On the Borel, the Borel-Ritt and the Stieltjes moment problem

Andreas Debrouwere

Ghent University

19 September 2019

Introduction.

- Introduction.
- **2** The Borel problem in spaces of ultradifferentiable functions.
- ③ The Borel-Ritt problem in spaces of ultraholomorphic functions.
- The Stieltjes moment problem in Gelfand-Shilov spaces.

- Introduction.
- **2** The Borel problem in spaces of ultradifferentiable functions.
- **③** The Borel-Ritt problem in spaces of ultraholomorphic functions.
- The Stieltjes moment problem in Gelfand-Shilov spaces.

- Introduction.
- **2** The Borel problem in spaces of ultradifferentiable functions.
- **③** The Borel-Ritt problem in spaces of ultraholomorphic functions.
- In the Stieltjes moment problem in Gelfand-Shilov spaces.

Theorem (E. Borel, 1895; Peano, 1894)

For every $(a_p)_{p \in \mathbb{N}} \subset \mathbb{C}^{\mathbb{N}}$ there is $\varphi \in C^{\infty}(\mathbb{R})$ such that $\varphi^{(p)}(0) = a_p$ for all $p \in \mathbb{N}$.

• Let Σ be the Riemann surface of the logarithm. Set

$$S_{\lambda} = \{ z \in \Sigma \mid | \operatorname{Arg} z | < \frac{\pi \lambda}{2} \}, \qquad \lambda > 0.$$

$$\varphi^{(p)}(0) := \lim_{z \to 0; z \in S_{\lambda}} \varphi^{(p)}(z), \qquad \forall p \in \mathbb{N}.$$

Theorem (Ritt, 1916)

Let $\lambda > 0$. For every $(a_p)_{p \in \mathbb{N}} \subset \mathbb{C}^{\mathbb{N}}$ there is $\varphi \in \mathcal{A}(S_{\lambda})$ such that $\varphi^{(p)}(0) = a_p$ for all $p \in \mathbb{N}$.

(U) (D) (2) (2) (2)

• Let Σ be the Riemann surface of the logarithm. Set

$$\mathcal{S}_{\lambda} = \{ z \in \Sigma \, | \, | \, \operatorname{Arg} z | < rac{\pi \lambda}{2} \}, \qquad \lambda > 0.$$

•
$$S_1 = \{z \in \mathbb{C} \mid \text{Re } z > 0\}.$$

• $\mathcal{A}(S_{\lambda}) := \{\varphi \in \mathcal{O}(S_{\lambda}) \mid \sup_{z \in S_{\lambda}} |\varphi^{(p)}(z)| < \infty, \forall p \in \mathbb{N}\}.$
• For $\varphi \in \mathcal{A}(S_{\lambda})$ we may define

$$\varphi^{(p)}(0) := \lim_{z \to 0; z \in S_{\lambda}} \varphi^{(p)}(z), \qquad \forall p \in \mathbb{N}.$$

Theorem (Ritt, 1916)

Let $\lambda > 0$. For every $(a_p)_{p \in \mathbb{N}} \subset \mathbb{C}^{\mathbb{N}}$ there is $\varphi \in \mathcal{A}(S_{\lambda})$ such that $\varphi^{(p)}(0) = a_p$ for all $p \in \mathbb{N}$.

• Let Σ be the Riemann surface of the logarithm. Set

$$\mathcal{S}_{\lambda} = \{ z \in \Sigma \, | \, | \, \operatorname{Arg} z | < rac{\pi \lambda}{2} \}, \qquad \lambda > 0.$$

• $S_1 = \{z \in \mathbb{C} \mid \text{Re } z > 0\}.$ • $\mathcal{A}(S_{\lambda}) := \{\varphi \in \mathcal{O}(S_{\lambda}) \mid \sup_{z \in S_{\lambda}} |\varphi^{(p)}(z)| < \infty, \forall p \in \mathbb{N}\}.$ • For $\varphi \in \mathcal{A}(S_{\lambda})$ we may define

$$\varphi^{(p)}(0) := \lim_{z \to 0; z \in S_{\lambda}} \varphi^{(p)}(z), \quad \forall p \in \mathbb{N}.$$

Theorem (Ritt, 1916)

Let $\lambda > 0$. For every $(a_p)_{p \in \mathbb{N}} \subset \mathbb{C}^{\mathbb{N}}$ there is $\varphi \in \mathcal{A}(S_{\lambda})$ such that $\varphi^{(p)}(0) = a_p$ for all $p \in \mathbb{N}$.

• Let Σ be the Riemann surface of the logarithm. Set

$$S_{\lambda} = \{ z \in \Sigma \, | \, | \, \operatorname{Arg} z | < rac{\pi \lambda}{2} \}, \qquad \lambda > 0.$$

•
$$S_1 = \{z \in \mathbb{C} \mid \text{Re } z > 0\}.$$

• $\mathcal{A}(S_{\lambda}) := \{\varphi \in \mathcal{O}(S_{\lambda}) \mid \sup_{z \in S_{\lambda}} |\varphi^{(p)}(z)| < \infty, \forall p \in \mathbb{N}\}.$
• For $\varphi \in \mathcal{A}(S_{\lambda})$ we may define
 $\varphi^{(p)}(0) := \lim_{z \in S_{\lambda}} \varphi^{(p)}(z), \quad \forall p \in \mathbb{N}.$

Theorem (Ritt, 1916)

Let $\lambda > 0$. For every $(a_p)_{p \in \mathbb{N}} \subset \mathbb{C}^{\mathbb{N}}$ there is $\varphi \in \mathcal{A}(S_{\lambda})$ such that $\varphi^{(p)}(0) = a_p$ for all $p \in \mathbb{N}$.

• Let Σ be the Riemann surface of the logarithm. Set

$$\mathcal{S}_{\lambda} = \{ z \in \Sigma \, | \, | \, \operatorname{Arg} z | < rac{\pi \lambda}{2} \}, \qquad \lambda > 0.$$

•
$$S_1 = \{z \in \mathbb{C} \mid \operatorname{Re} z > 0\}.$$

• $\mathcal{A}(S_{\lambda}) := \{\varphi \in \mathcal{O}(S_{\lambda}) \mid \sup_{z \in S_{\lambda}} |\varphi^{(p)}(z)| < \infty, \forall p \in \mathbb{N}\}.$

• For $\varphi \in \mathcal{A}(S_{\lambda})$ we may define

$$arphi^{(p)}(0) := \lim_{z o 0; z \in S_{\lambda}} arphi^{(p)}(z), \qquad orall p \in \mathbb{N}.$$

Theorem (Ritt, 1916)

Let $\lambda > 0$. For every $(a_p)_{p \in \mathbb{N}} \subset \mathbb{C}^{\mathbb{N}}$ there is $\varphi \in \mathcal{A}(S_{\lambda})$ such that $\varphi^{(p)}(0) = a_p$ for all $p \in \mathbb{N}$.

• Let Σ be the Riemann surface of the logarithm. Set

$$\mathcal{S}_{\lambda} = \{ z \in \Sigma \, | \, | \, \operatorname{Arg} z | < rac{\pi \lambda}{2} \}, \qquad \lambda > 0.$$

•
$$S_1 = \{z \in \mathbb{C} \mid \operatorname{Re} z > 0\}.$$

• $\mathcal{A}(S_{\lambda}) := \{\varphi \in \mathcal{O}(S_{\lambda}) \mid \sup_{z \in S_{\lambda}} |\varphi^{(p)}(z)| < \infty, \forall p \in \mathbb{N}\}.$

• For $\varphi \in \mathcal{A}(S_{\lambda})$ we may define

$$arphi^{(p)}(0) := \lim_{z o 0; z \in S_{\lambda}} arphi^{(p)}(z), \qquad orall p \in \mathbb{N}.$$

Theorem (Ritt, 1916)

Let $\lambda > 0$. For every $(a_p)_{p \in \mathbb{N}} \subset \mathbb{C}^{\mathbb{N}}$ there is $\varphi \in \mathcal{A}(S_{\lambda})$ such that $\varphi^{(p)}(0) = a_p$ for all $p \in \mathbb{N}$.

Theorem (Stieltjes, 1894)

Let $(a_p)_{p\in\mathbb{N}}\subset\mathbb{R}^{\mathbb{N}}_+$. There is a positive measure μ such that

$$\int_0^\infty x^p \mathrm{d}\mu(x) = a_p, \qquad \forall p \in \mathbb{N},$$

if and only if

$$\det \Delta_{\rho} > 0$$
 and $\det \Delta_{\rho}^{(1)} > 0, \quad \forall \rho \in \mathbb{N}.$

• Stieltjes integral, Stieltjes transform, ...

• M. Riesz (1922): Extension of positive linear functionals.

Theorem (Stieltjes, 1894)

Let $(a_p)_{p\in\mathbb{N}}\subset\mathbb{R}^{\mathbb{N}}_+$. There is a positive measure μ such that

$$\int_0^\infty x^p \mathrm{d}\mu(x) = a_p, \qquad \forall p \in \mathbb{N},$$

if and only if

$$\det \Delta_p > 0$$
 and $\det \Delta_p^{(1)} > 0$, $\forall p \in \mathbb{N}$.

• Stieltjes integral, Stieltjes transform, ...

• M. Riesz (1922): Extension of positive linear functionals.

Theorem (Boas, Pólya, independently, 1939)

For every $(a_p)_{p\in\mathbb{N}}\subset\mathbb{C}^{\mathbb{N}}$ there is a complex measure μ such that

$$\int_0^\infty x^p \mathrm{d}\mu(x) = a_p, \qquad \forall p \in \mathbb{N}.$$

Theorem (A.J. Durán,1989)

For every $(a_p)_{p\in\mathbb{N}}\subset\mathbb{C}^{\mathbb{N}}$ there is $arphi\in\mathcal{S}(0,\infty)$ such that

$$\int_0^\infty x^p \varphi(x) \mathrm{d} x = a_p, \qquad \forall p \in \mathbb{N}.$$

• A.L. Durán, Estrada (1994): Reduction to Borel-Ritt problem on the right half-plane via Laplace transform.

Theorem (Boas, Pólya, independently, 1939)

For every $(a_p)_{p\in\mathbb{N}}\subset\mathbb{C}^{\mathbb{N}}$ there is a complex measure μ such that

$$\int_0^\infty x^p \mathrm{d} \mu(x) = a_p, \qquad orall p \in \mathbb{N}.$$

Theorem (A.J. Durán, 1989)

For every $(a_p)_{p\in\mathbb{N}}\subset\mathbb{C}^{\mathbb{N}}$ there is $\varphi\in\mathcal{S}(0,\infty)$ such that

$$\int_0^\infty x^p \varphi(x) \mathrm{d}x = a_p, \qquad orall p \in \mathbb{N}.$$

• A.L. Durán, Estrada (1994): Reduction to Borel-Ritt problem on the right half-plane via Laplace transform.

Theorem (Boas, Pólya, independently, 1939)

For every $(a_p)_{p\in\mathbb{N}}\subset\mathbb{C}^{\mathbb{N}}$ there is a complex measure μ such that

$$\int_0^\infty x^p \mathrm{d} \mu(x) = a_p, \qquad orall p \in \mathbb{N}.$$

Theorem (A.J. Durán, 1989)

For every $(a_p)_{p\in\mathbb{N}}\subset\mathbb{C}^{\mathbb{N}}$ there is $\varphi\in\mathcal{S}(0,\infty)$ such that

$$\int_0^\infty x^p \varphi(x) \mathrm{d}x = a_p, \qquad orall p \in \mathbb{N}.$$

• A.L. Durán, Estrada (1994): Reduction to Borel-Ritt problem on the right half-plane via Laplace transform.

Let M = (M_p)_{p∈N} be a sequence of positive numbers.
 For h > 0 and R > 0 we define

$$\mathcal{E}^{M,h}([-R,R]) := \{ \varphi \in C^{\infty}([-R,R]) \mid \sup_{\rho \in \mathbb{N}} \sup_{x \in [-R,R]} \frac{|\varphi^{(p)}(x)|}{h^{p}M_{p}} < \infty \}.$$

$$\mathcal{E}^{(M)}(\mathbb{R}) := \bigcap_{R>0} \bigcap_{h>0} \mathcal{E}^{M,h}([-R,R])$$

$$\mathcal{E}^{\{M\}}(\mathbb{R}) := \bigcap_{R>0} \bigcup_{h>0} \mathcal{E}^{M,h}([-R,R]).$$

- $\mathcal{E}^{\{(p!)_p\}}(\mathbb{R})$ is the space of real analytic functions on \mathbb{R} .
- $\mathcal{E}^{((p!)_p)}(\mathbb{R})$ is the space of entire functions on \mathbb{R} .
- The spaces *E*^{(p!^α)_p}(ℝ), α > 1, were introduced by Gevrey (around 1910) to analyze the regularity of solutions to PDE's.

- Let $M = (M_p)_{p \in \mathbb{N}}$ be a sequence of positive numbers.
- For h > 0 and R > 0 we define

$$\mathcal{E}^{M,h}([-R,R]) := \{\varphi \in C^{\infty}([-R,R]) \mid \sup_{p \in \mathbb{N}} \sup_{x \in [-R,R]} \frac{|\varphi^{(p)}(x)|}{h^p M_p} < \infty \}.$$

$$\mathcal{E}^{(M)}(\mathbb{R}) := \bigcap_{R>0} \bigcap_{h>0} \mathcal{E}^{M,h}([-R,R])$$

and

$$\mathcal{E}^{\{M\}}(\mathbb{R}) := \bigcap_{R>0} \bigcup_{h>0} \mathcal{E}^{M,h}([-R,R]).$$

- $\mathcal{E}^{\{(p!)_p\}}(\mathbb{R})$ is the space of real analytic functions on \mathbb{R} .
- $\mathcal{E}^{((p!)_p)}(\mathbb{R})$ is the space of entire functions on \mathbb{R} .
- The spaces $\mathcal{E}^{\{(p!^{\alpha})_p\}}(\mathbb{R}), \alpha > 1$, were introduced by Gevrey (around 1910) to analyze the regularity of solutions to PDE's.

. () . . .

- Let $M = (M_p)_{p \in \mathbb{N}}$ be a sequence of positive numbers.
- For h > 0 and R > 0 we define

$$\mathcal{E}^{M,h}([-R,R]) := \{ \varphi \in C^{\infty}([-R,R]) \mid \sup_{p \in \mathbb{N}} \sup_{x \in [-R,R]} \frac{|\varphi^{(p)}(x)|}{h^p M_p} < \infty \}.$$

$$\mathcal{E}^{(M)}(\mathbb{R}) := \bigcap_{R>0} \bigcap_{h>0} \mathcal{E}^{M,h}([-R,R])$$

$$\mathcal{E}^{\{M\}}(\mathbb{R}) := \bigcap_{R>0} \bigcup_{h>0} \mathcal{E}^{M,h}([-R,R]).$$

- $\mathcal{E}^{\{(p!)_p\}}(\mathbb{R})$ is the space of real analytic functions on \mathbb{R} .
- $\mathcal{E}^{((p!)_p)}(\mathbb{R})$ is the space of entire functions on \mathbb{R} .
- The spaces $\mathcal{E}^{\{(p!^{\alpha})_p\}}(\mathbb{R})$, $\alpha > 1$, were introduced by Gevrey (around 1910) to analyze the regularity of solutions to PDE's.

- Let $M = (M_p)_{p \in \mathbb{N}}$ be a sequence of positive numbers.
- For h > 0 and R > 0 we define

$$\mathcal{E}^{M,h}([-R,R]) := \{ \varphi \in C^{\infty}([-R,R]) \mid \sup_{p \in \mathbb{N}} \sup_{x \in [-R,R]} \frac{|\varphi^{(p)}(x)|}{h^p M_p} < \infty \}.$$

$$\mathcal{E}^{(M)}(\mathbb{R}) := \bigcap_{R>0} \bigcap_{h>0} \mathcal{E}^{M,h}([-R,R])$$

$$\mathcal{E}^{\{M\}}(\mathbb{R}) := \bigcap_{R>0} \bigcup_{h>0} \mathcal{E}^{M,h}([-R,R]).$$

- $\mathcal{E}^{\{(p!)_p\}}(\mathbb{R})$ is the space of real analytic functions on \mathbb{R} .
- $\mathcal{E}^{((p!)_p)}(\mathbb{R})$ is the space of entire functions on \mathbb{R} .
- The spaces *E*^{(p!^α)p}(ℝ), α > 1, were introduced by Gevrey (around 1910) to analyze the regularity of solutions to PDE's.

- Let $M = (M_p)_{p \in \mathbb{N}}$ be a sequence of positive numbers.
- For h > 0 and R > 0 we define

$$\mathcal{E}^{M,h}([-R,R]) := \{ \varphi \in C^{\infty}([-R,R]) \mid \sup_{p \in \mathbb{N}} \sup_{x \in [-R,R]} \frac{|\varphi^{(p)}(x)|}{h^p M_p} < \infty \}.$$

$$\mathcal{E}^{(M)}(\mathbb{R}) := \bigcap_{R>0} \bigcap_{h>0} \mathcal{E}^{M,h}([-R,R])$$

$$\mathcal{E}^{\{M\}}(\mathbb{R}) := \bigcap_{R>0} \bigcup_{h>0} \mathcal{E}^{M,h}([-R,R]).$$

- $\mathcal{E}^{\{(p!)_p\}}(\mathbb{R})$ is the space of real analytic functions on \mathbb{R} .
- *E*^{((p!)_p)}(ℝ) is the space of entire functions on ℝ.
- The spaces $\mathcal{E}^{\{(p!^{\alpha})_p\}}(\mathbb{R}), \alpha > 1$, were introduced by Gevrey (around 1910) to analyze the regularity of solutions to PDE's.

- Let $M = (M_p)_{p \in \mathbb{N}}$ be a sequence of positive numbers.
- For h > 0 and R > 0 we define

$$\mathcal{E}^{M,h}([-R,R]) := \{ \varphi \in C^{\infty}([-R,R]) \mid \sup_{p \in \mathbb{N}} \sup_{x \in [-R,R]} \frac{|\varphi^{(p)}(x)|}{h^p M_p} < \infty \}.$$

$$\mathcal{E}^{(M)}(\mathbb{R}) := \bigcap_{R>0} \bigcap_{h>0} \mathcal{E}^{M,h}([-R,R])$$

$$\mathcal{E}^{\{M\}}(\mathbb{R}) := \bigcap_{R>0} \bigcup_{h>0} \mathcal{E}^{M,h}([-R,R]).$$

- $\mathcal{E}^{\{(p!)_p\}}(\mathbb{R})$ is the space of real analytic functions on \mathbb{R} .
- $\mathcal{E}^{((p!)_p)}(\mathbb{R})$ is the space of entire functions on \mathbb{R} .
- The spaces $\mathcal{E}^{\{(p!^{\alpha})_p\}}(\mathbb{R})$, $\alpha > 1$, were introduced by Gevrey (around 1910) to analyze the regularity of solutions to PDE's.

$\begin{array}{ll} (M.1) & M_p^2 \leq M_{p-1}M_{p+1}, \forall p \geq 1. \\ (M.2)' & M_{p+1} \leq AH^pM_p, \forall p \in \mathbb{N}, \text{ for some } A, H > 0. \\ (M.2) & M_{p+q} \leq AH^{p+q}M_pM_q, \forall p, q \in \mathbb{N}, \text{ for some } A, H > 0 \\ (M.3)' & \sum_{p=1}^{\infty} \frac{1}{M_p/M_{p-1}} < \infty. \end{array}$

• The sequence $(p!)_p$ satisfies the above conditions except for (M.3)'.

- The Gevrey sequences $(p!^{\alpha})_{p}$, $\alpha > 1$, satisfy all the above conditions.
- The q-Gevrey sequence $(q^{p^2})_p$, q > 1, satisfy the above conditions except for (M.2).
- For simplicity, we shall only consider the Beurling spaces $\mathcal{E}^{(M)}(\mathbb{R})$. All results have a counterpart for the Roumieu spaces $\mathcal{E}^{\{M\}}(\mathbb{R})$.

$$\begin{array}{ll} (M.1) & M_p^2 \leq M_{p-1}M_{p+1}, \ \forall p \geq 1. \\ (M.2)' & M_{p+1} \leq AH^p M_p, \ \forall p \in \mathbb{N}, \ \text{for some } A, H > 0. \\ (M.2) & M_{p+q} \leq AH^{p+q}M_p M_q, \ \forall p, q \in \mathbb{N}, \ \text{for some } A, H > 0. \\ (M.3)' & \sum_{p=1}^{\infty} \frac{1}{M_p/M_{p-1}} < \infty. \end{array}$$

• The sequence $(p!)_p$ satisfies the above conditions except for (M.3)'.

- The Gevrey sequences $(p!^{\alpha})_{p}$, $\alpha > 1$, satisfy all the above conditions.
- The q-Gevrey sequence (q^{p²})_p, q > 1, satisfy the above conditions except for (M.2).
- For simplicity, we shall only consider the Beurling spaces \$\mathcal{E}^{(M)}(\mathbb{R})\$. All results have a counterpart for the Roumieu spaces \$\mathcal{E}^{\{M\}}(\mathbb{R})\$.

$$\begin{array}{ll} (M.1) & M_p^2 \leq M_{p-1}M_{p+1}, \, \forall p \geq 1. \\ (M.2)' & M_{p+1} \leq AH^p M_p, \, \forall p \in \mathbb{N}, \, \text{for some } A, H > 0. \\ (M.2) & M_{p+q} \leq AH^{p+q}M_p M_q, \, \forall p, q \in \mathbb{N}, \, \text{for some } A, H > 0. \\ (M.3)' & \sum_{p=1}^{\infty} \frac{1}{M_p/M_{p-1}} < \infty. \end{array}$$

- The sequence $(p!)_p$ satisfies the above conditions except for (M.3)'.
- The Gevrey sequences $(p!^{\alpha})_{p}$, $\alpha > 1$, satisfy all the above conditions.
- The q-Gevrey sequence (q^{p²})_p, q > 1, satisfy the above conditions except for (M.2).
- For simplicity, we shall only consider the Beurling spaces \$\mathcal{E}^{(M)}(\mathbb{R})\$. All results have a counterpart for the Roumieu spaces \$\mathcal{E}^{\{M\}}(\mathbb{R})\$.

$$\begin{array}{ll} (M.1) & M_p^2 \leq M_{p-1}M_{p+1}, \ \forall p \geq 1. \\ (M.2)' & M_{p+1} \leq AH^p M_p, \ \forall p \in \mathbb{N}, \ \text{for some } A, H > 0. \\ (M.2) & M_{p+q} \leq AH^{p+q}M_p M_q, \ \forall p, q \in \mathbb{N}, \ \text{for some } A, H > 0. \\ (M.3)' & \sum_{p=1}^{\infty} \frac{1}{M_p/M_{p-1}} < \infty. \end{array}$$

• The sequence $(p!)_p$ satisfies the above conditions except for (M.3)'.

- The Gevrey sequences $(p!^{\alpha})_{p}$, $\alpha > 1$, satisfy all the above conditions.
- The q-Gevrey sequence (q^{p²})_p, q > 1, satisfy the above conditions except for (M.2).
- For simplicity, we shall only consider the Beurling spaces \$\mathcal{E}^{(M)}(\mathbb{R})\$. All results have a counterpart for the Roumieu spaces \$\mathcal{E}^{\{M\}}(\mathbb{R})\$.

$$\begin{array}{ll} (M.1) & M_p^2 \leq M_{p-1}M_{p+1}, \ \forall p \geq 1. \\ (M.2)' & M_{p+1} \leq AH^p M_p, \ \forall p \in \mathbb{N}, \ \text{for some } A, H > 0. \\ (M.2) & M_{p+q} \leq AH^{p+q}M_p M_q, \ \forall p, q \in \mathbb{N}, \ \text{for some } A, H > 0. \\ (M.3)' & \sum_{p=1}^{\infty} \frac{1}{M_p/M_{p-1}} < \infty. \end{array}$$

- The sequence $(p!)_p$ satisfies the above conditions except for (M.3)'.
- The Gevrey sequences $(p!^{\alpha})_{p}$, $\alpha > 1$, satisfy all the above conditions.
- The q-Gevrey sequence (q^{p²})_p, q > 1, satisfy the above conditions except for (M.2).
- For simplicity, we shall only consider the Beurling spaces $\mathcal{E}^{(M)}(\mathbb{R})$. All results have a counterpart for the Roumieu spaces $\mathcal{E}^{\{M\}}(\mathbb{R})$.

$$\begin{array}{ll} (M.1) & M_p^2 \leq M_{p-1}M_{p+1}, \ \forall p \geq 1. \\ (M.2)' & M_{p+1} \leq AH^p M_p, \ \forall p \in \mathbb{N}, \ \text{for some } A, H > 0. \\ (M.2) & M_{p+q} \leq AH^{p+q}M_p M_q, \ \forall p, q \in \mathbb{N}, \ \text{for some } A, H > 0. \\ (M.3)' & \sum_{p=1}^{\infty} \frac{1}{M_p/M_{p-1}} < \infty. \end{array}$$

- The sequence $(p!)_p$ satisfies the above conditions except for (M.3)'.
- The Gevrey sequences $(p!^{\alpha})_{p}$, $\alpha > 1$, satisfy all the above conditions.
- The q-Gevrey sequence $(q^{p^2})_p$, q > 1, satisfy the above conditions except for (M.2).
- For simplicity, we shall only consider the Beurling spaces $\mathcal{E}^{(M)}(\mathbb{R})$. All results have a counterpart for the Roumieu spaces $\mathcal{E}^{\{M\}}(\mathbb{R})$.

$$\begin{array}{ll} (M.1) & M_p^2 \leq M_{p-1}M_{p+1}, \ \forall p \geq 1. \\ (M.2)' & M_{p+1} \leq AH^p M_p, \ \forall p \in \mathbb{N}, \ \text{for some } A, H > 0. \\ (M.2) & M_{p+q} \leq AH^{p+q}M_p M_q, \ \forall p, q \in \mathbb{N}, \ \text{for some } A, H > 0. \\ (M.3)' & \sum_{p=1}^{\infty} \frac{1}{M_p/M_{p-1}} < \infty. \end{array}$$

- The sequence $(p!)_p$ satisfies the above conditions except for (M.3)'.
- The Gevrey sequences $(p!^{\alpha})_{p}$, $\alpha > 1$, satisfy all the above conditions.
- The q-Gevrey sequence (q^{p²})_p, q > 1, satisfy the above conditions except for (M.2).
- For simplicity, we shall only consider the Beurling spaces \$\mathcal{E}^{(M)}(\mathbb{R})\$. All results have a counterpart for the Roumieu spaces \$\mathcal{E}^{\{M\}}(\mathbb{R})\$.

$$\begin{array}{ll} (M.1) & M_p^2 \leq M_{p-1}M_{p+1}, \ \forall p \geq 1. \\ (M.2)' & M_{p+1} \leq AH^p M_p, \ \forall p \in \mathbb{N}, \ \text{for some } A, H > 0. \\ (M.2) & M_{p+q} \leq AH^{p+q}M_p M_q, \ \forall p, q \in \mathbb{N}, \ \text{for some } A, H > 0. \\ (M.3)' & \sum_{p=1}^{\infty} \frac{1}{M_p/M_{p-1}} < \infty. \end{array}$$

- The sequence $(p!)_p$ satisfies the above conditions except for (M.3)'.
- The Gevrey sequences $(p!^{\alpha})_{p}$, $\alpha > 1$, satisfy all the above conditions.
- The q-Gevrey sequence (q^{p²})_p, q > 1, satisfy the above conditions except for (M.2).
- For simplicity, we shall only consider the Beurling spaces \$\mathcal{E}^{(M)}(\mathbb{R})\$. All results have a counterpart for the Roumieu spaces \$\mathcal{E}^{\{M\}}(\mathbb{R})\$.

• We define the sequence space

$$\Lambda^{(M)} := \{ (c_p)_{p \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}} \mid \sup_{p \in \mathbb{N}} \frac{|c_p|}{h^p M_p} < \infty \text{ for all } h > 0 \}.$$

• The Borel mapping

$$\mathcal{B}^{(M)}: \mathcal{E}^{(M)}(\mathbb{R}) \to \Lambda^{(M)}: \varphi \to (\varphi^{(p)}(0))_{p \in \mathbb{N}}$$

is well-defined and continuous.

Problem

- Denjoy-Carleman theorem: $\mathcal{B}^{(M)}$ is injective if and only if M is quasianalytic (= does not satisfy (M.3)').
- If *M* is quasianalytic and non-entire (*E*^(p!)(ℝ) ⊆ *E*^(M)(ℝ)), then *B*^(M) is never surjective (Roumieu case: Carleman (1923)).

• We define the sequence space

$$\Lambda^{(M)} := \{ (c_p)_{p \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}} \, | \sup_{p \in \mathbb{N}} \frac{|c_p|}{h^p M_p} < \infty \text{ for all } h > 0 \}.$$

The Borel mapping

$$\mathcal{B}^{(M)}:\mathcal{E}^{(M)}(\mathbb{R})
ightarrow \Lambda^{(M)}:arphi
ightarrow (arphi^{(p)}(0))_{p\in\mathbb{N}}$$

is well-defined and continuous.

Problem

- Denjoy-Carleman theorem: $\mathcal{B}^{(M)}$ is injective if and only if M is quasianalytic (= does not satisfy (M.3)').
- If *M* is quasianalytic and non-entire $(\mathcal{E}^{(p!)}(\mathbb{R}) \subsetneq \mathcal{E}^{(M)}(\mathbb{R}))$, then $\mathcal{B}^{(M)}$ is never surjective (Roumieu case: Carleman (1923)).

• We define the sequence space

$$\Lambda^{(M)} := \{ (c_p)_{p \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}} \mid \sup_{p \in \mathbb{N}} \frac{|c_p|}{h^p M_p} < \infty \text{ for all } h > 0 \}.$$

The Borel mapping

$$\mathcal{B}^{(M)}:\mathcal{E}^{(M)}(\mathbb{R})
ightarrow \Lambda^{(M)}:arphi
ightarrow (arphi^{(p)}(0))_{p\in\mathbb{N}}$$

is well-defined and continuous.

Problem

- Denjoy-Carleman theorem: $\mathcal{B}^{(M)}$ is injective if and only if M is quasianalytic (= does not satisfy (M.3)').
- If *M* is quasianalytic and non-entire (*E*^(p!)(ℝ) ⊆ *E*^(M)(ℝ)), then *B*^(M) is never surjective (Roumieu case: Carleman (1923)).

• We define the sequence space

$$\Lambda^{(M)} := \{ (c_p)_{p \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}} \mid \sup_{p \in \mathbb{N}} \frac{|c_p|}{h^p M_p} < \infty \text{ for all } h > 0 \}.$$

The Borel mapping

$$\mathcal{B}^{(M)}:\mathcal{E}^{(M)}(\mathbb{R})
ightarrow \Lambda^{(M)}:arphi
ightarrow (arphi^{(p)}(0))_{p\in\mathbb{N}}$$

is well-defined and continuous.

Problem

- Denjoy-Carleman theorem: $\mathcal{B}^{(M)}$ is injective if and only if M is quasianalytic (= does not satisfy (M.3)').
- If *M* is quasianalytic and non-entire (*E*^(p!)(ℝ) ⊆ *E*^(M)(ℝ)), then *B*^(M) is never surjective (Roumieu case: Carleman (1923)).

• We define the sequence space

$$\Lambda^{(M)} := \{ (c_p)_{p \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}} \mid \sup_{p \in \mathbb{N}} \frac{|c_p|}{h^p M_p} < \infty \text{ for all } h > 0 \}.$$

The Borel mapping

$$\mathcal{B}^{(M)}:\mathcal{E}^{(M)}(\mathbb{R})
ightarrow \Lambda^{(M)}:arphi
ightarrow (arphi^{(p)}(0))_{p\in\mathbb{N}}$$

is well-defined and continuous.

Problem

- Denjoy-Carleman theorem: $\mathcal{B}^{(M)}$ is injective if and only if M is quasianalytic (= does not satisfy (M.3)').
- If *M* is quasianalytic and non-entire (*E*^(p!)(ℝ) ⊆ *E*^(M)(ℝ)), then *B*^(M) is never surjective (Roumieu case: Carleman (1923)).

Petzsche's solution to the Borel problem in $\mathcal{E}^{(M_p)}(\mathbb{R})$ (1)

Consider the strong non-quasianalyticity condition

$$(\gamma_1)\sum_{q=p}^{\infty}rac{1}{M_p/M_{p-1}}\leq Crac{p}{M_p/M_{p-1}}, orall p\geq 1, ext{ for some } C>0.$$

• The Gevrey sequences $(p!^{\alpha})_p$, $\alpha > 1$, and the *q*-Gevrey sequences $(q^{p^2})_p$, q > 1, both satisfy (γ_1) .

Theorem (Petzsche, 1988)

Let M satisfy (M.1) and (M.3)'. FSAE:

- (i) M satisfies (γ_1) .
- (ii) $\mathcal{B}^{(M)}$ is surjective.

(iii) $\mathcal{B}^{(M)}$ admits a continuous linear right inverse, that is, there is a continuous linear mapping $R : \Lambda^{(M)} \to \mathcal{E}^{(M)}(\mathbb{R})$ such that $\mathcal{B}^{(M)} \circ R = id$.

Petzsche's solution to the Borel problem in $\mathcal{E}^{(M_p)}(\mathbb{R})$ (1)

Consider the strong non-quasianalyticity condition

$$(\gamma_1)\sum_{q=p}^{\infty}rac{1}{M_p/M_{p-1}}\leq Crac{p}{M_p/M_{p-1}}, \forall p\geq 1, ext{ for some } C>0.$$

• The Gevrey sequences $(p!^{\alpha})_p$, $\alpha > 1$, and the *q*-Gevrey sequences $(q^{p^2})_p$, q > 1, both satisfy (γ_1) .

Theorem (Petzsche, 1988)

Let M satisfy (M.1) and (M.3)'. FSAE:

- (i) M satisfies (γ_1) .
- (ii) $\mathcal{B}^{(M)}$ is surjective.

(iii) $\mathcal{B}^{(M)}$ admits a continuous linear right inverse, that is, there is a continuous linear mapping $R : \Lambda^{(M)} \to \mathcal{E}^{(M)}(\mathbb{R})$ such that $\mathcal{B}^{(M)} \circ R = \mathrm{id}$.

Petzsche's solution to the Borel problem in $\mathcal{E}^{(M_p)}(\mathbb{R})$ (1)

Consider the strong non-quasianalyticity condition

$$(\gamma_1) \sum_{q=p}^{\infty} \frac{1}{M_p/M_{p-1}} \leq C \frac{p}{M_p/M_{p-1}}, \forall p \geq 1, \text{ for some } C > 0.$$

• The Gevrey sequences $(p!^{\alpha})_p$, $\alpha > 1$, and the *q*-Gevrey sequences $(q^{p^2})_p$, q > 1, both satisfy (γ_1) .

Theorem (Petzsche, 1988)

Let M satisfy (M.1) and (M.3)'. FSAE:

- (i) M satisfies (γ_1) .
- (ii) $\mathcal{B}^{(M)}$ is surjective.
- (iii) $\mathcal{B}^{(M)}$ admits a continuous linear right inverse, that is, there is a continuous linear mapping $R : \Lambda^{(M)} \to \mathcal{E}^{(M)}(\mathbb{R})$ such that $\mathcal{B}^{(M)} \circ R = \mathrm{id}$.

・ロット語 マネ 御マ きゅう

• Technical masterpiece.

- Sufficiency: Explicit construction of $\chi_j \in \mathcal{E}^{(M)}(\mathbb{R})$, $j \in \mathbb{N}$, such that $\chi_j^{(p)}(0) = \delta_{j,p}$ and $R(c) = \sum_{j=0}^{\infty} c_j \chi_j \in \mathcal{E}^{(M)}(\mathbb{R})$ for all $c = (c_j)_j \in \Lambda^{(M)}$.
- Necessity: Ingenuous use of Taylor's formula combined with ideas from Hörmander's real analysis proof of the Denjoy-Carleman theorem.
- Langenbruch, Meise and Taylor, independently (1988): Existence of continuous linear right inverse for B^(M) via (DN)-(Ω) splitting theorem of Vogt and Wagner.

• Technical masterpiece.

- Sufficiency: Explicit construction of $\chi_j \in \mathcal{E}^{(M)}(\mathbb{R}), j \in \mathbb{N}$, such that $\chi_j^{(p)}(0) = \delta_{j,p}$ and $R(c) = \sum_{j=0}^{\infty} c_j \chi_j \in \mathcal{E}^{(M)}(\mathbb{R})$ for all $c = (c_j)_j \in \Lambda^{(M)}$.
- Necessity: Ingenuous use of Taylor's formula combined with ideas from Hörmander's real analysis proof of the Denjoy-Carleman theorem.
- Langenbruch, Meise and Taylor, independently (1988): Existence of continuous linear right inverse for B^(M) via (DN)-(Ω) splitting theorem of Vogt and Wagner.

Petzsche's solution to the Borel problem in $\mathcal{E}^{(M_p)}(\mathbb{R})$ (2)

- Technical masterpiece.
- Sufficiency: Explicit construction of $\chi_j \in \mathcal{E}^{(M)}(\mathbb{R})$, $j \in \mathbb{N}$, such that $\chi_j^{(p)}(0) = \delta_{j,p}$ and $R(c) = \sum_{j=0}^{\infty} c_j \chi_j \in \mathcal{E}^{(M)}(\mathbb{R})$ for all $c = (c_j)_j \in \Lambda^{(M)}$.
- Necessity: Ingenuous use of Taylor's formula combined with ideas from Hörmander's real analysis proof of the Denjoy-Carleman theorem.
- Langenbruch, Meise and Taylor, independently (1988): Existence of continuous linear right inverse for B^(M) via (DN)-(Ω) splitting theorem of Vogt and Wagner.

Petzsche's solution to the Borel problem in $\mathcal{E}^{(M_p)}(\mathbb{R})$ (2)

- Technical masterpiece.
- Sufficiency: Explicit construction of $\chi_j \in \mathcal{E}^{(M)}(\mathbb{R})$, $j \in \mathbb{N}$, such that $\chi_j^{(p)}(0) = \delta_{j,p}$ and $R(c) = \sum_{j=0}^{\infty} c_j \chi_j \in \mathcal{E}^{(M)}(\mathbb{R})$ for all $c = (c_j)_j \in \Lambda^{(M)}$.
- Necessity: Ingenuous use of Taylor's formula combined with ideas from Hörmander's real analysis proof of the Denjoy-Carleman theorem.
- Langenbruch, Meise and Taylor, independently (1988): Existence of continuous linear right inverse for B^(M) via (DN)-(Ω) splitting theorem of Vogt and Wagner.

- Technical masterpiece.
- Sufficiency: Explicit construction of $\chi_j \in \mathcal{E}^{(M)}(\mathbb{R})$, $j \in \mathbb{N}$, such that $\chi_j^{(p)}(0) = \delta_{j,p}$ and $R(c) = \sum_{j=0}^{\infty} c_j \chi_j \in \mathcal{E}^{(M)}(\mathbb{R})$ for all $c = (c_j)_j \in \Lambda^{(M)}$.
- Necessity: Ingenuous use of Taylor's formula combined with ideas from Hörmander's real analysis proof of the Denjoy-Carleman theorem.
- Langenbruch, Meise and Taylor, independently (1988): Existence of continuous linear right inverse for B^(M) via (DN)-(Ω) splitting theorem of Vogt and Wagner.

Spaces of ultraholomorphic functions and the asymptotic Borel mapping

• Let $\lambda > 0$. We define

$$\mathcal{A}^{(M)}(S_{\lambda}) := \{ \varphi \in \mathcal{O}(S_{\lambda}) \mid \sup_{p \in \mathbb{N}} \sup_{z \in S_{\lambda}} \frac{|\varphi^{(p)}(z)|}{h^{p}M_{p}} < \infty \text{ for all } h > 0 \}.$$

• The asymptotic Borel mapping

$$\mathcal{B}^{(M)}_{\lambda}:\mathcal{A}^{(M)}(S_{\lambda})
ightarrow \Lambda^{(M)}:arphi
ightarrow (arphi^{(p)}(0))_{p\in\mathbb{N}}$$

is well-defined and continuous.

Problem

Characterize the surjectivity of $\mathcal{B}_{\lambda}^{(M)}$ in terms of M and λ .

Spaces of ultraholomorphic functions and the asymptotic Borel mapping

• Let $\lambda > 0$. We define

$$\mathcal{A}^{(M)}(S_{\lambda}) := \{ \varphi \in \mathcal{O}(S_{\lambda}) \, | \, \sup_{p \in \mathbb{N}} \sup_{z \in S_{\lambda}} \frac{|\varphi^{(p)}(z)|}{h^p M_p} < \infty \text{ for all } h > 0 \}.$$

• The asymptotic Borel mapping

$$\mathcal{B}_\lambda^{(M)}:\mathcal{A}^{(M)}(\mathcal{S}_\lambda) o \Lambda^{(M)}:arphi o (arphi^{(p)}(0))_{p\in\mathbb{N}}$$

is well-defined and continuous.

Problem

Characterize the surjectivity of $\mathcal{B}_{\lambda}^{(M)}$ in terms of M and λ .

Spaces of ultraholomorphic functions and the asymptotic Borel mapping

• Let $\lambda > 0$. We define

$$\mathcal{A}^{(M)}(S_{\lambda}) := \{ \varphi \in \mathcal{O}(S_{\lambda}) \mid \sup_{p \in \mathbb{N}} \sup_{z \in S_{\lambda}} \frac{|\varphi^{(p)}(z)|}{h^{p}M_{p}} < \infty \text{ for all } h > 0 \}.$$

• The asymptotic Borel mapping

$$\mathcal{B}^{(M)}_\lambda:\mathcal{A}^{(M)}(\mathcal{S}_\lambda) o \Lambda^{(M)}:arphi o (arphi^{(p)}(0))_{p\in\mathbb{N}}$$

is well-defined and continuous.

Problem

Characterize the surjectivity of $\mathcal{B}_{\lambda}^{(M)}$ in terms of M and λ .

$$(\gamma_{\lambda})\sum_{q=p}^{\infty}rac{1}{(M_p/M_{p-1})^{1/\lambda}}\leq Crac{p}{(M_p/M_{p-1})^{1/\lambda}}, \ \forall p\geq 1, \ \text{for some} \ C>0.$$

- *M* satisfies (γ_{λ}) if and only if $M^{1/\lambda} = (M_{\rho}^{1/\lambda})_{\rho \in \mathbb{N}}$ satisfies (γ_1) .
- The Gevrey sequence $(p!^{\alpha})_p$, $\alpha > 1$, satisfy (γ_{λ}) if and only if $\alpha > \lambda$.
- The *q*-Gevrey sequences $(q^{p^2})_p$, q > 1, satisfy (γ_{λ}) for all $\gamma > 0$.

$$(\gamma_{\lambda})\sum_{q=p}^{\infty}rac{1}{(M_p/M_{p-1})^{1/\lambda}}\leq Crac{p}{(M_p/M_{p-1})^{1/\lambda}}, \ \forall p\geq 1, \ \text{for some} \ C>0.$$

- *M* satisfies (γ_{λ}) if and only if $M^{1/\lambda} = (M_{\rho}^{1/\lambda})_{\rho \in \mathbb{N}}$ satisfies (γ_1) .
- The Gevrey sequence $(p!^{\alpha})_p$, $\alpha > 1$, satisfy (γ_{λ}) if and only if $\alpha > \lambda$.
- The q-Gevrey sequences $(q^{p^2})_p$, q > 1, satisfy (γ_λ) for all $\gamma > 0$.

$$(\gamma_{\lambda})\sum_{q=p}^{\infty}rac{1}{(M_p/M_{p-1})^{1/\lambda}}\leq Crac{p}{(M_p/M_{p-1})^{1/\lambda}}, \ \forall p\geq 1, \ \text{for some} \ C>0.$$

- *M* satisfies (γ_{λ}) if and only if $M^{1/\lambda} = (M_{p}^{1/\lambda})_{p \in \mathbb{N}}$ satisfies (γ_{1}) .
- The Gevrey sequence $(p!^{\alpha})_{p}$, $\alpha > 1$, satisfy (γ_{λ}) if and only if $\alpha > \lambda$.
- The *q*-Gevrey sequences $(q^{p^2})_p$, q > 1, satisfy (γ_{λ}) for all $\gamma > 0$.

$$(\gamma_{\lambda})\sum_{q=p}^{\infty}rac{1}{(M_p/M_{p-1})^{1/\lambda}}\leq Crac{p}{(M_p/M_{p-1})^{1/\lambda}}, \ \forall p\geq 1, \ \text{for some} \ C>0.$$

- *M* satisfies (γ_{λ}) if and only if $M^{1/\lambda} = (M_{\rho}^{1/\lambda})_{\rho \in \mathbb{N}}$ satisfies (γ_1) .
- The Gevrey sequence $(p!^{\alpha})_{p}$, $\alpha > 1$, satisfy (γ_{λ}) if and only if $\alpha > \lambda$.
- The q-Gevrey sequences $(q^{p^2})_p$, q>1, satisfy (γ_λ) for all $\gamma>0$.

- Based upon Whitney type extension results for ultradifferentiable functions.
- Ramis (1978): For the Gevrey sequences (p!^α)_p, α > 1, by using the (truncated) Laplace transform (Roumieu case).
- Lastra, Malek, Sanz (2012): Refinement of Ramis' method.
- Both methods do not provide continuous linear right inverses.

- Based upon Whitney type extension results for ultradifferentiable functions.
- Ramis (1978): For the Gevrey sequences (p!^α)_p, α > 1, by using the (truncated) Laplace transform (Roumieu case).
- Lastra, Malek, Sanz (2012): Refinement of Ramis' method.
- Both methods do not provide continuous linear right inverses.

- Based upon Whitney type extension results for ultradifferentiable functions.
- Ramis (1978): For the Gevrey sequences (p!^α)_p, α > 1, by using the (truncated) Laplace transform (Roumieu case).
- Lastra, Malek, Sanz (2012): Refinement of Ramis' method.
- Both methods do not provide continuous linear right inverses.

- Based upon Whitney type extension results for ultradifferentiable functions.
- Ramis (1978): For the Gevrey sequences (p!^α)_p, α > 1, by using the (truncated) Laplace transform (Roumieu case).
- Lastra, Malek, Sanz (2012): Refinement of Ramis' method.
- Both methods do not provide continuous linear right inverses.

- Based upon Whitney type extension results for ultradifferentiable functions.
- Ramis (1978): For the Gevrey sequences (p!^α)_p, α > 1, by using the (truncated) Laplace transform (Roumieu case).
- Lastra, Malek, Sanz (2012): Refinement of Ramis' method.
- Both methods do not provide continuous linear right inverses.

Theorem (Schmets, Valdivia, 2000)

Let $n \in \mathbb{N}$ and let M satisfy (M.1), (M.3)' and (γ_{n+1}) . For $\lambda < n$, $\mathcal{B}_{\lambda}^{(M)}$ admits a continuous linear right inverse.

- Reduction to Petzsche's result on the Borel problem via Laplace transform.
- This result is far from optimal, e.g., for $\lambda = 1$ (right half-plane) one expects (γ_2) instead of (γ_3).

Theorem (Schmets, Valdivia, 2000)

Let $n \in \mathbb{N}$ and let M satisfy (M.1), (M.3)' and (γ_{n+1}) . For $\lambda < n$, $\mathcal{B}_{\lambda}^{(M)}$ admits a continuous linear right inverse.

- Reduction to Petzsche's result on the Borel problem via Laplace transform.
- This result is far from optimal, e.g., for λ = 1 (right half-plane) one expects (γ₂) instead of (γ₃).

Theorem (Schmets, Valdivia, 2000)

Let $n \in \mathbb{N}$ and let M satisfy (M.1), (M.3)' and (γ_{n+1}) . For $\lambda < n$, $\mathcal{B}_{\lambda}^{(M)}$ admits a continuous linear right inverse.

- Reduction to Petzsche's result on the Borel problem via Laplace transform.
- This result is far from optimal, e.g., for $\lambda = 1$ (right half-plane) one expects (γ_2) instead of (γ_3).

Let $\lambda > 0$ and let M satisfy (M.1), (M.2) and (M.3). If $\lambda \in \mathbb{Q}$ and $\mathcal{B}_{\lambda}^{(M)}$ is surjective, then M satisfies $(\gamma_{\lambda+1})$.

 Schmets and Valdivia (2000): λ ∈ N. Reduction to Petzsche's result on the Borel problem via Laplace transform.

• Refinement of the method of Schmets and Valdivia.

Corollary

Let M satisfy (M.1), (M.2) and (M.3). Then, $\mathcal{B}_1^{(M)}$ is surjective if and only if M satisfies (γ_2).

Let $\lambda > 0$ and let M satisfy (M.1), (M.2) and (M.3). If $\lambda \in \mathbb{Q}$ and $\mathcal{B}_{\lambda}^{(M)}$ is surjective, then M satisfies $(\gamma_{\lambda+1})$.

 Schmets and Valdivia (2000): λ ∈ N. Reduction to Petzsche's result on the Borel problem via Laplace transform.

• Refinement of the method of Schmets and Valdivia.

Corollary

Let M satisfy (M.1), (M.2) and (M.3). Then, $\mathcal{B}_1^{(M)}$ is surjective if and only if M satisfies (γ_2).

Let $\lambda > 0$ and let M satisfy (M.1), (M.2) and (M.3). If $\lambda \in \mathbb{Q}$ and $\mathcal{B}_{\lambda}^{(M)}$ is surjective, then M satisfies $(\gamma_{\lambda+1})$.

 Schmets and Valdivia (2000): λ ∈ N. Reduction to Petzsche's result on the Borel problem via Laplace transform.

• Refinement of the method of Schmets and Valdivia.

Corollary

Let M satisfy (M.1), (M.2) and (M.3). Then, $\mathcal{B}_1^{(M)}$ is surjective if and only if M satisfies (γ_2).

Let $\lambda > 0$ and let M satisfy (M.1), (M.2) and (M.3). If $\lambda \in \mathbb{Q}$ and $\mathcal{B}_{\lambda}^{(M)}$ is surjective, then M satisfies $(\gamma_{\lambda+1})$.

- Schmets and Valdivia (2000): λ ∈ N. Reduction to Petzsche's result on the Borel problem via Laplace transform.
- Refinement of the method of Schmets and Valdivia.

Corollary

Let M satisfy (M.1), (M.2) and (M.3). Then, $\mathcal{B}_{1}^{(M)}$ is surjective if and only if M satisfies (γ_{2}).

Let $\lambda > 0$ and let M satisfy (M.1), (M.2) and (M.3). If $\lambda \in \mathbb{Q}$ and $\mathcal{B}_{\lambda}^{(M)}$ is surjective, then M satisfies $(\gamma_{\lambda+1})$.

- Schmets and Valdivia (2000): λ ∈ N. Reduction to Petzsche's result on the Borel problem via Laplace transform.
- Refinement of the method of Schmets and Valdivia.

Corollary

Let M satisfy (M.1), (M.2) and (M.3). Then, $\mathcal{B}_1^{(M)}$ is surjective if and only if M satisfies (γ_2) .

${\cal B}_\lambda^{(M)}$ surjective $\, \Rightarrow M$ satisfies $(\gamma_{\lambda+1})$

without assuming that $\lambda \in \mathbb{Q}$.

Show

M satisfies $(\gamma_{\lambda+1}) \Rightarrow \mathcal{B}_{\lambda}^{(M)}$ surjective

without assuming that M satisfies (M.2) and (M.3).

• Show the existence of a continuous linear right inverse of $\mathcal{B}_{\lambda}^{(M)} : \mathcal{A}^{(M)}(S_{\lambda}) \to \Lambda^{(M)}$; even open for the Gevrey sequences. Possible approach: apply (DN)- (Ω) splitting theorem. Does

$$\ker \mathcal{B}_{\lambda}^{(M)} = \{ \varphi \in \mathcal{A}^{(M)}(S_{\lambda}) \, | \, \varphi^{(p)}(0) = 0 \, \, \text{for all} \, \, p \in \mathbb{N} \}$$

satisfy (Ω) ?

$${\cal B}^{(M)}_\lambda$$
 surjective $\,\, \Rightarrow M$ satisfies $(\gamma_{\lambda+1})$

without assuming that $\lambda \in \mathbb{Q}$.

Show

$$M$$
 satisfies $(\gamma_{\lambda+1}) \Rightarrow \mathcal{B}_{\lambda}^{(M)}$ surjective

without assuming that M satisfies (M.2) and (M.3).

• Show the existence of a continuous linear right inverse of $\mathcal{B}_{\lambda}^{(M)} : \mathcal{A}^{(M)}(S_{\lambda}) \to \Lambda^{(M)}$; even open for the Gevrey sequences. Possible approach: apply (DN)- (Ω) splitting theorem. Does

$$\ker \mathcal{B}_{\lambda}^{(M)} = \{ \varphi \in \mathcal{A}^{(M)}(S_{\lambda}) \, | \, \varphi^{(p)}(0) = 0 \, \, \text{for all} \, \, p \in \mathbb{N} \}$$

satisfy (Ω) ?

$${\cal B}_\lambda^{(M)}$$
 surjective $\,\, \Rightarrow M$ satisfies $(\gamma_{\lambda+1})$

without assuming that $\lambda \in \mathbb{Q}$.

Show

M satisfies
$$(\gamma_{\lambda+1}) \Rightarrow \mathcal{B}_{\lambda}^{(M)}$$
 surjective

without assuming that M satisfies (M.2) and (M.3).

• Show the existence of a continuous linear right inverse of $\mathcal{B}_{\lambda}^{(M)} : \mathcal{A}^{(M)}(S_{\lambda}) \to \Lambda^{(M)}$; even open for the Gevrey sequences. Possible approach: apply (DN)- (Ω) splitting theorem. Does

$$\ker \mathcal{B}_{\lambda}^{(M)} = \{ \varphi \in \mathcal{A}^{(M)}(S_{\lambda}) \, | \, \varphi^{(p)}(0) = 0 \, \, \text{for all} \, \, p \in \mathbb{N} \}$$

satisfy (Ω) ?

$${\cal B}_\lambda^{(M)}$$
 surjective $\,\, \Rightarrow M$ satisfies $(\gamma_{\lambda+1})$

without assuming that $\lambda \in \mathbb{Q}$.

Show

M satisfies
$$(\gamma_{\lambda+1}) \Rightarrow \mathcal{B}_{\lambda}^{(M)}$$
 surjective

without assuming that M satisfies (M.2) and (M.3).

• Show the existence of a continuous linear right inverse of $\mathcal{B}_{\lambda}^{(M)} : \mathcal{A}^{(M)}(S_{\lambda}) \to \Lambda^{(M)}$; even open for the Gevrey sequences. Possible approach: apply (DN)- (Ω) splitting theorem. Does

$$\ker \mathcal{B}_{\lambda}^{(M)} = \{ \varphi \in \mathcal{A}^{(M)}(\mathcal{S}_{\lambda}) \, | \, \varphi^{(p)}(0) = 0 \, \, \text{for all} \, \, p \in \mathbb{N} \}$$

satisfy (Ω) ?

• We define $\mathcal{S}^{(M)}(\mathbb{R})$ as the space of all $arphi \in \mathcal{C}^\infty(\mathbb{R})$ such that

$$\max_{k\leq n} \sup_{p\in\mathbb{N}} \frac{|x^p \varphi^{(k)}(x)|}{h^p M_p} < \infty \qquad \forall n\in\mathbb{N}, h>0.$$

- Set $\mathcal{S}^{(M)}(0,\infty) := \{ \varphi \in \mathcal{S}^{(M)}(\mathbb{R}) \mid \operatorname{supp} \varphi \subseteq [0,\infty) \}.$
- If M satisfies (M.2)', the Stieltjes moment mapping

$$\mathcal{M}^{(M)}: \mathcal{S}^{(M)}(0,\infty) \to \Lambda^{(M)}: \varphi \to \left(\int_0^\infty x^p \varphi(x) \mathrm{d}x\right)_{p \in \mathbb{N}}$$

is well-defined and continuous.

Problem

Characterize the surjectivity of $\mathcal{M}^{(M)}$ in terms of M.

• We define $\mathcal{S}^{(M)}(\mathbb{R})$ as the space of all $arphi \in \mathcal{C}^\infty(\mathbb{R})$ such that

$$\max_{k \leq n} \sup_{p \in \mathbb{N}} \frac{|x^p \varphi^{(k)}(x)|}{h^p M_p} < \infty \qquad \forall n \in \mathbb{N}, h > 0.$$

• Set
$$\mathcal{S}^{(M)}(0,\infty) := \{ \varphi \in \mathcal{S}^{(M)}(\mathbb{R}) \mid \operatorname{supp} \varphi \subseteq [0,\infty) \}.$$

• If M satisfies (M.2)', the Stieltjes moment mapping

$$\mathcal{M}^{(M)}: \mathcal{S}^{(M)}(0,\infty) \to \Lambda^{(M)}: \varphi \to \left(\int_0^\infty x^p \varphi(x) \mathrm{d}x\right)_{p \in \mathbb{N}}$$

is well-defined and continuous.

Problem

Characterize the surjectivity of $\mathcal{M}^{(M)}$ in terms of M.

• We define $\mathcal{S}^{(M)}(\mathbb{R})$ as the space of all $arphi \in \mathcal{C}^\infty(\mathbb{R})$ such that

$$\max_{k \leq n} \sup_{p \in \mathbb{N}} \frac{|x^p \varphi^{(k)}(x)|}{h^p M_p} < \infty \qquad \forall n \in \mathbb{N}, h > 0.$$

- Set $\mathcal{S}^{(M)}(0,\infty) := \{ \varphi \in \mathcal{S}^{(M)}(\mathbb{R}) \mid \operatorname{supp} \varphi \subseteq [0,\infty) \}.$
- If M satisfies (M.2)', the Stieltjes moment mapping

$$\mathcal{M}^{(M)}: \mathcal{S}^{(M)}(0,\infty) \to \Lambda^{(M)}: \varphi \to \left(\int_0^\infty x^p \varphi(x) \mathrm{d}x\right)_{p \in \mathbb{N}}$$

is well-defined and continuous.

Problem

Characterize the surjectivity of $\mathcal{M}^{(M)}$ in terms of M.

• We define $\mathcal{S}^{(M)}(\mathbb{R})$ as the space of all $arphi \in \mathcal{C}^\infty(\mathbb{R})$ such that

$$\max_{k \leq n} \sup_{p \in \mathbb{N}} \frac{|x^p \varphi^{(k)}(x)|}{h^p M_p} < \infty \qquad \forall n \in \mathbb{N}, h > 0.$$

- Set $\mathcal{S}^{(M)}(0,\infty) := \{ \varphi \in \mathcal{S}^{(M)}(\mathbb{R}) \mid \operatorname{supp} \varphi \subseteq [0,\infty) \}.$
- If M satisfies (M.2)', the Stieltjes moment mapping

$$\mathcal{M}^{(M)}: \mathcal{S}^{(M)}(0,\infty) \to \Lambda^{(M)}: \varphi \to \left(\int_0^\infty x^p \varphi(x) \mathrm{d}x\right)_{p \in \mathbb{N}}$$

is well-defined and continuous.

Problem

Characterize the surjectivity of $\mathcal{M}^{(M)}$ in terms of M.

< ロ > < 同 > < 三 > < 三 >

Theorem (cf. Lastra and Sanz, 2009)

Let M satisfy (M.1), (M.2)' and (M.3)'. Then, $\mathcal{M}^{(M)}$ is surjective (admits a continuous linear right inverse) if and only if $\mathcal{B}_1^{(M)}$ does so.

• Extension of the method of Durán and Estrada (Laplace transform) to Gelfand-Shilov spaces.

Corollary

- If in addition M satisfies (M.2) and (M.3), then M^(M): S^(M)(0,∞) → Λ^(M) is surjective if and only if M satisfies (γ₂).
- If M satisfies (γ_3) , then $\mathcal{M}^{(M)} : \mathcal{S}^{(M)}(0, \infty) \to \Lambda^{(M)}$ admits a continuous linear right inverse.
- Can one improve this result by studying the Stieltjes moment problem in its own right?

Theorem (cf. Lastra and Sanz, 2009)

Let M satisfy (M.1), (M.2)' and (M.3)'. Then, $\mathcal{M}^{(M)}$ is surjective (admits a continuous linear right inverse) if and only if $\mathcal{B}_1^{(M)}$ does so.

• Extension of the method of Durán and Estrada (Laplace transform) to Gelfand-Shilov spaces.

Corollary

- If in addition M satisfies (M.2) and (M.3), then M^(M): S^(M)(0,∞) → Λ^(M) is surjective if and only if M satisfies (γ₂).
- If M satisfies (γ_3) , then $\mathcal{M}^{(M)} : \mathcal{S}^{(M)}(0, \infty) \to \Lambda^{(M)}$ admits a continuous linear right inverse.
- Can one improve this result by studying the Stieltjes moment problem in its own right?

Theorem (cf. Lastra and Sanz, 2009)

Let M satisfy (M.1), (M.2)' and (M.3)'. Then, $\mathcal{M}^{(M)}$ is surjective (admits a continuous linear right inverse) if and only if $\mathcal{B}_1^{(M)}$ does so.

• Extension of the method of Durán and Estrada (Laplace transform) to Gelfand-Shilov spaces.

Corollary

- If in addition M satisfies (M.2) and (M.3), then M^(M): S^(M)(0,∞) → Λ^(M) is surjective if and only if M satisfies (γ₂).
- If M satisfies (γ_3) , then $\mathcal{M}^{(M)} : \mathcal{S}^{(M)}(0,\infty) \to \Lambda^{(M)}$ admits a continuous linear right inverse.
- Can one improve this result by studying the Stieltjes moment problem in its own right?

Theorem (cf. Lastra and Sanz, 2009)

Let M satisfy (M.1), (M.2)' and (M.3)'. Then, $\mathcal{M}^{(M)}$ is surjective (admits a continuous linear right inverse) if and only if $\mathcal{B}_1^{(M)}$ does so.

• Extension of the method of Durán and Estrada (Laplace transform) to Gelfand-Shilov spaces.

Corollary

- If in addition M satisfies (M.2) and (M.3), then $\mathcal{M}^{(M)} : \mathcal{S}^{(M)}(0,\infty) \to \Lambda^{(M)}$ is surjective if and only if M satisfies (γ_2) .
- If M satisfies (γ₃), then M^(M) : S^(M)(0,∞) → Λ^(M) admits a continuous linear right inverse.
- Can one improve this result by studying the Stieltjes moment problem in its own right?

Theorem (cf. Lastra and Sanz, 2009)

Let M satisfy (M.1), (M.2)' and (M.3)'. Then, $\mathcal{M}^{(M)}$ is surjective (admits a continuous linear right inverse) if and only if $\mathcal{B}_1^{(M)}$ does so.

• Extension of the method of Durán and Estrada (Laplace transform) to Gelfand-Shilov spaces.

Corollary

- If in addition M satisfies (M.2) and (M.3), then M^(M): S^(M)(0,∞) → Λ^(M) is surjective if and only if M satisfies (γ₂).
- If M satisfies (γ₃), then M^(M) : S^(M)(0,∞) → Λ^(M) admits a continuous linear right inverse.
- Can one improve this result by studying the Stieltjes moment problem in its own right?

Theorem (D., 2018)

Let M satisfy (M.1), (M.2)' and (M.3)'. FSAE:

(i) M satisfies (γ_2) .

(ii)
$$\mathcal{M}^{(M)}: \mathcal{S}^{(M)}(0,\infty) \to \Lambda^{(M)}$$
 is surjective.

(iii) $\mathcal{M}^{(M)}: \mathcal{S}^{(M)}(0,\infty) \to \Lambda^{(M)}$ admits a continuous linear right inverse.

- Reduction to Petzsche's result on the Borel problem via Fourier transform and abstract functional analysis.
- By the result of Lastra and Sanz this also completely settles the Borel-Ritt problem on the right half-plane (under (*M*.1), (*M*.2)' and (*M*.3)').

Theorem (D., 2018)

Let M satisfy (M.1), (M.2)' and (M.3)'. FSAE:

(i) M satisfies (γ_2) .

(ii)
$$\mathcal{M}^{(M)}: \mathcal{S}^{(M)}(0,\infty) \to \Lambda^{(M)}$$
 is surjective.

(iii) $\mathcal{M}^{(M)}: \mathcal{S}^{(M)}(0,\infty) \to \Lambda^{(M)}$ admits a continuous linear right inverse.

- Reduction to Petzsche's result on the Borel problem via Fourier transform and abstract functional analysis.
- By the result of Lastra and Sanz this also completely settles the Borel-Ritt problem on the right half-plane (under (*M*.1), (*M*.2)' and (*M*.3)').