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The Borel problem

Theorem (E. Borel, 1895; Peano, 1894)

For every (ap)pen C CN there is o € C®(R) such that p(P)(0) = a, for all
p € N.
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The Borel-Ritt problem

@ Let X be the Riemann surface of the logarithm. Set

A
5,\:{262||Argz|<%}, A > 0.

o 51 ={ze€C|Rez>0}.
o A(S)) = {p € O(S))| sup [¢(P)(2)| < oo, Vp € N}.
zeSy
e For ¢ € A(S)) we may define
eP0):= lim  ©P)(2), Vp e N.
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Theorem (Ritt, 1916)

Let A > 0. For every (ap)pen C CN there is ¢ € A(S)) such that
©P)(0) = a, for all p € N.




The Stieltjes moment problem for positive measures

Theorem (Stieltjes, 1894)

Let (ap)pen C RY. There is a positive measure ju such that

/ xPdpu(x) = ap, Vp € N,
0

if and only if

detA, >0 and detAY) >0,  VpeN.

@ Stieltjes integral, Stieltjes transform, ...
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Let (ap)pen C RY. There is a positive measure ju such that

/ xPdpu(x) = ap, Vp € N,
0

if and only if

detA, >0 and detAY) >0,  VpeN.

@ Stieltjes integral, Stieltjes transform, ...

@ M. Riesz (1922): Extension of positive linear functionals.
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The unrestricted Stieltjes moment problem

Theorem (Boas, Pdlya, independently, 1939)

For every (ap)pen C CN there is a complex measure i such that

(e}
/ xPdp(x) = ap, Vp e N.
0
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The unrestricted Stieltjes moment problem

Theorem (Boas, Pdlya, independently, 1939)

For every (ap)pen C CN there is a complex measure i such that

(e}
/ xPdp(x) = ap, Vp e N.
0

Theorem (A.J. Durdn,1989)

For every (ap)pen C CN there is ¢ € S(0, 00) such that

/ xPp(x)dx = ap, Vp e N.
0

e A.L. Durén, Estrada (1994): Reduction to Borel-Ritt problem on the
right half-plane via Laplace transform.
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Spaces of ultradifferentiable functions

o Let M = (M,)pen be a sequence of positive numbers.
@ For h> 0 and R > 0 we define

1%
EMM([—R,R]) :={p € C*([-R,R])| sup sup W < o0}
peN x€[—-R,R] p
@ Set
EM®):= () ) E""([-R.R])
R>0 h>0
and
eMR) = () |J EM"([-R, RD).
R>0 h>0

ELPYPH(R) is the space of real analytic functions on R.

o £(PYR)(R) is the space of entire functions on R.

The spaces E{P'*)}(R), a > 1, were introduced by Gevrey (around
1910) to analyze the regularity of solutions to PDE's.
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@ Consider the following conditions on M:

(M].) Mg S Mp—lMp+1. Vp Z 1.

(M.2)" Mpy1 < AHPM,, Vp € N, for some A, H > 0.

(M.2) Mpiq < AHPTIM,Mg, Vp, q € N, for some A, H > 0.

= 1
M.3) —— < 0.
( ) Z Mo/ Mp—1

p=1

The sequence (p!), satisfies the above conditions except for (M.3)'.

The Gevrey sequences (p!®),, a > 1, satisfy all the above conditions.

@ The g-Gevrey sequence (qu)p, g > 1, satisfy the above conditions
except for (M.2).

For simplicity, we shall only consider the Beurling spaces E(MM)(R). All
results have a counterpart for the Roumieu spaces £{M}(R).
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The Borel problem in £M)(R)
@ We define the sequence space

AM) . — {(cp)pen € cN | sup <l

< oo for all h > 0}.
peN hpMP }

@ The Borel mapping
BM) ; gM(R) = AM - 5 (5P)(0))pen

is well-defined and continuous.

Problem
Characterize the surjectivity of BM) in terms of M.

o Denjoy-Carleman theorem: B(M) is injective if and only if M is
quasianalytic (= does not satisfy (M.3)').

o If M is quasianalytic and non-entire (£(P)(R) € £(M)(R)), then BM)
is never surjective (Roumieu case: Carleman (1923)).
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Petzsche's solution to the Borel problem in £M)(R) (1)

o Consider the strong non-quasianalyticity condition

p

> 1
<C ,Vp>1, for some C > 0.
(71) qz::p Mp/Mp—l B Mp/Mp—l P

10/20



Petzsche's solution to the Borel problem in £M)(R) (1)

o Consider the strong non-quasianalyticity condition

p

> 1
<C ,Vp>1, for some C > 0.
(71) qz::p Mp/Mp—l B Mp/Mp—l P

@ The Gevrey sequences (p!®),, o > 1, and the g-Gevrey sequences
(g°")p, g > 1, both satisfy (71).

10/20



Petzsche's solution to the Borel problem in £M)(R) (1)

o Consider the strong non-quasianalyticity condition

p

> 1
<C ,Vp>1, for some C > 0.
(71) qz::p Mp/Mp—l B Mp/Mp—l P

@ The Gevrey sequences (p!®),, o > 1, and the g-Gevrey sequences
(g°")p, g > 1, both satisfy (71).
Theorem (Petzsche, 1988)
Let M satisfy (M.1) and (M.3)'. FSAE:
(i) M satisfies (y1).

(i) BM) is surjective.

(iir) BM) admits a continuous linear right inverse, that is, there is a continuous
linear mapping R : AM) — £M)(R) such that BM) o R = id.

v
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Petzsche's solution to the Borel problem in £M)(R) (2)
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Petzsche's solution to the Borel problem in £M)(R) (2)

@ Technical masterpiece.

o Sufficiency: Explicit construction of x; € EM)(R), j € N, such that
XP(0) = 8,5 and R(c) = 32 gyj € EM(R) for all
c = (¢); € NM).

@ Necessity: Ingenuous use of Taylor's formula combined with ideas

from Hormander's real analysis proof of the Denjoy-Carleman
theorem.

e Langenbruch, Meise and Taylor, independently (1988): Existence of
continuous linear right inverse for B(M) via (DN)-(Q) splitting
theorem of Vogt and Wagner.
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Spaces of ultraholomorphic functions and the asymptotic

Borel mapping

@ Let A > 0. We define

(p)
AM)(Sy) = {p € O(S)) | sup sup 7 (2)l

< oo for all h > 0}.
peN z€ Sy, hpMP }
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Spaces of ultraholomorphic functions and the asymptotic

Borel mapping

@ Let A > 0. We define

(p)
AM)(Sy) = {p € O(S)) | sup sup 7 (2)l

< oo for all h > 0}.
peN z€ Sy, hpMP }

@ The asymptotic Borel mapping
B - AM(S3) =AM o — (01P)(0)) pen

is well-defined and continuous.

Problem
Characterize the surjectivity of BE\M) in terms of M and A.
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The conditions (7))

@ For A > 0 we consider

o0

P
Z P/Mp 1)1/)\ < C(Mp/Mp_]_)l/)" VP = 1, for some C >0

q=p
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The conditions (7y)

@ For A > 0 we consider

o0

Z <C+ Vp > 1, for some C > 0.

q=p P/Mp 1)1/)‘ B (Mp/Mp—l)l/)"

o M satisfies (7yy) if and only if MY/* = (I\/l;//\)peN satisfies (71).
@ The Gevrey sequence (p!®),, a > 1, satisfy () if and only if & > .
@ The g-Gevrey sequences (qu)p, q > 1, satisfy (7)) for all v > 0.
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The Borel-Ritt problem in AM)(S,) (1)

Theorem (Thilliez, 2003)

Let A > 0 and let M satisfy (M.1), (M.2) and (M.3). If M satisfies
(Ya+1), then BE\M) is surjective.
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Theorem (Thilliez, 2003)

Let A > 0 and let M satisfy (M.1), (M.2) and (M.3). If M satisfies
(Ya+1), then BE\M) is surjective.

@ Based upon Whitney type extension results for ultradifferentiable
functions.

e Ramis (1978): For the Gevrey sequences (p!®),, a > 1, by using the
(truncated) Laplace transform (Roumieu case).

o Lastra, Malek, Sanz (2012): Refinement of Ramis’ method.

@ Both methods do not provide continuous linear right inverses.

14/20



The Borel-Ritt problem in AM)(S,) (2)

Theorem (Schmets, Valdivia, 2000)

Let n € N and let M satisfy (M.1), (M.3)" and (yny1). For A < n, B
admits a continuous linear right inverse.

15/20



The Borel-Ritt problem in AM)(S,) (2)

Theorem (Schmets, Valdivia, 2000)

Let n € N and let M satisfy (M.1), (M.3)" and (yny1). For A < n, B
admits a continuous linear right inverse.

@ Reduction to Petzsche's result on the Borel problem via Laplace
transform.

15/20



The Borel-Ritt problem in AM)(S,) (2)

Theorem (Schmets, Valdivia, 2000)

Let n € N and let M satisfy (M.1), (M.3)" and (yny1). For A < n, B
admits a continuous linear right inverse.

@ Reduction to Petzsche's result on the Borel problem via Laplace
transform.

@ This result is far from optimal, e.g., for A = 1 (right half-plane) one
expects (72) instead of (73).
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The Borel-Ritt problem in AM)(S,) (3)

Theorem (Jiménez-Garrido, Sanz, Schindl, 2018)
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The Borel-Ritt problem in AM)(S,) (3)

Theorem (Jiménez-Garrido, Sanz, Schindl, 2018)

Let A > 0 and let M satisfy (M.1), (M.2) and (M.3). If A € Q and B{"
is surjective, then M satisfies (yx11)-

@ Schmets and Valdivia (2000): A € N. Reduction to Petzsche's result
on the Borel problem via Laplace transform.

@ Refinement of the method of Schmets and Valdivia.

Let M satisfy (M.1), (M.2) and (M.3). Then, B is surjective if and
only if M satisfies (72).
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Open problems

@ Show
BE\M) surjective = M satisfies (yx11)

without assuming that A € Q.
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Open problems

@ Show
BE\M) surjective = M satisfies (yx11)

without assuming that A\ € Q.

@ Show
M satisfies (yx4+1) = B&M) surjective

without assuming that M satisfies (M.2) and (M.3).

@ Show the existence of a continuous linear right inverse of
BE\M) : AM)(S,) — AM); even open for the Gevrey sequences.
Possible approach: apply (DN)-(2) splitting theorem. Does

kerBE\M) = {p € AM(5,)| P (0) = 0 for all p € N}

satisfy (2)7

17/20



Gelfand-Shilov spaces and the Stieltjes moment mapping

o We define S(IM)(R) as the space of all ¢ € C*°(R) such that

P (k)
maxsupw<oo VYne N, h>0.
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o If M satisfies (M.2)’, the Stieltjes moment mapping

MM - sM (0, 00) — AM) - 5 — (/ xpgo(x)dx>
0 peN

is well-defined and continuous.
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Characterize the surjectivity of M) in terms of M.
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Stieltjes moment problem in S(M)(0, 00) (1)

Theorem (cf. Lastra and Sanz, 2009)

Let M satisfy (M.1), (M.2)" and (M.3)". Then, MM) is surjective

(admits a continuous linear right inverse) if and only if BgM) does so
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Theorem (cf. Lastra and Sanz, 2009)
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v

@ Can one improve this result by studying the Stieltjes moment problem
in its own right?
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Stieltjes moment problem in S(M)(0, 00) (2)

Theorem (D., 2018)

Let M satisfy (M.1), (M.2)" and (M.3)". FSAE:
(i) M satisfies (y2).

(il) MM) . SIM) (0, 00) = AM) s surjective.

(i) MM SIM)(0, 00) — AM) admits a continuous linear right inverse.

@ Reduction to Petzsche’s result on the Borel problem via Fourier
transform and abstract functional analysis.
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(i) MM SIM)(0, 00) — AM) admits a continuous linear right inverse.

@ Reduction to Petzsche’s result on the Borel problem via Fourier
transform and abstract functional analysis.

@ By the result of Lastra and Sanz this also completely settles the

Borel-Ritt problem on the right half-plane (under (M.1), (M.2)" and
(M.3)).
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