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t. We develop an alternative view on the 
on
ept of 
onne
tions overa ve
tor bundle map, whi
h 
onsists of a horizontal lift pro
edure to a prolongedbundle. We further fo
us on prolongations to an aÆne bundle and introdu
e the
on
ept of aÆneness of a generalised 
onne
tion.1 Introdu
tionThere has been a lot of interest, re
ently, in potential appli
ations of Lie algebroids inphysi
s, 
ontrol theory and other �elds of applied mathemati
s. Among papers whi
hstudy, in parti
ular, aspe
ts of Lagrangian systems on Lie algebroids, we mention [24, 15,18, 3, 4, 5, 22, 20℄. There is of 
ourse an enormous literature on more purely mathemati
alaspe
ts of Lie algebroids, of whi
h we 
ite only the standard work [16℄, and [8℄ for itsparti
ular relevan
e to this paper.Our re
ent joint work in the �eld �nds its roots in sear
hing for the right geometri
al modelfor a kind of time-dependent generalisation of `Lagrangian me
hani
s' on Lie algebroids.Sin
e ordinary time-dependent me
hani
s is usually des
ribed on the �rst-jet spa
e J1M ofa manifoldM �bred over IR (see for example [6, 17℄), the dire
t model for the generalisationwe had in mind was a kind of Lie algebroid stru
ture, whose an
hor map takes values inJ1M rather than TM . This was explored in detail in [22℄, whi
h in turn rose interest inthe more general features of having a Lie algebroid stru
ture on an aÆne bundle, withoutthe requirement that the base manifold be �bred over IR. Those ideas were developed in[20℄ and to some extent (that is without referen
e to dynami
al systems) also in [10℄.A 
ontinuation of this work is in preparation, in parti
ular with the purpose of bringing asuitable theory of 
onne
tions into the pi
ture of dynami
al systems on aÆne algebroids.1



But the path to these further developments has led us to dis
over some general featureson 
onne
tions and aÆne spa
es, whi
h do not require a Lie algebroid stru
ture and seemwell worth being brought under the attention separately. This brings us to the subje
tmatter of the present paper.In Se
tion 2, the main obje
tive is to dis
uss two interesting 
onstru
tions from the re
entliterature on generalised 
onne
tions and algebroids whi
h, when brought together in aunifying pi
ture, will open the way to explain in detail how they are related. Both 
on-stru
tions may have their roots in the theory of Lie algebroids, but have been formulatedre
ently in the more general framework where a ve
tor bundle has a kind of an
hor map,but need not be equipped with a Lie algebra stru
ture on the real ve
tor spa
e of itsse
tions. The �rst topi
 we are referring to is the notion of generalised 
onne
tion on ave
tor bundle map, as introdu
ed by Cantrijn and Langero
k [1℄, inspired by a similar
onstru
tion on Lie algebroids by Fernandes [8℄. The se
ond is the idea of prolongation,whi
h has been dis
ussed in the 
ontext of Lie algebroids, for example in [18, 22, 20℄, but,as shown in [20℄, 
an also be de�ned without the need of a Lie algebra stru
ture. Alsorelevant is work by Popes
u, who in fa
t already developed the same ideas in the 
ase thatall bundles involved are ve
tor bundles; for this we refer to [21℄ and referen
es therein. Wewill arrive, in Se
tion 2, at an alternative view on the generalised 
onne
tions of [1℄. Butlet us mention here already that this alternative view 
an be developed without needingthe generalised 
onne
tion idea of [1℄. This is in fa
t one of the main dis
overies of [18℄and [21℄ and it is being explored to full extent in [19℄. The purpose of the present note,however, is to explain in detail the interrelationship between the two ideas.In Se
tion 3, we fo
us on the 
ase of the prolongation of an aÆne bundle E !M over ave
tor bundle V !M . We show that bringing the bidual of E into the pi
ture enables usto give a 
lear and 
on
ise de�nition of the 
on
ept of an aÆne 
onne
tion over a ve
torbundle map and prove a result about the equivalent 
hara
terisation of su
h a 
onne
tionvia a kind of 
ovariant derivative operator. The relevan
e of these results for the futuredevelopments we have in mind is brie
y indi
ated in the �nal se
tion.2 Conne
tions over a ve
tor bundle map and the hor-izontal subbundle of a prolonged bundleWe start by re
alling the prolongation idea, as developed in [20℄, following ideas �rstintrodu
ed in [11℄.Let � : P ! M be an arbitrary �bre bundle and � : V ! M a ve
tor bundle. Assumethere exists an an
hor map � : V ! TM , whi
h for the time being is just a ve
tor bundlemorphism.De�nition 1. The �-prolongation of � : P !M is the bundle �1 : T �P ! P , 
onstru
tedas follows: (i) the total spa
e T �P is the total spa
e of the pullba
k bundle ��TPT �P = f(v;Xp) 2 V � TP j �(v) = T�(Xp)g; (1)2



(ii) if �1 denotes the proje
tion of ��TP into TP and �P is the tangent bundle proje
tion,then �1 = �P Æ �1.The situation is summarised in the following diagram, whereby the proje
tion on the �rstelement of a pair (v;Xp) 2 T �P is denoted by �2.
-����R�����T �P PTP
-����R�����V MTM? ? ?�� �M�1�1 �P�2 �

Noti
e that, if we have two bundles �i : Pi !M (i = 1; 2), and a bundle map f (over theidentity on M) between them, then the tangent map Tf : TP1 ! TP2 extends to a mapT �P1 ! T �P2 : (v;Xp) 7! (v; Tf(Xp)). Indeed, we have T�2(Tf(Xp)) = T�1(Xp) = �(v).There is more to say about the tangent-bundle-like behaviour of T �P , but we will notelaborate on that here.Coming ba
k to the diagram above, an element of T �P is 
alled verti
al if it is in thekernel of the proje
tion �2. The set of all verti
al elements in T �P is a ve
tor subbundleof �1 and will be denoted by V�P . If (0; Q) 2 V�P , then Q = �1(0; Q) will also be verti
alin TP , sin
e T�(Q) = �(0) = 0. The idea of arriving at a notion of horizontality on TP ,adapted to the presen
e of the an
hor map in the pi
ture, lies at the basis of the following
on
ept, introdu
ed in [1℄.De�nition 2. A �-
onne
tion on � is a linear bundle map h : ��V ! TP (over theidentity on P ), su
h that � Æ pV = T� Æ h, where pV is the proje
tion of ��V onto V .There is a quite striking similarity between our �rst diagram and the one we 
an drawhere for the illustration of all spa
es involved in the de�nition of a �-
onne
tion:
-����R�������V PTP
-����R�����V MTM? ? ?�� �Mph �PpV �
3



Note that points in the image �1(T �P ) 
an be verti
al in TP when the 
orrespondingpoint in the domain is not verti
al in T �P (be
ause � need not be inje
tive). This isrelated to the observation that Imh 
an have a non-empty interse
tion with the verti
alve
tors on P . As dis
ussed in detail in [1℄, Im h will in general also fail to determine afull 
omplement to the verti
al ve
tors on P . That is why one refers to a �-
onne
tion on� also as a `generalised 
onne
tion'.The point we would like to emphasise, however, is that it is perhaps not su
h a good ideato 
on
entrate on horizontality on TP . Instead, as one may 
onje
ture from an inspe
tionof the two diagrams above, the better �bration to look for horizontality in this frameworkis the prolonged bundle �1 : T �P ! P . In other words, we think it is important to bringthe pi
tures of �-prolongation and �-
onne
tion together into the following s
heme.
��������1PPPPPPPPq����R����1����������VT �P PTP

-HHHHj����*V MTM? ? ??
�� �Mp�1 �P�1pV �j T�h

What we propose to dis
uss in detail now is that, given a �-
onne
tion on �, there is anasso
iated, genuine de
omposition of the bundle �1, i.e. a `horizontal subspa
e', at ea
hpoint p 2 P , of the �bre of T �P , whi
h is 
omplementary to the verti
al subspa
e at p.In other words, instead of 
onsidering a horizontal lift operation from se
tions of � tose
tions of �P , as is done in [1℄, it is more appropriate to fo
us on a horizontal lift fromse
tions of � , and by extension se
tions of the pullba
k bundle p, to se
tions of the bundle�1.The �bre linear map j : T �P ! ��V : (v;Q) 7! (�P (Q); v) is surje
tive and its kernel isV�P . Therefore we have the following short exa
t sequen
e of ve
tor bundles:0! V�P ! T �P j! ��V ! 0; (2)where the se
ond arrow is the natural inje
tion.Theorem 1. The existen
e of a �-
onne
tion on � is equivalent to the existen
e of asplitting H of the short exa
t sequen
e (2); we have �1 Æ H = h.Proof Let h : ��V ! TP be given and satisfy the requirements of a �-
onne
tion on �.To de�ne the `horizontal lift' of a point (p; v) 2 ��V , as a point in T �P , it suÆ
es to �xthe proje
tions of (p; v)H under �1 and �2 in a 
onsistent way. We put:�1�(p; v)H� := h(p; v) and �2�(p; v)H� := v: (3)4



This determines e�e
tively an element of T �P sin
e �Æ�2((p; v)H) = �(v) = �ÆpV ((p; v)) =T� Æ h((p; v)) = T� Æ �1((p; v)H). The horizontal lift is obviously a splitting of (2), sin
eby 
onstru
tion j �(p; v)H� = (�P (h(p; v)); v) = (p; v).Conversely, if a splitting H of (2) is given, we de�ne h : ��V ! TP by h(p; v) = �1((p; v)H).It satis�es the required properties, i.e. h is a linear bundle map and we haveT� Æ h = T� Æ �1 Æ H = � Æ �2 Æ H = � Æ pV Æ j Æ H = � Æ pV ;whi
h 
on
ludes the proof.Denoting the subbundle of T �P whi
h is 
omplementary to V�P by H�P , it follows thatT �P = H�P � V�P: (4)An equivalent way of expressing this de
omposition (analogous to what is familiar for the
ase of a 
lassi
al Ehresmann 
onne
tion) is the following: there exist two 
omplementaryproje
tion operators PH and PV on T �P , i.e. we have PH + PV = id, andPH2 = PH; PV 2 = PV ; PH Æ PV = PV Æ PH = 0:As usual, (2) leads to an asso
iated short exa
t sequen
e for the set of se
tions of thesespa
es, regarded as bundles over P :0! V er(�1)! Se
(�1) j! Se
(p)! 0; (5)where V er(�1) denotes the set of verti
al se
tions of �1. The same symbol j is used forthis se
ond interpretation, so that for Z 2 Se
(�1) and p 2 P : j(Z)(p) = j(Z(p)). Viathe 
omposition with �, se
tions of � 
an be regarded as maps from P to V and, as su
h,are (basi
) se
tions of p : ��V ! P . We will use the notations PV and PH also when weregard these proje
tors as a
ting on se
tions of �1, rather than points in T �P .Apart from the already mentioned appli
ations to Lie algebroids [8, 21℄, it has re
entlybeen shown that �-
onne
tions 
an be an important tool in, for example, nonholonomi
me
hani
s [12℄, sub-Riemannian geometry [13℄, Poisson geometry [9℄ and in 
ontrol theory[14℄.The 
ase of linear �-
onne
tionsAssume now that � : P ! M now is a ve
tor bundle. Linearity of a 
onne
tion is
hara
terised in [1℄ by an invarian
e property of the map h under the 
ow of the dilation�eld on P . A more dire
t 
hara
terisation of linearity is the following. Let �� : P�M P !P denote the linear 
ombination map: ��(p1; p2) = p1+ �p2. A �-
onne
tion on � is saidto be linear if the map h : ��V ! TP has the propertyh(p1 + �p2; v) = T(p1;p2)�� �h(p1; v); h(p2; v)�; (6)for all (p1; p2) 2 P �M P , � 2 IR and v 2 V .5



As is shown in [1℄, any operator r : Se
(�) � Se
(�) ! Se
(�) whi
h is IR-bilinear andhas the propertiesrf�� = fr��; r�(f�) = fr�� + �(�)(f)�; (7)for all � 2 Se
(�), � 2 Se
(�) and f 2 C1(M), de�nes a unique linear �-
onne
tion on�. As usual, the linearity of the 
ovariant derivative operator r in its �rst argument,implies that the value of r�� at a point m 2 M , only depends on the value � at m andthus gives rise to an operator rv : Se
(�)! P�(v), for ea
h v 2 V , determined byrv� := r��(m); with �(m) = v:In order to 
ome to a 
ovariant derivative along 
urves and a rule of parallel transport,we make the following preliminary observation. Going ba
k to the overall diagram, wesee two ways to go from T �P to TP , namely the dire
t map �1 and h Æ j. By de�nition,the image for both maps proje
ts under T� onto the same �(v), so that the di�eren
e isa verti
al ve
tor at some point p 2 P whi
h, when P is a ve
tor bundle, 
an be identi�edwith an element of P�(p). With these identi�
ations understood, we eventually get a mapfrom T �P to P whi
h is 
alled the 
onne
tion map in [1℄ (by analogy with the 
onne
tionmap in [23℄). Let us summarise this by writing simplyK := �1 � h Æ j : T �P ! P (8)(read: K is �1 � h Æ j, when regarded as map from T �P into P ). The following sideobservation is worth being made here. In the alternative 
on
ept of �-
onne
tions, as es-tablished by Theorem 1, it is 
lear that the 
onne
tion map K is nothing but the verti
alproje
tor PV , with a similar identi�
ation being understood (to be pre
ise: the isomor-phism between V�pP and VpP , followed by the identi�
ation with P�(p) again). In fa
t thisillustrates that the alternative view is superior to the one expressed by De�nition 2, inthe following sense. On
e the importan
e of the spa
e T �P is re
ognised, one 
an (in thepresent 
ase that P is a ve
tor bundle) de�ne a verti
al lift operation from P�(p) to V�pPin the usual way (see the next se
tion for more details); it extends to se
tions of bundlesover P , i.e. yields a verti
al lift from se
tions of ��P ! P to Se
(�1). So, it is a matterof developing �rst these tangent bundle like features of the �-prolongation, after whi
h alltools are available to dis
uss �-
onne
tions without ever needing the map h. This is themain merit of the approa
h taken in [21℄ and [19℄. For the sake of further unifying bothpi
tures, however, we will 
ontinue here to take advantage of the insight whi
h is beingo�ered by our overall diagram.Let now 
 : I ! V be a �-admissible 
urve, whi
h means that _
M = �Æ
, where 
M = � Æ
is the proje
ted 
urve in M . Consider further a 
urve  : I ! P in P whi
h proje
ts on
M , i.e. su
h that  M := � Æ  = 
M . It follows that T� Æ _ = � Æ 
, so that su
h a  a
tually gives rise to a 
urve in T �P : t 7! (
(t); _ (t)). As a result, making use of the mapK, we 
an obtain a new 
urve in P , whi
h is denoted by r
 :r
 (t) := K((
(t); _ (t))) = _ (t)� h(( (t); 
(t))); (9)6



(the identi�
ation of P with V P being understood). If � is a se
tion of � and 
 is anadmissible 
urve, then denoting by  the restri
tion of � to that 
urve,  (t) = �(
M(t)),one 
an show that r
 (t) = r
(t)�: (10)As 
an be readily seen from (9), given an admissible 
urve 
 and a point p 2 P , �nding a
urve  in P whi
h starts at p and makes r
 = 0 is a well-posed initial value problemfor a �rst-order ordinary di�erential equation, and hen
e gives rise to a unique solution.The solution is 
alled the horizontal lift of 
 through p, denoted by 
h. Hen
e, we haver

h = 0; (11)and points in the image of 
h are said to be obtained from p by parallel transport along 
.It is of some interest to rephrase what we have said at the beginning of the dis
ussion on�-admissible 
urves: if 
 : I ! V is �-admissible, then for every  : I ! P whi
h proje
tsonto 
M , the 
urve t 7! (
(t); _ (t)) in fa
t is a �1-admissible 
urve in T �P . This idea 
anbe pushed a bit further. Indeed, when thinking of 
urves in the 
ontext of our alternativeview on �-
onne
tions, it is rather the following 
onstru
tion whi
h looks like the naturalthing to do.Consider a 
urve 
 in ��V , i.e. 
 is of the form 
 : t 7! ( (t); 
(t)), with 
 : I ! Vand  : I ! P , whereby the only assumption at the start is that  M = 
M . Take itshorizontal lift 
H : I ! T �P whi
h is de�ned, a

ording to (3), byt 7! 
H(t) = �
(t); h( (t); 
(t))�: (12)Then, we 
ould de�ne  to be 
h, the horizontal lift of 
, if 
H is a �1-admissible 
urvein T �P . Indeed, it is 
lear by 
onstru
tion that �1 Æ 
H =  , so that �1-admissibilityrequires that _ = �1 Æ 
H = h( ; 
). Sin
e  M = 
M , this implies in parti
ular that_
M = T� Æ _ = T�(h( ; 
)) = � Æ 
. So, this alternative de�nition implies that 
 willne
essarily have to be �-admissible. Furthermore, from 
omparing what �1-admissibilitymeans with (9) and (11), it is 
lear that we are talking then about the same 
on
ept ofhorizontal lift 
h.Note, by the way, that this other way of de�ning 
h by no means relies on the assumptionof linearity of the �-
onne
tion. So, it is perfe
tly possible to talk about parallel transportalso in the 
ontext of non-linear 
onne
tions. The di�eren
e then is, of 
ourse, that if welook at points of P in the image of 
urves 
h with di�erent initial values in Pm, and this asa map between �bres of P , there need not be any spe
ial feature to talk about (
omparedto the �bre-wise linear a
tion of this map we have in the 
ase of a linear 
onne
tion);also, if 
 has a given interval as domain, 
h need not be de�ned over the same domain.Needless to say, one 
an introdu
e su
h a generalisation also within the more traditionalapproa
h des
ribed �rst. Indeed, the map K makes sense for arbitrary �-
onne
tions andas a result one 
an introdu
e an operation r�� also in this more general situation. Thisthen still depends on the se
tion � of V in a C1(M)-linear way, but the fa
t that su
h ar is not very 
ommonly used 
omes from the failure of having a derivation property withrespe
t to the module stru
ture of Se
(�). 7



3 The 
ase of an aÆne bundle and its bidualSuppose that � : E !M is an aÆne bundle, modelled on a ve
tor bundle � : E !M . Forany m 2M , Eym := A�(Em; IR) is the set of all aÆne fun
tions on Em and Ey = Sm2M Eymis a ve
tor bundle overM , 
alled the extended dual of E. In turn, the dual of �y : Ey !M ,denoted by ~� : ~E := (Ey)� ! M , is a ve
tor bundle into whi
h both E and E 
an bemapped via 
anoni
al inje
tions, denoted respe
tively by � and ���. The map � is aÆne andhas ��� as its asso
iated linear map. With referen
e to the previous se
tion, the situationwe will fo
us on now is the 
ase where � : P ! M is the aÆne bundle � : E ! M ,whereas � : V ! M still is an arbitrary ve
tor bundle. Our main obje
tive is to de�neand 
hara
terise �-
onne
tions on � whi
h are aÆne. For that purpose, we will need theoverall diagram of the previous se
tion also with the ve
tor bundle ~� : ~E !M in the roleof � : P !M .De�nition 3. A �-
onne
tion h on the aÆne bundle � : E ! M is said to be aÆne, ifthere exists a linear �-
onne
tion ~h : ~��V ! T ~E on ~� : ~E !M su
h that,~h Æ � = T � Æ h:Both sides in the above 
ommutative s
heme of 
ourse are regarded as maps from ��Vto T ~E, whi
h means that the � on the left stands for the obvious extension � : ��V !~��V; (e; v) 7! (�(e); v).Probably the best way to see what this 
on
ept means is to look at a 
oordinate represen-tation. Let xi denote 
oordinates onM and y� �bre 
oordinates on E with respe
t to somelo
al frame (e0; feee�g) for Se
(�). The indu
ed basis for Se
(�y) is denoted by (e0; e�) andde�ned as follows: for ea
h a 2 Se
(�) with lo
al representation a(x) = e0(x)+a�(x)eee�(x),e0(a)(x) = 1; 8x; e�(a)(x) = a�(x):In turn, we denote the dual basis for Se
(~�) by (e0; e�) (so that in fa
t �(e0) = e0 and���(eee�) = e�). Indu
ed 
oordinates on ~E are denoted by (xi; yA) = (xi; y0; y�). For the
oordinate representation of a point v 2 V , we will typi
ally write (xi; va). The an
hormap � : V ! TM then takes the form � : (xi; va) 7! �ia(x)va ��xi .Following [1℄, we know that the map h : ��V ! TE lo
ally is of the form:h(xi; y�; va) = (xi; y�; �ia(x)va;���a (x; y)va); (13)whereby we have adopted a di�erent sign 
onvention 
on
erning the 
onne
tion 
oeÆ
ients��a . Similarly, ~h : ~��V ! T ~E, whi
h is further assumed to be linear, takes the form~h(xi; yA; va) = (xi; yA; �ia(x)va;�~�AaB(x)yBva): (14)We have ~h(�(e); v) = �xi; 1; y�; �ia(x)va;�(~�Aa0(x) + ~�Aa�(x)y�)va)�;whereas T i Æ h(e; v) = �xi; 1; y�; �ia(x)va; 0;���a (x; y)va�:8



It follows that ~�0aB = 0 and, more importantly, that the 
onne
tion 
oeÆ
ients of theaÆne �-
onne
tion h are of the form (omitting tildes)��a (x; y) = ��a0(x) + ��a�(x)y�: (15)Noti
e that � : E ! M is a (proper) ve
tor subbundle of ~�. With respe
t to thegiven an
hor map, it of 
ourse also has its �-prolongation T �E. Taking the restri
tionof the linear �-
onne
tion ~h to ��V , we get a linear �-
onne
tion h on �, meaning that~h Æ ��� = T��� Æ �h. The above 
oordinate expressions make this very obvious. Indeed, if(xi; w�) are the 
oordinates of an element www 2 E, we haveh(xi; w�; va) = ~h(xi; 0; w�; va)= (xi; 0; w�; �iava; 0;���a�w�va) as element of T ~E= (xi; w�; �iava;���a�w�va) as element of TE:Note further that we 
an formally write for the 
oordinate expression of h(e +www; v):h(xi; y� + w�; va) = �xi; y� + w�; �iava;�(��a0 + ��a�y�)va � ��a�w�va�= h(xi; y�; va) + h(xi; w�; va):But this is more than just a formal way of writing: the following intrinsi
 
onstru
tionwhi
h generalises (6) is ba
king it. Let � denote the a
tion of E on E whi
h de�nes theaÆne stru
ture, i.e. �(e;www) = e+www for (e;www) 2 E�M E. Then the above formal relationexpresses that we have: h(e +www; v) = T(e;www)� �h(e; v); h(www; v)� (16)In fa
t, by reading the above 
oordinate 
onsiderations ba
kwards, roughly speaking, one
an see that (16), for a given linear h, will imply that the 
onne
tion 
oeÆ
ients of the�-
onne
tion h have to be of the form (15). In other words, the following is an equivalentde�nition of aÆneness of h.De�nition 4. A �-
onne
tion h on the aÆne bundle � : E ! M is aÆne, if thereexists a linear �-
onne
tion h : ��V ! TE on � : E ! M , su
h that (16) holds for all(e;www) 2 E �M E.One 
an then 
onstru
t an extension ~h : ~��V ! T ~E, whi
h 
oin
ides with h whenrestri
ted to ��V , by requiring that ~h be linear and satisfy ~h Æ � = T � Æ h.As shown in Theorem 1, a �-
onne
tion on � is equivalent to a de
omposition of thebundle T �E, originating from a horizontal lift operation from ��V to T �E (or se
tionsthereof). In the representation (1) of points of T �E as 
ouples of an element of V and asuitable tangent ve
tor of E, the horizontal lift is given by(xi; y�; va)H = �(xi; va); va��ia ��xi � ��a ��y��� :9



At this stage, it is of interest to introdu
e a lo
al basis for se
tions of the �-prolongation�1 : T �E ! E. A natural 
hoi
e, adapted to the 
hoi
e of a lo
al frame in Se
(�), thenatural basis of X (E) and the 
hoi
e of a lo
al basis of se
tions vvva of � , is determined asfollows: for ea
h e 2 E, if x are the 
oordinates of �(e) 2M ,Xa(e) = �vvva(x); �ia(x) ��xi ����e� ; V�(e) = �0; ��y� ����e� : (17)Coordinates of a point (v;Xe) 2 T �E are of the form: (xi; y�; va; X�). A general se
tionof the �-prolongation 
an be represented lo
ally in the form:Z = �a(x; y)Xa + Z�(x; y)V�: (18)Its proje
tion onto Se
(p) (p : ��V ! E) is � = �avvva. Now, on
e we have a given �-
onne
tion on � (aÆne or not), we are led to introdu
e a lo
al basis for the horizontalse
tions of �1, whi
h is given byHa = PH(Xa) = Xa � ��a (x; y)V�: (19)A better representation of the se
tion (18), adapted to the given 
onne
tion, then be
omes:Z = ��Ha + (Z� + ��b �b)V�: (20)Let us repeat that, as a result of Theorem 1 and De�nition 4, the existen
e of an aÆne�-
onne
tion on � is equivalent to the existen
e of a horizontal lift from Se
(p) to Se
(�1),giving rise to a dire
t sum de
omposition (4), and whi
h is su
h that, in 
oordinates, the
onne
tion 
oeÆ
ients (19) are of the form (15).We next turn our attention to the 
on
ept of 
onne
tion map, and want to see for theparti
ular 
ase of an aÆne �-
onne
tion, to what extent it gives rise also to a 
ovariantderivative operator and a notion of parallel transport.When 
onsidering the �-prolongation of di�erent bundles P , it is 
onvenient to indi
atethe dependen
e on P also in the map �1. Given a �-
onne
tion h on the aÆne bundle� : E ! M , the map �1E � h Æ j : T �E ! TE gives rise (as before) to a verti
al tangentve
tor to E, at the point e say. As su
h, this ve
tor 
an be identi�ed with an element ofE, the ve
tor bundle on whi
h E is modelled, at the point �(e). With the same notationalsimpli�
ation as before, we thus get a 
onne
tion mapK := �1E � h Æ j : T �E ! E: (21)K of 
ourse also extends to a map from Se
(�1) to Se
(�). It follows dire
tly from thede�nition that we have K(Ha) = 0; K(V�) = eee�: (22)We wish to 
ome ba
k here in some more detail to the relation between the map K andthe verti
al proje
tor PV = id� PH, 
oming from the dire
t sum de
omposition of T �E.In the present 
ase of an aÆne bundle � : E !M over a ve
tor bundle � : E !M , there10



is a natural verti
al lift operation from Em to TeE for ea
h e 2 Em. It is determined by:www 7! wVe , where for ea
h f 2 C1(E),wVe (f) = ddtf(e+ twww)����t=0 :This in turn extends to an operator V : ��E ! T �E, determined by (e;www)V = (0; wVe ),whi
h de�nes an isomorphism between ��E and ImPV . The short exa
t sequen
e (2) ofwhi
h a �-
onne
tion is a splitting, 
an thus be repla
ed by0! ��E V! T �E j! ��V ! 0: (23)Within this pi
ture of �-
onne
tions, the 
onne
tion map K thus is essentially the 
o-splitting of the splitting H, that is to say, we have K Æ V = id��E and V ÆK+H Æj = idT �E.The map K be
omes more interesting when the 
onne
tion is aÆne. Indeed, denotingthe proje
tion of T � ~E onto ~��V by ~j, it then follows from De�nition 4 that we also havea 
onne
tion map ~K := �1~E � ~h Æ ~j : T � ~E ! ~E: (24)The map T � : TE ! T ~E extends to a map from T �E to T � ~E in the following obvious way:T � : (v;Xe) 7! (v; T �(Xe)). Indeed, we have T ~�(T �(Xe)) = T (~�Æi)(Xe) = T�(Xe) = �(v),as required.Proposition 1. For an aÆne �-
onne
tion on � we have��� ÆK = ~K Æ T �: (25)Proof In 
oordinates, K and ~K are given byK : (xi; va; y�; Z�) 7! (Z� + ��ava)eee�(x)~K : (xi; va; yA; ZA) 7! Z0e0(x) + (Z� + ��aByBva) e�(x):Hen
e, ~K Æ T �(xi; va; y�; Z�) = ~K(xi; va; 1; y�; 0; Z�)= �Z� + (��a0 + ��a�y�)va� e�(x);from whi
h the result follows in view of (15).Noti
e that h also has a 
orresponding 
onne
tion map K : T �E ! E, whi
h obviously
oin
ides with ~KjT �E, so that we also have��� ÆK = ~K Æ T���: (26)Let now � be a se
tion of � and � a se
tion of �. If we apply the tangent map T� : TM !TE to �(�(m)), it is obvious by 
onstru
tion that ��(m); T�(�(�(m)))� will be an elementof T �E. The 
onne
tion map K maps this into a point of Ejm. Hen
e, the 
ovariant11



derivative operator of interest in this 
ontext is the map r : Se
(�)� Se
(�)! Se
(�),de�ned by r��(m) = K��(m); T�(�(�(m)))�: (27)To dis
over the properties whi
h uniquely 
hara
terise the 
ovariant derivative asso
iatedto an aÆne �-
onne
tion, we merely have to exploit the results of Proposition 2. In doingso, we will of 
ourse rely on the known properties (see [1℄) of the 
ovariant derivative ~r,asso
iated to the linear �-
onne
tion ~h. We observe that r is manifestly IR-linear in its�rst argument and now further look at its behaviour with respe
t to the C1(M)-modulestru
ture on Se
(�). From (25), it follows that for f 2 C1(M),����(rf��)(m)� = ����K�f�(m); T�(�(f�(m)))��= ~K�f�(m); T (��)(�(f�(m)))�= ~rf�(��)(m) = f(m) ~r�(��)(m)= f(m) ~K��(m); T � Æ T�(�(�(m)))�= f(m) ����K��(m); T�(�(�(m)))��= ����f(m)r��(m)�;from whi
h it follows that rf�� = f r��: (28)For the behaviour in the se
ond argument, we repla
e � by �+ f���, with f 2 C1(M) and��� 2 Se
(�). Denoting the linear 
ovariant derivative 
oming from the restri
tion K byr, we 
ompute in the same way, using (25) and (26):����r�(� + f���)(m)� = ����K��(m); T (� + f���)(�(�(m)))��= ~K��(m); T (�� + f������)(�(�(m)))� = ~r�(�� + f������)(m)= ~r���(m) + f(m)� ~r��������(m) + �(�)(f)(m) ������(m)= ~K��(m); T � Æ T�(�(�(m)))�+ f(m) ~K��(m); T��� Æ T���(�(�(m)))�+ �(�)(f)(m) ������(m) = ����K��(m); T�(�(�(m)))��+ f(m) ����K��(m); T���(�(�(m))�� + �(�)(f)(m) ������(m)= ����r��(m) + f(m)r����(m) + �(�)(f)(m)���(m)�:This expresses that we have the property:r�(� + f���) = r�� + f r���� + �(�)(f)���: (29)In 
oordinates we have, for � = �a(x)vvva and � = e0 + ��(x)eee�:r�� = �����xi �ia(x) + ��a0(x) + ��a�(x)��(x)� �a(x)eee�: (30)12



As one 
an see, the linearity in � makes that the value of r�� at a point m only dependsof the value of � at m, so that the usual extension works, whereby for any �xed v 2 V , rvis a map from Se
(�) to Em, de�ned by rv� = r��(m), for any � su
h that �(m) = v.Theorem 2. An aÆne �-
onne
tion h on � is uniquely 
hara
terised by the existen
e ofan operator r : Se
(�) � Se
(�) ! Se
(�) and an asso
iated r : Se
(�) � Se
(�) !Se
(�), su
h that r is IR-linear in its �rst argument, r satis�es the requirements for thedetermination of a linear �-
onne
tion on �, and the properties (28) and (29) hold true.Proof Given an aÆne �-
onne
tion h on �, the existen
e of operators r and r with therequired properties has been demonstrated above. Assume 
onversely that su
h operatorsare given. Then, there exists an extension ~r : Se
(�)�Se
(~�)! Se
(~�), whi
h is de�nedas follows. Every ~� 2 Se
(~�) lo
ally is either of the form ~� = f �(�) for some � 2 Se
(�)or of the form ~� = ���(���) for some ��� 2 Se
(�). In the �rst 
ase, we put~r�~� = f ���(r��) + �(�)(f)�(�);in the se
ond 
ase, we put ~r�~� = ���(r����):We further impose ~r to be IR-linear in its se
ond argument. IR-linearity as well as C1(M)-linearity in the �rst argument trivially follows from the 
onstru
tion. It is further easyto verify that for g 2 C1(M): ~r�(g~�) = g ~r�~� + �(�)(g) ~�. Indeed, in the 
ase that~� = f �(�), for example, we have~r�(g~�) = gf ���(r��) + �f �(�)(g) + g �(�)(f)��(�)= g ~r�~� + �(�)(g) ~�;and likewise for the other 
ase. Following [1℄ we thus 
on
lude that ~r uniquely determinesa linear �-
onne
tion on ~� by the following 
onstru
tion: for ea
h (~e; v) 2 ~��V , take any~ 2 Se
(~�) for whi
h ~ (�(v)) = ~e, and put~h(~e; v) = T ~ (�(v))� ( ~rv ~ )V~e ;where the last term stands for the element ~rv ~ (�(v)) 2 ~E�(v), verti
ally lifted to a ve
tortangent to the �bre of ~E at ~e.Likewise, we de�ne a �bre linear map h : ��V ! TE byh(e; v) = T (�(v))� (rv )Ve ;whi
h 
an be seen to be independent of the 
hoi
e of a se
tion  for whi
h  (�(v)) = e.It is obvious that h satis�es the requirements of a �-
onne
tion on �. It remains to showthat ~h Æ � = T � Æ h. We have~h(�(e); v) = T (� )(�(v))� � ~rv(� )�V�(e)= T (� )(�(v))� (���rv )V�(e)= T � Æ T (�(v))� T ��(rv )Ve �= T �(h(e; v));13



whi
h 
ompletes the proof.Another interesting question one 
an raise in this 
ontext is about the 
ir
umstan
esunder whi
h a linear �-
onne
tion ~h on ~� is asso
iated to an aÆne �-
onne
tion h on � inthe sense of De�nition 4. A simple look at 
oordinate expressions leads to the followingresult with a global meaning.Proposition 2. A linear �-
onne
tion on ~� is asso
iated to an aÆne �-
onne
tion on �if and only if e0 is parallel.Proof For the 
ovariant derivative operator ~r asso
iated to a linear ~h, we have for thelo
al basis of Se
(~�): ~r�eA = �a~�BaA eB;and by duality, for the basis of Se
(�y):~r�eA = ��a~�AaB eB:It follows that ~r�e0 = 0 , ~�0aB = 0. The restri
tion of ~h to �(E) then de�nes an aÆne�-
onne
tion on �.A few words are in order, �nally, about the 
on
ept of parallel transport in this 
ase.Following the 
omments about �1-admissibility of a 
urve 
H made at the end of theprevious se
tion, we know that a 
urve  in E, with 
oordinate representation t 7!(xi(t);  �(t)) will be the horizontal lift 
h of a �-admissible 
urve 
 : t 7! (xi(t); 
a(t)),provided that (
f. the 
oordinate expressions (13) and (15)) xi(t) and  �(t) satisfy thedi�erential equations: _xi = �ia(x)
a(t); (31)_ � = ���a0(x)
a(t)� ��a�(x)
a(t) �: (32)In the more standard approa
h to the de�nition of 
h, if 
 is a �-admissible 
urve in V and a 
urve in E whi
h proje
ts onto 
M , we 
an de�ne a new 
urve r
 by a formula whi
his formally identi
al to (9). Note, however, that r
 is a 
urve in E now. Nevertheless, itmakes perfe
t sense to say that  in E is 
h if the asso
iated 
urve r
 in E is zero for allt. It 
an be seen from the 
oordinate expression (32) that for di�erent initial values in a�xed �bre of E, we get an aÆne a
tion between the aÆne �bres of E, whose 
orrespondinglinear part 
omes from the parallel transport rule asso
iated to the linear 
onne
tion hon E. This is in agreement with the property, 
oming from (29), thatr�(� + ���) = r�� +r����: (33)4 Dis
ussionWe have fo
ussed our main e�orts on understanding in detail what aÆneness of a �-
onne
tion means. This may seem like a purely mathemati
al issue, but we will arguenow why su
h a 
on
ept has a lot of relevan
e also for physi
al appli
ations. Perhaps the14



simplest example of the natural appearan
e of an aÆne �-
onne
tion (though for a trivial�), is the following. Take E to be the �rst-jet bundle J1M of a manifoldM whi
h is �bredover IR, and V = TM with � = idTM . Then T �E = TE and we are in the situation whi
hhas been extensively studied in [7℄. It is well-known that every se
ond-order di�erentialequation �eld (Sode) on J1M , say� = ��t + vi ��xi + f i(t; x; v) ��vi ; (34)de�nes a non-linear 
onne
tion whose 
onne
tion 
oeÆ
ients are�ij = �12 �f i�vj �i0 = �f i + 12 �f i�vj vj: (35)To say that the for
es f i are quadrati
 in the velo
ities, i.e. are of the formf i = f i0(t; x) + f ij(t; x)vj + f ijk(t; x)vjvk; (36)is an invariant 
ondition and 
learly gives rise then to a 
onne
tion of aÆne type, asdis
ussed in the previous se
tion. Examples of su
h systems in 
lassi
al me
hani
s areabundant. In fa
t, every holonomi
 Lagrangian system, for whi
h the transformationformulas to generalised 
oordinates are time-dependent and non-linear, falls into this
ategory, with non-
onstant 
oeÆ
ients in the quadrati
 expressions (36). But thereis more: even when the Sode is more general (and may represent an arbitrary time-dependent Newtonian system for example), there is an aÆne 
onne
tion around. Indeed,it is well known (see e.g. [7℄) that the Sode-
onne
tion (35) gives rise to a linear 
onne
tionon the pullba
k bundle ~� : �01�TM ! J1M , where �01 denotes the proje
tion J1M !M .That is to say, there is a 
orresponding 
ovariant derivative operator ~r : X (J1M) �Se
(~�) ! Se
(~�). The notations have been 
hosen here to relate to those of Se
tion 3,whi
h means for example that the tangent bundle TJ1M ! J1M here plays the role ofthe arbitrary ve
tor bundle V !M in the general set-up of that se
tion (while the an
hormap still is the identity). The point now is that the ve
tor bundle ~� : �01�TM ! J1Mhas �01�J1M ! J1M as an aÆne subbundle and we have ~rXdt = 0, for all ve
tor �eldsX on J1M . In a

ordan
e with Proposition 2, therefore, we know that there is an aÆne
onne
tion on �01�J1M ! J1M , 
hara
terised by a 
ovariant derivative operator r whi
hhas the properties required by Theorem 2. This very general o

urren
e of an aÆne
onne
tion may be seen perhaps as having a rather hidden existen
e, but one should notforget that ~r and r have been the essential tools for 
hara
terising qualitative featuresof general Sodes, su
h as linearisability (see [7℄) or separability [2℄.Admittedly, this full reservoir of examples of physi
al systems where an aÆne �-
onne
tionmakes its appearan
e, 
orresponds to the 
ase where � is trivial. However, sin
e Wein-stein's fundamental arti
le [24℄, one knows of many interesting physi
al problems wherea non-trivial an
hor map o

urs, namely in the 
ontext where one has the additionalstru
ture of a Lie algebroid. For this reason, we intend to study in a forth
oming papera quite general situation of aÆne �-
onne
tions, where the same kind of extra stru
tureis available. To that end we will take � : E ! M to be a general aÆne bundle and letthe ve
tor bundle � : V ! M be the bidual ~� : ~E ! M . In addition we will assume15



that E 
omes equipped with an aÆne Lie algebroid stru
ture (as studied for example in[22, 20℄). This implies that the an
hor map � : V ! TM then also be
omes the an
hor ofa (ve
tor) Lie algebroid. As shown in [20℄, the prolonged bundle T �E inherits a Lie alge-broid stru
ture; moreover there is a 
anoni
al endomorphism on se
tions of T �E, whi
h isexa
tly the analogue of the verti
al endomorphism on a �rst-jet bundle. Not surprisinglytherefore, it is possible to de�ne dynami
al systems of Lagrangian type on su
h an aÆneLie algebroid. Mu
h of this has been explored already in the above 
ited papers, but thetheory of aÆne 
onne
tions and so-
alled pseudo-Sodes in that 
ontext still needs to bedeveloped.A
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