properties of the kind of (7).For proje
table se
tions, we 
an put�2 �[Z;V ℄1� = [�2(Z); �2(V )℄; (81)and be assured of 
onsisten
y with the proje
tion (80). Next, still for proje
table Z andV and for any F 2 C1(E), we de�ne�2 �[Z; F V ℄1� = F [�2(Z); �2(V )℄ + �1(Z)(F ) �2(V ): (82)Se
tions of �1 
an be written as a proje
table zero se
tion, plus a linear 
ombination ofproje
table ve
tor se
tions with 
oeÆ
ients in C1(E). In 
ombination with the earlierarguments for ve
tor se
tions, we are again led to the 
on
lusion that the requirements(80) and (82) are suÆ
ient to de�ne [Z;V ℄1 for arbitrary Z 2 Se
(�1) and V 2 Se
(�1)and that we will have the property[Z; F V ℄1 = F [Z;V ℄1 + �1(Z)(F )V : (83)The �nal requirement of type (8) then also easily follows, whi
h 
on
ludes the 
onstru
tionof the prolonged aÆne Lie algebroid.For 
omputational purposes, it remains to list the bra
kets of the lo
al se
tions whi
h areused in the general representation of a se
tion of �1 as in (75). We have[E0;X �℄1 = C��X �; [E0;V�℄1 = 0;[X �;X �℄1 = C
��X 
 ; [X �;V�℄1 = 0; [V�;V�℄1 = 0:It is perhaps worthwhile to repeat hereby that the two proje
tions have to be looked atto verify these statements, although of 
ourse they are bound to mat
h up if our newbra
ket has been de�ned 
onsistently. Thus we have, for example:�2 �[E0;X �℄1� = [�2(E0); �2(X �)℄ = [e0; e�℄ = C��e�;�1 �[E0;X �℄1� = [�1(E0); �1(X �)℄ = � ��t + �i ��xi ; �j� ��xj � = C�� �1(X �);where (22) has been used again in the last line.6 Dis
ussion and outlook for future workThe form of equations (4), whi
h we 
laim to be the appropriate generalization of La-grangian systems on Lie algebroids to a situation where expli
it time-dependen
e is in-volved, has brought us to the introdu
tion of the new 
on
ept of Lie algebroids on aÆne22



bundles whi
h are �bred over IR. More pre
isely, the �rst guidan
e for developping this
on
ept was provided by the 
onditions (5) and (6) whi
h the various fun
tions appearingin (4) have to satisfy. Ultimately, of 
ourse, we want to arrive at an intrinsi
 geometri
al
onstru
tion of su
h Lagrangian systems. There are many aspe
ts to be explored yet,but we have suÆ
iently paved the way already to be able to predi
t what the out
ome ofsubsequent studies will bring.One of us has shown [10℄ that the prolongation of a Lie algebroid (in the standard situ-ation of ve
tor bundles) provides a platform where there exist analogues of the intrinsi
stru
tures living on a tangent bundle and these in turn give rise to an intrinsi
 de�nitionof Lagrangian systems via Poin
ar�e-Cartan type forms. This is the reason why we werekeen to verify immediately that the same notion of prolongation exists in our aÆne set-up.There is little doubt now that we will �nd intrinsi
 obje
ts on su
h a prolonged aÆne Liealgebroid, whi
h are analogues of what is known to give rise to an intrinsi
 de�nition oftime-dependent Lagrangian systems on the �rst jet bundle of a manifold �bred over IR.But there is more to it. Even when there is no Lagrangian for the dynami
s under 
on-sideration and we are, in other words, talking about pseudo-Sodes on a Lie algebroid, weexpe
t to be able to develop a ma
hinery of asso
iated non-linear and linear 
onne
tions,whi
h again is analogous to the standard theory of 
onne
tions asso
iated to Sodes ona tangent bundle or �rst jet bundle. In fa
t, a paper on these issues for the 
ase of Liealgebroids on a ve
tor bundle is in preparation.One of the features we examined in this paper as a kind of test for the relevan
e andinternal 
onsisten
y of the generalized notion of Lie algebroids, was the existen
e of anasso
iated 
oboundary operator d. But of 
ourse, there are still other interesting proper-ties whi
h standard Lie algebroids are known to exhibit. Let us brie
y highlight anotherone here and show that it also survives our generalization, namely the existen
e of an asso-
iated Poisson stru
ture. Spe
i�
ally, we want to establish that there exists a 
anoni
allyde�ned Poisson stru
ture on the extended dual Ey.Se
tions of � (respe
tively �) 
an be identi�ed with linear fun
tions on Ey (respe
tivelyV �). Expli
itly, if � 2 Se
(�), we 
onsider the fun
tion �̂ 2 C1(Ey) de�ned by: for ea
hp 2 Ey, p 2 Eym say, �̂(p) = p(�m). Likewise, if � 2 Se
(�), we denote by �̂ 2 C1(V �)the fun
tion de�ned by �̂(p) = p(�m), where p 2 V �m. In 
oordinates, if � = e0 + ��e�and p 2 Ey has 
oordinates (t; xi; p0; p�), then �̂(p) = p0 + p���(t; x) and similarly for �̂.Now, for any two se
tions �; � 2 Se
(�), we de�ne the fun
tion f�̂; �̂g on Ey byf�̂; �̂g(p) = d[�; �℄(p); (84)whereby we re
all that [�; �℄ is a se
tion of � and for p 2 Eym, p is the asso
iated elementof V �m. If further f; g are fun
tions on M and we make no notational distin
tion for theirpullba
k to Ey, internal 
onsisten
y of (84) for the a
tion of Se
(�) on Se
(�) requiresthat we further put f�̂; fg = �ff; �̂g = �(�)(f); ff; gg = 0: (85)The 
onstru
tion then uniquely extends to a skew-symmetri
, IR-bilinear bra
ket opera-tion on Ey with the required derivation property. This bra
ket satis�es the Ja
obi identityas a result of the Lie algebroid Ja
obi identity (16).23



The bra
kets for the 
oordinate fun
tions on Ey are found to be:ft; tg = 0 ft; xig = 0 fxi; xjg = 0fp0; tg = 1 fp0; xig = �i fp0; p�g = C
�p
fp�; tg = 0 fp�; xig = �i� fp�; p�g = C
��p
 :There is an interesting observation to be made here. Re
all that Ey is a
tually a ve
torbundle and note now that the bra
ket we have 
onstru
ted preserves the subset of fun
-tions on Ey whi
h are linear in the �bre 
oordinates. As a result, we know that there is anindu
ed Lie algebroid stru
ture on the bundle (Ey)� !M . There are many new insightsto be gained from approa
hing the subje
t of a Lie algebroid stru
ture on the aÆne bun-dle E ! M from this angle; that is to say, by regarding E ! M as an aÆne subbundleof (Ey)� ! M and taking an appropriate Lie algebroid stru
ture on (Ey)� ! M as thestarting point. Also this will be the subje
t of a forth
oming paper.Appendix: Te
hni
al proofsThe start for proving Proposition 3 is the de�ning relation (52) of the exterior derivative,in whi
h we make use of the de
omposition (26) in the �rst term and (51) in the se
ond.We �rst obtain,d!(�1; : : : ; �k+1)= k+1Xi=1 (�1)i�1(�(�0) + �(�i))� i�1Xj=1(�1)j�1!0(�0; �1; : : : ; �̂j; : : : ; �̂i; : : : ; �k+1)+ k+1Xj=i+1(�1)j!0(�0; �1; : : : ; �̂i; : : : ; �̂j; : : : ; �k+1) + !(�1; : : : ; �̂i; : : : ; �k+1)�+ X1�i<j�k+1(�1)i+j�!([�i; �j℄; �1; : : : ; �̂i; : : : ; �̂j; : : : ; �k+1)+ i�1Xl=1 (�1)l!0(�0; [�i; �j℄; �1; : : : ; �̂l; : : : ; �̂i; : : : ; �̂j; : : : ; �k+1)+ j�1Xl=i+1(�1)l�1!0(�0; [�i; �j℄; �1; : : : ; �̂i; : : : ; �̂l; : : : ; �̂j; : : : ; �k+1)+ k+1Xl=j+1(�1)l!0(�0; [�i; �j℄; �1; : : : ; �̂i; : : : ; �̂j; : : : ; �̂l; : : : ; �k+1)�;and now perform a number of manipulations on multiple sums. Inter
hanging the orderof summation in the �rst line, we havePk+1i=1 Pi�1j=1 =Pkj=1Pk+1i=j+1. Inter
hanging subse-quently the names of the indi
es i and j, the term involving �(�0) of the �rst line 
an
elsthe similar one in the se
ond line. The last three lines involve triple sums, whi
h 
an24



be rearranged as follows. The �rst triple sum, with suitable inter
hanges of the order ofsummation, be
omes:kXi=1 k+1Xj=i+1 i�1Xl=1 = kXi=1 i�1Xl=1 k+1Xj=i+1 = k�1Xl=1 kXi=l+1 k+1Xj=i+1 = X1�l<i<j�k+1 :For the se
ond one, we havekXi=1 k+1Xj=i+1 j�1Xl=i+1 = kXi=1 kXl=i+1 k+1Xj=l+1 = X1�i<l<j�k+1 :The last one 
an dire
tly be written asP1�i<j<l�k+1. Changing names of indi
es to makeall triple sums look alike, we thus far arrive at the result:d!(�1; : : : ; �k+1)= X1�i<j�k+1(�1)i+j�(�j � �i)�!0(�0; �1; : : : ; �̂i; : : : ; �̂j; : : : ; �k+1)�+ k+1Xi=1 (�1)i�1(�(�0) + �(�i))�!(�1; : : : ; �̂i; : : : ; �k+1)�+ X1�i<j�k+1(�1)i+j !([�0; �j℄� [�0; �i℄ + [�i; �j℄; �1; : : : ; �̂i; : : : ; �̂j; : : : ; �k+1)+ X1�i<j<l�k+1(�1)i+j+l!0(�0; [�i; �j℄ + [�j; �l℄ + [�l; �i℄; �1; : ; �̂i; : ; �̂j; : ; �̂l; : ; �k+1):It is 
lear now that the terms whi
h do not involve �0 
ombine exa
tly to d!(�1; : : : ; �k+1).What remains isk+1Xi=1 (�1)i�1�(�0)�!(�1; : : : ; �̂i; : : : ; �k+1)�+ X1�i<j�k+1(�1)i+j�(�j � �i)�!0(�0; �1; : : : ; �̂i; : : : ; �̂j; : : : ; �k+1)�+ X1�i<j�k+1(�1)i+j !([�0; �j℄� [�0; �i℄; �1; : : : ; �̂i; : : : ; �̂j; : : : ; �k+1)+ X1�i<j<l�k+1(�1)i+j+l!0(�0; [�i; �j℄ + [�j; �l℄ + [�l; �i℄; �1; : ; �̂i; : ; �̂j; : ; �̂l; : ; �k+1);and should be 
ompared toPk+1i=1 (�1)i�1d!0(�0; �1; : : : ; �̂i; : : : ; �k+1), with d!0 as de�nedin (53). It is obvious that the �rst three lines in the 
omputation of (d!)0 are exa
tlythe ones we have in the above expression. The last term in (53) gives rise to triplesums of the formPk+1l=1 (�1)l�1Pi<j<l(�1)i+j�1!0(�0; [�i; �j℄; �1; : ; �i; : ; �j; : ; �l; : ; �k+1)(there is a similar term withPi<l<j and one withPl<i<j). With suitable inter
hanges ofsummations, similar to what was expli
itly explained before, these three terms 
ombineto: X1�i<j<l�k+1(�1)i+j+l!0(�0; [�i; �j℄ + [�j; �l℄ + [�l; �i℄; �1; : ; �̂i; : ; �̂j; : ; �̂l; : ; �k+1):25



The proof now be
omes 
omplete if we observe that:[�i; �j℄ + [�j; �l℄ + [�l; �i℄ = [�i; �j℄ + [�j; �l℄ + [�l; �i℄:We next turn to the proof of Lemma 2.If ! is a k-form, then d2! is a (k + 2)-form withd2!(�1; : : : ; �k+2) = k+2Xi=1 (�1)i�1�(�i)�d!(�1; : : : ; �̂i; : : : ; �k+2)�+ X1�i<j�k+2(�1)i+jd!([�i; �j℄; �1; : : : ; �̂i; : : : ; �̂j; : : : ; �k+2): (86)If we plug in the de�nition of d!, the �rst term on the right will further de
omposeinto two parts, one involving double and the other involving triple sums. Based on ourexperien
e with su
h 
ombinatori
s in the pre
eding proof, we 
an right away 
on
ludethat the �rst line of the right-hand side of (86) equals:X1�i<j�k+2(�1)i+j��(�j)�(�i)� �(�i)�(�j)��!(�1; : : : ; �̂i; : : : ; �̂j; : : : ; �k+2)�+ X1�i<j<l�k+2(�1)i+j+l�1Pi;j;l n�(�i)�!([�j; �l℄o ; �1; : ; �̂i; : ; �̂j; : ; �̂l; : ; �k+2)�; (87)where the smaller summation sign, as before, refers to a 
y
li
 sum, the range of whi
his delimited by the 
urly bra
kets. For the se
ond term on the right in (86), we have toremember that the �rst argument is a ve
tor se
tion. Using the de�ning relation (50),applied to d!, we obtain:d!(�; �1; : : : ; �k) = �(�)�!(�1; : : : ; �k)�+ kXi=1 (�1)i�(�i)�!(�; �1; : : : ; �̂i; : : : ; �k)�+ kXj=1(�1)j!([�; �j℄; �1; : : : ; �̂j; : : : ; �k)+ X1�i<j�k(�1)i+j!([�i; �j℄;�; �1; : : : ; �̂i; : : : ; �̂j; : : : ; �k): (88)The last line here has two ve
tor arguments, but this is 
onsistent with the appli
ationof de�nition 5 to a form of type i�!. We look at the e�e
t of ea
h of these four terms,when inserted in the se
ond sum of (86). The �rst one simply gives:X1�<i<j�k+2(�1)i+j�([�i; �j℄)�!(�1; : : : ; �̂i; : : : ; �̂j; : : : ; �k+2)�: (89)
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The se
ond one is easily seen to give rise to terms whi
h 
an
el exa
tly the se
ond sumin (87). The third term of (88) gives rise to expressions involving double bra
kets, whi
h
ombine to: X1�i<j<l�k+2(�1)i+j+l!(Pi;j;l[[�i; �j℄; �l℄; �1; : ; �̂i; : ; �̂j; : ; �̂l; : ; �k+2): (90)The fourth term of (88) �nally 
reates terms whi
h involve two double sums, and in ea
hof the summands the �rst two arguments of ! are bra
kets. One has to look at all possibleorderings, six in total, of the four di�erent indi
es involved, but when the same pro
edureis applied to shu�e the order of summations suitably around and rename indi
es whereappropriate, one easily �nds that the six terms 
an
el ea
h other two by two in view ofthe skew-symmetry of !. What we are left with in the end is the �rst term of (87), (89)and (90): they pre
isely 
ombine to the statement in Lemma 2.Referen
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