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For every (ap)pen C CN there is f € C(R) such that f(P)(0) = a, for all
p eN.

@ Let ¥ be the Riemann surface of the logarithm. For v > 0 we set

S,={zeX||Argz| <%7}

Theorem (Ritt, 1916)

For every (ap)pen C CN there is f € O(S,) such that f(z) ~ > o ap2P
asz—01inS,, ie

limsup |z7P(f(z) — Zaqzq | < o0, Vp € Zy.
z—0,z€Sy
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(fc)
(de

)
(mg)
)
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(snq)

M}% S MpflMp+1, p < Z+.
M,s1 < CHPM,, p € N.
Mpyq < CHPYIM,M,, p.q € N.

oo

@ The Gevrey sequences p!*, a > 0, satisfy all the above conditions.

@ The g-Gevrey sequences qu, g > 1, satisfy all the above conditions
except for (mg).
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@ The g-Gevrey sequences qp2 satisfy (52).



Denjoy-Carleman classes and the Borel map
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) [P (x)]
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o We define A(M) (ATM}) as the space consisting of all (cp)pen € CN
such that for all h > 0 (for some h > 0)

< 00

@ The Borel map
BM . g[M](R) N /\[M], Fis (f(P)(O))pGN
is well-defined and continuous.
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The Borel problem in EIM(RR)

Theorem (Petzsche, 1988)

Let M satisfy (Ic) and (nq). Then,

e FSAE:
(i) BM) . eMI(R) — AM) js surjective.
(i) BM) . MI(R) — AM) admits a continuous linear right inverse.
(iii) M satisfies (snq).

o BIM} . gIMH(R) — AM} s surjective iff M satisfies (snq).

o BIM} . eiMN(R) — AIM} admits a continuous linear right inverse iff
M satisfies (snq) and (/32).

@ Elementary methods: Ingenious use of Taylor's theorem and ideas
from Hormander's real analysis proof of the Denjoy-Carleman
theorem.
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Uniform ultraholomorphic classes

o Let v > 0. We define AM)(S,) (AIM}(S,)) as the space consisting
of all f € O(S,) such that for all h > 0 (for some h > 0)

LG
up su 00
peN zes, hPp!Mp
o For f € AIMI(S.) we may define
fP0):= lim fP(z)eC, peN.
z—0,z€S5
Then, for all h > 0 (for some h > 0)
(1) - $ 0O o
sup sup z z) — z7)| <0
peN zes, hPMp o q
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The asymptotic Borel map

@ The asymptotic Borel map
B AM(S,) = AL £ s (FP)(0)) pens

is well-defined and continuous.

Main question

Characterize the surjectivity and the existence of a continuous linear right
inverse of B[VM] in terms of M and ~.
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The Borel-Ritt problem in AP"*}(S))

Theorem (Ramis, 1978)
Bi”!“}  APH(S)) — NPT s surjective iff v < a.

@ Explicit construction using a truncated Laplace transform with
respect to the kernel e~ /7Y
o Let v < . Then,

C*lefn*1/|z|1/o‘ < |efl/zl/"‘| < Cefm/|z|1/017 zc S/Y'
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The growth index (M)

@ For 3 > 0 we introduce the following condition on M:

=1 Cp
(1) D —75 < ' P € Ly
: B 1/B
2 il =

o We define

Y(M) := sup{S > 0| M satisfies (y3)}.

o If M satisfies (Ic), then M satisfies (snq) if and only if v(M) > 0.
2
o v(p!%) = aand v(¢”") = co.
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Let M satisfy (Ic), (mg) and (snq). If 0 < v < (M), then
BLM] c AMI(S)) — AIML s surjective.

@ Roumieu case: (1) Reduction to Whitney type extension result for
ultradifferentiable functions (2) Construction of F € O(S,) such that

Clemwmt e < |F(2)| < Cemomls/l) e s

@ Beurling case: Reduction to Roumieu case.

@ Lastra, Malek, Sanz (2012): Refinement of Ramis’ method of
truncated Laplace transform (Roumieu case).

@ Both methods do not provide continuous linear right inverses. Is the
condition (mg) essential?
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v < n<~vy(M). Then,

° BSYM) t AM(S.) — ANM) admits a continuous linear right inverse.

o If M satisfies (52), BiM} : AIMY(S) — AIM} admits a continuous
linear right inverse.

@ Reduction to the Borel problem in Denjoy-Carleman classes.

@ This result is far from optimal: What if v(M) < 1?7 What about
v e N?
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° Bi{M} : AIMY(S)) — MM} admits a continuous linear right inverse iff
v(M) > 1 and M satisfies (32).

@ The Borel Ritt-problem for AM(S;) is equivalent to the Stieltjes
moment problem in Gelfand-Shilov spaces of type Sju(0, o).
Reduction of the latter problem to the Borel problem in
Denjoy-Carleman classes.
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Theorem (Jiménez-Garrido, Sanz, Schindl, 2020)

Let M satisfy (Ic), (dc) and (snq). Let 0 <y < y(M). Then,
° BSM) : AM(S) — AM) admits a continuous linear right inverse.
° BéM} c AIMY(S)) — MM} s surjective.

e If M satisfies (32), BL{YM} : AIMY(S) — AMY admits a continuous
linear right inverse.

@ Reduction to the case v = 1.
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The Borel-Ritt problem in AMI(S.): Necessary conditions

Theorem (Jiménez-Garrido, Sanz, Schindl, 2018)

Let M satisfy (Ic), (mg) and (snq). If0 <~ € Q and
[M] - AMI(S) — AIM s surjective, then v < y(M).

@ Schmets and Valdivia (2000): v € N. Reduction to the Borel problem
in Denjoy-Carleman classes.

@ Refinement of the method of Schmets and Valdivia.

Open problem
Show that

B[VM] : A[M](S’y) — A is surjective = v < v(M)

without assuming v € Q.
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o Let v > 0. We define

AMI(S) = () AMI(S,).

A<y

16 /20



Non-uniform ultraholomorphic classes and the asymptotic

Borel map

o Let v > 0. We define

AMI(S) = () AMI(S,).
ALy

@ The asymptotic Borel map
[(M] . ﬂ[M](SW) S AMLF (f(P)(O))peN

is well-defined and continuous.

16 /20



Non-uniform ultraholomorphic classes and the asymptotic

Borel map

o Let v > 0. We define

AMI(S) = () AMI(S,).
ALy

@ The asymptotic Borel map
BIML: M5y — AMLf s (F(P)(0)) pery

is well-defined and continuous.

Theorem (Jiménez-Garrido, Sanz, Schindl, 2018)

Let M satisfy (Ic), (mg) and (snq). Let v > 0. lfBLM]  AMI(S) — AIMI
is surjective, then v < vy(M).
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The Borel-Ritt problem in ley{p!a}(Sq)

Theorem (Ramis, 1978)
gl{yp!a} : APY(S,) = AP} s surjective iff v < .
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The Borel-Ritt problem in A’{p!a}(%)

Theorem (Ramis, 1978)
gl{yp!a} : APY(S,) = AP} s surjective iff v < .

@ Explicit construction using a truncated Laplace transform with
l/a
respect to the kernel e~ /2%
@ For all v < « there are C, k > 0 such that

C—le—n*1/|z|1/°¢ < |e—1/zl/0‘| < Ce—/i/|z|1/0t’ zc S'y~

17/20



The Borel-Ritt problem in ./Zl/(M)(SW)
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The Borel-Ritt problem in .;l(M)(SW)

Theorem (D., 2020)
Let M satisfy (Ic), (mg) and (snq). Let v > 0. FSAE:
() BVSM) : JZ(M)(SW) — AM) s surjective.
(i) ESYM) : j(M)(Sv) — AM) admits a continuous linear right inverse.
(iii) v < ¥(M).
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Main ideas of the proof

@ Surjectivity: Mittag-Leffler procedure (recall that
Bg\M) : AM)(S,) — AM) is surjective for each v < v(M)).
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Main ideas of the proof

@ Surjectivity: Mittag-Leffler procedure (recall that
Bg\M) : AM)(S,) — AM) is surjective for each v < v(M)). Show that
the inclusion mapping

kerB%V’) — kerBS/lw), 11 <72 <y (M),

has dense range.
e Existence of continuous linear right inverse: (DN)-(Q) splitting
theorem of Vogt and Wagner. Show that ker Eg"”) satisfies (2).

@ Technical tools: Holomorphic “cut-off’ functions + decomposition of
holomorphic functions (cf. Langenbruch (2012)).
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The Borel-Ritt problem in /T{M}(Sn,)

Open problem

Let M satisfy (Ic), (mg) and (snq). Let 0 < v < ~(M). Show that

gi?/l(ﬂ}) : “I{M}(SW(M)) — AMM} s surjective.
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The Borel-Ritt problem in /T{M}(Sn,,)

Open problem

Let M satisfy (Ic), (mg) and (snq). Let 0 < v < ~(M). Show that

B{w) “I{M}(Sfy(M)) — MM} is surjective.

@ The Mittag-Leffler procedure does not seem to be applicable in this
case: | believe that Proj! kerB{(M) £ 0.

o It suffices to show that there exist F € O(S,(n)) such that for each
v < (M) there are C,k > 0 with

Clewmtl2) < |F(2)| < Cemomls/l) e s
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