On the Borel, the Borel-Ritt and the Stieltjes moment problem

Andreas Debrouwere

Ghent University

19 September 2019

Outline of the talk

(1) Introduction.
(2) The Borel problem in spaces of ultradifferentiable functions.
(3) The Borel-Ritt problem in spaces of ultraholomorphic functions.
(1) The Stieltjes moment problem in Gelfand-Shilov spaces.

Outline of the talk

(1) Introduction.
(2) The Borel problem in spaces of ultradifferentiable functions.
(3) The Borel-Ritt problem in spaces of ultraholomorphic functions.
(0) The Stieltjes moment problem in Gelfand-Shilov spaces.

Outline of the talk

(1) Introduction.
(2) The Borel problem in spaces of ultradifferentiable functions.
(3) The Borel-Ritt problem in spaces of ultraholomorphic functions.
© The Stieltjes moment problem in Gelfand-Shilov spaces.

Outline of the talk

(1) Introduction.
(2) The Borel problem in spaces of ultradifferentiable functions.
(3) The Borel-Ritt problem in spaces of ultraholomorphic functions.
(9) The Stieltjes moment problem in Gelfand-Shilov spaces.

The Borel problem

Theorem (E. Borel, 1895; Peano, 1894)

For every $\left(a_{p}\right)_{p \in \mathbb{N}} \subset \mathbb{C}^{\mathbb{N}}$ there is $\varphi \in C^{\infty}(\mathbb{R})$ such that $\varphi^{(p)}(0)=a_{p}$ for all $p \in \mathbb{N}$.

The Borel-Ritt problem

- Let Σ be the Riemann surface of the logarithm.

$$
\begin{aligned}
& \qquad S_{\lambda}=\left\{z \in \sum| | \operatorname{Arg} z \left\lvert\,<\frac{\pi \lambda}{2}\right.\right\}, \quad \lambda>0 \\
& S_{1}=\{z \in \mathbb{C} \mid \operatorname{Re} z>0\} . \\
& \text { - } \mathcal{A}\left(S_{\lambda}\right):=\left\{\varphi \in \mathcal{O}\left(S_{\lambda}\right)\left|\sup _{z \in S_{\lambda}}\right| \varphi^{(p)}(z) \mid<\infty, \forall p \in \mathbb{N}\right\} . \\
& \text { For } \varphi \in \mathcal{A}\left(S_{\lambda}\right) \text { we may define } \\
& \qquad \varphi^{(p)}(0):=\lim _{z \rightarrow 0 ; z \in S_{\lambda}} \varphi^{(p)}(z), \quad \forall p \in \mathbb{N} .
\end{aligned}
$$

$$
S_{1}=\{z \in \mathbb{C} \mid \operatorname{Re} z>0\}
$$

$$
\text { - For } \varphi \in \mathcal{A}\left(S_{\lambda}\right) \text { we may define }
$$

Theorem (Ritt, 1916)

Let $\lambda>0$. For every $\left(a_{p}\right)_{p \in \mathbb{N}} \subset \mathbb{C}^{N}$ there is $\varphi \in \mathcal{A}\left(S_{\lambda}\right)$ such that
$\varphi^{(p)}(0)=a_{p}$ for all $p \in \mathbb{N}$.

The Borel-Ritt problem

- Let Σ be the Riemann surface of the logarithm. Set

$$
S_{\lambda}=\left\{z \in \Sigma| | \operatorname{Arg} z \left\lvert\,<\frac{\pi \lambda}{2}\right.\right\}, \quad \lambda>0
$$

- $S_{1}=\{z \in \mathbb{C} \mid \operatorname{Re} z>0\}$
- $\mathcal{A}\left(S_{\lambda}\right):=\left\{\varphi \in \mathcal{O}\left(S_{\lambda}\right)|\sup | \varphi^{(p)}(z) \mid<\infty, \forall p \in \mathbb{N}\right\}$
- For $\varphi \in \mathcal{A}\left(S_{\lambda}\right)$ we may define

Theorem (Ritt, 1916)

Let $\lambda>0$. For every $\left(a_{p}\right)_{p \in N} \subset \mathbb{C}^{N}$ there is $\varphi \in \mathcal{A}\left(S_{\lambda}\right)$ such that
$\varphi^{(p)}(0)=a_{p}$ for all $p \in \mathbb{N}$.

The Borel-Ritt problem

- Let Σ be the Riemann surface of the logarithm. Set

$$
S_{\lambda}=\left\{z \in \Sigma| | \operatorname{Arg} z \left\lvert\,<\frac{\pi \lambda}{2}\right.\right\}, \quad \lambda>0
$$

- $S_{1}=\{z \in \mathbb{C} \mid \operatorname{Re} z>0\}$.
- $\mathcal{A}\left(S_{\lambda}\right):=\left\{\varphi \in \mathcal{O}\left(S_{\lambda}\right)|\sup | \varphi^{(p)}(z) \mid<\infty, \forall p \in \mathbb{N}\right\}$
- For $\varphi \in \mathcal{A}\left(S_{\lambda}\right)$ we may define

Theorem (Ritt, 1916)

let $\lambda>0$. For every $\left(a_{p}\right)_{p \in N} \subset \mathbb{C}^{N}$ there is $\varphi \in \mathcal{A}\left(S_{\lambda}\right)$ such that
$\varphi^{(p)}(0)=a_{p}$ for all $p \in \mathbb{N}$.

The Borel-Ritt problem

- Let Σ be the Riemann surface of the logarithm. Set

$$
S_{\lambda}=\left\{z \in \Sigma| | \operatorname{Arg} z \left\lvert\,<\frac{\pi \lambda}{2}\right.\right\}, \quad \lambda>0
$$

- $S_{1}=\{z \in \mathbb{C} \mid \operatorname{Re} z>0\}$.
- $\mathcal{A}\left(S_{\lambda}\right):=\left\{\varphi \in \mathcal{O}\left(S_{\lambda}\right)|\sup | \varphi^{(p)}(z) \mid<\infty, \forall p \in \mathbb{N}\right\}$. $z \in S_{\lambda}$
- For $\varphi \in \mathcal{A}\left(S_{\lambda}\right)$ we may define

Theorem (Ritt, 1916)

Let $\lambda>0$. For every $\left(a_{p}\right)_{p \in N} \subset \mathbb{C}$ there is $\varphi \in \mathcal{A}\left(S_{\lambda}\right)$ such that
$\varphi^{(p)}(0)=a_{p}$ for all $p \in \mathbb{N}$.

The Borel-Ritt problem

- Let Σ be the Riemann surface of the logarithm. Set

$$
S_{\lambda}=\left\{z \in \Sigma| | \operatorname{Arg} z \left\lvert\,<\frac{\pi \lambda}{2}\right.\right\}, \quad \lambda>0
$$

- $S_{1}=\{z \in \mathbb{C} \mid \operatorname{Re} z>0\}$.
- $\mathcal{A}\left(S_{\lambda}\right):=\left\{\varphi \in \mathcal{O}\left(S_{\lambda}\right)\left|\sup _{z \in S_{\lambda}}\right| \varphi^{(p)}(z) \mid<\infty, \forall p \in \mathbb{N}\right\}$. $z \in S_{\lambda}$
- For $\varphi \in \mathcal{A}\left(S_{\lambda}\right)$ we may define

$$
\varphi^{(p)}(0):=\lim _{z \rightarrow 0 ; z \in S_{\lambda}} \varphi^{(p)}(z), \quad \forall p \in \mathbb{N}
$$

Theorem (Ritt, 1916)

Let $\lambda>0$. For every $\left(a_{p}\right)_{p \in \mathbb{N}} \subset \mathbb{C}^{N}$ there is $\varphi \in \mathcal{A}\left(S_{\lambda}\right)$ such that
$\varphi^{(p)}(0)=a_{p}$ for all $p \in \mathbb{N}$.

The Borel-Ritt problem

- Let Σ be the Riemann surface of the logarithm. Set

$$
S_{\lambda}=\left\{z \in \Sigma| | \operatorname{Arg} z \left\lvert\,<\frac{\pi \lambda}{2}\right.\right\}, \quad \lambda>0
$$

- $S_{1}=\{z \in \mathbb{C} \mid \operatorname{Re} z>0\}$.
- $\mathcal{A}\left(S_{\lambda}\right):=\left\{\varphi \in \mathcal{O}\left(S_{\lambda}\right)|\sup | \varphi^{(p)}(z) \mid<\infty, \forall p \in \mathbb{N}\right\}$. $z \in S_{\lambda}$
- For $\varphi \in \mathcal{A}\left(S_{\lambda}\right)$ we may define

$$
\varphi^{(p)}(0):=\lim _{z \rightarrow 0 ; z \in S_{\lambda}} \varphi^{(p)}(z), \quad \forall p \in \mathbb{N} .
$$

Theorem (Ritt, 1916)

Let $\lambda>0$. For every $\left(a_{p}\right)_{p \in \mathbb{N}} \subset \mathbb{C}^{\mathbb{N}}$ there is $\varphi \in \mathcal{A}\left(S_{\lambda}\right)$ such that $\varphi^{(p)}(0)=a_{p}$ for all $p \in \mathbb{N}$.

The Stieltjes moment problem for positive measures

Theorem (Stieltjes, 1894)

Let $\left(a_{p}\right)_{p \in \mathbb{N}} \subset \mathbb{R}_{+}^{\mathbb{N}}$. There is a positive measure μ such that

$$
\int_{0}^{\infty} x^{p} \mathrm{~d} \mu(x)=a_{p}, \quad \forall p \in \mathbb{N}
$$

if and only if

$$
\operatorname{det} \Delta_{p}>0 \quad \text { and } \quad \operatorname{det} \Delta_{p}^{(1)}>0, \quad \forall p \in \mathbb{N} .
$$

- Stieltjes integral, Stieltjes transform, ...
- M. Riesz (1922): Extension of positive linear functionals.

The Stieltjes moment problem for positive measures

Theorem (Stieltjes, 1894)

Let $\left(a_{p}\right)_{p \in \mathbb{N}} \subset \mathbb{R}_{+}^{\mathbb{N}}$. There is a positive measure μ such that

$$
\int_{0}^{\infty} x^{p} \mathrm{~d} \mu(x)=a_{p}, \quad \forall p \in \mathbb{N}
$$

if and only if

$$
\operatorname{det} \Delta_{p}>0 \quad \text { and } \quad \operatorname{det} \Delta_{p}^{(1)}>0, \quad \forall p \in \mathbb{N} .
$$

- Stieltjes integral, Stieltjes transform, ...
- M. Riesz (1922): Extension of positive linear functionals.

The unrestricted Stieltjes moment problem

Theorem (Boas, Pólya, independently, 1939)
For every $\left(a_{p}\right)_{p \in \mathbb{N}} \subset \mathbb{C}^{\mathbb{N}}$ there is a complex measure μ such that

$$
\int_{0}^{\infty} x^{p} \mathrm{~d} \mu(x)=a_{p}, \quad \forall p \in \mathbb{N} .
$$

Theorem (A.J. Durán,1989)

For every $\left(a_{p}\right)_{p \in \mathbb{N}} \subset \mathbb{C}^{\mathbb{N}}$ there is $\varphi \in \mathcal{S}(0, \infty)$ such that

- A.L. Durán, Estrada (1994): Reduction to Borel-Ritt problem on the right half-plane via Laplace transform.

The unrestricted Stieltjes moment problem

Theorem (Boas, Pólya, independently, 1939)
For every $\left(a_{p}\right)_{p \in \mathbb{N}} \subset \mathbb{C}^{\mathbb{N}}$ there is a complex measure μ such that

$$
\int_{0}^{\infty} x^{p} \mathrm{~d} \mu(x)=a_{p}, \quad \forall p \in \mathbb{N} .
$$

Theorem (A.J. Durán, 1989)

For every $\left(a_{p}\right)_{p \in \mathbb{N}} \subset \mathbb{C}^{\mathbb{N}}$ there is $\varphi \in \mathcal{S}(0, \infty)$ such that

$$
\int_{0}^{\infty} x^{p} \varphi(x) \mathrm{d} x=a_{p}, \quad \forall p \in \mathbb{N}
$$

- A.L. Durán, Estrada (1994): Reduction to Borel-Ritt problem on the right half-plane via Laplace transform.

The unrestricted Stieltjes moment problem

Theorem (Boas, Pólya, independently, 1939)
For every $\left(a_{p}\right)_{p \in \mathbb{N}} \subset \mathbb{C}^{\mathbb{N}}$ there is a complex measure μ such that

$$
\int_{0}^{\infty} x^{p} \mathrm{~d} \mu(x)=a_{p}, \quad \forall p \in \mathbb{N} .
$$

Theorem (A.J. Durán, 1989)

For every $\left(a_{p}\right)_{p \in \mathbb{N}} \subset \mathbb{C}^{\mathbb{N}}$ there is $\varphi \in \mathcal{S}(0, \infty)$ such that

$$
\int_{0}^{\infty} x^{p} \varphi(x) \mathrm{d} x=a_{p}, \quad \forall p \in \mathbb{N}
$$

- A.L. Durán, Estrada (1994): Reduction to Borel-Ritt problem on the right half-plane via Laplace transform.

Spaces of ultradifferentiable functions

- Let $M=\left(M_{p}\right)_{p \in \mathbb{N}}$ be a sequence of positive numbers.
- For $h>0$ and $R>0$ we define

- Set

and

$$
\mathcal{E}^{\{M\}}(\mathbb{R}):=\bigcap_{R>0} \bigcup_{h>0} \mathcal{E}^{M, h}([-R, R]) .
$$

- $\mathcal{E}^{\left\{(p!)_{p}\right\}}(\mathbb{R})$ is the space of real analytic functions on \mathbb{R}.
- $\mathcal{E}\left({ }^{\left.(p!)_{\rho}\right)}(\mathbb{R})\right.$ is the space of entire functions on \mathbb{R}.
- The spaces $\mathcal{E}\left\{\left(p!^{\alpha}\right)_{p}\right\}(\mathbb{R}), \alpha>1$, were introduced by Gevrey (around 1910) to analyze the regularity of solutions to PDE's.

Spaces of ultradifferentiable functions

- Let $M=\left(M_{p}\right)_{p \in \mathbb{N}}$ be a sequence of positive numbers.
- For $h>0$ and $R>0$ we define

$$
\mathcal{E}^{M, h}([-R, R]):=\left\{\varphi \in C^{\infty}([-R, R]) \left\lvert\, \sup _{p \in \mathbb{N}} \sup _{x \in[-R, R]} \frac{\left|\varphi^{(p)}(x)\right|}{h^{p} M_{p}}<\infty\right.\right\}
$$

- Set

and

- $\mathcal{E}^{\left\{(p!)_{p}\right\}}(\mathbb{R})$ is the space of real analytic functions on \mathbb{R}.
- $\mathcal{E}\left({ }^{\left.(p!)_{\rho}\right)}(\mathbb{R})\right.$ is the space of entire functions on \mathbb{R}.
- The spaces $\mathcal{E}\left\{\left(p!^{\alpha}\right)_{p}\right\}(\mathbb{R}), \alpha>1$, were introduced by Gevrey (around 1910) to analyze the regularity of solutions to PDE's.

Spaces of ultradifferentiable functions

- Let $M=\left(M_{p}\right)_{p \in \mathbb{N}}$ be a sequence of positive numbers.
- For $h>0$ and $R>0$ we define

$$
\mathcal{E}^{M, h}([-R, R]):=\left\{\varphi \in C^{\infty}([-R, R]) \left\lvert\, \sup _{p \in \mathbb{N}} \sup _{x \in[-R, R]} \frac{\left|\varphi^{(p)}(x)\right|}{h^{p} M_{p}}<\infty\right.\right\}
$$

- Set

$$
\mathcal{E}^{(M)}(\mathbb{R}):=\bigcap_{R>0} \bigcap_{h>0} \mathcal{E}^{M, h}([-R, R])
$$

and

$$
\mathcal{E}^{\{M\}}(\mathbb{R}):=\bigcap_{R>0} \bigcup_{h>0} \mathcal{E}^{M, h}([-R, R])
$$

- $\mathcal{E}\left\{(p!)_{p}\right\}(\mathbb{R})$ is the space of real analytic functions on \mathbb{R}.
- $\mathcal{E}^{\left((p!)_{p}\right)}(\mathbb{R})$ is the space of entire functions on \mathbb{R}
- The spaces $\mathcal{E}^{\left\{\left(p!^{\alpha}\right)_{p}\right\}}(\mathbb{R}), \alpha>1$, were introduced by Gevrey (around 1910) to analyze the regularity of solutions to PDE's

Spaces of ultradifferentiable functions

- Let $M=\left(M_{p}\right)_{p \in \mathbb{N}}$ be a sequence of positive numbers.
- For $h>0$ and $R>0$ we define

$$
\mathcal{E}^{M, h}([-R, R]):=\left\{\varphi \in C^{\infty}([-R, R]) \left\lvert\, \sup _{p \in \mathbb{N}} \sup _{x \in[-R, R]} \frac{\left|\varphi^{(p)}(x)\right|}{h^{p} M_{p}}<\infty\right.\right\}
$$

- Set

$$
\mathcal{E}^{(M)}(\mathbb{R}):=\bigcap_{R>0} \bigcap_{h>0} \mathcal{E}^{M, h}([-R, R])
$$

and

$$
\mathcal{E}^{\{M\}}(\mathbb{R}):=\bigcap_{R>0} \bigcup_{h>0} \mathcal{E}^{M, h}([-R, R])
$$

- $\mathcal{E}^{\left\{(p!)_{p}\right\}}(\mathbb{R})$ is the space of real analytic functions on \mathbb{R}.
- The spaces $\mathcal{E}^{\left\{\left(p!^{\alpha}\right)_{p}\right\}}(\mathbb{R}), \alpha>1$, were introduced by Gevrey (around 1910) to analyze the regularity of solutions to PDE's.

Spaces of ultradifferentiable functions

- Let $M=\left(M_{p}\right)_{p \in \mathbb{N}}$ be a sequence of positive numbers.
- For $h>0$ and $R>0$ we define

$$
\mathcal{E}^{M, h}([-R, R]):=\left\{\varphi \in C^{\infty}([-R, R]) \left\lvert\, \sup _{p \in \mathbb{N}} \sup _{x \in[-R, R]} \frac{\left|\varphi^{(p)}(x)\right|}{h^{p} M_{p}}<\infty\right.\right\}
$$

- Set

$$
\mathcal{E}^{(M)}(\mathbb{R}):=\bigcap_{R>0} \bigcap_{h>0} \mathcal{E}^{M, h}([-R, R])
$$

and

$$
\mathcal{E}^{\{M\}}(\mathbb{R}):=\bigcap_{R>0} \bigcup_{h>0} \mathcal{E}^{M, h}([-R, R])
$$

- $\mathcal{E}^{\left\{(p!)_{p}\right\}}(\mathbb{R})$ is the space of real analytic functions on \mathbb{R}.
- $\mathcal{E}\left((p!)_{p}\right)(\mathbb{R})$ is the space of entire functions on \mathbb{R}.
- The spaces $\mathcal{E}\left\{\left(p!^{\alpha}\right)_{p}\right\}(\mathbb{R}), \alpha>1$, were introduced by Gevrey (around 1910) to analyze the regularity of solutions to PDE's.

Spaces of ultradifferentiable functions

- Let $M=\left(M_{p}\right)_{p \in \mathbb{N}}$ be a sequence of positive numbers.
- For $h>0$ and $R>0$ we define

$$
\mathcal{E}^{M, h}([-R, R]):=\left\{\varphi \in C^{\infty}([-R, R]) \left\lvert\, \sup _{p \in \mathbb{N}} \sup _{x \in[-R, R]} \frac{\left|\varphi^{(p)}(x)\right|}{h^{p} M_{p}}<\infty\right.\right\}
$$

- Set

$$
\mathcal{E}^{(M)}(\mathbb{R}):=\bigcap_{R>0} \bigcap_{h>0} \mathcal{E}^{M, h}([-R, R])
$$

and

$$
\mathcal{E}^{\{M\}}(\mathbb{R}):=\bigcap_{R>0} \bigcup_{h>0} \mathcal{E}^{M, h}([-R, R])
$$

- $\mathcal{E}^{\left\{(p!)_{p}\right\}}(\mathbb{R})$ is the space of real analytic functions on \mathbb{R}.
- $\mathcal{E}\left((p!)_{\rho}\right)(\mathbb{R})$ is the space of entire functions on \mathbb{R}.
- The spaces $\mathcal{E}{ }^{\left\{\left(p!^{\alpha}\right)_{p}\right\}}(\mathbb{R}), \alpha>1$, were introduced by Gevrey (around 1910) to analyze the regularity of solutions to PDE's.

Conditions on weight sequences

- Consider the following conditions on M :
(M.1) $M_{p}^{2} \leq M_{p-1} M_{p+1}, \forall p \geq 1$.
$(M .2)^{\prime} \quad M_{p+1} \leq A H^{p} M_{p}, \forall p \in \mathbb{N}$, for some $A, H>0$.
(M.2) $M_{p+q} \leq A H^{p+q} M_{p} M_{q}, \forall p, q \in \mathbb{N}$, for some $A, H>0$.
(M.3) ${ }^{\prime}$

- The sequence $(p!)_{p}$ satisfies the above conditions except for $(M .3)^{\prime}$
- The Gevrey sequences $\left(p!^{\alpha}\right)_{p}, \alpha>1$, satisfy all the above conditions.
- The q-Gevrey sequence $\left(q^{p^{2}}\right)_{p}, q>1$, satisfy the above conditions except for (M.2)
- For simplicity, we shall only consider the Beurling spaces $\mathcal{E}^{(M)}(\mathbb{R})$. All results have a counterpart for the Roumieu spaces $\mathcal{E}^{\{M\}}(\mathbb{R})$.

Conditions on weight sequences

- Consider the following conditions on M :
(M.1) $M_{p}^{2} \leq M_{p-1} M_{p+1}, \forall p \geq 1$.
(M.2)' $M_{p+1} \leq A H^{p} M_{p}, \forall p \in \mathbb{N}$, for some $A, H>0$.
(M.2) $M_{p+q} \leq A H^{p+q} M_{p} M_{q}, \forall p, q \in \mathbb{N}$, for some $A, H>0$
(M.3) ${ }^{\prime}$

- The sequence $(p!)_{p}$ satisfies the above conditions except for $(M .3)^{\prime}$
- The Gevrey sequences $\left(p!^{\alpha}\right)_{p}, \alpha>1$, satisfy all the above conditions.
- The q-Gevrey sequence $\left(q^{p^{2}}\right)_{p}, q>1$, satisfy the above conditions except for (M.2)
- For simplicity, we shall only consider the Beurling spaces $\mathcal{E}^{(M)}(\mathbb{R})$. All results have a counterpart for the Roumieu spaces $\mathcal{E}^{\{M\}}(\mathbb{R})$.

Conditions on weight sequences

- Consider the following conditions on M :
(M.1) $M_{p}^{2} \leq M_{p-1} M_{p+1}, \forall p \geq 1$.
(M.2)' $M_{p+1} \leq A H^{p} M_{p}, \forall p \in \mathbb{N}$, for some $A, H>0$.
(M.2) $M_{p+q} \leq A H^{p+q} M_{p} M_{q}, \forall p, q \in \mathbb{N}$, for some $A, H>0$.
(M.3)'

- The sequence $(p!)_{p}$ satisfies the above conditions except for $(M .3)^{\prime}$
- The Gevrey sequences $\left(p!^{\alpha}\right)_{p}, \alpha>1$, satisfy all the above conditions.
- The q-Gevrey sequence $\left(q^{p^{2}}\right)_{p}, q>1$, satisfy the above conditions except for (M.2)
- For simplicity, we shall only consider the Beurling spaces $\varepsilon^{(M)}(\mathbb{R})$. All results have a counterpart for the Roumieu spaces $\mathcal{E}^{\{M\}}(\mathbb{R})$.

Conditions on weight sequences

- Consider the following conditions on M :
(M.1) $M_{p}^{2} \leq M_{p-1} M_{p+1}, \forall p \geq 1$.
(M.2)' $M_{p+1} \leq A H^{p} M_{p}, \forall p \in \mathbb{N}$, for some $A, H>0$.
(M.2) $M_{p+q} \leq A H^{p+q} M_{p} M_{q}, \forall p, q \in \mathbb{N}$, for some $A, H>0$.
(M.3) $\sum_{p=1}^{\infty} \frac{1}{M_{p} / M_{p-1}}<\infty$.
- The sequence $(p!)_{p}$ satisfies the above conditions except for (M.3)'
- The Gevrey sequences $\left(p!^{\alpha}\right)_{p}, \alpha>1$, satisfy all the above conditions.
- The q-Gevrey sequence $\left(q^{p^{2}}\right)_{p}, q>1$, satisfy the above conditions except for (M.2)
- For simplicity, we shall only consider the Beurling spaces $\mathcal{E}^{(M)}(\mathbb{R})$. All results have a counterpart for the Roumieu spaces $\mathcal{E}^{\{M\}}(\mathbb{R})$.

Conditions on weight sequences

- Consider the following conditions on M :
(M.1) $M_{p}^{2} \leq M_{p-1} M_{p+1}, \forall p \geq 1$.
(M.2)' $M_{p+1} \leq A H^{p} M_{p}, \forall p \in \mathbb{N}$, for some $A, H>0$.
(M.2) $M_{p+q} \leq A H^{p+q} M_{p} M_{q}, \forall p, q \in \mathbb{N}$, for some $A, H>0$.
(M.3) $\sum_{p=1}^{\infty} \frac{1}{M_{p} / M_{p-1}}<\infty$.
- The sequence $(p!)_{p}$ satisfies the above conditions except for $(M .3)^{\prime}$.
- The Gevrey sequences $\left(p!^{\alpha}\right)_{p}, \alpha>1$, satisfy all the above conditions
- The q-Gevrey sequence $\left(q^{p^{2}}\right)_{p}, q>1$, satisfy the above conditions except for (M.2)
- For simplicity, we shall only consider the Beurling spaces $\mathcal{E}^{(M)}(\mathbb{R})$. All results have a counterpart for the Roumieu spaces $\mathcal{E}^{\{M\}}(\mathbb{R})$.

Conditions on weight sequences

- Consider the following conditions on M :
(M.1) $M_{p}^{2} \leq M_{p-1} M_{p+1}, \forall p \geq 1$.
(M.2)' $M_{p+1} \leq A H^{p} M_{p}, \forall p \in \mathbb{N}$, for some $A, H>0$.
(M.2) $M_{p+q} \leq A H^{p+q} M_{p} M_{q}, \forall p, q \in \mathbb{N}$, for some $A, H>0$.
(M.3) $\sum_{p=1}^{\infty} \frac{1}{M_{p} / M_{p-1}}<\infty$.
- The sequence $(p!)_{p}$ satisfies the above conditions except for (M.3)'.
- The Gevrey sequences $\left(p!^{\alpha}\right)_{p}, \alpha>1$, satisfy all the above conditions.
- The q-Gevrey sequence $\left(q^{p^{2}}\right)_{p}, q>1$, satisfy the above conditions except for (M.2)
- For simplicity, we shall only consider the Beurling spaces $\mathcal{E}^{(M)}(\mathbb{R})$ results have a counterpart for the Roumieu spaces $\mathcal{E}^{\{M\}}(\mathbb{R})$.

Conditions on weight sequences

- Consider the following conditions on M :
(M.1) $M_{p}^{2} \leq M_{p-1} M_{p+1}, \forall p \geq 1$.
(M.2) $M_{p+1} \leq A H^{p} M_{p}, \forall p \in \mathbb{N}$, for some $A, H>0$.
(M.2) $M_{p+q} \leq A H^{p+q} M_{p} M_{q}, \forall p, q \in \mathbb{N}$, for some $A, H>0$.
(M.3) $\sum_{p=1}^{\infty} \frac{1}{M_{p} / M_{p-1}}<\infty$.
- The sequence $(p!)_{p}$ satisfies the above conditions except for (M.3) ${ }^{\prime}$.
- The Gevrey sequences $\left(p!^{\alpha}\right)_{p}, \alpha>1$, satisfy all the above conditions.
- The q-Gevrey sequence $\left(q^{p^{2}}\right)_{p}, q>1$, satisfy the above conditions except for (M.2).
- For simplicity, we shall only consider the Beurling spaces $\mathcal{E}^{(M)}(\mathbb{R})$ results have a counterpart for the Roumieu spaces $\mathcal{E}^{\{M\}}(\mathbb{R})$.

Conditions on weight sequences

- Consider the following conditions on M :
(M.1) $M_{p}^{2} \leq M_{p-1} M_{p+1}, \forall p \geq 1$.
(M.2)' $M_{p+1} \leq A H^{p} M_{p}, \forall p \in \mathbb{N}$, for some $A, H>0$.
(M.2) $M_{p+q} \leq A H^{p+q} M_{p} M_{q}, \forall p, q \in \mathbb{N}$, for some $A, H>0$.
(M.3) $\sum_{p=1}^{\infty} \frac{1}{M_{p} / M_{p-1}}<\infty$.
- The sequence $(p!)_{p}$ satisfies the above conditions except for (M.3)'.
- The Gevrey sequences $\left(p!^{\alpha}\right)_{p}, \alpha>1$, satisfy all the above conditions.
- The q-Gevrey sequence $\left(q^{p^{2}}\right)_{p}, q>1$, satisfy the above conditions except for (M.2).
- For simplicity, we shall only consider the Beurling spaces $\mathcal{E}^{(M)}(\mathbb{R})$. All results have a counterpart for the Roumieu spaces $\mathcal{E}^{\{M\}}(\mathbb{R})$.

The Borel problem in $\mathcal{E}^{(M)}(\mathbb{R})$

- We define the sequence space

$$
\Lambda^{(M)}:=\left\{\left(c_{p}\right)_{p \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}} \left\lvert\, \sup _{p \in \mathbb{N}} \frac{\left|c_{p}\right|}{h^{p} M_{p}}<\infty\right. \text { for all } h>0\right\}
$$

- The Borel mapping

$$
\mathcal{B}^{(M)}: \mathcal{E}^{(M)}(\mathbb{R}) \rightarrow \wedge^{(M)}: \varphi \rightarrow\left(\varphi^{(p)}(0)\right)_{p \in \mathbb{N}}
$$

is well-defined and continuous.

Problem

Characterize the surjectivity of $B(M)$ in terms of M

- Denjoy-Carleman theorem: $\mathcal{B}^{(M)}$ is injective if and only if M is quasianalytic (= does not satisfy (M.3)')
- If M is quasianalytic and non-entire $\left(\mathcal{E}^{(p!)}(\mathbb{R}) \subsetneq \mathcal{E}^{(M)}(\mathbb{R})\right)$, then $\mathcal{B}^{(M)}$ is never surjective (Roumieu case: Carleman (1923)),

The Borel problem in $\mathcal{E}^{(M)}(\mathbb{R})$

- We define the sequence space

$$
\Lambda^{(M)}:=\left\{\left(c_{p}\right)_{p \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}} \left\lvert\, \sup _{p \in \mathbb{N}} \frac{\left|c_{p}\right|}{h^{p} M_{p}}<\infty\right. \text { for all } h>0\right\}
$$

- The Borel mapping

$$
\mathcal{B}^{(M)}: \mathcal{E}^{(M)}(\mathbb{R}) \rightarrow \Lambda^{(M)}: \varphi \rightarrow\left(\varphi^{(p)}(0)\right)_{p \in \mathbb{N}}
$$

is well-defined and continuous.

Problem

Characterize the surjectivity of $\mathcal{B}^{(M)}$ in terms of M

- Denjoy-Carteman theorem: $\mathcal{B}^{(M)}$ is injective if and only if M is quasianalytic ($=$ does not satisfy (M.3)')
- If M is quasianalytic and non-entire $\left(\mathcal{E}^{(p!)}(\mathbb{R}) \subsetneq \mathcal{E}^{(M)}(\mathbb{R})\right)$, then $\mathcal{B}^{(M)}$ is never surjective (Roumieu case: Carleman (1923))

The Borel problem in $\mathcal{E}^{(M)}(\mathbb{R})$

- We define the sequence space

$$
\Lambda^{(M)}:=\left\{\left(c_{p}\right)_{p \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}} \left\lvert\, \sup _{p \in \mathbb{N}} \frac{\left|c_{p}\right|}{h^{p} M_{p}}<\infty\right. \text { for all } h>0\right\}
$$

- The Borel mapping

$$
\mathcal{B}^{(M)}: \mathcal{E}^{(M)}(\mathbb{R}) \rightarrow \Lambda^{(M)}: \varphi \rightarrow\left(\varphi^{(p)}(0)\right)_{p \in \mathbb{N}}
$$

is well-defined and continuous.

Problem

Characterize the surjectivity of $\mathcal{B}^{(M)}$ in terms of M.

- Denjoy-Carleman theorem: $\mathcal{B}^{(M)}$ is injective if and only if M is quasianalytic (= does not satisfy (M.3)')
- If M is quasianalytic and non-entire $\left(\mathcal{E}^{(p!)}(\mathbb{R}) \subsetneq \mathcal{E}^{(M)}(\mathbb{R})\right)$, then $\mathcal{B}^{(M)}$ is never surjective (Roumieu case: Carleman (1923))

The Borel problem in $\mathcal{E}^{(M)}(\mathbb{R})$

- We define the sequence space

$$
\Lambda^{(M)}:=\left\{\left(c_{p}\right)_{p \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}} \left\lvert\, \sup _{p \in \mathbb{N}} \frac{\left|c_{p}\right|}{h^{p} M_{p}}<\infty\right. \text { for all } h>0\right\}
$$

- The Borel mapping

$$
\mathcal{B}^{(M)}: \mathcal{E}^{(M)}(\mathbb{R}) \rightarrow \Lambda^{(M)}: \varphi \rightarrow\left(\varphi^{(p)}(0)\right)_{p \in \mathbb{N}}
$$

is well-defined and continuous.

Problem

Characterize the surjectivity of $\mathcal{B}^{(M)}$ in terms of M.

- Denjoy-Carleman theorem: $\mathcal{B}^{(M)}$ is injective if and only if M is quasianalytic ($=$ does not satisfy (M.3)').
- If M is quasianalytic and non-entire $\left(\mathcal{E}(p!)(\mathbb{R}) \subsetneq \mathcal{E}^{(M)}(\mathbb{R})\right)$, then $\mathcal{B}^{(M)}$ is never surjective (Roumieu case: Carleman (1923))

The Borel problem in $\mathcal{E}^{(M)}(\mathbb{R})$

- We define the sequence space

$$
\Lambda^{(M)}:=\left\{\left(c_{p}\right)_{p \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}} \left\lvert\, \sup _{p \in \mathbb{N}} \frac{\left|c_{p}\right|}{h^{p} M_{p}}<\infty\right. \text { for all } h>0\right\}
$$

- The Borel mapping

$$
\mathcal{B}^{(M)}: \mathcal{E}^{(M)}(\mathbb{R}) \rightarrow \Lambda^{(M)}: \varphi \rightarrow\left(\varphi^{(p)}(0)\right)_{p \in \mathbb{N}}
$$

is well-defined and continuous.

Problem

Characterize the surjectivity of $\mathcal{B}^{(M)}$ in terms of M.

- Denjoy-Carleman theorem: $\mathcal{B}^{(M)}$ is injective if and only if M is quasianalytic ($=$ does not satisfy $\left.(M .3)^{\prime}\right)$.
- If M is quasianalytic and non-entire $\left(\mathcal{E}^{(p!)}(\mathbb{R}) \subsetneq \mathcal{E}^{(M)}(\mathbb{R})\right)$, then $\mathcal{B}^{(M)}$ is never surjective (Roumieu case: Carleman (1923)).

Petzsche's solution to the Borel problem in $\mathcal{E}^{\left(M_{p}\right)}(\mathbb{R})(1)$

- Consider the strong non-quasianalyticity condition

$$
\left(\gamma_{1}\right) \sum_{q=p}^{\infty} \frac{1}{M_{p} / M_{p-1}} \leq C \frac{p}{M_{p} / M_{p-1}}, \forall p \geq 1, \text { for some } C>0 .
$$

- The Gevrey sequences $\left(p!^{\alpha}\right)_{p}, \alpha>1$, and the q-Gevrey sequences $\left(q^{p^{2}}\right)_{p}, q>1$, both satisfy $\left(\gamma_{1}\right)$

Theorem (Petzsche, 1988)

Let M satisfy (M.1) and (M.3)'. FSAE:
M satisfies $\left(\gamma_{1}\right)$.
$\mathcal{B}^{(M)}$ is surjective.
$\mathcal{B}^{(M)}$ admits a continuous linear right inverse, that is, there is a continuous linear mapping $R: \Lambda^{(M)} \rightarrow \mathcal{E}^{(M)}(\mathbb{R})$ such that $\mathcal{B}^{(M)} \circ R=\mathrm{id}$.

Petzsche's solution to the Borel problem in $\mathcal{E}^{\left(M_{p}\right)}(\mathbb{R})(1)$

- Consider the strong non-quasianalyticity condition

$$
\left(\gamma_{1}\right) \sum_{q=p}^{\infty} \frac{1}{M_{p} / M_{p-1}} \leq C \frac{p}{M_{p} / M_{p-1}}, \forall p \geq 1, \text { for some } C>0 .
$$

- The Gevrey sequences $\left(p!^{\alpha}\right)_{p}, \alpha>1$, and the q-Gevrey sequences $\left(q^{p^{2}}\right)_{p}, q>1$, both satisfy $\left(\gamma_{1}\right)$.

Theorem (Petzsche, 1988)
 Let M satisfy (M.1) and (M.3)'. FSAE: M satisfios $\left(\sim_{1}\right)$
 $\mathcal{B}^{(M)}$ is surjective.
 $\mathcal{B}^{(M)}$ admits a continuous linear right inverse, that is, there is a continuous linear mapping $R: \Lambda^{(M)} \rightarrow \mathcal{E}^{(M)}(\mathbb{R})$ such that $\mathcal{B}^{(M)} \circ R=\mathrm{id}$.

Petzsche's solution to the Borel problem in $\mathcal{E}^{\left(M_{p}\right)}(\mathbb{R})(1)$

- Consider the strong non-quasianalyticity condition

$$
\left(\gamma_{1}\right) \sum_{q=p}^{\infty} \frac{1}{M_{p} / M_{p-1}} \leq C \frac{p}{M_{p} / M_{p-1}}, \forall p \geq 1, \text { for some } C>0
$$

- The Gevrey sequences $\left(p!^{\alpha}\right)_{p}, \alpha>1$, and the q-Gevrey sequences $\left(q^{p^{2}}\right)_{p}, q>1$, both satisfy $\left(\gamma_{1}\right)$.

Theorem (Petzsche, 1988)

Let M satisfy (M.1) and (M.3) ${ }^{\prime}$. FSAE:
(i) M satisfies $\left(\gamma_{1}\right)$.
(ii) $\mathcal{B}^{(M)}$ is surjective.
(iii) $\mathcal{B}^{(M)}$ admits a continuous linear right inverse, that is, there is a continuous linear mapping $R: \Lambda^{(M)} \rightarrow \mathcal{E}^{(M)}(\mathbb{R})$ such that $\mathcal{B}^{(M)} \circ R=\mathrm{id}$.

Petzsche's solution to the Borel problem in $\mathcal{E}^{\left(M_{p}\right)}(\mathbb{R})(2)$

- Technical masterpiece.
- Sufficiency: Fxplicit construction of $\chi_{j} \in \mathcal{E}(M)(\mathbb{R}), j \in \mathbb{N}$, such that $\chi_{j}^{(p)}(0)=\delta_{j, p}$ and $R(c)=\sum_{j=0}^{\infty} c_{j} \chi_{j} \in \mathcal{E}^{(M)}(\mathbb{R})$ for all $c=\left(c_{j}\right)_{j} \in \Lambda^{(M)}$
- Necessity: Ingenuous use of Taylor's formula combined with ideas from Hörmander's real analysis proof of the Denjoy-Carleman theorem.
- Langenbruch, Meise and Taylor, independently (1988): Existence of continuous linear right inverse for $\mathcal{B}^{(M)}$ via (DN)-(Ω) splitting theorem of Vogt and Wagner.

Petzsche's solution to the Borel problem in $\mathcal{E}^{\left(M_{p}\right)}(\mathbb{R})(2)$

- Technical masterpiece.
- Sufficiency: Explicit construction of $\chi_{j} \in \mathcal{E}^{(M)}(\mathbb{R}), j \in \mathbb{N}$, such that $\chi_{j}^{(p)}(0)=\delta_{j, p}$ and $R(c)=\sum_{j=0}^{\infty} c_{j} \chi_{j} \in \mathcal{E}^{(M)}(\mathbb{R})$ for all $c=\left(c_{j}\right)_{j} \in \Lambda^{(M)}$
- Necessity: Ingenuous use of Taylor's formula combined with ideas from Hörmander's real analysis proof of the Denjoy-Carleman theorem.
- Langenbruch, Meise and Taylor, independently (1988): Existence of continuous linear right inverse for $\mathcal{B}^{(M)}$ via $(D N)-(\Omega)$ splitting theorem of Vogt and Wagner.

Petzsche's solution to the Borel problem in $\mathcal{E}^{\left(M_{\mathcal{P}}\right)}(\mathbb{R})(2)$

- Technical masterpiece.
- Sufficiency: Explicit construction of $\chi_{j} \in \mathcal{E}^{(M)}(\mathbb{R}), j \in \mathbb{N}$, such that $\chi_{j}^{(p)}(0)=\delta_{j, p}$ and $R(c)=\sum_{j=0}^{\infty} c_{j} \chi_{j} \in \mathcal{E}^{(M)}(\mathbb{R})$ for all $c=\left(c_{j}\right)_{j} \in \Lambda^{(M)}$.
- Necessity: Ingenuous use of Taylor's formula combined with ideas from Hörmander's real analysis proof of the Denjoy-Carleman theorem.
- Langenbruch, Meise and Taylor, independently (1988): Existence of continuous linear right inverse for $\mathcal{B}^{(M)}$ via $(D N)-(\Omega)$ splitting theorem of Vogt and Wagner.

Petzsche's solution to the Borel problem in $\mathcal{E}^{\left(M_{\mathcal{P}}\right)}(\mathbb{R})(2)$

- Technical masterpiece.
- Sufficiency: Explicit construction of $\chi_{j} \in \mathcal{E}^{(M)}(\mathbb{R}), j \in \mathbb{N}$, such that $\chi_{j}^{(p)}(0)=\delta_{j, p}$ and $R(c)=\sum_{j=0}^{\infty} c_{j} \chi_{j} \in \mathcal{E}^{(M)}(\mathbb{R})$ for all $c=\left(c_{j}\right)_{j} \in \Lambda^{(M)}$.
- Necessity: Ingenuous use of Taylor's formula combined with ideas from Hörmander's real analysis proof of the Denjoy-Carleman theorem.
- Langenbruch, Meise and Taylor, independently (1988): Existence of continuous linear right inverse for $\mathcal{B}^{(M)}$ via $(D N)-(\Omega)$ splitting theorem of Vogt and Wagner.

Petzsche's solution to the Borel problem in $\mathcal{E}^{\left(M_{p}\right)}(\mathbb{R})(2)$

- Technical masterpiece.
- Sufficiency: Explicit construction of $\chi_{j} \in \mathcal{E}^{(M)}(\mathbb{R}), j \in \mathbb{N}$, such that $\chi_{j}^{(p)}(0)=\delta_{j, p}$ and $R(c)=\sum_{j=0}^{\infty} c_{j} \chi_{j} \in \mathcal{E}^{(M)}(\mathbb{R})$ for all $c=\left(c_{j}\right)_{j} \in \Lambda^{(M)}$.
- Necessity: Ingenuous use of Taylor's formula combined with ideas from Hörmander's real analysis proof of the Denjoy-Carleman theorem.
- Langenbruch, Meise and Taylor, independently (1988): Existence of continuous linear right inverse for $\mathcal{B}^{(M)}$ via (DN)-(Ω) splitting theorem of Vogt and Wagner.

Spaces of ultraholomorphic functions and the asymptotic Borel mapping

- Let $\lambda>0$. We define

$$
\mathcal{A}^{(M)}\left(S_{\lambda}\right):=\left\{\varphi \in \mathcal{O}\left(S_{\lambda}\right) \left\lvert\, \sup _{p \in \mathbb{N}} \sup _{z \in S_{\lambda}} \frac{\left|\varphi^{(p)}(z)\right|}{h^{p} M_{p}}<\infty\right. \text { for all } h>0\right\}
$$

- The asymptotic Borel mapping

is well-defined and continuous.

Problem

Characterize the surjectivity of $\mathcal{B}_{\lambda}^{(M)}$ in terms of M and λ.

Spaces of ultraholomorphic functions and the asymptotic Borel mapping

- Let $\lambda>0$. We define

$$
\mathcal{A}^{(M)}\left(S_{\lambda}\right):=\left\{\varphi \in \mathcal{O}\left(S_{\lambda}\right) \left\lvert\, \sup _{p \in \mathbb{N}} \sup _{z \in S_{\lambda}} \frac{\left|\varphi^{(p)}(z)\right|}{h^{p} M_{p}}<\infty\right. \text { for all } h>0\right\}
$$

- The asymptotic Borel mapping

$$
\mathcal{B}_{\lambda}^{(M)}: \mathcal{A}^{(M)}\left(S_{\lambda}\right) \rightarrow \Lambda^{(M)}: \varphi \rightarrow\left(\varphi^{(p)}(0)\right)_{p \in \mathbb{N}}
$$

is well-defined and continuous.

Spaces of ultraholomorphic functions and the asymptotic Borel mapping

- Let $\lambda>0$. We define

$$
\mathcal{A}^{(M)}\left(S_{\lambda}\right):=\left\{\varphi \in \mathcal{O}\left(S_{\lambda}\right) \left\lvert\, \sup _{p \in \mathbb{N}} \sup _{z \in S_{\lambda}} \frac{\left|\varphi^{(p)}(z)\right|}{h^{p} M_{p}}<\infty\right. \text { for all } h>0\right\}
$$

- The asymptotic Borel mapping

$$
\mathcal{B}_{\lambda}^{(M)}: \mathcal{A}^{(M)}\left(S_{\lambda}\right) \rightarrow \Lambda^{(M)}: \varphi \rightarrow\left(\varphi^{(p)}(0)\right)_{p \in \mathbb{N}}
$$

is well-defined and continuous.

Problem

Characterize the surjectivity of $\mathcal{B}_{\lambda}^{(M)}$ in terms of M and λ.

The conditions $\left(\gamma_{\lambda}\right)$

- For $\lambda>0$ we consider
$\left(\gamma_{\lambda}\right) \sum_{q=p}^{\infty} \frac{1}{\left(M_{p} / M_{p-1}\right)^{1 / \lambda}} \leq C \frac{p}{\left(M_{p} / M_{p-1}\right)^{1 / \lambda}}, \forall p \geq 1$, for some $C>0$.
- M satisfies $\left(\gamma_{\lambda}\right)$ if and only if $M^{1 / \lambda}=\left(M_{p}^{1 / \lambda}\right)_{p \in \mathbb{N}}$ satisfies $\left(\gamma_{1}\right)$.
- The Gevrey sequence $\left(p!^{\alpha}\right)_{p}, \alpha>1$, satisfy $\left(\gamma_{\lambda}\right)$ if and only if $\alpha>\lambda$.
- The q-Gevrey sequences $\left(q^{p^{2}}\right)_{p}, q>1$, satisfy $\left(\gamma_{\lambda}\right)$ for all $\gamma>0$.

The conditions $\left(\gamma_{\lambda}\right)$

- For $\lambda>0$ we consider
$\left(\gamma_{\lambda}\right) \sum_{q=p}^{\infty} \frac{1}{\left(M_{p} / M_{p-1}\right)^{1 / \lambda}} \leq C \frac{p}{\left(M_{p} / M_{p-1}\right)^{1 / \lambda}}, \quad \forall p \geq 1$, for some $C>0$.
- M satisfies $\left(\gamma_{\lambda}\right)$ if and only if $M^{1 / \lambda}=\left(M_{p}^{1 / \lambda}\right)_{p \in \mathbb{N}}$ satisfies $\left(\gamma_{1}\right)$.
- The Gevrey sequence $\left(p!^{\alpha}\right)_{p}, \alpha>1$, satisfy $\left(\gamma_{\lambda}\right)$ if and only if α
- The q-Gevrey sequences $\left(q^{p^{2}}\right)_{p}, q>1$, satisfy $\left(\gamma_{\lambda}\right)$ for all $\gamma>0$

The conditions $\left(\gamma_{\lambda}\right)$

- For $\lambda>0$ we consider
$\left(\gamma_{\lambda}\right) \sum_{q=p}^{\infty} \frac{1}{\left(M_{p} / M_{p-1}\right)^{1 / \lambda}} \leq C \frac{p}{\left(M_{p} / M_{p-1}\right)^{1 / \lambda}}, \quad \forall p \geq 1$, for some $C>0$.
- M satisfies $\left(\gamma_{\lambda}\right)$ if and only if $M^{1 / \lambda}=\left(M_{p}^{1 / \lambda}\right)_{p \in \mathbb{N}}$ satisfies $\left(\gamma_{1}\right)$.
- The Gevrey sequence $\left(p!^{\alpha}\right)_{p}, \alpha>1$, satisfy $\left(\gamma_{\lambda}\right)$ if and only if $\alpha>\lambda$.

The conditions $\left(\gamma_{\lambda}\right)$

- For $\lambda>0$ we consider
$\left(\gamma_{\lambda}\right) \sum_{q=p}^{\infty} \frac{1}{\left(M_{p} / M_{p-1}\right)^{1 / \lambda}} \leq C \frac{p}{\left(M_{p} / M_{p-1}\right)^{1 / \lambda}}, \forall p \geq 1$, for some $C>0$.
- M satisfies $\left(\gamma_{\lambda}\right)$ if and only if $M^{1 / \lambda}=\left(M_{p}^{1 / \lambda}\right)_{p \in \mathbb{N}}$ satisfies $\left(\gamma_{1}\right)$.
- The Gevrey sequence $\left(p!^{\alpha}\right)_{p}, \alpha>1$, satisfy $\left(\gamma_{\lambda}\right)$ if and only if $\alpha>\lambda$.
- The q-Gevrey sequences $\left(q^{p^{2}}\right)_{p}, q>1$, satisfy $\left(\gamma_{\lambda}\right)$ for all $\gamma>0$.

The Borel-Ritt problem in $\mathcal{A}^{(M)}\left(S_{\lambda}\right)(1)$

Theorem (Thilliez, 2003)

Let $\lambda>0$ and let M satisfy (M.1), (M.2) and (M.3). If M satisfies $\left(\gamma_{\lambda+1}\right)$, then $\mathcal{B}_{\lambda}^{(M)}$ is surjective.

- Based upon Whitney type extension results for ultradifferentiable functions.
- Ramis (1978): For the Gevrey sequences $\left(p!^{\alpha}\right)_{p, \alpha}>1$, by using the (truncated) Laplace transform (Roumieu case).
- Lastra, Malek, Sanz (2012): Refinement of Ramis' method
- Both methods do not provide continuous linear right inverses.

The Borel-Ritt problem in $\mathcal{A}^{(M)}\left(S_{\lambda}\right)(1)$

Theorem (Thilliez, 2003)

Let $\lambda>0$ and let M satisfy (M.1), (M.2) and (M.3). If M satisfies $\left(\gamma_{\lambda+1}\right)$, then $\mathcal{B}_{\lambda}^{(M)}$ is surjective.

- Based upon Whitney type extension results for ultradifferentiable functions.
- Ramis (1978): For the Gevrey sequences $\left(p!^{\alpha}\right)_{p, \alpha}>1$, by using the (truncated) Laplace transform (Roumieu case).
- Lastra, Malek, Sanz (2012): Refinement of Ramis' method
- Both methods do not provide continuous linear right inverses.

The Borel-Ritt problem in $\mathcal{A}^{(M)}\left(S_{\lambda}\right)(1)$

Theorem (Thilliez, 2003)

Let $\lambda>0$ and let M satisfy (M.1), (M.2) and (M.3). If M satisfies $\left(\gamma_{\lambda+1}\right)$, then $\mathcal{B}_{\lambda}^{(M)}$ is surjective.

- Based upon Whitney type extension results for ultradifferentiable functions.
- Ramis (1978): For the Gevrey sequences $\left(p!^{\alpha}\right)_{p}, \alpha>1$, by using the (truncated) Laplace transform (Roumieu case).
- Lastra, Malek, Sanz (2012): Refinement of Ramis' method.
- Both methods do not provide continuous linear right inverses.

The Borel-Ritt problem in $\mathcal{A}^{(M)}\left(S_{\lambda}\right)(1)$

Theorem (Thilliez, 2003)

Let $\lambda>0$ and let M satisfy (M.1), (M.2) and (M.3). If M satisfies $\left(\gamma_{\lambda+1}\right)$, then $\mathcal{B}_{\lambda}^{(M)}$ is surjective.

- Based upon Whitney type extension results for ultradifferentiable functions.
- Ramis (1978): For the Gevrey sequences $\left(p!^{\alpha}\right)_{p}, \alpha>1$, by using the (truncated) Laplace transform (Roumieu case).
- Lastra, Malek, Sanz (2012): Refinement of Ramis' method.
- Both methods do not provide continuous linear right inverses.

The Borel-Ritt problem in $\mathcal{A}^{(M)}\left(S_{\lambda}\right)(1)$

Theorem (Thilliez, 2003)

Let $\lambda>0$ and let M satisfy (M.1), (M.2) and (M.3). If M satisfies $\left(\gamma_{\lambda+1}\right)$, then $\mathcal{B}_{\lambda}^{(M)}$ is surjective.

- Based upon Whitney type extension results for ultradifferentiable functions.
- Ramis (1978): For the Gevrey sequences $\left(p!^{\alpha}\right)_{p}, \alpha>1$, by using the (truncated) Laplace transform (Roumieu case).
- Lastra, Malek, Sanz (2012): Refinement of Ramis' method.
- Both methods do not provide continuous linear right inverses.

The Borel-Ritt problem in $\mathcal{A}^{(M)}\left(S_{\lambda}\right)(2)$

Theorem (Schmets, Valdivia, 2000)
 Let $n \in \mathbb{N}$ and let M satisfy (M.1), (M.3) ${ }^{\prime}$ and $\left(\gamma_{n+1}\right)$. For $\lambda<n, \mathcal{B}_{\lambda}^{(M)}$ admits a continuous linear right inverse.

- Reduction to Petzsche's result on the Borel problem via Laplace transform.
- This result is far from optimal, e.g., for $\lambda=1$ (right half-plane) one expects $\left(\gamma_{2}\right)$ instead of $\left(\gamma_{3}\right)$.

The Borel-Ritt problem in $\mathcal{A}^{(M)}\left(S_{\lambda}\right)(2)$

```
Theorem (Schmets, Valdivia, 2000)
Let \(n \in \mathbb{N}\) and let \(M\) satisfy (M.1), (M.3) and \(\left(\gamma_{n+1}\right)\). For \(\lambda<n, \mathcal{B}_{\lambda}^{(M)}\) admits a continuous linear right inverse.
```

- Reduction to Petzsche's result on the Borel problem via Laplace transform.
- This result is far from optimal, e.g., for $\lambda=1$ (right half-plane) one expects $\left(\gamma_{2}\right)$ instead of $\left(\gamma_{3}\right)$.

The Borel-Ritt problem in $\mathcal{A}^{(M)}\left(S_{\lambda}\right)(2)$

Theorem (Schmets, Valdivia, 2000)
 Let $n \in \mathbb{N}$ and let M satisfy (M.1), (M.3) and $\left(\gamma_{n+1}\right)$. For $\lambda<n, \mathcal{B}_{\lambda}^{(M)}$ admits a continuous linear right inverse.

- Reduction to Petzsche's result on the Borel problem via Laplace transform.
- This result is far from optimal, e.g., for $\lambda=1$ (right half-plane) one expects $\left(\gamma_{2}\right)$ instead of $\left(\gamma_{3}\right)$.

The Borel-Ritt problem in $\mathcal{A}^{(M)}\left(S_{\lambda}\right)(3)$

Theorem (Jiménez-Garrido, Sanz, Schindl, 2018)
 Let $\lambda>0$ and let M satisfy (M.1), (M.2) and (M.3). If $\lambda \in \mathbb{Q}$ and $\mathcal{B}_{\lambda}^{(M)}$ is surjective, then M satisfies $\left(\gamma_{\lambda+1}\right)$.

- Schmets and Valdivia (2000): $\lambda \in \mathbb{N}$. Reduction to Petzsche's result on the Borel problem via Laplace transform.
- Refinement of the method of Schmets and Valdivia.

Corollary

Let M satisfy (M.1), (M.2) and (M.3). Then, $B_{1}^{(M)}$ is surjective if and only if M satisfies $\left(\gamma_{2}\right)$

The Borel-Ritt problem in $\mathcal{A}^{(M)}\left(S_{\lambda}\right)(3)$

> Theorem (Jiménez-Garrido, Sanz, Schindl, 2018)
> Let $\lambda>0$ and let M satisfy (M.1), (M.2) and (M.3). If $\lambda \in \mathbb{Q}$ and $\mathcal{B}_{\lambda}^{(M)}$ is surjective, then M satisfies $\left(\gamma_{\lambda+1}\right)$.

- Schmets and Valdivia (2000): $\lambda \in \mathbb{N}$. Reduction to Petzsche's result on the Borel problem via Laplace transform.
- Refinement of the method of Schmets and Valdivia.

Corollary

Let M satisfy (M.1), (M.2) and (M.3). Then, $\mathcal{B}_{1}^{(M)}$ is surjective if and only if M satisfies $\left(\gamma_{2}\right)$

The Borel-Ritt problem in $\mathcal{A}^{(M)}\left(S_{\lambda}\right)(3)$

> Theorem (Jiménez-Garrido, Sanz, Schindl, 2018)
> Let $\lambda>0$ and let M satisfy (M.1), (M.2) and (M.3). If $\lambda \in \mathbb{Q}$ and $\mathcal{B}_{\lambda}^{(M)}$ is surjective, then M satisfies $\left(\gamma_{\lambda+1}\right)$.

- Schmets and Valdivia (2000): $\lambda \in \mathbb{N}$. Reduction to Petzsche's result on the Borel problem via Laplace transform.
- Refinement of the method of Schmets and Valdivia.

Corollary

Let M1 satisfy (M.1), (M.2) and (M.3). Then, $\mathcal{B}_{1}^{(M)}$ is surjective if and only if M satisfies $\left(\gamma_{2}\right)$.

The Borel-Ritt problem in $\mathcal{A}^{(M)}\left(S_{\lambda}\right)(3)$

Theorem (Jiménez-Garrido, Sanz, Schindl, 2018)
 Let $\lambda>0$ and let M satisfy (M.1), (M.2) and (M.3). If $\lambda \in \mathbb{Q}$ and $\mathcal{B}_{\lambda}^{(M)}$ is surjective, then M satisfies $\left(\gamma_{\lambda+1}\right)$.

- Schmets and Valdivia (2000): $\lambda \in \mathbb{N}$. Reduction to Petzsche's result on the Borel problem via Laplace transform.
- Refinement of the method of Schmets and Valdivia.
\square
Let M satisfy (M.1), (M.2) and (M.3). Then, $\mathcal{B}_{1}^{(M)}$ is surjective if and only if M satisfies $\left(\gamma_{2}\right)$.

The Borel-Ritt problem in $\mathcal{A}^{(M)}\left(S_{\lambda}\right)(3)$

Theorem (Jiménez-Garrido, Sanz, Schindl, 2018)

Let $\lambda>0$ and let M satisfy (M.1), (M.2) and (M.3). If $\lambda \in \mathbb{Q}$ and $\mathcal{B}_{\lambda}^{(M)}$ is surjective, then M satisfies $\left(\gamma_{\lambda+1}\right)$.

- Schmets and Valdivia (2000): $\lambda \in \mathbb{N}$. Reduction to Petzsche's result on the Borel problem via Laplace transform.
- Refinement of the method of Schmets and Valdivia.

Corollary

Let M satisfy (M.1), (M.2) and (M.3). Then, $\mathcal{B}_{1}^{(M)}$ is surjective if and only if M satisfies $\left(\gamma_{2}\right)$.

Open problems

- Show

$$
\mathcal{B}_{\lambda}^{(M)} \text { surjective } \Rightarrow M \text { satisfies }\left(\gamma_{\lambda+1}\right)
$$

without assuming that $\lambda \in \mathbb{Q}$.

- Show

$$
M \text { satisfies }\left(\gamma_{\lambda+1}\right) \Rightarrow \mathcal{B}_{\lambda}^{(M)} \text { surjective }
$$

without assuming that M satisfies (M.2) and (M.3).

- Show the existence of a continuous linear right inverse of $\mathcal{B}_{\lambda}^{(M)}: \mathcal{A}^{(M)}\left(S_{\lambda}\right) \rightarrow \Lambda^{(M)}$; even open for the Gevrey sequences. Possible approach: apply (DN)-(Ω) splitting theorem. Does

$$
\operatorname{ker} \mathcal{B}_{\lambda}^{(M)}=\left\{\varphi \in \mathcal{A}^{(M)}\left(S_{\lambda}\right) \mid \varphi^{(p)}(0)=0 \text { for all } p \in \mathbb{N}\right\}
$$

satisfy (Ω) ?

Open problems

- Show

$$
\mathcal{B}_{\lambda}^{(M)} \text { surjective } \Rightarrow M \text { satisfies }\left(\gamma_{\lambda+1}\right)
$$

without assuming that $\lambda \in \mathbb{Q}$.

- Show

$$
M \text { satisfies }\left(\gamma_{\lambda+1}\right) \Rightarrow \mathcal{B}_{\lambda}^{(M)} \text { surjective }
$$

without assuming that M satisfies (M.2) and (M.3).

- Show the existence of a continuous linear right inverse of $\mathcal{B}_{\lambda}^{(M)}$ $\mathcal{A}^{(M)}\left(S_{\lambda}\right) \rightarrow \Lambda^{(M)}$; even open for the Gevrey sequences. Possible approach: apply (DN)-(Ω) splitting theorem. Does $\operatorname{ker} \mathcal{B}_{\lambda}^{(M)}=\left\{\varphi \in \mathcal{A}^{(M)}\left(S_{\lambda}\right) \mid \varphi^{(p)}(0)=0\right.$ for all $\left.p \in \mathbb{N}\right\}$ satisfy (Ω) ?

Open problems

- Show

$$
\mathcal{B}_{\lambda}^{(M)} \text { surjective } \Rightarrow M \text { satisfies }\left(\gamma_{\lambda+1}\right)
$$

without assuming that $\lambda \in \mathbb{Q}$.

- Show

$$
M \text { satisfies }\left(\gamma_{\lambda+1}\right) \Rightarrow \mathcal{B}_{\lambda}^{(M)} \text { surjective }
$$

without assuming that M satisfies (M.2) and (M.3).

- Show the existence of a continuous linear right inverse of $\mathcal{B}_{\lambda}^{(M)}: \mathcal{A}^{(M)}\left(S_{\lambda}\right) \rightarrow \Lambda^{(M)}$; even open for the Gevrey sequences. Possible approach: apply (DN)-(Ω) splitting theorem. Does

$$
\operatorname{ker} \mathcal{B}_{\lambda}^{(M)}=\left\{\varphi \in \mathcal{A}^{(M)}\left(S_{\lambda}\right) \mid \varphi^{(p)}(0)=0 \text { for all } p \in \mathbb{N}\right\}
$$

satisfy (Ω) ?

Open problems

- Show

$$
\mathcal{B}_{\lambda}^{(M)} \text { surjective } \Rightarrow M \text { satisfies }\left(\gamma_{\lambda+1}\right)
$$

without assuming that $\lambda \in \mathbb{Q}$.

- Show

$$
M \text { satisfies }\left(\gamma_{\lambda+1}\right) \Rightarrow \mathcal{B}_{\lambda}^{(M)} \text { surjective }
$$

without assuming that M satisfies (M.2) and (M.3).

- Show the existence of a continuous linear right inverse of $\mathcal{B}_{\lambda}^{(M)}: \mathcal{A}^{(M)}\left(S_{\lambda}\right) \rightarrow \Lambda^{(M)}$; even open for the Gevrey sequences. Possible approach: apply $(D N)-(\Omega)$ splitting theorem. Does

$$
\operatorname{ker} \mathcal{B}_{\lambda}^{(M)}=\left\{\varphi \in \mathcal{A}^{(M)}\left(S_{\lambda}\right) \mid \varphi^{(p)}(0)=0 \text { for all } p \in \mathbb{N}\right\}
$$

satisfy (Ω) ?

Gelfand-Shilov spaces and the Stieltjes moment mapping

- We define $\mathcal{S}^{(M)}(\mathbb{R})$ as the space of all $\varphi \in C^{\infty}(\mathbb{R})$ such that

$$
\max _{k \leq n} \sup _{p \in \mathbb{N}} \frac{\left|x^{p} \varphi^{(k)}(x)\right|}{h^{p} M_{p}}<\infty \quad \forall n \in \mathbb{N}, h>0
$$

- Set $\mathcal{S}^{(M)}(0, \infty):=\left\{\varphi \in \mathcal{S}^{(M)}(\mathbb{R}) \mid \operatorname{supp} \varphi \subseteq[0, \infty)\right\}$
- If M satisfies $(M .2)^{\prime}$, the Stieltjes moment mapping

is well-defined and continuous.

Problem

Characterize the surjectivity of $\mathcal{M}^{(M)}$ in terms of M

Gelfand-Shilov spaces and the Stieltjes moment mapping

- We define $\mathcal{S}^{(M)}(\mathbb{R})$ as the space of all $\varphi \in C^{\infty}(\mathbb{R})$ such that

$$
\max _{k \leq n} \sup _{p \in \mathbb{N}} \frac{\left|x^{p} \varphi^{(k)}(x)\right|}{h^{p} M_{p}}<\infty \quad \forall n \in \mathbb{N}, h>0 .
$$

- Set $\mathcal{S}^{(M)}(0, \infty):=\left\{\varphi \in \mathcal{S}^{(M)}(\mathbb{R}) \mid \operatorname{supp} \varphi \subseteq[0, \infty)\right\}$.
- If M satisfies (M.2)', the Stieltjes moment mapping

is well-defined and continuous.

Problem

Characterize the surjectivity of $\mathcal{M}^{(M)}$ in terms of M.

Gelfand-Shilov spaces and the Stieltjes moment mapping

- We define $\mathcal{S}^{(M)}(\mathbb{R})$ as the space of all $\varphi \in C^{\infty}(\mathbb{R})$ such that

$$
\max _{k \leq n} \sup _{p \in \mathbb{N}} \frac{\left|x^{p} \varphi^{(k)}(x)\right|}{h^{p} M_{p}}<\infty \quad \forall n \in \mathbb{N}, h>0
$$

- Set $\mathcal{S}^{(M)}(0, \infty):=\left\{\varphi \in \mathcal{S}^{(M)}(\mathbb{R}) \mid \operatorname{supp} \varphi \subseteq[0, \infty)\right\}$.
- If M satisfies (M.2)', the Stieltjes moment mapping

$$
\mathcal{M}^{(M)}: \mathcal{S}^{(M)}(0, \infty) \rightarrow \Lambda^{(M)}: \varphi \rightarrow\left(\int_{0}^{\infty} x^{p} \varphi(x) \mathrm{d} x\right)_{p \in \mathbb{N}}
$$

is well-defined and continuous.

Problem

Characterize the surjectivity of $\mathcal{M}^{(M)}$ in terms of M

Gelfand-Shilov spaces and the Stieltjes moment mapping

- We define $\mathcal{S}^{(M)}(\mathbb{R})$ as the space of all $\varphi \in C^{\infty}(\mathbb{R})$ such that

$$
\max _{k \leq n} \sup _{p \in \mathbb{N}} \frac{\left|x^{p} \varphi^{(k)}(x)\right|}{h^{p} M_{p}}<\infty \quad \forall n \in \mathbb{N}, h>0
$$

- Set $\mathcal{S}^{(M)}(0, \infty):=\left\{\varphi \in \mathcal{S}^{(M)}(\mathbb{R}) \mid \operatorname{supp} \varphi \subseteq[0, \infty)\right\}$.
- If M satisfies (M.2)', the Stieltjes moment mapping

$$
\mathcal{M}^{(M)}: \mathcal{S}^{(M)}(0, \infty) \rightarrow \Lambda^{(M)}: \varphi \rightarrow\left(\int_{0}^{\infty} x^{p} \varphi(x) \mathrm{d} x\right)_{p \in \mathbb{N}}
$$

is well-defined and continuous.

Problem

Characterize the surjectivity of $\mathcal{M}^{(M)}$ in terms of M.

Stieltjes moment problem in $\mathcal{S}^{(M)}(0, \infty)(1)$

Theorem (cf. Lastra and Sanz, 2009)

Let M satisfy (M.1), (M.2)' and (M.3)'. Then, $\mathcal{M}^{(M)}$ is surjective (admits a continuous linear right inverse) if and only if $\mathcal{B}_{1}^{(M)}$ does so.
> - Extension of the method of Durán and Estrada (Laplace transform) to Gelfand-Shilov spaces.

\square
Let M satisfy (M.1), (M.2)' and (M.3)'

- If in addition M satisfies ($M .2$) and (M.3), then $\mathcal{M}^{(M)}: S^{(M)}(0, \infty) \rightarrow \Lambda^{(M)}$ is surjective if and only if M satisfies $\left(\gamma_{2}\right)$
- If M satisfies $\left(\gamma_{3}\right)$, then $\mathcal{M}^{(M)}: \mathcal{S}^{(M)}(0, \infty) \rightarrow \Lambda^{(M)}$ admits a continuous linear right inverse.
- Can one improve this result by studying the Stieltjes moment problem in its own right?

Stieltjes moment problem in $\mathcal{S}^{(M)}(0, \infty)$ (1)

Theorem (cf. Lastra and Sanz, 2009)

Let M satisfy (M.1), (M.2) ${ }^{\prime}$ and (M.3)'. Then, $\mathcal{M}^{(M)}$ is surjective (admits a continuous linear right inverse) if and only if $\mathcal{B}_{1}^{(M)}$ does so.

- Extension of the method of Durán and Estrada (Laplace transform) to Gelfand-Shilov spaces.

- Can one improve this result by studying the Stieltjes moment problem in its own right?

Stieltjes moment problem in $\mathcal{S}^{(M)}(0, \infty)$ (1)

Theorem (cf. Lastra and Sanz, 2009)

Let M satisfy (M.1), (M.2) ${ }^{\prime}$ and $(M .3)^{\prime}$. Then, $\mathcal{M}^{(M)}$ is surjective (admits a continuous linear right inverse) if and only if $\mathcal{B}_{1}^{(M)}$ does so.

- Extension of the method of Durán and Estrada (Laplace transform) to Gelfand-Shilov spaces.

Corollary

Let M satisfy (M.1), (M.2) ${ }^{\prime}$ and (M.3)'.

- If in addition M satisfies (M.2) and (M.3), then $\mathcal{M}^{(M)}: \mathcal{S}^{(M)}(0, \infty) \rightarrow \Lambda^{(M)}$ is surjective if and only if M satisfies $\left(\gamma_{2}\right)$.
- If M satisfies $\left(\gamma_{3}\right)$, then $\mathcal{M}^{(M)}: \mathcal{S}^{(M)}(0, \infty) \rightarrow \Lambda^{(M)}$ admits a continuous linear right inverse.
- Can one improve this result by studying the Stieltjes moment problem in its own right?

Stieltjes moment problem in $\mathcal{S}^{(M)}(0, \infty)$ (1)

Theorem (cf. Lastra and Sanz, 2009)

Let M satisfy (M.1), (M.2) ${ }^{\prime}$ and $(M .3)^{\prime}$. Then, $\mathcal{M}^{(M)}$ is surjective (admits a continuous linear right inverse) if and only if $\mathcal{B}_{1}^{(M)}$ does so.

- Extension of the method of Durán and Estrada (Laplace transform) to Gelfand-Shilov spaces.

Corollary

Let M satisfy (M.1), (M.2) and (M.3)'.

- If in addition M satisfies (M.2) and (M.3), then $\mathcal{M}^{(M)}: \mathcal{S}^{(M)}(0, \infty) \rightarrow \Lambda^{(M)}$ is surjective if and only if M satisfies $\left(\gamma_{2}\right)$.
- If M satisfies $\left(\gamma_{3}\right)$, then $\mathcal{M}^{(M)}: \mathcal{S}^{(M)}(0, \infty) \rightarrow \Lambda^{(M)}$ admits a continuous linear right inverse.
- Can one improve this result by studying the Stieltjes moment problem in its own right?

Stieltjes moment problem in $\mathcal{S}^{(M)}(0, \infty)$ (1)

Theorem (cf. Lastra and Sanz, 2009)

Let M satisfy (M.1), (M.2) ${ }^{\prime}$ and $(M .3)^{\prime}$. Then, $\mathcal{M}^{(M)}$ is surjective (admits a continuous linear right inverse) if and only if $\mathcal{B}_{1}^{(M)}$ does so.

- Extension of the method of Durán and Estrada (Laplace transform) to Gelfand-Shilov spaces.

Corollary

Let M satisfy (M.1), (M.2) and (M.3)'.

- If in addition M satisfies (M.2) and (M.3), then $\mathcal{M}^{(M)}: \mathcal{S}^{(M)}(0, \infty) \rightarrow \Lambda^{(M)}$ is surjective if and only if M satisfies $\left(\gamma_{2}\right)$.
- If M satisfies $\left(\gamma_{3}\right)$, then $\mathcal{M}^{(M)}: \mathcal{S}^{(M)}(0, \infty) \rightarrow \Lambda^{(M)}$ admits a continuous linear right inverse.
- Can one improve this result by studying the Stieltjes moment problem in its own right?

Stieltjes moment problem in $\mathcal{S}^{(M)}(0, \infty)$ (2)

Theorem (D., 2018)

Let M satisfy (M.1), (M.2) and (M.3)'. FSAE:
(i) M satisfies $\left(\gamma_{2}\right)$.
(ii) $\mathcal{M}^{(M)}: \mathcal{S}^{(M)}(0, \infty) \rightarrow \Lambda^{(M)}$ is surjective.
(iii) $\mathcal{M}^{(M)}: \mathcal{S}^{(M)}(0, \infty) \rightarrow \Lambda^{(M)}$ admits a continuous linear right inverse.

- Reduction to Petzsche's result on the Borel problem via Fourier transform and abstract functional analysis.
- By the result of Lastra and Sanz this also completely settles the Borel-Ritt problem on the right half-plane (under (M.1), (M.2)' and (M.3)').

Stieltjes moment problem in $\mathcal{S}^{(M)}(0, \infty)$ (2)

Theorem (D., 2018)

Let M satisfy (M.1), (M.2) and (M.3)'. FSAE:
(i) M satisfies $\left(\gamma_{2}\right)$.
(ii) $\mathcal{M}^{(M)}: \mathcal{S}^{(M)}(0, \infty) \rightarrow \Lambda^{(M)}$ is surjective.
(iii) $\mathcal{M}^{(M)}: \mathcal{S}^{(M)}(0, \infty) \rightarrow \Lambda^{(M)}$ admits a continuous linear right inverse.

- Reduction to Petzsche's result on the Borel problem via Fourier transform and abstract functional analysis.
- By the result of Lastra and Sanz this also completely settles the Borel-Ritt problem on the right half-plane (under (M.1), (M.2)' and (M.3)').

