The asymptotic Borel map in ultraholomorphic classes

Andreas Debrouwere

Ghent University

DMV Minisymposium "Locally convex methods in analysis" September 14, 2020

Theorem (E. Borel, 1895; Peano, 1884)

For every $(a_p)_{p \in \mathbb{N}} \subset \mathbb{C}^{\mathbb{N}}$ there is $f \in C^{\infty}(\mathbb{R})$ such that $f^{(p)}(0) = a_p$ for all $p \in \mathbb{N}$.

• Let Σ be the Riemann surface of the logarithm. For $\gamma > 0$ we set

$$S_{\gamma} = \{z \in \Sigma \mid |\operatorname{Arg} z| < \frac{\pi\gamma}{2}\}.$$

Theorem (Ritt, 1916)

For every $(a_p)_{p \in \mathbb{N}} \subset \mathbb{C}^{\mathbb{N}}$ there is $f \in \mathcal{O}(S_{\gamma})$ such that $f(z) \sim \sum_{\rho=0}^{\infty} a_p z^{\rho}$ as $z \to 0$ in S_{γ} , i.e. $\lim_{z \to 0, z \in S_{\gamma}} |z^{-\rho}(f(z) - \sum_{q=0}^{p-1} a_q z^q)| < \infty, \qquad \forall p \in \mathbb{Z}_+.$

イロト 不得 トイヨト イヨト 三日

Theorem (E. Borel, 1895; Peano, 1884)

For every $(a_p)_{p \in \mathbb{N}} \subset \mathbb{C}^{\mathbb{N}}$ there is $f \in C^{\infty}(\mathbb{R})$ such that $f^{(p)}(0) = a_p$ for all $p \in \mathbb{N}$.

• Let Σ be the Riemann surface of the logarithm. For $\gamma > 0$ we set

$$S_{\gamma} = \{z \in \Sigma \mid |\operatorname{Arg} z| < \frac{\pi \gamma}{2}\}.$$

Theorem (Ritt, 1916)

For every $(a_p)_{p \in \mathbb{N}} \subset \mathbb{C}^{\mathbb{N}}$ there is $f \in \mathcal{O}(S_{\gamma})$ such that $f(z) \sim \sum_{p=0}^{\infty} a_p z^p$ as $z \to 0$ in S_{γ} , i.e. $\lim_{z \to 0, z \in S_{\gamma}} |z^{-p}(f(z) - \sum_{q=0}^{p-1} a_q z^q)| < \infty, \qquad \forall p \in \mathbb{Z}_+.$

・ロット (雪) (日) (日) 日

Theorem (E. Borel, 1895; Peano, 1884)

For every $(a_p)_{p \in \mathbb{N}} \subset \mathbb{C}^{\mathbb{N}}$ there is $f \in C^{\infty}(\mathbb{R})$ such that $f^{(p)}(0) = a_p$ for all $p \in \mathbb{N}$.

• Let Σ be the Riemann surface of the logarithm. For $\gamma > 0$ we set

$$S_{\gamma} = \{z \in \Sigma \mid |\operatorname{Arg} z| < \frac{\pi \gamma}{2}\}.$$

Theorem (Ritt, 1916)

For every $(a_p)_{p \in \mathbb{N}} \subset \mathbb{C}^{\mathbb{N}}$ there is $f \in \mathcal{O}(S_{\gamma})$ such that $f(z) \sim \sum_{p=0}^{\infty} a_p z^p$ as $z \to 0$ in S_{γ} , i.e. $\lim_{z \to 0, z \in S_{\gamma}} |z^{-p}(f(z) - \sum_{q=0}^{p-1} a_q z^q)| < \infty, \qquad \forall p \in \mathbb{Z}_+.$

- Let M = (M_p)_{p∈ℕ} be a sequence of positive numbers. We set m_p = M_p/M_{p-1}, p ∈ ℤ₊.
- We introduce the following conditions on *M*:

$$\begin{array}{ll} (lc) & M_{p}^{2} \leq M_{p-1}M_{p+1}, \ p \in \mathbb{Z}_{+}, \\ (dc) & M_{p+1} \leq CH^{p}M_{p}, \ p \in \mathbb{N}, \\ (mg) & M_{p+q} \leq CH^{p+q}M_{p}M_{q}, \ p, q \in \\ (nq) & \sum_{p=1}^{\infty} \frac{1}{pm_{p}} < \infty. \\ (snq) & \sum_{q=p}^{\infty} \frac{1}{qm_{q}} \leq \frac{C}{m_{p}}, \ p \in \mathbb{Z}_{+}. \end{array}$$

- The Gevrey sequences $p!^{\alpha}$, $\alpha > 0$, satisfy all the above conditions.
- The q-Gevrey sequences q^{p²}, q > 1, satisfy all the above conditions except for (mg).

- Let $M = (M_p)_{p \in \mathbb{N}}$ be a sequence of positive numbers. We set $m_p = M_p/M_{p-1}, \ p \in \mathbb{Z}_+.$
- We introduce the following conditions on *M*:

$$\begin{array}{ll} (lc) & M_{p}^{2} \leq M_{p-1}M_{p+1}, \ p \in \mathbb{Z}_{+}, \\ (dc) & M_{p+1} \leq CH^{p}M_{p}, \ p \in \mathbb{N}, \\ (mg) & M_{p+q} \leq CH^{p+q}M_{p}M_{q}, \ p, q \in I, \\ (nq) & \sum_{p=1}^{\infty} \frac{1}{pm_{p}} < \infty. \\ (snq) & \sum_{q=p}^{\infty} \frac{1}{qm_{q}} \leq \frac{C}{m_{p}}, \ p \in \mathbb{Z}_{+}. \end{array}$$

- The Gevrey sequences $p!^{\alpha}$, $\alpha > 0$, satisfy all the above conditions.
- The q-Gevrey sequences q^{p^2} , q > 1, satisfy all the above conditions except for (mg).

- Let $M = (M_p)_{p \in \mathbb{N}}$ be a sequence of positive numbers. We set $m_p = M_p/M_{p-1}, \ p \in \mathbb{Z}_+.$
- We introduce the following conditions on *M*:

(*lc*)
$$M_p^2 \leq M_{p-1}M_{p+1}$$
, $p \in \mathbb{Z}_+$.
(*dc*) $M_{p+1} \leq CH^p M_p$, $p \in \mathbb{N}$.
(*mg*) $M_{p+q} \leq CH^{p+q}M_p M_q$, $p, q \in \mathbb{N}$
(*nq*) $\sum_{p=1}^{\infty} \frac{1}{pm_p} < \infty$.
(*snq*) $\sum_{q=p}^{\infty} \frac{1}{qm_q} \leq \frac{C}{m_p}$, $p \in \mathbb{Z}_+$.

- The Gevrey sequences $p!^{\alpha}$, $\alpha > 0$, satisfy all the above conditions.
- The q-Gevrey sequences q^{p^2} , q > 1, satisfy all the above conditions except for (mg).

- Let $M = (M_p)_{p \in \mathbb{N}}$ be a sequence of positive numbers. We set $m_p = M_p/M_{p-1}, \ p \in \mathbb{Z}_+.$
- We introduce the following conditions on *M*:

$$(lc) \quad M_p^2 \leq M_{p-1}M_{p+1}, \ p \in \mathbb{Z}_+.$$

$$(dc) \quad M_{p+1} \leq CH^p M_p, \ p \in \mathbb{N}.$$

$$(mg) \quad M_{p+q} \leq CH^{p+q}M_p M_q, \ p, q \in$$

$$(nq) \quad \sum_{p=1}^{\infty} \frac{1}{pm_p} < \infty.$$

$$(snq) \quad \sum_{q=p}^{\infty} \frac{1}{qm_q} \leq \frac{C}{m_p}, \ p \in \mathbb{Z}_+.$$

- The Gevrey sequences $p!^{\alpha}$, $\alpha > 0$, satisfy all the above conditions.
- The q-Gevrey sequences q^{p^2} , q > 1, satisfy all the above conditions except for (mg).

- Let $M = (M_p)_{p \in \mathbb{N}}$ be a sequence of positive numbers. We set $m_p = M_p/M_{p-1}, \ p \in \mathbb{Z}_+.$
- We introduce the following conditions on *M*:

$$(lc) \quad M_{p}^{2} \leq M_{p-1}M_{p+1}, \ p \in \mathbb{Z}_{+}.$$

$$(dc) \quad M_{p+1} \leq CH^{p}M_{p}, \ p \in \mathbb{N}.$$

$$(mg) \quad M_{p+q} \leq CH^{p+q}M_{p}M_{q}, \ p, q \in \mathbb{N}.$$

$$(nq) \quad \sum_{p=1}^{\infty} \frac{1}{pm_{p}} < \infty.$$

$$(snq) \quad \sum_{q=p}^{\infty} \frac{1}{qm_{q}} \leq \frac{C}{m_{p}}, \ p \in \mathbb{Z}_{+}.$$

- The Gevrey sequences $p!^{\alpha}$, $\alpha > 0$, satisfy all the above conditions.
- The q-Gevrey sequences q^{p^2} , q > 1, satisfy all the above conditions except for (mg).

- Let $M = (M_p)_{p \in \mathbb{N}}$ be a sequence of positive numbers. We set $m_p = M_p/M_{p-1}, \ p \in \mathbb{Z}_+.$
- We introduce the following conditions on *M*:

$$(lc) \quad M_{p}^{2} \leq M_{p-1}M_{p+1}, \ p \in \mathbb{Z}_{+}.$$

$$(dc) \quad M_{p+1} \leq CH^{p}M_{p}, \ p \in \mathbb{N}.$$

$$(mg) \quad M_{p+q} \leq CH^{p+q}M_{p}M_{q}, \ p, q \in \mathbb{N}$$

$$(nq) \quad \sum_{p=1}^{\infty} \frac{1}{pm_{p}} < \infty.$$

$$(snq) \quad \sum_{q=p}^{\infty} \frac{1}{qm_{q}} \leq \frac{C}{m_{p}}, \ p \in \mathbb{Z}_{+}.$$

- The Gevrey sequences $p!^{\alpha}$, $\alpha > 0$, satisfy all the above conditions.
- The q-Gevrey sequences q^{p^2} , q > 1, satisfy all the above conditions except for (mg).

- Let $M = (M_p)_{p \in \mathbb{N}}$ be a sequence of positive numbers. We set $m_p = M_p/M_{p-1}, \ p \in \mathbb{Z}_+.$
- We introduce the following conditions on *M*:

$$\begin{array}{ll} (lc) & M_{p}^{2} \leq M_{p-1}M_{p+1}, \ p \in \mathbb{Z}_{+}. \\ (dc) & M_{p+1} \leq CH^{p}M_{p}, \ p \in \mathbb{N}. \\ (mg) & M_{p+q} \leq CH^{p+q}M_{p}M_{q}, \ p, q \in \mathbb{N}. \\ (nq) & \sum_{p=1}^{\infty} \frac{1}{pm_{p}} < \infty. \\ (snq) & \sum_{q=p}^{\infty} \frac{1}{qm_{q}} \leq \frac{C}{m_{p}}, \ p \in \mathbb{Z}_{+}. \end{array}$$

• The Gevrey sequences $p!^{\alpha}$, $\alpha > 0$, satisfy all the above conditions.

• The q-Gevrey sequences q^{p^2} , q > 1, satisfy all the above conditions except for (mg).

- Let $M = (M_p)_{p \in \mathbb{N}}$ be a sequence of positive numbers. We set $m_p = M_p/M_{p-1}, \ p \in \mathbb{Z}_+.$
- We introduce the following conditions on *M*:

$$\begin{array}{ll} (lc) & M_{p}^{2} \leq M_{p-1}M_{p+1}, \ p \in \mathbb{Z}_{+}. \\ (dc) & M_{p+1} \leq CH^{p}M_{p}, \ p \in \mathbb{N}. \\ (mg) & M_{p+q} \leq CH^{p+q}M_{p}M_{q}, \ p, q \in \mathbb{N}. \\ (nq) & \sum_{p=1}^{\infty} \frac{1}{pm_{p}} < \infty. \\ (snq) & \sum_{q=p}^{\infty} \frac{1}{qm_{q}} \leq \frac{C}{m_{p}}, \ p \in \mathbb{Z}_{+}. \end{array}$$

- The Gevrey sequences $p!^{\alpha}$, $\alpha > 0$, satisfy all the above conditions.
- The q-Gevrey sequences q^{p^2} , q > 1, satisfy all the above conditions except for (mg).

▲口▶ ▲御▶ ▲臣▶ ▲臣▶ 三臣

- Let $M = (M_p)_{p \in \mathbb{N}}$ be a sequence of positive numbers. We set $m_p = M_p/M_{p-1}, \ p \in \mathbb{Z}_+.$
- We introduce the following conditions on *M*:

$$\begin{array}{ll} (lc) & M_{p}^{2} \leq M_{p-1}M_{p+1}, \ p \in \mathbb{Z}_{+}. \\ (dc) & M_{p+1} \leq CH^{p}M_{p}, \ p \in \mathbb{N}. \\ (mg) & M_{p+q} \leq CH^{p+q}M_{p}M_{q}, \ p, q \in \mathbb{N}. \\ (nq) & \sum_{p=1}^{\infty} \frac{1}{pm_{p}} < \infty. \\ (snq) & \sum_{q=p}^{\infty} \frac{1}{qm_{q}} \leq \frac{C}{m_{p}}, \ p \in \mathbb{Z}_{+}. \end{array}$$

- The Gevrey sequences $p!^{\alpha}$, $\alpha > 0$, satisfy all the above conditions.
- The q-Gevrey sequences q^{p^2} , q > 1, satisfy all the above conditions except for (mg).

• We introduce the following condition on M:

$$(\beta_2) \quad \forall \varepsilon > 0 \, \exists n \geq 2 \, : \, \limsup_{\rho \to \infty} \left(\frac{M_{np}}{M_{\rho}} \right)^{\frac{1}{p(n-1)}} \frac{1}{m_{np}} \leq \varepsilon.$$

- (β_2) expresses that the sequence $(m_p)_{p\in\mathbb{N}}$ grows fast.
- The condition

$$\lim_{p \to \infty} \frac{m_{np}}{m_p} = \infty, \text{ for some } n \in \mathbb{Z}_+,$$

implies (β_2) . The converse holds true if M satisfies some mild regularity condition (there is $n \in \mathbb{Z}_+$ such that the set of finite limit points of $\{m_{n'}/m_{n'-1} | l \in \mathbb{N}\}$ is bounded).

- The Gevrey sequences $p!^{\alpha}$ do not satisfy (β_2) . More generally, $(mg) \Rightarrow \neg(\beta_2)$.
- The *q*-Gevrey sequences q^{p^2} satisfy (β_2).

• We introduce the following condition on *M*:

$$(\beta_2) \quad \forall \varepsilon > 0 \, \exists n \geq 2 \, : \, \limsup_{\rho \to \infty} \left(\frac{M_{np}}{M_{\rho}} \right)^{\frac{1}{p(n-1)}} \frac{1}{m_{np}} \leq \varepsilon.$$

- (β_2) expresses that the sequence $(m_p)_{p\in\mathbb{N}}$ grows fast.
- The condition

$$\lim_{p \to \infty} \frac{m_{np}}{m_p} = \infty, \text{ for some } n \in \mathbb{Z}_+,$$

implies (β_2) . The converse holds true if M satisfies some mild regularity condition (there is $n \in \mathbb{Z}_+$ such that the set of finite limit points of $\{m_{n'}/m_{n'-1} | l \in \mathbb{N}\}$ is bounded).

- The Gevrey sequences $p!^{\alpha}$ do not satisfy (β_2) . More generally, $(mg) \Rightarrow \neg(\beta_2)$.
- The *q*-Gevrey sequences q^{p^2} satisfy (β_2).

• We introduce the following condition on *M*:

$$(\beta_2) \ \forall \varepsilon > 0 \ \exists n \geq 2 \ : \ \limsup_{\rho \to \infty} \left(\frac{M_{np}}{M_{\rho}} \right)^{\frac{1}{p(n-1)}} \frac{1}{m_{np}} \leq \varepsilon.$$

- (β_2) expresses that the sequence $(m_p)_{p\in\mathbb{N}}$ grows fast.
- The condition

$$\lim_{p\to\infty}\frac{m_{np}}{m_p}=\infty, \text{ for some } n\in\mathbb{Z}_+,$$

implies (β_2). The converse holds true if M satisfies some mild regularity condition (there is $n \in \mathbb{Z}_+$ such that the set of finite limit points of $\{m_{n'}/m_{n'-1} | l \in \mathbb{N}\}$ is bounded).

- The Gevrey sequences $p!^{\alpha}$ do not satisfy (β_2) . More generally, $(mg) \Rightarrow \neg(\beta_2)$.
- The *q*-Gevrey sequences q^{p^2} satisfy (β_2).

• We introduce the following condition on *M*:

$$(\beta_2) \ \forall \varepsilon > 0 \ \exists n \geq 2 \ : \ \limsup_{\rho \to \infty} \left(\frac{M_{np}}{M_{\rho}} \right)^{\frac{1}{p(n-1)}} \frac{1}{m_{np}} \leq \varepsilon.$$

- (β_2) expresses that the sequence $(m_p)_{p\in\mathbb{N}}$ grows fast.
- The condition

$$\lim_{p\to\infty}\frac{m_{np}}{m_p}=\infty, \text{ for some } n\in\mathbb{Z}_+,$$

implies (β_2). The converse holds true if M satisfies some mild regularity condition (there is $n \in \mathbb{Z}_+$ such that the set of finite limit points of $\{m_{n'}/m_{n'-1} | l \in \mathbb{N}\}$ is bounded).

- The Gevrey sequences $p!^{\alpha}$ do not satisfy (β_2) . More generally, $(mg) \Rightarrow \neg(\beta_2)$.
- The *q*-Gevrey sequences q^{p^2} satisfy (β_2).

<ロ> <四> <四> < 四> < 回> < 三> < 三> < 三

• We introduce the following condition on *M*:

$$(\beta_2) \ \forall \varepsilon > 0 \ \exists n \geq 2 \ : \ \limsup_{\rho \to \infty} \left(\frac{M_{np}}{M_{\rho}} \right)^{\frac{1}{p(n-1)}} \frac{1}{m_{np}} \leq \varepsilon.$$

- (β_2) expresses that the sequence $(m_p)_{p\in\mathbb{N}}$ grows fast.
- The condition

$$\lim_{p\to\infty}\frac{m_{np}}{m_p}=\infty, \text{ for some } n\in\mathbb{Z}_+,$$

implies (β_2). The converse holds true if M satisfies some mild regularity condition (there is $n \in \mathbb{Z}_+$ such that the set of finite limit points of $\{m_{n'}/m_{n'-1} | l \in \mathbb{N}\}$ is bounded).

- The Gevrey sequences $p!^{\alpha}$ do not satisfy (β_2). More generally, $(mg) \Rightarrow \neg(\beta_2)$.
- The *q*-Gevrey sequences q^{p^2} satisfy (β_2).

▲口▶ ▲御▶ ▲臣▶ ▲臣▶ 三臣

• We introduce the following condition on *M*:

$$(\beta_2) \ \forall \varepsilon > 0 \ \exists n \geq 2 \ : \ \limsup_{\rho \to \infty} \left(\frac{M_{np}}{M_{\rho}} \right)^{\frac{1}{p(n-1)}} \frac{1}{m_{np}} \leq \varepsilon.$$

- (β_2) expresses that the sequence $(m_p)_{p\in\mathbb{N}}$ grows fast.
- The condition

$$\lim_{p\to\infty}\frac{m_{np}}{m_p}=\infty, \text{ for some } n\in\mathbb{Z}_+,$$

implies (β_2). The converse holds true if M satisfies some mild regularity condition (there is $n \in \mathbb{Z}_+$ such that the set of finite limit points of $\{m_{n'}/m_{n'^{-1}} | l \in \mathbb{N}\}$ is bounded).

- The Gevrey sequences $p!^{\alpha}$ do not satisfy (β_2) . More generally, $(mg) \Rightarrow \neg(\beta_2)$.
- The *q*-Gevrey sequences q^{p^2} satisfy (β_2).

• We introduce the following condition on *M*:

$$(\beta_2) \ \forall \varepsilon > 0 \ \exists n \geq 2 \ : \ \limsup_{\rho \to \infty} \left(\frac{M_{np}}{M_{\rho}} \right)^{\frac{1}{p(n-1)}} \frac{1}{m_{np}} \leq \varepsilon.$$

- (β_2) expresses that the sequence $(m_p)_{p\in\mathbb{N}}$ grows fast.
- The condition

$$\lim_{p\to\infty}\frac{m_{np}}{m_p}=\infty, \text{ for some } n\in\mathbb{Z}_+,$$

implies (β_2). The converse holds true if M satisfies some mild regularity condition (there is $n \in \mathbb{Z}_+$ such that the set of finite limit points of $\{m_{n'}/m_{n'-1} | l \in \mathbb{N}\}$ is bounded).

- The Gevrey sequences $p!^{\alpha}$ do not satisfy (β_2) . More generally, $(mg) \Rightarrow \neg(\beta_2)$.
- The q-Gevrey sequences q^{p^2} satisfy (β_2).

Denjoy-Carleman classes and the Borel map

• We define $\mathcal{E}^{(M)}(\mathbb{R})$ $(\mathcal{E}^{\{M\}}(\mathbb{R}))$ as the space consisting of all $f \in C^{\infty}(\mathbb{R})$ such that for all h > 0 (for some h > 0)

$$\sup_{p\in\mathbb{N}}\sup_{x\in\mathbb{R}}\frac{|f^{(p)}(x)|}{h^pp!M_p}<\infty.$$

We define Λ^(M) (Λ^{M}) as the space consisting of all (c_p)_{p∈ℕ} ∈ C^ℕ such that for all h > 0 (for some h > 0)

$$\sup_{p\in\mathbb{N}}\frac{|c_p|}{h^pp!M_p}<\infty.$$

• The Borel map

$$\mathcal{B}^{[M]}: \mathcal{E}^{[M]}(\mathbb{R}) \to \Lambda^{[M]}, f \mapsto (f^{(p)}(0))_{p \in \mathbb{N}}$$

is well-defined and continuous.

Denjoy-Carleman classes and the Borel map

• We define $\mathcal{E}^{(M)}(\mathbb{R})$ $(\mathcal{E}^{\{M\}}(\mathbb{R}))$ as the space consisting of all $f \in C^{\infty}(\mathbb{R})$ such that for all h > 0 (for some h > 0)

$$\sup_{p\in\mathbb{N}}\sup_{x\in\mathbb{R}}\frac{|f^{(p)}(x)|}{h^pp!M_p}<\infty.$$

We define Λ^(M) (Λ^{M}) as the space consisting of all (c_p)_{p∈ℕ} ∈ C^ℕ such that for all h > 0 (for some h > 0)

$$\sup_{p\in\mathbb{N}}\frac{|c_p|}{h^pp!M_p}<\infty.$$

• The Borel map

$$\mathcal{B}^{[M]}: \mathcal{E}^{[M]}(\mathbb{R}) \to \Lambda^{[M]}, f \mapsto (f^{(p)}(0))_{p \in \mathbb{N}}$$

is well-defined and continuous.

Denjoy-Carleman classes and the Borel map

• We define $\mathcal{E}^{(M)}(\mathbb{R})$ $(\mathcal{E}^{\{M\}}(\mathbb{R}))$ as the space consisting of all $f \in C^{\infty}(\mathbb{R})$ such that for all h > 0 (for some h > 0)

$$\sup_{p\in\mathbb{N}}\sup_{x\in\mathbb{R}}\frac{|f^{(p)}(x)|}{h^pp!M_p}<\infty.$$

We define Λ^(M) (Λ^{M}) as the space consisting of all (c_p)_{p∈ℕ} ∈ C^ℕ such that for all h > 0 (for some h > 0)

$$\sup_{p\in\mathbb{N}}\frac{|c_p|}{h^pp!M_p}<\infty.$$

The Borel map

$$\mathcal{B}^{[M]}:\mathcal{E}^{[M]}(\mathbb{R})
ightarrow \Lambda^{[M]},\ f\mapsto (f^{(p)}(0))_{p\in\mathbb{N}}$$

is well-defined and continuous.

Let M satisfy (lc) and (nq). Then,

FSAE:

(i) B^(M): E^(M)(ℝ) → Λ^(M) is surjective.
(ii) B^(M): E^(M)(ℝ) → Λ^(M) admits a continuous linear right inverse.
(iii) M satisfies (snq).

B^{M}: E^{M}(ℝ) → Λ^{M} is surjective iff M satisfies (snq).
B^{M}: E^{M}(ℝ) → Λ^{M} admits a continuous linear right inverse iff

• Elementary methods: Ingenious use of Taylor's theorem and ideas from Hörmander's real analysis proof of the Denjoy-Carleman theorem.

Let M satisfy (lc) and (nq). Then,

FSAE:

(i) B^(M): E^(M)(ℝ) → Λ^(M) is surjective.
(ii) B^(M): E^(M)(ℝ) → Λ^(M) admits a continuous linear right inverse.
(iii) M satisfies (snq).

B^{M}: E^{M}(ℝ) → Λ^{M} is surjective iff M satisfies (snq).

 B^{M}: E^{M}(ℝ) → Λ^{M} admits a continuous linear right inverse iff M satisfies (snq) and (β₂).

• Elementary methods: Ingenious use of Taylor's theorem and ideas from Hörmander's real analysis proof of the Denjoy-Carleman theorem.

Let M satisfy (lc) and (nq). Then,

- FSAE:
 - (i) $\mathcal{B}^{(M)}: \mathcal{E}^{(M)}(\mathbb{R}) \to \Lambda^{(M)}$ is surjective.
 - (ii) $\mathcal{B}^{(M)}: \mathcal{E}^{(M)}(\mathbb{R}) \to \Lambda^{(M)}$ admits a continuous linear right inverse. (iii) \mathcal{M} satisfies (see
 - (iii) M satisfies (snq).
- $\mathcal{B}^{\{M\}}: \mathcal{E}^{\{M\}}(\mathbb{R}) \to \Lambda^{\{M\}}$ is surjective iff M satisfies (snq).
- B^{M}: E^{M}(ℝ) → Λ^{M} admits a continuous linear right inverse iff M satisfies (snq) and (β₂).
- Elementary methods: Ingenious use of Taylor's theorem and ideas from Hörmander's real analysis proof of the Denjoy-Carleman theorem.

< 同 > < 回 > < 回 > -

Let M satisfy (lc) and (nq). Then,

- FSAE:
 - (i) $\mathcal{B}^{(M)}: \mathcal{E}^{(M)}(\mathbb{R}) \to \Lambda^{(M)}$ is surjective.
 - (ii) $\mathcal{B}^{(M)}: \mathcal{E}^{(M)}(\mathbb{R}) \to \Lambda^{(M)}$ admits a continuous linear right inverse. (iii) M satisfies (snq).
- $\mathcal{B}^{\{M\}}: \mathcal{E}^{\{M\}}(\mathbb{R}) \to \Lambda^{\{M\}}$ is surjective iff M satisfies (snq).
- B^{M}: E^{M}(ℝ) → Λ^{M} admits a continuous linear right inverse iff M satisfies (snq) and (β₂).
- Elementary methods: Ingenious use of Taylor's theorem and ideas from Hörmander's real analysis proof of the Denjoy-Carleman theorem.

・ 「 ト ・ ヨ ト ・ ヨ ト

Let M satisfy (lc) and (nq). Then, • ESAE:

(i)
$$\mathcal{B}^{(M)}: \mathcal{E}^{(M)}(\mathbb{R}) \to \Lambda^{(M)}$$
 is surjective.

(ii) $\mathcal{B}^{(M)} : \mathcal{E}^{(M)}(\mathbb{R}) \to \Lambda^{(M)}$ admits a continuous linear right inverse. (iii) M satisfies (snq).

- $\mathcal{B}^{\{M\}}: \mathcal{E}^{\{M\}}(\mathbb{R}) \to \Lambda^{\{M\}}$ is surjective iff M satisfies (snq).
- B^{M}: E^{M}(ℝ) → Λ^{M} admits a continuous linear right inverse iff M satisfies (snq) and (β₂).
- Elementary methods: Ingenious use of Taylor's theorem and ideas from Hörmander's real analysis proof of the Denjoy-Carleman theorem.

Uniform ultraholomorphic classes

Let γ > 0. We define A^(M)(S_γ) (A^{M}(S_γ)) as the space consisting of all f ∈ O(S_γ) such that for all h > 0 (for some h > 0)

$$\sup_{p\in\mathbb{N}}\sup_{z\in S_{\gamma}}\frac{|f^{(p)}(z)|}{h^{p}p!M_{p}}<\infty.$$

• For $f \in \mathcal{A}^{[M]}(S_{\gamma})$ we may define

$$f^{(p)}(0):=\lim_{z o 0,z\in S_\gamma}f^{(p)}(z)\in\mathbb{C},\qquad p\in\mathbb{N}.$$

Then, for all h > 0 (for some h > 0)

$$\sup_{p\in\mathbb{N}} \sup_{z\in S_{\gamma}} \frac{1}{h^{p}M_{p}} |z^{-p}(f(z) - \sum_{q=0}^{p-1} \frac{f^{(q)}(0)}{q!} z^{q})| < \infty.$$

Uniform ultraholomorphic classes

Let γ > 0. We define A^(M)(S_γ) (A^{M}(S_γ)) as the space consisting of all f ∈ O(S_γ) such that for all h > 0 (for some h > 0)

$$\sup_{p\in\mathbb{N}}\sup_{z\in S_{\gamma}}\frac{|f^{(p)}(z)|}{h^{p}p!M_{p}}<\infty.$$

• For $f \in \mathcal{A}^{[M]}(S_{\gamma})$ we may define

$$f^{(p)}(0):=\lim_{z
ightarrow 0,z\in S_{\gamma}}f^{(p)}(z)\in \mathbb{C}, \qquad p\in \mathbb{N}.$$

Then, for all h > 0 (for some h > 0)

$$\sup_{p\in\mathbb{N}} \sup_{z\in S_{\gamma}} \frac{1}{h^{p}M_{p}} |z^{-p}(f(z) - \sum_{q=0}^{p-1} \frac{f^{(q)}(0)}{q!} z^{q})| < \infty.$$

Uniform ultraholomorphic classes

Let γ > 0. We define A^(M)(S_γ) (A^{M}(S_γ)) as the space consisting of all f ∈ O(S_γ) such that for all h > 0 (for some h > 0)

$$\sup_{p\in\mathbb{N}}\sup_{z\in S_{\gamma}}\frac{|f^{(p)}(z)|}{h^{p}p!M_{p}}<\infty.$$

• For $f \in \mathcal{A}^{[M]}(S_{\gamma})$ we may define

$$f^{(p)}(0):=\lim_{z
ightarrow 0,z\in S_{\gamma}}f^{(p)}(z)\in \mathbb{C}, \qquad p\in \mathbb{N}.$$

Then, for all h > 0 (for some h > 0)

$$\sup_{p\in\mathbb{N}} \sup_{z\in S_{\gamma}} \frac{1}{h^{p}M_{p}} |z^{-p}(f(z) - \sum_{q=0}^{p-1} \frac{f^{(q)}(0)}{q!} z^{q})| < \infty.$$

• The asymptotic Borel map

$$\mathcal{B}_{\gamma}^{[M]}:\mathcal{A}^{[M]}(S_{\gamma}) o \Lambda^{[M]}, f\mapsto (f^{(p)}(0))_{p\in\mathbb{N}}$$

is well-defined and continuous.

Main question

Characterize the surjectivity and the existence of a continuous linear right inverse of $\mathcal{B}_{\gamma}^{[M]}$ in terms of M and γ .

• The asymptotic Borel map

$$\mathcal{B}_{\gamma}^{[M]}:\mathcal{A}^{[M]}(S_{\gamma})
ightarrow \Lambda^{[M]}, f\mapsto (f^{(p)}(0))_{p\in\mathbb{N}}$$

is well-defined and continuous.

Main question

Characterize the surjectivity and the existence of a continuous linear right inverse of $\mathcal{B}_{\gamma}^{[M]}$ in terms of M and γ .

Theorem (Ramis, 1978)

$$\mathcal{B}^{\{p|^{\alpha}\}}_{\gamma}: \mathcal{A}^{\{p|^{\alpha}\}}(S_{\gamma}) \to \Lambda^{\{p|^{\alpha}\}}$$
 is surjective iff $\gamma < \alpha$.

- Explicit construction using a truncated Laplace transform with respect to the kernel $e^{-1/z^{1/\alpha}}$.
- Let $\gamma < \alpha$. Then,

$$C^{-1}e^{-\kappa^{-1}/|z|^{1/\alpha}} \le |e^{-1/z^{1/\alpha}}| \le Ce^{-\kappa/|z|^{1/\alpha}}, \qquad z \in S_{\gamma}.$$

Theorem (Ramis, 1978)

$$\mathcal{B}^{\{p^{lpha\}}}_{\gamma}: \mathcal{A}^{\{p^{lpha}\}}(S_{\gamma}) \to \Lambda^{\{p^{lpha}\}}$$
 is surjective iff $\gamma < \alpha$.

- Explicit construction using a truncated Laplace transform with respect to the kernel $e^{-1/z^{1/\alpha}}$.
- Let $\gamma < \alpha$. Then,

$$C^{-1}e^{-\kappa^{-1}/|z|^{1/\alpha}} \le |e^{-1/z^{1/\alpha}}| \le Ce^{-\kappa/|z|^{1/\alpha}}, \qquad z \in S_{\gamma}.$$

Theorem (Ramis, 1978)

$$\mathcal{B}^{\{p|^{lpha}\}}_{\gamma}:\mathcal{A}^{\{p|^{lpha}\}}(S_{\gamma}) o \Lambda^{\{p|^{lpha}\}}$$
 is surjective iff $\gamma < \alpha$.

- Explicit construction using a truncated Laplace transform with respect to the kernel $e^{-1/z^{1/\alpha}}$.
- Let $\gamma < \alpha$. Then,

$$C^{-1}e^{-\kappa^{-1}/|z|^{1/lpha}} \leq |e^{-1/z^{1/lpha}}| \leq Ce^{-\kappa/|z|^{1/lpha}}, \qquad z \in S_{\gamma}.$$
$$(\gamma_{eta}) \; \sum_{q=p}^{\infty} rac{1}{m_q^{1/eta}} \leq rac{Cp}{m_p^{1/eta}}, \; p \in \mathbb{Z}_+.$$

• We define

$$\gamma(M) := \sup\{\beta > 0 \mid M \text{ satisfies } (\gamma_{\beta})\}.$$

If M satisfies (lc), then M satisfies (snq) if and only if γ(M) > 0.
γ(p!^α) = α and γ(q^{p²}) = ∞.

$$(\gamma_eta) \; \sum_{q=p}^\infty rac{1}{m_q^{1/eta}} \leq rac{Cp}{m_p^{1/eta}}, \; p \in \mathbb{Z}_+.$$

• We define

$\gamma(M) := \sup\{\beta > 0 \,|\, M \text{ satisfies } (\gamma_{\beta})\}.$

If M satisfies (lc), then M satisfies (snq) if and only if γ(M) > 0.
γ(p!^α) = α and γ(q^{p²}) = ∞.

イロト イヨト イヨト イヨト

$$(\gamma_eta) \; \sum_{q=p}^\infty rac{1}{m_q^{1/eta}} \leq rac{Cp}{m_p^{1/eta}}, \; p \in \mathbb{Z}_+.$$

We define

$$\gamma(M) := \sup\{\beta > 0 \,|\, M \text{ satisfies } (\gamma_{\beta})\}.$$

If M satisfies (lc), then M satisfies (snq) if and only if γ(M) > 0.
γ(p!^α) = α and γ(q^{p²}) = ∞.

イロト イロト イヨト イヨト

$$(\gamma_eta) \; \sum_{q=p}^\infty rac{1}{m_q^{1/eta}} \leq rac{Cp}{m_p^{1/eta}}, \; p \in \mathbb{Z}_+.$$

We define

$$\gamma(M) := \sup\{\beta > 0 \,|\, M \text{ satisfies } (\gamma_{\beta})\}.$$

If M satisfies (lc), then M satisfies (snq) if and only if γ(M) > 0.
γ(p!^α) = α and γ(q^{p²}) = ∞.

Theorem (Thilliez, 2003)

Let *M* satisfy (*lc*), (*mg*) and (*snq*). If $0 < \gamma < \gamma(M)$, then $\mathcal{B}_{\gamma}^{[M]} : \mathcal{A}^{[M]}(S_{\gamma}) \to \Lambda^{[M]}$ is surjective.

$$C^{-1}e^{-\omega_M(\kappa^{-1}/|z|)} \leq |F(z)| \leq Ce^{-\omega_M(\kappa/|z|)} \qquad z \in S_{\gamma}.$$

- Beurling case: Reduction to Roumieu case.
- Lastra, Malek, Sanz (2012): Refinement of Ramis' method of truncated Laplace transform (Roumieu case).
- Both methods do not provide continuous linear right inverses. Is the condition (*mg*) essential?

Theorem (Thilliez, 2003)

Let M satisfy (lc), (mg) and (snq). If $0 < \gamma < \gamma(M)$, then $\mathcal{B}_{\gamma}^{[M]} : \mathcal{A}^{[M]}(S_{\gamma}) \to \Lambda^{[M]}$ is surjective.

$$C^{-1}e^{-\omega_M(\kappa^{-1}/|z|)} \leq |F(z)| \leq Ce^{-\omega_M(\kappa/|z|)} \qquad z \in S_\gamma.$$

- Beurling case: Reduction to Roumieu case.
- Lastra, Malek, Sanz (2012): Refinement of Ramis' method of truncated Laplace transform (Roumieu case).
- Both methods do not provide continuous linear right inverses. Is the condition (*mg*) essential?

Theorem (Thilliez, 2003)

Let M satisfy (lc), (mg) and (snq). If $0 < \gamma < \gamma(M)$, then $\mathcal{B}_{\gamma}^{[M]} : \mathcal{A}^{[M]}(S_{\gamma}) \to \Lambda^{[M]}$ is surjective.

$$C^{-1}e^{-\omega_{\mathcal{M}}(\kappa^{-1}/|z|)} \leq |F(z)| \leq Ce^{-\omega_{\mathcal{M}}(\kappa/|z|)} \qquad z \in S_{\gamma}.$$

- Beurling case: Reduction to Roumieu case.
- Lastra, Malek, Sanz (2012): Refinement of Ramis' method of truncated Laplace transform (Roumieu case).
- Both methods do not provide continuous linear right inverses. Is the condition (*mg*) essential?

Theorem (Thilliez, 2003)

Let M satisfy (lc), (mg) and (snq). If $0 < \gamma < \gamma(M)$, then $\mathcal{B}_{\gamma}^{[M]} : \mathcal{A}^{[M]}(S_{\gamma}) \to \Lambda^{[M]}$ is surjective.

$$\mathcal{C}^{-1}e^{-\omega_M(\kappa^{-1}/|z|)}\leq |\mathcal{F}(z)|\leq \mathcal{C}e^{-\omega_M(\kappa/|z|)} \qquad z\in S_\gamma.$$

- Beurling case: Reduction to Roumieu case.
- Lastra, Malek, Sanz (2012): Refinement of Ramis' method of truncated Laplace transform (Roumieu case).
- Both methods do not provide continuous linear right inverses. Is the condition (*mg*) essential?

Theorem (Thilliez, 2003)

Let M satisfy (lc), (mg) and (snq). If $0 < \gamma < \gamma(M)$, then $\mathcal{B}_{\gamma}^{[M]} : \mathcal{A}^{[M]}(S_{\gamma}) \to \Lambda^{[M]}$ is surjective.

$$C^{-1}e^{-\omega_M(\kappa^{-1}/|z|)} \leq |F(z)| \leq Ce^{-\omega_M(\kappa/|z|)} \qquad z \in S_\gamma.$$

- Beurling case: Reduction to Roumieu case.
- Lastra, Malek, Sanz (2012): Refinement of Ramis' method of truncated Laplace transform (Roumieu case).
- Both methods do not provide continuous linear right inverses. Is the condition (*mg*) essential?

Theorem (Thilliez, 2003)

Let M satisfy (lc), (mg) and (snq). If $0 < \gamma < \gamma(M)$, then $\mathcal{B}_{\gamma}^{[M]} : \mathcal{A}^{[M]}(S_{\gamma}) \to \Lambda^{[M]}$ is surjective.

$$C^{-1}e^{-\omega_M(\kappa^{-1}/|z|)} \leq |F(z)| \leq Ce^{-\omega_M(\kappa/|z|)} \qquad z \in S_\gamma.$$

- Beurling case: Reduction to Roumieu case.
- Lastra, Malek, Sanz (2012): Refinement of Ramis' method of truncated Laplace transform (Roumieu case).
- Both methods do not provide continuous linear right inverses. Is the condition (*mg*) essential?

Theorem (Thilliez, 2003)

Let M satisfy (lc), (mg) and (snq). If $0 < \gamma < \gamma(M)$, then $\mathcal{B}_{\gamma}^{[M]} : \mathcal{A}^{[M]}(S_{\gamma}) \to \Lambda^{[M]}$ is surjective.

$$C^{-1}e^{-\omega_M(\kappa^{-1}/|z|)} \leq |F(z)| \leq Ce^{-\omega_M(\kappa/|z|)} \qquad z \in S_\gamma.$$

- Beurling case: Reduction to Roumieu case.
- Lastra, Malek, Sanz (2012): Refinement of Ramis' method of truncated Laplace transform (Roumieu case).
- Both methods do not provide continuous linear right inverses. Is the condition (*mg*) essential?

Let M satisfy (Ic) and (snq). Let $\gamma > 0$ and $n \in \mathbb{N}$ be such that $\gamma < n < \gamma(M)$. Then,

• $\mathcal{B}_{\gamma}^{(M)}: \mathcal{A}^{(M)}(S_{\gamma}) \to \Lambda^{(M)}$ admits a continuous linear right inverse.

• If M satisfies (β_2) , $\mathcal{B}^{\{M\}}_{\gamma} : \mathcal{A}^{\{M\}}(S_{\gamma}) \to \Lambda^{\{M\}}$ admits a continuous linear right inverse.

- Reduction to the Borel problem in Denjoy-Carleman classes.
- This result is far from optimal: What if $\gamma(M) < 1$? What about $\gamma \in \mathbb{N}$?

- $\mathcal{B}_{\gamma}^{(M)}: \mathcal{A}^{(M)}(S_{\gamma}) \to \Lambda^{(M)}$ admits a continuous linear right inverse.
- If M satisfies (β_2) , $\mathcal{B}^{\{M\}}_{\gamma} : \mathcal{A}^{\{M\}}(S_{\gamma}) \to \Lambda^{\{M\}}$ admits a continuous linear right inverse.
- Reduction to the Borel problem in Denjoy-Carleman classes.
- This result is far from optimal: What if $\gamma(M) < 1$? What about $\gamma \in \mathbb{N}$?

- $\mathcal{B}_{\gamma}^{(M)}: \mathcal{A}^{(M)}(S_{\gamma}) \to \Lambda^{(M)}$ admits a continuous linear right inverse.
- If M satisfies (β₂), B^{M}_γ : A^{M}(S_γ) → Λ^{M} admits a continuous linear right inverse.
- Reduction to the Borel problem in Denjoy-Carleman classes.
- This result is far from optimal: What if $\gamma(M) < 1$? What about $\gamma \in \mathbb{N}$?

- $\mathcal{B}_{\gamma}^{(M)}: \mathcal{A}^{(M)}(S_{\gamma}) \to \Lambda^{(M)}$ admits a continuous linear right inverse.
- If M satisfies (β₂), B^{M}_γ : A^{M}(S_γ) → Λ^{M} admits a continuous linear right inverse.
- Reduction to the Borel problem in Denjoy-Carleman classes.
- This result is far from optimal: What if $\gamma(M) < 1$? What about $\gamma \in \mathbb{N}$?

- $\mathcal{B}_{\gamma}^{(M)}: \mathcal{A}^{(M)}(S_{\gamma}) \to \Lambda^{(M)}$ admits a continuous linear right inverse.
- If M satisfies (β₂), B^{M}_γ : A^{M}(S_γ) → Λ^{M} admits a continuous linear right inverse.
- Reduction to the Borel problem in Denjoy-Carleman classes.
- This result is far from optimal: What if $\gamma(M) < 1$? What about $\gamma \in \mathbb{N}$?

•
$$S_1 = \{z \in \mathbb{C} \mid \text{Re} \, z > 0\}.$$

Theorem (D., 2019)

Let M satisfy (lc), (dc) and (snq). Then,

• FSAE:

- (i) $\mathcal{B}_{1}^{(M)}: \mathcal{A}^{(M)}(S_1) \to \Lambda^{(M)}$ is surjective.
- (ii) $\mathcal{B}_1^{(M)} : \mathcal{A}^{(M)}(S_1) \to \Lambda^{(M)}$ admits a continuous linear right inverse. (iii) $\gamma(M) > 1$.
- $\mathcal{B}_1^{\{M\}}$: $\mathcal{A}^{\{M\}}(S_1) \to \Lambda^{\{M\}}$ is surjective iff $\gamma(M) > 1$.

• $\mathcal{B}_1^{\{M\}} : \mathcal{A}^{\{M\}}(S_1) \to \Lambda^{\{M\}}$ admits a continuous linear right inverse iff $\gamma(M) > 1$ and M satisfies (β_2) .

•
$$S_1 = \{z \in \mathbb{C} \mid \text{Re} \, z > 0\}.$$

Theorem (D., 2019)

Let M satisfy (Ic), (dc) and (snq). Then, • FSAE: (i) $\mathcal{B}_1^{(M)} : \mathcal{A}^{(M)}(S_1) \to \Lambda^{(M)}$ is surjective. (ii) $\mathcal{B}_1^{(M)} : \mathcal{A}^{(M)}(S_1) \to \Lambda^{(M)}$ admits a continuous linear right inverse. (iii) $\gamma(M) > 1$. • $\mathcal{B}_1^{\{M\}} : \mathcal{A}^{\{M\}}(S_1) \to \Lambda^{\{M\}}$ is surjective iff $\gamma(M) > 1$. • $\mathcal{B}_1^{\{M\}} : \mathcal{A}^{\{M\}}(S_1) \to \Lambda^{\{M\}}$ admits a continuous linear right inverse iff $\gamma(M) > 1$ and M satisfies (β_2)

•
$$S_1 = \{z \in \mathbb{C} \mid \text{Re} \, z > 0\}.$$

Theorem (D., 2019)

Let M satisfy (lc), (dc) and (snq). Then, • FSAE: (i) $\mathcal{B}_{1}^{(M)} : \mathcal{A}^{(M)}(S_{1}) \to \Lambda^{(M)}$ is surjective. (ii) $\mathcal{B}_{1}^{(M)} : \mathcal{A}^{(M)}(S_{1}) \to \Lambda^{(M)}$ admits a continuous linear right inverse. (iii) $\gamma(M) > 1$. • $\mathcal{B}_{1}^{\{M\}} : \mathcal{A}^{\{M\}}(S_{1}) \to \Lambda^{\{M\}}$ is surjective iff $\gamma(M) > 1$. • $\mathcal{B}_{1}^{\{M\}} : \mathcal{A}^{\{M\}}(S_{1}) \to \Lambda^{\{M\}}$ admits a continuous linear right inverse iff $\gamma(M) > 1$ and M satisfies (β_{2})

•
$$S_1 = \{z \in \mathbb{C} \mid \text{Re} \, z > 0\}.$$

Theorem (D., 2019)

Let M satisfy (lc), (dc) and (snq). Then, • FSAE: (i) $\mathcal{B}_{1}^{(M)} : \mathcal{A}^{(M)}(S_{1}) \to \Lambda^{(M)}$ is surjective. (ii) $\mathcal{B}_{1}^{(M)} : \mathcal{A}^{(M)}(S_{1}) \to \Lambda^{(M)}$ admits a continuous linear right inverse. (iii) $\gamma(M) > 1$. • $\mathcal{B}_{1}^{\{M\}} : \mathcal{A}^{\{M\}}(S_{1}) \to \Lambda^{\{M\}}$ is surjective iff $\gamma(M) > 1$. • $\mathcal{B}_{1}^{\{M\}} : \mathcal{A}^{\{M\}}(S_{1}) \to \Lambda^{\{M\}}$ admits a continuous linear right inverse iff $\gamma(M) > 1$ and M satisfies (β_{2}).

•
$$S_1 = \{z \in \mathbb{C} \mid \text{Re} \, z > 0\}.$$

Theorem (D., 2019)

Let M satisfy (lc), (dc) and (snq). Then, • FSAE: (i) $\mathcal{B}_1^{(M)} : \mathcal{A}^{(M)}(S_1) \to \Lambda^{(M)}$ is surjective. (ii) $\mathcal{B}_1^{(M)} : \mathcal{A}^{(M)}(S_1) \to \Lambda^{(M)}$ admits a continuous linear right inverse. (iii) $\gamma(M) > 1$. • $\mathcal{B}_1^{\{M\}} : \mathcal{A}^{\{M\}}(S_1) \to \Lambda^{\{M\}}$ is surjective iff $\gamma(M) > 1$. • $\mathcal{B}_1^{\{M\}} : \mathcal{A}^{\{M\}}(S_1) \to \Lambda^{\{M\}}$ admits a continuous linear right inverse iff $\gamma(M) > 1$ and M satisfies (β_2).

•
$$S_1 = \{z \in \mathbb{C} \mid \text{Re} \, z > 0\}.$$

Theorem (D., 2019)

Let M satisfy (lc), (dc) and (snq). Then, • FSAE: (i) $\mathcal{B}_1^{(M)} : \mathcal{A}^{(M)}(S_1) \to \Lambda^{(M)}$ is surjective. (ii) $\mathcal{B}_1^{(M)} : \mathcal{A}^{(M)}(S_1) \to \Lambda^{(M)}$ admits a continuous linear right inverse. (iii) $\gamma(M) > 1$. • $\mathcal{B}_1^{\{M\}} : \mathcal{A}^{\{M\}}(S_1) \to \Lambda^{\{M\}}$ is surjective iff $\gamma(M) > 1$. • $\mathcal{B}_1^{\{M\}} : \mathcal{A}^{\{M\}}(S_1) \to \Lambda^{\{M\}}$ admits a continuous linear right inverse iff $\gamma(M) > 1$ and M satisfies (β_2).

•
$$S_1 = \{z \in \mathbb{C} \mid \text{Re} \, z > 0\}.$$

Theorem (D., 2019)

Let M satisfy (lc), (dc) and (snq). Then, • FSAE: (i) $\mathcal{B}_1^{(M)} : \mathcal{A}^{(M)}(S_1) \to \Lambda^{(M)}$ is surjective. (ii) $\mathcal{B}_1^{(M)} : \mathcal{A}^{(M)}(S_1) \to \Lambda^{(M)}$ admits a continuous linear right inverse. (iii) $\gamma(M) > 1$. • $\mathcal{B}_1^{\{M\}} : \mathcal{A}^{\{M\}}(S_1) \to \Lambda^{\{M\}}$ is surjective iff $\gamma(M) > 1$. • $\mathcal{B}_1^{\{M\}} : \mathcal{A}^{\{M\}}(S_1) \to \Lambda^{\{M\}}$ admits a continuous linear right inverse iff $\gamma(M) > 1$ and M satisfies (β_2).

Let M satisfy (lc), (dc) and (snq). Let $0 < \gamma < \gamma(M)$. Then,

- $\mathcal{B}_{\gamma}^{(M)}: \mathcal{A}^{(M)}(S_{\gamma}) \to \Lambda^{(M)}$ admits a continuous linear right inverse.
- $\mathcal{B}^{\{M\}}_{\gamma} : \mathcal{A}^{\{M\}}(S_{\gamma}) \to \Lambda^{\{M\}}$ is surjective.

• If M satisfies (β_2) , $\mathcal{B}^{\{M\}}_{\gamma} : \mathcal{A}^{\{M\}}(S_{\gamma}) \to \Lambda^{\{M\}}$ admits a continuous linear right inverse.

• Reduction to the case $\gamma = 1$.

Let M satisfy (lc), (dc) and (snq). Let $0 < \gamma < \gamma(M)$. Then,

- $\mathcal{B}_{\gamma}^{(M)}: \mathcal{A}^{(M)}(S_{\gamma}) \to \Lambda^{(M)}$ admits a continuous linear right inverse.
- $\mathcal{B}^{\{M\}}_{\gamma} : \mathcal{A}^{\{M\}}(S_{\gamma}) \to \Lambda^{\{M\}}$ is surjective.

• If M satisfies (β_2) , $\mathcal{B}^{\{M\}}_{\gamma} : \mathcal{A}^{\{M\}}(S_{\gamma}) \to \Lambda^{\{M\}}$ admits a continuous linear right inverse.

• Reduction to the case $\gamma = 1$.

Let M satisfy (lc), (dc) and (snq). Let $0 < \gamma < \gamma(M)$. Then,

- $\mathcal{B}_{\gamma}^{(M)}: \mathcal{A}^{(M)}(S_{\gamma}) \to \Lambda^{(M)}$ admits a continuous linear right inverse.
- $\mathcal{B}^{\{M\}}_{\gamma} : \mathcal{A}^{\{M\}}(S_{\gamma}) \to \Lambda^{\{M\}}$ is surjective.
- If M satisfies (β_2) , $\mathcal{B}^{\{M\}}_{\gamma} : \mathcal{A}^{\{M\}}(S_{\gamma}) \to \Lambda^{\{M\}}$ admits a continuous linear right inverse.

• Reduction to the case $\gamma = 1$.

Let M satisfy (lc), (dc) and (snq). Let $0 < \gamma < \gamma(M)$. Then,

- $\mathcal{B}_{\gamma}^{(M)}: \mathcal{A}^{(M)}(S_{\gamma}) \to \Lambda^{(M)}$ admits a continuous linear right inverse.
- $\mathcal{B}^{\{M\}}_{\gamma} : \mathcal{A}^{\{M\}}(S_{\gamma}) \to \Lambda^{\{M\}}$ is surjective.
- If M satisfies (β₂), B^{M}_γ : A^{M}(S_γ) → Λ^{M} admits a continuous linear right inverse.

• Reduction to the case $\gamma = 1$.

Let M satisfy (lc), (dc) and (snq). Let $0 < \gamma < \gamma(M)$. Then,

- $\mathcal{B}_{\gamma}^{(M)}: \mathcal{A}^{(M)}(S_{\gamma}) \to \Lambda^{(M)}$ admits a continuous linear right inverse.
- $\mathcal{B}^{\{M\}}_{\gamma} : \mathcal{A}^{\{M\}}(S_{\gamma}) \to \Lambda^{\{M\}}$ is surjective.
- If M satisfies (β₂), B^{M}_γ : A^{M}(S_γ) → Λ^{M} admits a continuous linear right inverse.

• Reduction to the case $\gamma = 1$.

Theorem (Jiménez-Garrido, Sanz, Schindl, 2018)

Let *M* satisfy (*lc*), (*mg*) and (snq). If $0 < \gamma \in \mathbb{Q}$ and $\mathcal{B}_{\gamma}^{[M]} : \mathcal{A}^{[M]}(S_{\gamma}) \to \Lambda^{[M]}$ is surjective, then $\gamma < \gamma(M)$.

- Schmets and Valdivia (2000): γ ∈ N. Reduction to the Borel problem in Denjoy-Carleman classes.
- Refinement of the method of Schmets and Valdivia.

Open problem

Show that

$${\mathcal B}_{\gamma}^{[M]}: {\mathcal A}^{[M]}(S_{\gamma}) o \Lambda^{[M]}$$
 is surjective $\Rightarrow \gamma < \gamma(M)$

Theorem (Jiménez-Garrido, Sanz, Schindl, 2018)

Let M satisfy (lc), (mg) and (snq). If $0 < \gamma \in \mathbb{Q}$ and $\mathcal{B}_{\gamma}^{[M]} : \mathcal{A}^{[M]}(S_{\gamma}) \to \Lambda^{[M]}$ is surjective, then $\gamma < \gamma(M)$.

- Schmets and Valdivia (2000): γ ∈ N. Reduction to the Borel problem in Denjoy-Carleman classes.
- Refinement of the method of Schmets and Valdivia.

Open problem

Show that

$$\mathcal{B}_{\gamma}^{[M]}:\mathcal{A}^{[M]}(S_{\gamma})
ightarrow \Lambda^{[M]}$$
 is surjective $\Rightarrow \gamma < \gamma(M)$

Theorem (Jiménez-Garrido, Sanz, Schindl, 2018)

Let M satisfy (lc), (mg) and (snq). If $0 < \gamma \in \mathbb{Q}$ and $\mathcal{B}_{\gamma}^{[M]} : \mathcal{A}^{[M]}(S_{\gamma}) \to \Lambda^{[M]}$ is surjective, then $\gamma < \gamma(M)$.

 Schmets and Valdivia (2000): γ ∈ N. Reduction to the Borel problem in Denjoy-Carleman classes.

• Refinement of the method of Schmets and Valdivia.

Open problem

Show that

$$\mathcal{B}_{\gamma}^{[M]}:\mathcal{A}^{[M]}(S_{\gamma})
ightarrow \Lambda^{[M]}$$
 is surjective $\Rightarrow \gamma < \gamma(M)$

Theorem (Jiménez-Garrido, Sanz, Schindl, 2018)

Let M satisfy (lc), (mg) and (snq). If $0 < \gamma \in \mathbb{Q}$ and $\mathcal{B}_{\gamma}^{[M]} : \mathcal{A}^{[M]}(S_{\gamma}) \to \Lambda^{[M]}$ is surjective, then $\gamma < \gamma(M)$.

- Schmets and Valdivia (2000): γ ∈ N. Reduction to the Borel problem in Denjoy-Carleman classes.
- Refinement of the method of Schmets and Valdivia.

Open problem

Show that

$$\mathcal{B}_{\gamma}^{[M]}: \mathcal{A}^{[M]}(S_{\gamma}) \to \Lambda^{[M]}$$
 is surjective $\Rightarrow \gamma < \gamma(M)$

Theorem (Jiménez-Garrido, Sanz, Schindl, 2018)

Let *M* satisfy (*lc*), (*mg*) and (snq). If $0 < \gamma \in \mathbb{Q}$ and $\mathcal{B}_{\gamma}^{[M]} : \mathcal{A}^{[M]}(S_{\gamma}) \to \Lambda^{[M]}$ is surjective, then $\gamma < \gamma(M)$.

- Schmets and Valdivia (2000): γ ∈ N. Reduction to the Borel problem in Denjoy-Carleman classes.
- Refinement of the method of Schmets and Valdivia.

Open problem

Show that

$${\mathcal B}_{\gamma}^{[M]}: {\mathcal A}^{[M]}(S_{\gamma}) o \Lambda^{[M]}$$
 is surjective $\Rightarrow \, \gamma < \gamma(M)$

Non-uniform ultraholomorphic classes and the asymptotic Borel map

• Let $\gamma > 0$. We define

$$\widetilde{\mathcal{A}}^{[M]}(\mathcal{S}_{\gamma}) := igcap_{\lambda < \gamma} \mathcal{A}^{[M]}(\mathcal{S}_{\lambda}).$$

• The asymptotic Borel map

$$\widetilde{\mathcal{B}}_{\gamma}^{[M]}:\widetilde{\mathcal{A}}^{[M]}(S_{\gamma}) o \Lambda^{[M]}, f \mapsto (f^{(p)}(0))_{p \in \mathbb{N}}$$

is well-defined and continuous.

Theorem (Jiménez-Garrido, Sanz, Schindl, 2018)

Let *M* satisfy (*Ic*), (*mg*) and (*snq*). Let $\gamma > 0$. If $\widetilde{\mathcal{B}}_{\gamma}^{[M]} : \mathcal{A}^{[M]}(S_{\gamma}) \to \Lambda^{[M]}$ is surjective, then $\gamma \leq \gamma(M)$.

Non-uniform ultraholomorphic classes and the asymptotic Borel map

• Let $\gamma > 0$. We define

$$\widetilde{\mathcal{A}}^{[M]}(\mathcal{S}_{\gamma}) := igcap_{\lambda < \gamma} \mathcal{A}^{[M]}(\mathcal{S}_{\lambda}).$$

The asymptotic Borel map

$$\widetilde{\mathcal{B}}_{\gamma}^{[M]}:\widetilde{\mathcal{A}}^{[M]}(S_{\gamma}) o \Lambda^{[M]}, f\mapsto (f^{(p)}(0))_{p\in\mathbb{N}}$$

is well-defined and continuous.

Theorem (Jiménez-Garrido, Sanz, Schindl, 2018)

Let M satisfy (Ic), (mg) and (snq). Let $\gamma > 0$. If $\widetilde{\mathcal{B}}_{\gamma}^{[M]} : \mathcal{A}^{[M]}(S_{\gamma}) \to \Lambda^{[M]}$ is surjective, then $\gamma \leq \gamma(M)$.

Non-uniform ultraholomorphic classes and the asymptotic Borel map

• Let $\gamma > 0$. We define

$$\widetilde{\mathcal{A}}^{[M]}(\mathcal{S}_{\gamma}) := igcap_{\lambda < \gamma} \mathcal{A}^{[M]}(\mathcal{S}_{\lambda}).$$

The asymptotic Borel map

$$\widetilde{\mathcal{B}}_{\gamma}^{[M]}:\widetilde{\mathcal{A}}^{[M]}(S_{\gamma}) o \Lambda^{[M]}, f\mapsto (f^{(p)}(0))_{p\in\mathbb{N}}$$

is well-defined and continuous.

Theorem (Jiménez-Garrido, Sanz, Schindl, 2018)

Let M satisfy (lc), (mg) and (snq). Let $\gamma > 0$. If $\widetilde{\mathcal{B}}_{\gamma}^{[M]} : \mathcal{A}^{[M]}(S_{\gamma}) \to \Lambda^{[M]}$ is surjective, then $\gamma \leq \gamma(M)$.

< ロ > < 同 > < 三 > < 三 >
Theorem (Ramis, 1978)

$$\widetilde{\mathcal{B}}_{\gamma}^{\{p!^{\alpha}\}}: \widetilde{\mathcal{A}}^{\{p!^{\alpha}\}}(S_{\gamma}) \to \Lambda^{\{p!^{\alpha}\}} \text{ is surjective iff } \gamma \leq \alpha.$$

- Explicit construction using a truncated Laplace transform with respect to the kernel $e^{-1/z^{1/\alpha}}$.
- For all $\gamma < \alpha$ there are $C, \kappa > 0$ such that

$$C^{-1}e^{-\kappa^{-1}/|z|^{1/lpha}} \le |e^{-1/z^{1/lpha}}| \le Ce^{-\kappa/|z|^{1/lpha}}, \qquad z \in S_{\gamma}.$$

Theorem (Ramis, 1978)

$$\widetilde{\mathcal{B}}_{\gamma}^{\{p!^{\alpha}\}}: \widetilde{\mathcal{A}}^{\{p!^{\alpha}\}}(S_{\gamma}) \to \Lambda^{\{p!^{\alpha}\}} \text{ is surjective iff } \gamma \leq \alpha.$$

- Explicit construction using a truncated Laplace transform with respect to the kernel $e^{-1/z^{1/\alpha}}$.
- For all $\gamma < \alpha$ there are $C, \kappa > 0$ such that

$$C^{-1}e^{-\kappa^{-1}/|z|^{1/\alpha}} \le |e^{-1/z^{1/\alpha}}| \le Ce^{-\kappa/|z|^{1/\alpha}}, \qquad z \in S_{\gamma}.$$

Theorem (Ramis, 1978)

$$\widetilde{\mathcal{B}}_{\gamma}^{\{p!^{\alpha}\}}: \widetilde{\mathcal{A}}^{\{p!^{\alpha}\}}(S_{\gamma}) \to \Lambda^{\{p!^{\alpha}\}} \text{ is surjective iff } \gamma \leq \alpha.$$

- Explicit construction using a truncated Laplace transform with respect to the kernel $e^{-1/z^{1/\alpha}}$.
- For all $\gamma < \alpha$ there are $C, \kappa > 0$ such that

$$C^{-1}e^{-\kappa^{-1}/|z|^{1/\alpha}} \leq |e^{-1/z^{1/\alpha}}| \leq Ce^{-\kappa/|z|^{1/\alpha}}, \qquad z \in S_{\gamma}.$$

Theorem (D., 2020)

Let M satisfy (Ic), (mg) and (snq). Let $\gamma >$ 0. FSAE:

- (i) $\widetilde{\mathcal{B}}_{\gamma}^{(M)} : \widetilde{\mathcal{A}}^{(M)}(S_{\gamma}) \to \Lambda^{(M)}$ is surjective.
- (ii) $\widetilde{\mathcal{B}}_{\gamma}^{(M)} : \widetilde{\mathcal{A}}^{(M)}(S_{\gamma}) \to \Lambda^{(M)}$ admits a continuous linear right inverse. (iii) $\gamma \leq \gamma(M)$.

18 / 20

Theorem (D., 2020)

Let M satisfy (lc), (mg) and (snq). Let $\gamma > 0$. FSAE:

(i)
$$\widetilde{\mathcal{B}}_{\gamma}^{(M)}: \widetilde{\mathcal{A}}^{(M)}(S_{\gamma}) \to \Lambda^{(M)}$$
 is surjective.

(ii) $\widetilde{\mathcal{B}}_{\gamma}^{(M)} : \widetilde{\mathcal{A}}^{(M)}(S_{\gamma}) \to \Lambda^{(M)}$ admits a continuous linear right inverse. (iii) $\gamma \leq \gamma(M)$.

$$\ker \mathcal{B}^{(M)}_{\gamma_2} \to \ker \mathcal{B}^{(M)}_{\gamma_1}, \qquad \gamma_1 < \gamma_2 < \gamma(M),$$

has dense range.

- Existence of continuous linear right inverse: (DN)-(Ω) splitting theorem of Vogt and Wagner. Show that ker B^(M)_γ satisfies (Ω).
- Technical tools: Holomorphic "cut-off" functions + decomposition of holomorphic functions (cf. Langenbruch (2012)).

19/20

$$\ker \mathcal{B}^{(M)}_{\gamma_2} o \ker \mathcal{B}^{(M)}_{\gamma_1}, \qquad \gamma_1 < \gamma_2 < \gamma(M),$$

has dense range.

- Existence of continuous linear right inverse: (DN)-(Ω) splitting theorem of Vogt and Wagner. Show that ker B^(M)_γ satisfies (Ω).
- Technical tools: Holomorphic "cut-off" functions + decomposition of holomorphic functions (cf. Langenbruch (2012)).

$$\ker \mathcal{B}^{(M)}_{\gamma_2} o \ker \mathcal{B}^{(M)}_{\gamma_1}, \qquad \gamma_1 < \gamma_2 < \gamma(M),$$

has dense range.

- Existence of continuous linear right inverse: (DN)-(Ω) splitting theorem of Vogt and Wagner. Show that ker B^(M)_γ satisfies (Ω).
- Technical tools: Holomorphic "cut-off" functions + decomposition of holomorphic functions (cf. Langenbruch (2012)).

$$\ker \mathcal{B}^{(M)}_{\gamma_2} o \ker \mathcal{B}^{(M)}_{\gamma_1}, \qquad \gamma_1 < \gamma_2 < \gamma(M),$$

has dense range.

- Existence of continuous linear right inverse: (DN)-(Ω) splitting theorem of Vogt and Wagner. Show that ker B_γ^(M) satisfies (Ω).
- Technical tools: Holomorphic "cut-off" functions + decomposition of holomorphic functions (cf. Langenbruch (2012)).

19/20

$$\ker \mathcal{B}^{(M)}_{\gamma_2} o \ker \mathcal{B}^{(M)}_{\gamma_1}, \qquad \gamma_1 < \gamma_2 < \gamma(M),$$

has dense range.

- Existence of continuous linear right inverse: (DN)-(Ω) splitting theorem of Vogt and Wagner. Show that ker B_γ^(M) satisfies (Ω).
- Technical tools: Holomorphic "cut-off" functions + decomposition of holomorphic functions (cf. Langenbruch (2012)).

Open problem

Let *M* satisfy (*lc*), (*mg*) and (*snq*). Let $0 < \gamma \leq \gamma(M)$. Show that $\widetilde{\mathcal{B}}_{\gamma(M)}^{\{M\}} : \widetilde{\mathcal{A}}^{\{M\}}(S_{\gamma(M)}) \to \Lambda^{\{M\}}$ is surjective.

- The Mittag-Leffler procedure does not seem to be applicable in this case: I believe that Proj¹ ker β^{M}_{γ(M)} ≠ 0.
- It suffices to show that there exist $F \in \mathcal{O}(S_{\gamma(M)})$ such that for each $\gamma < \gamma(M)$ there are $C, \kappa > 0$ with

$$C^{-1}e^{-\omega_M(\kappa^{-1}/|z|)} \le |F(z)| \le Ce^{-\omega_M(\kappa/|z|)} \qquad z \in S_{\gamma}.$$

Open problem

Let *M* satisfy (*lc*), (*mg*) and (*snq*). Let $0 < \gamma \leq \gamma(M)$. Show that $\widetilde{\mathcal{B}}_{\gamma(M)}^{\{M\}} : \widetilde{\mathcal{A}}^{\{M\}}(S_{\gamma(M)}) \to \Lambda^{\{M\}}$ is surjective.

- The Mittag-Leffler procedure does not seem to be applicable in this case: I believe that Proj¹ ker β^{M}_{γ(M)} ≠ 0.
- It suffices to show that there exist $F \in \mathcal{O}(S_{\gamma(M)})$ such that for each $\gamma < \gamma(M)$ there are $C, \kappa > 0$ with

$$C^{-1}e^{-\omega_M(\kappa^{-1}/|z|)} \leq |F(z)| \leq Ce^{-\omega_M(\kappa/|z|)} \qquad z \in S_{\gamma}.$$

Open problem

Let *M* satisfy (*lc*), (*mg*) and (*snq*). Let $0 < \gamma \le \gamma(M)$. Show that $\widetilde{\mathcal{B}}^{\{M\}}_{\gamma(M)} : \widetilde{\mathcal{A}}^{\{M\}}(S_{\gamma(M)}) \to \Lambda^{\{M\}}$ is surjective.

- The Mittag-Leffler procedure does not seem to be applicable in this case: I believe that Proj¹ ker β^{M}_{γ(M)} ≠ 0.
- It suffices to show that there exist $F \in \mathcal{O}(S_{\gamma(M)})$ such that for each $\gamma < \gamma(M)$ there are $C, \kappa > 0$ with

$$C^{-1}e^{-\omega_{\mathcal{M}}(\kappa^{-1}/|z|)} \leq |F(z)| \leq Ce^{-\omega_{\mathcal{M}}(\kappa/|z|)} \qquad z \in S_{\gamma}.$$