
On the Borel, the Borel-Ritt and the Stieltjes moment
problem

Andreas Debrouwere

Ghent University

19 September 2019

1 / 20



Outline of the talk

1 Introduction.

2 The Borel problem in spaces of ultradifferentiable functions.

3 The Borel-Ritt problem in spaces of ultraholomorphic functions.

4 The Stieltjes moment problem in Gelfand-Shilov spaces.

2 / 20



Outline of the talk

1 Introduction.

2 The Borel problem in spaces of ultradifferentiable functions.

3 The Borel-Ritt problem in spaces of ultraholomorphic functions.

4 The Stieltjes moment problem in Gelfand-Shilov spaces.

2 / 20



Outline of the talk

1 Introduction.

2 The Borel problem in spaces of ultradifferentiable functions.

3 The Borel-Ritt problem in spaces of ultraholomorphic functions.

4 The Stieltjes moment problem in Gelfand-Shilov spaces.

2 / 20



Outline of the talk

1 Introduction.

2 The Borel problem in spaces of ultradifferentiable functions.

3 The Borel-Ritt problem in spaces of ultraholomorphic functions.

4 The Stieltjes moment problem in Gelfand-Shilov spaces.

2 / 20



The Borel problem

Theorem (E. Borel, 1895; Peano, 1894)

For every (ap)p∈N ⊂ CN there is ϕ ∈ C∞(R) such that ϕ(p)(0) = ap for all
p ∈ N.
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The Borel-Ritt problem

Let Σ be the Riemann surface of the logarithm. Set

Sλ = {z ∈ Σ | |Arg z | < πλ

2
}, λ > 0.

S1 = {z ∈ C | Re z > 0}.
A(Sλ) := {ϕ ∈ O(Sλ) | sup

z∈Sλ
|ϕ(p)(z)| <∞, ∀p ∈ N}.

For ϕ ∈ A(Sλ) we may define

ϕ(p)(0) := lim
z→0;z∈Sλ

ϕ(p)(z), ∀p ∈ N.

Theorem (Ritt, 1916)

Let λ > 0. For every (ap)p∈N ⊂ CN there is ϕ ∈ A(Sλ) such that
ϕ(p)(0) = ap for all p ∈ N.

4 / 20



The Borel-Ritt problem

Let Σ be the Riemann surface of the logarithm. Set

Sλ = {z ∈ Σ | |Arg z | < πλ

2
}, λ > 0.

S1 = {z ∈ C | Re z > 0}.
A(Sλ) := {ϕ ∈ O(Sλ) | sup

z∈Sλ
|ϕ(p)(z)| <∞, ∀p ∈ N}.

For ϕ ∈ A(Sλ) we may define

ϕ(p)(0) := lim
z→0;z∈Sλ

ϕ(p)(z), ∀p ∈ N.

Theorem (Ritt, 1916)

Let λ > 0. For every (ap)p∈N ⊂ CN there is ϕ ∈ A(Sλ) such that
ϕ(p)(0) = ap for all p ∈ N.

4 / 20



The Borel-Ritt problem

Let Σ be the Riemann surface of the logarithm. Set

Sλ = {z ∈ Σ | |Arg z | < πλ

2
}, λ > 0.

S1 = {z ∈ C | Re z > 0}.
A(Sλ) := {ϕ ∈ O(Sλ) | sup

z∈Sλ
|ϕ(p)(z)| <∞, ∀p ∈ N}.

For ϕ ∈ A(Sλ) we may define

ϕ(p)(0) := lim
z→0;z∈Sλ

ϕ(p)(z), ∀p ∈ N.

Theorem (Ritt, 1916)

Let λ > 0. For every (ap)p∈N ⊂ CN there is ϕ ∈ A(Sλ) such that
ϕ(p)(0) = ap for all p ∈ N.

4 / 20



The Borel-Ritt problem

Let Σ be the Riemann surface of the logarithm. Set

Sλ = {z ∈ Σ | |Arg z | < πλ

2
}, λ > 0.

S1 = {z ∈ C | Re z > 0}.
A(Sλ) := {ϕ ∈ O(Sλ) | sup

z∈Sλ
|ϕ(p)(z)| <∞, ∀p ∈ N}.

For ϕ ∈ A(Sλ) we may define

ϕ(p)(0) := lim
z→0;z∈Sλ

ϕ(p)(z), ∀p ∈ N.

Theorem (Ritt, 1916)

Let λ > 0. For every (ap)p∈N ⊂ CN there is ϕ ∈ A(Sλ) such that
ϕ(p)(0) = ap for all p ∈ N.

4 / 20



The Borel-Ritt problem

Let Σ be the Riemann surface of the logarithm. Set

Sλ = {z ∈ Σ | |Arg z | < πλ

2
}, λ > 0.

S1 = {z ∈ C | Re z > 0}.
A(Sλ) := {ϕ ∈ O(Sλ) | sup

z∈Sλ
|ϕ(p)(z)| <∞, ∀p ∈ N}.

For ϕ ∈ A(Sλ) we may define

ϕ(p)(0) := lim
z→0;z∈Sλ

ϕ(p)(z), ∀p ∈ N.

Theorem (Ritt, 1916)

Let λ > 0. For every (ap)p∈N ⊂ CN there is ϕ ∈ A(Sλ) such that
ϕ(p)(0) = ap for all p ∈ N.

4 / 20



The Borel-Ritt problem

Let Σ be the Riemann surface of the logarithm. Set

Sλ = {z ∈ Σ | |Arg z | < πλ

2
}, λ > 0.

S1 = {z ∈ C | Re z > 0}.
A(Sλ) := {ϕ ∈ O(Sλ) | sup

z∈Sλ
|ϕ(p)(z)| <∞, ∀p ∈ N}.

For ϕ ∈ A(Sλ) we may define

ϕ(p)(0) := lim
z→0;z∈Sλ

ϕ(p)(z), ∀p ∈ N.

Theorem (Ritt, 1916)

Let λ > 0. For every (ap)p∈N ⊂ CN there is ϕ ∈ A(Sλ) such that
ϕ(p)(0) = ap for all p ∈ N.

4 / 20



The Stieltjes moment problem for positive measures

Theorem (Stieltjes, 1894)

Let (ap)p∈N ⊂ RN
+. There is a positive measure µ such that∫ ∞

0
xpdµ(x) = ap, ∀p ∈ N,

if and only if

det ∆p > 0 and det ∆
(1)
p > 0, ∀p ∈ N.

Stieltjes integral, Stieltjes transform, . . .

M. Riesz (1922): Extension of positive linear functionals.
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The unrestricted Stieltjes moment problem

Theorem (Boas, Pólya, independently, 1939)

For every (ap)p∈N ⊂ CN there is a complex measure µ such that∫ ∞
0

xpdµ(x) = ap, ∀p ∈ N.

Theorem (A.J. Durán,1989)

For every (ap)p∈N ⊂ CN there is ϕ ∈ S(0,∞) such that∫ ∞
0

xpϕ(x)dx = ap, ∀p ∈ N.

A.L. Durán, Estrada (1994): Reduction to Borel-Ritt problem on the
right half-plane via Laplace transform.

6 / 20



The unrestricted Stieltjes moment problem
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Spaces of ultradifferentiable functions

Let M = (Mp)p∈N be a sequence of positive numbers.

For h > 0 and R > 0 we define

EM,h([−R,R]) := {ϕ ∈ C∞([−R,R]) | sup
p∈N

sup
x∈[−R,R]

|ϕ(p)(x)|
hpMp

<∞}.

Set
E(M)(R) :=

⋂
R>0

⋂
h>0

EM,h([−R,R])

and
E{M}(R) :=

⋂
R>0

⋃
h>0

EM,h([−R,R]).

E{(p!)p}(R) is the space of real analytic functions on R.

E((p!)p)(R) is the space of entire functions on R.

The spaces E{(p!α)p}(R), α > 1, were introduced by Gevrey (around
1910) to analyze the regularity of solutions to PDE’s.
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Conditions on weight sequences

Consider the following conditions on M:

(M.1) M2
p ≤ Mp−1Mp+1, ∀p ≥ 1.

(M.2)′ Mp+1 ≤ AHpMp, ∀p ∈ N, for some A,H > 0.
(M.2) Mp+q ≤ AHp+qMpMq, ∀p, q ∈ N, for some A,H > 0.

(M.3)′
∞∑
p=1

1

Mp/Mp−1
<∞.

The sequence (p!)p satisfies the above conditions except for (M.3)′.

The Gevrey sequences (p!α)p, α > 1, satisfy all the above conditions.

The q-Gevrey sequence (qp
2
)p, q > 1, satisfy the above conditions

except for (M.2).

For simplicity, we shall only consider the Beurling spaces E(M)(R). All
results have a counterpart for the Roumieu spaces E{M}(R).
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The Borel problem in E (M)(R)

We define the sequence space

Λ(M) := {(cp)p∈N ∈ CN | sup
p∈N

|cp|
hpMp

<∞ for all h > 0}.

The Borel mapping

B(M) : E(M)(R)→ Λ(M) : ϕ→ (ϕ(p)(0))p∈N

is well-defined and continuous.

Problem

Characterize the surjectivity of B(M) in terms of M.

Denjoy-Carleman theorem: B(M) is injective if and only if M is
quasianalytic (= does not satisfy (M.3)′).

If M is quasianalytic and non-entire (E(p!)(R) ( E(M)(R)), then B(M)

is never surjective (Roumieu case: Carleman (1923)).
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Petzsche’s solution to the Borel problem in E (Mp)(R) (1)

Consider the strong non-quasianalyticity condition

(γ1)
∞∑
q=p

1

Mp/Mp−1
≤ C

p

Mp/Mp−1
, ∀p ≥ 1, for some C > 0.

The Gevrey sequences (p!α)p, α > 1, and the q-Gevrey sequences

(qp
2
)p, q > 1, both satisfy (γ1).

Theorem (Petzsche, 1988)

Let M satisfy (M.1) and (M.3)′. FSAE:

(i) M satisfies (γ1).

(ii) B(M) is surjective.

(iii) B(M) admits a continuous linear right inverse, that is, there is a continuous
linear mapping R : Λ(M) → E (M)(R) such that B(M) ◦ R = id.
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Theorem (Petzsche, 1988)

Let M satisfy (M.1) and (M.3)′. FSAE:

(i) M satisfies (γ1).

(ii) B(M) is surjective.

(iii) B(M) admits a continuous linear right inverse, that is, there is a continuous
linear mapping R : Λ(M) → E (M)(R) such that B(M) ◦ R = id.
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Petzsche’s solution to the Borel problem in E (Mp)(R) (2)

Technical masterpiece.

Sufficiency: Explicit construction of χj ∈ E(M)(R), j ∈ N, such that

χ
(p)
j (0) = δj ,p and R(c) =

∑∞
j=0 cjχj ∈ E(M)(R) for all

c = (cj)j ∈ Λ(M).

Necessity: Ingenuous use of Taylor’s formula combined with ideas
from Hörmander’s real analysis proof of the Denjoy-Carleman
theorem.

Langenbruch, Meise and Taylor, independently (1988): Existence of
continuous linear right inverse for B(M) via (DN)-(Ω) splitting
theorem of Vogt and Wagner.
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from Hörmander’s real analysis proof of the Denjoy-Carleman
theorem.

Langenbruch, Meise and Taylor, independently (1988): Existence of
continuous linear right inverse for B(M) via (DN)-(Ω) splitting
theorem of Vogt and Wagner.

11 / 20



Petzsche’s solution to the Borel problem in E (Mp)(R) (2)

Technical masterpiece.

Sufficiency: Explicit construction of χj ∈ E(M)(R), j ∈ N, such that

χ
(p)
j (0) = δj ,p and R(c) =

∑∞
j=0 cjχj ∈ E(M)(R) for all

c = (cj)j ∈ Λ(M).

Necessity: Ingenuous use of Taylor’s formula combined with ideas
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Spaces of ultraholomorphic functions and the asymptotic
Borel mapping

Let λ > 0. We define

A(M)(Sλ) := {ϕ ∈ O(Sλ) | sup
p∈N

sup
z∈Sλ

|ϕ(p)(z)|
hpMp

<∞ for all h > 0}.

The asymptotic Borel mapping

B(M)
λ : A(M)(Sλ)→ Λ(M) : ϕ→ (ϕ(p)(0))p∈N

is well-defined and continuous.

Problem

Characterize the surjectivity of B(M)
λ in terms of M and λ.
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The conditions (γλ)

For λ > 0 we consider

(γλ)
∞∑
q=p

1

(Mp/Mp−1)1/λ
≤ C

p

(Mp/Mp−1)1/λ
, ∀p ≥ 1, for some C > 0.

M satisfies (γλ) if and only if M1/λ = (M
1/λ
p )p∈N satisfies (γ1).

The Gevrey sequence (p!α)p, α > 1, satisfy (γλ) if and only if α > λ.

The q-Gevrey sequences (qp
2
)p, q > 1, satisfy (γλ) for all γ > 0.
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The Borel-Ritt problem in A(M)(Sλ) (1)

Theorem (Thilliez, 2003)

Let λ > 0 and let M satisfy (M.1), (M.2) and (M.3). If M satisfies

(γλ+1), then B(M)
λ is surjective.

Based upon Whitney type extension results for ultradifferentiable
functions.

Ramis (1978): For the Gevrey sequences (p!α)p, α > 1, by using the
(truncated) Laplace transform (Roumieu case).

Lastra, Malek, Sanz (2012): Refinement of Ramis’ method.

Both methods do not provide continuous linear right inverses.
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The Borel-Ritt problem in A(M)(Sλ) (2)

Theorem (Schmets, Valdivia, 2000)

Let n ∈ N and let M satisfy (M.1), (M.3)′ and (γn+1). For λ < n, B(M)
λ

admits a continuous linear right inverse.

Reduction to Petzsche’s result on the Borel problem via Laplace
transform.

This result is far from optimal, e.g., for λ = 1 (right half-plane) one
expects (γ2) instead of (γ3).
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The Borel-Ritt problem in A(M)(Sλ) (3)

Theorem (Jiménez-Garrido, Sanz, Schindl, 2018)

Let λ > 0 and let M satisfy (M.1), (M.2) and (M.3). If λ ∈ Q and B(M)
λ

is surjective, then M satisfies (γλ+1).

Schmets and Valdivia (2000): λ ∈ N. Reduction to Petzsche’s result
on the Borel problem via Laplace transform.

Refinement of the method of Schmets and Valdivia.

Corollary

Let M satisfy (M.1), (M.2) and (M.3). Then, B(M)
1 is surjective if and

only if M satisfies (γ2).
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Open problems

Show
B(M)
λ surjective ⇒ M satisfies (γλ+1)

without assuming that λ ∈ Q.

Show
M satisfies (γλ+1)⇒ B(M)

λ surjective

without assuming that M satisfies (M.2) and (M.3).

Show the existence of a continuous linear right inverse of

B(M)
λ : A(M)(Sλ)→ Λ(M); even open for the Gevrey sequences.

Possible approach: apply (DN)-(Ω) splitting theorem. Does

kerB(M)
λ = {ϕ ∈ A(M)(Sλ) |ϕ(p)(0) = 0 for all p ∈ N}

satisfy (Ω)?
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Gelfand-Shilov spaces and the Stieltjes moment mapping

We define S(M)(R) as the space of all ϕ ∈ C∞(R) such that

max
k≤n

sup
p∈N

|xpϕ(k)(x)|
hpMp

<∞ ∀n ∈ N, h > 0.

Set S(M)(0,∞) := {ϕ ∈ S(M)(R) | suppϕ ⊆ [0,∞)}.
If M satisfies (M.2)′, the Stieltjes moment mapping

M(M) : S(M)(0,∞)→ Λ(M) : ϕ→
(∫ ∞

0
xpϕ(x)dx

)
p∈N

is well-defined and continuous.

Problem

Characterize the surjectivity of M(M) in terms of M.
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Stieltjes moment problem in S(M)(0,∞) (1)

Theorem (cf. Lastra and Sanz, 2009)

Let M satisfy (M.1), (M.2)′ and (M.3)′. Then, M(M) is surjective

(admits a continuous linear right inverse) if and only if B(M)
1 does so.

Extension of the method of Durán and Estrada (Laplace transform)
to Gelfand-Shilov spaces.

Corollary

Let M satisfy (M.1), (M.2)′ and (M.3)′.

If in addition M satisfies (M.2) and (M.3), then M(M) : S(M)(0,∞)→ Λ(M)

is surjective if and only if M satisfies (γ2).

If M satisfies (γ3), then M(M) : S(M)(0,∞)→ Λ(M) admits a continuous
linear right inverse.

Can one improve this result by studying the Stieltjes moment problem
in its own right?
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Stieltjes moment problem in S(M)(0,∞) (2)

Theorem (D., 2018)

Let M satisfy (M.1), (M.2)′ and (M.3)′. FSAE:

(i) M satisfies (γ2).

(ii) M(M) : S(M)(0,∞)→ Λ(M) is surjective.

(iii) M(M) : S(M)(0,∞)→ Λ(M) admits a continuous linear right inverse.

Reduction to Petzsche’s result on the Borel problem via Fourier
transform and abstract functional analysis.

By the result of Lastra and Sanz this also completely settles the
Borel-Ritt problem on the right half-plane (under (M.1), (M.2)′ and
(M.3)′).
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(ii) M(M) : S(M)(0,∞)→ Λ(M) is surjective.

(iii) M(M) : S(M)(0,∞)→ Λ(M) admits a continuous linear right inverse.

Reduction to Petzsche’s result on the Borel problem via Fourier
transform and abstract functional analysis.

By the result of Lastra and Sanz this also completely settles the
Borel-Ritt problem on the right half-plane (under (M.1), (M.2)′ and
(M.3)′).
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