Topological properties of convolutor spaces via the short-time Fourier transform

Andreas Debrouwere (Joint work with Jasson Vindas)

Ghent University

Pawel Domański Memorial Conference 6 July 2018

$$\|\partial^{\alpha}\varphi\|_{L^{\infty}}<\infty, \qquad \forall \alpha\in\mathbb{N}^{d}.$$

- ullet The space ${\cal B}$ is a Fréchet space.
- The space $\dot{\mathcal{B}}$ is given by the closure of $\mathcal{D}(\mathbb{R}^d)$ in \mathcal{B} , i.e. it consists of all $\varphi \in C^{\infty}(\mathbb{R}^d)$ such that

$$\lim_{|x|\to\infty} \partial^{\alpha} \varphi(x) = 0, \qquad \forall \alpha \in \mathbb{N}^d.$$

- ullet The space $\dot{\mathcal{B}}$ is a Fréchet space.
- The space \mathcal{D}'_{L^1} of integrable distributions is given by the topological dual of $\dot{\mathcal{B}}$.

$$\|\partial^{\alpha}\varphi\|_{L^{\infty}}<\infty, \qquad \forall \alpha\in\mathbb{N}^{d}.$$

- ullet The space ${\cal B}$ is a Fréchet space.
- The space $\dot{\mathcal{B}}$ is given by the closure of $\mathcal{D}(\mathbb{R}^d)$ in \mathcal{B} , i.e. it consists of all $\varphi \in C^{\infty}(\mathbb{R}^d)$ such that

$$\lim_{|x| \to \infty} \partial^{\alpha} \varphi(x) = 0, \qquad \forall \alpha \in \mathbb{N}^d.$$

- ullet The space $\dot{\mathcal{B}}$ is a Fréchet space.
- The space \mathcal{D}'_{L^1} of integrable distributions is given by the topological dual of $\dot{\mathcal{B}}$.

$$\|\partial^{\alpha}\varphi\|_{L^{\infty}}<\infty, \qquad \forall \alpha\in\mathbb{N}^{d}.$$

- ullet The space ${\cal B}$ is a Fréchet space.
- The space $\dot{\mathcal{B}}$ is given by the closure of $\mathcal{D}(\mathbb{R}^d)$ in \mathcal{B} , i.e. it consists of all $\varphi \in C^{\infty}(\mathbb{R}^d)$ such that

$$\lim_{|x|\to\infty} \partial^{\alpha} \varphi(x) = 0, \qquad \forall \alpha \in \mathbb{N}^d.$$

- ullet The space $\dot{\mathcal{B}}$ is a Fréchet space.
- The space \mathcal{D}'_{L^1} of integrable distributions is given by the topological dual of $\dot{\mathcal{B}}$.

$$\|\partial^{\alpha}\varphi\|_{L^{\infty}}<\infty, \qquad \forall \alpha\in\mathbb{N}^{d}.$$

- ullet The space ${\cal B}$ is a Fréchet space.
- The space $\dot{\mathcal{B}}$ is given by the closure of $\mathcal{D}(\mathbb{R}^d)$ in \mathcal{B} , i.e. it consists of all $\varphi \in C^{\infty}(\mathbb{R}^d)$ such that

$$\lim_{|x|\to\infty} \partial^{\alpha} \varphi(x) = 0, \qquad \forall \alpha \in \mathbb{N}^d.$$

- ullet The space $\dot{\mathcal{B}}$ is a Fréchet space.
- The space \mathcal{D}'_{L^1} of integrable distributions is given by the topological dual of $\dot{\mathcal{B}}$.

$$\|\partial^{\alpha}\varphi\|_{L^{\infty}}<\infty, \quad \forall \alpha\in\mathbb{N}^{d}.$$

- ullet The space ${\cal B}$ is a Fréchet space.
- The space $\dot{\mathcal{B}}$ is given by the closure of $\mathcal{D}(\mathbb{R}^d)$ in \mathcal{B} , i.e. it consists of all $\varphi \in C^{\infty}(\mathbb{R}^d)$ such that

$$\lim_{|x|\to\infty} \partial^{\alpha} \varphi(x) = 0, \qquad \forall \alpha \in \mathbb{N}^d.$$

- The space $\dot{\mathcal{B}}$ is a Fréchet space.
- The space \mathcal{D}'_{L^1} of integrable distributions is given by the topological dual of $\dot{\mathcal{B}}$.

Theorem (Schwartz, 1950)

Let $f \in \mathcal{D}'(\mathbb{R}^d)$. Then, $f \in \mathcal{D}'_{L^1}$ if and only if $f * \varphi \in L^1$ for all $\varphi \in \mathcal{D}(\mathbb{R}^d)$.

- Two natural topologies on \mathcal{D}'_{L^1} :
 - ① The strong topology $b(\mathcal{D}'_{L^1}, \dot{\mathcal{B}})$.
 - The initial topology op w.r.t. the mapping

$$\mathcal{D}'_{L^1} \to L_b(\mathcal{D}(\mathbb{R}^d), L^1) : f \to (\varphi \to f * \varphi).$$

Theorem (Schwartz, 1950)

The spaces $\mathcal{D}'_{L^1,b}$ and $\mathcal{D}'_{L^1,op}$ have the same bounded sets and null sequences.

• Do the topologies b and op coincide on \mathcal{D}'_{I1} ?

Theorem (Schwartz, 1950)

Let $f \in \mathcal{D}'(\mathbb{R}^d)$. Then, $f \in \mathcal{D}'_{L^1}$ if and only if $f * \varphi \in L^1$ for all $\varphi \in \mathcal{D}(\mathbb{R}^d)$.

- Two natural topologies on \mathcal{D}'_{L^1} :
 - **1** The strong topology $b(\mathcal{D}'_{L^1}, \dot{\mathcal{B}})$.
 - 2 The initial topology op w.r.t. the mapping

$$\mathcal{D}'_{L^1} \to L_b(\mathcal{D}(\mathbb{R}^d), L^1) : f \to (\varphi \to f * \varphi).$$

Theorem (Schwartz, 1950)

The spaces $\mathcal{D}'_{L^1,b}$ and $\mathcal{D}'_{L^1,op}$ have the same bounded sets and null sequences.

• Do the topologies b and op coincide on \mathcal{D}'_{L^1} ?

Theorem (Schwartz, 1950)

Let $f \in \mathcal{D}'(\mathbb{R}^d)$. Then, $f \in \mathcal{D}'_{L^1}$ if and only if $f * \varphi \in L^1$ for all $\varphi \in \mathcal{D}(\mathbb{R}^d)$.

- Two natural topologies on \mathcal{D}'_{L^1} :
 - **1** The strong topology $b(\mathcal{D}'_{L^1}, \dot{\mathcal{B}})$.
 - 2 The initial topology op w.r.t. the mapping

$$\mathcal{D}'_{L^1} \to L_b(\mathcal{D}(\mathbb{R}^d), L^1) : f \to (\varphi \to f * \varphi).$$

Theorem (Schwartz, 1950)

The spaces $\mathcal{D}'_{L^1,b}$ and $\mathcal{D}'_{L^1,op}$ have the same bounded sets and null sequences.

• Do the topologies b and op coincide on \mathcal{D}'_{I^1} ?

Theorem (Schwartz, 1950)

Let $f \in \mathcal{D}'(\mathbb{R}^d)$. Then, $f \in \mathcal{D}'_{L^1}$ if and only if $f * \varphi \in L^1$ for all $\varphi \in \mathcal{D}(\mathbb{R}^d)$.

- Two natural topologies on \mathcal{D}'_{L^1} :
 - **1** The strong topology $b(\mathcal{D}'_{L^1}, \dot{\mathcal{B}})$.
 - 2 The initial topology op w.r.t. the mapping

$$\mathcal{D}'_{L^1} \to L_b(\mathcal{D}(\mathbb{R}^d), L^1) : f \to (\varphi \to f * \varphi).$$

Theorem (Schwartz, 1950)

The spaces $\mathcal{D}'_{L^1,b}$ and $\mathcal{D}'_{L^1,op}$ have the same bounded sets and null sequences.

• Do the topologies b and op coincide on \mathcal{D}'_{L^1} ?

• The space \mathcal{O}_C consists of all $\varphi \in C^{\infty}(\mathbb{R}^d)$ such that there is $N \in \mathbb{N}$ for which

$$\sup_{\mathbf{x} \in \mathbb{R}^d} \frac{|\partial^{\alpha} \varphi(\mathbf{x})|}{(1+|\mathbf{x}|)^N} < \infty, \qquad \forall \alpha \in \mathbb{N}^d.$$

- $\mathcal{O}_{\mathcal{C}}$ is an (*LF*)-space (countable inductive limit of Fréchet spaces).
- The space \mathcal{O}_C' of rapidly decreasing distributions is given by the topological dual of \mathcal{O}_C .

• The space \mathcal{O}_C consists of all $\varphi \in C^{\infty}(\mathbb{R}^d)$ such that there is $N \in \mathbb{N}$ for which

$$\sup_{\mathbf{x} \in \mathbb{R}^d} \frac{|\partial^{\alpha} \varphi(\mathbf{x})|}{(1+|\mathbf{x}|)^N} < \infty, \qquad \forall \alpha \in \mathbb{N}^d.$$

- \mathcal{O}_C is an (LF)-space (countable inductive limit of Fréchet spaces).
- The space $\mathcal{O}'_{\mathcal{C}}$ of rapidly decreasing distributions is given by the topological dual of $\mathcal{O}_{\mathcal{C}}$.

Theorem (Schwartz, 1950)

Let
$$f \in \mathcal{D}'(\mathbb{R}^d)$$
. Then, $f \in \mathcal{O}'_C$ if and only if, for all $\varphi \in \mathcal{D}(\mathbb{R}^d)$,
$$(1+|\cdot|)^N (f*\varphi) \in L^1, \qquad \forall N \in \mathbb{N}.$$

- \mathcal{O}_C' is sometimes called the space of convolutors.
- Define the topologies b and op on $\mathcal{O}'_{\mathcal{C}}$ as before.

Theorem (Grothendieck, 1955)

The space $\mathcal{O}'_{C,op}$ is complete, semi-reflexive, and bornological. Consequently, $\mathcal{O}'_{C,b} = \mathcal{O}'_{C,op}$ and the (LF)-space \mathcal{O}_C is complete.

Theorem (Schwartz, 1950)

Let $f \in \mathcal{D}'(\mathbb{R}^d)$. Then, $f \in \mathcal{O}'_C$ if and only if, for all $\varphi \in \mathcal{D}(\mathbb{R}^d)$,

$$(1+|\cdot|)^{N}(f*\varphi)\in L^{1}, \quad \forall N\in\mathbb{N}.$$

- \bullet $\mathcal{O}_{\mathcal{C}}'$ is sometimes called the space of convolutors.
- Define the topologies b and op on $\mathcal{O}'_{\mathcal{C}}$ as before.

Theorem (Grothendieck, 1955)

The space $\mathcal{O}'_{C,op}$ is complete, semi-reflexive, and bornological. Consequently, $\mathcal{O}'_{C,b} = \mathcal{O}'_{C,op}$ and the (LF)-space \mathcal{O}_C is complete.

Theorem (Schwartz, 1950)

Let $f \in \mathcal{D}'(\mathbb{R}^d)$. Then, $f \in \mathcal{O}'_{\mathcal{C}}$ if and only if, for all $\varphi \in \mathcal{D}(\mathbb{R}^d)$,

$$(1+|\cdot|)^N(f*\varphi)\in L^1, \qquad \forall N\in\mathbb{N}.$$

- $\mathcal{O}'_{\mathcal{C}}$ is sometimes called the space of convolutors.
- ullet Define the topologies b and op on $\mathcal{O}_{\mathcal{C}}'$ as before.

Theorem (Grothendieck, 1955)

The space $\mathcal{O}'_{C,op}$ is complete, semi-reflexive, and bornological. Consequently, $\mathcal{O}'_{C,b} = \mathcal{O}'_{C,op}$ and the (LF)-space \mathcal{O}_C is complete.

Theorem (Schwartz, 1950)

Let $f \in \mathcal{D}'(\mathbb{R}^d)$. Then, $f \in \mathcal{O}'_C$ if and only if, for all $\varphi \in \mathcal{D}(\mathbb{R}^d)$,

$$(1+|\cdot|)^{N}(f*\varphi)\in L^{1}, \qquad \forall N\in\mathbb{N}.$$

- \bullet \mathcal{O}_{C}^{\prime} is sometimes called the space of convolutors.
- ullet Define the topologies b and op on $\mathcal{O}'_{\mathcal{C}}$ as before.

Theorem (Grothendieck, 1955)

The space $\mathcal{O}'_{C,op}$ is complete, semi-reflexive, and bornological. Consequently, $\mathcal{O}'_{C,b} = \mathcal{O}'_{C,op}$ and the (LF)-space \mathcal{O}_C is complete.

Theorem (Schwartz, 1950)

Let $f \in \mathcal{D}'(\mathbb{R}^d)$. Then, $f \in \mathcal{O}'_C$ if and only if, for all $\varphi \in \mathcal{D}(\mathbb{R}^d)$,

$$(1+|\cdot|)^N(f*\varphi)\in L^1, \qquad \forall N\in\mathbb{N}.$$

- ullet \mathcal{O}_C' is sometimes called the space of convolutors.
- ullet Define the topologies b and op on $\mathcal{O}'_{\mathcal{C}}$ as before.

Theorem (Grothendieck, 1955)

The space $\mathcal{O}'_{C,op}$ is complete, semi-reflexive, and bornological. Consequently, $\mathcal{O}'_{C,b} = \mathcal{O}'_{C,op}$ and the (LF)-space \mathcal{O}_C is complete.

- Show the full topological identity $\mathcal{D}'_{I^1h} = \mathcal{D}'_{I^1op}$ and extend it to weighted \mathcal{D}'_{I_1} spaces (unified approach for \mathcal{D}'_{I_1} and \mathcal{O}'_{I_2}).
- To this end, we study the structural and topological properties of a
- Our arguments are based on the mapping properties of the short-time

C. Bargetz, N. Ortner, Characterization of L. Schwartz'

- Show the full topological identity $\mathcal{D}'_{I^1h} = \mathcal{D}'_{I^1op}$ and extend it to weighted \mathcal{D}'_{I_1} spaces (unified approach for \mathcal{D}'_{I_1} and \mathcal{O}'_{I_2}).
- To this end, we study the structural and topological properties of a general class of weighted L^1 convolutor spaces.
- Our arguments are based on the mapping properties of the short-time

C. Bargetz, N. Ortner, Characterization of L. Schwartz'

- Show the full topological identity $\mathcal{D}'_{I^1, h} = \mathcal{D}'_{I^1, op}$ and extend it to weighted \mathcal{D}'_{I_1} spaces (unified approach for \mathcal{D}'_{I_1} and \mathcal{O}'_{I_2}).
- To this end, we study the structural and topological properties of a general class of weighted L^1 convolutor spaces.
- Our arguments are based on the mapping properties of the short-time Fourier transform.

C. Bargetz, N. Ortner, Characterization of L. Schwartz'

- Show the full topological identity $\mathcal{D}'_{I^1h} = \mathcal{D}'_{I^1op}$ and extend it to weighted \mathcal{D}'_{I_1} spaces (unified approach for \mathcal{D}'_{I_1} and \mathcal{O}'_{I_2}).
- To this end, we study the structural and topological properties of a general class of weighted L^1 convolutor spaces.
- Our arguments are based on the mapping properties of the short-time Fourier transform.

C. Bargetz, N. Ortner, Characterization of L. Schwartz' convolutor and multiplier spaces $\mathcal{O}'_{\mathcal{C}}$ and $\mathcal{O}_{\mathcal{M}}$ by the short-time Fourier transform, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 108 (2014), 833-847.

- $T_x f := f(\cdot x)$ and $M_\xi f := e^{2\pi i \xi t} f(t)$ for $x, \xi \in \mathbb{R}^d$.
- The STFT of $f \in L^2(\mathbb{R}^d)$ w.r.t. a window function $\psi \in L^2(\mathbb{R}^d) \setminus \{0\}$ is defined as

$$V_{\psi}f(x,\xi):=(f,M_{\xi}T_{x}\psi)_{L^{2}}=\int_{\mathbb{R}^{d}}f(t)\overline{\psi(t-x)}\mathrm{e}^{-2\pi i\xi t}\mathrm{d}t,\ (x,\xi)\in\mathbb{R}^{2d}.$$

- The mapping $V_{\psi}: L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^{2d})$ is continuous.
- ullet The adjoint of V_ψ is given by the weak integral

$$V_{\psi}^* F = \int \int_{\mathbb{R}^{2d}} F(x,\xi) M_{\xi} T_x \psi dx d\xi, \qquad F \in L^2(\mathbb{R}^{2d}).$$

$$\frac{1}{\|\psi\|_{L^2}^2}V_{\psi}^*\circ V_{\psi}=\mathsf{id}_{L^2(\mathbb{R}^d)}.$$

- $T_x f := f(\cdot x)$ and $M_\xi f := e^{2\pi i \xi t} f(t)$ for $x, \xi \in \mathbb{R}^d$.
- The STFT of $f \in L^2(\mathbb{R}^d)$ w.r.t. a window function $\psi \in L^2(\mathbb{R}^d) \setminus \{0\}$ is defined as

$$V_{\psi}f(x,\xi):=(f,M_{\xi}T_{x}\psi)_{L^{2}}=\int_{\mathbb{R}^{d}}f(t)\overline{\psi(t-x)}e^{-2\pi i\xi t}\mathrm{d}t,\ \ (x,\xi)\in\mathbb{R}^{2d}.$$

- The mapping $V_{\psi}: L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^{2d})$ is continuous.
- ullet The adjoint of V_ψ is given by the weak integral

$$V_{\psi}^* F = \int \int_{\mathbb{R}^{2d}} F(x,\xi) M_{\xi} T_x \psi dx d\xi, \qquad F \in L^2(\mathbb{R}^{2d}).$$

$$\frac{1}{\|\psi\|_{L^{2}}^{2}}V_{\psi}^{*}\circ V_{\psi}=\mathsf{id}_{L^{2}(\mathbb{R}^{d})}.$$

- $T_x f := f(\cdot x)$ and $M_\xi f := e^{2\pi i \xi t} f(t)$ for $x, \xi \in \mathbb{R}^d$.
- The STFT of $f \in L^2(\mathbb{R}^d)$ w.r.t. a window function $\psi \in L^2(\mathbb{R}^d) \setminus \{0\}$ is defined as

$$V_{\psi}f(x,\xi):=(f,M_{\xi}T_{x}\psi)_{L^{2}}=\int_{\mathbb{R}^{d}}f(t)\overline{\psi(t-x)}e^{-2\pi i\xi t}\mathrm{d}t,\ \ (x,\xi)\in\mathbb{R}^{2d}.$$

- ullet The mapping $V_{\psi}:L^2(\mathbb{R}^d) o L^2(\mathbb{R}^{2d})$ is continuous.
- ullet The adjoint of V_{ψ} is given by the weak integral

$$V_{\psi}^* F = \int \int_{\mathbb{R}^{2d}} F(x,\xi) M_{\xi} T_x \psi dx d\xi, \qquad F \in L^2(\mathbb{R}^{2d}).$$

$$\frac{1}{\|\psi\|_{L^2}^2} V_{\psi}^* \circ V_{\psi} = \mathrm{id}_{L^2(\mathbb{R}^d)} \,.$$

- $T_x f := f(\cdot x)$ and $M_\xi f := e^{2\pi i \xi t} f(t)$ for $x, \xi \in \mathbb{R}^d$.
- The STFT of $f \in L^2(\mathbb{R}^d)$ w.r.t. a window function $\psi \in L^2(\mathbb{R}^d) \setminus \{0\}$ is defined as

$$V_{\psi}f(x,\xi):=(f,M_{\xi}T_{x}\psi)_{L^{2}}=\int_{\mathbb{R}^{d}}f(t)\overline{\psi(t-x)}e^{-2\pi i\xi t}\mathrm{d}t,\ \ (x,\xi)\in\mathbb{R}^{2d}.$$

- ullet The mapping $V_{\psi}:L^2(\mathbb{R}^d) o L^2(\mathbb{R}^{2d})$ is continuous.
- ullet The adjoint of V_ψ is given by the weak integral

$$V_{\psi}^*F = \int \int_{\mathbb{R}^{2d}} F(x,\xi) M_{\xi} T_x \psi dx d\xi, \qquad F \in L^2(\mathbb{R}^{2d}).$$

$$\frac{1}{\|\psi\|_{L^2}^2} V_{\psi}^* \circ V_{\psi} = \mathrm{id}_{L^2(\mathbb{R}^d)} \,.$$

- $T_x f := f(\cdot x)$ and $M_\xi f := e^{2\pi i \xi t} f(t)$ for $x, \xi \in \mathbb{R}^d$.
- The STFT of $f \in L^2(\mathbb{R}^d)$ w.r.t. a window function $\psi \in L^2(\mathbb{R}^d) \setminus \{0\}$ is defined as

$$V_{\psi}f(x,\xi):=(f,M_{\xi}T_{x}\psi)_{L^{2}}=\int_{\mathbb{R}^{d}}f(t)\overline{\psi(t-x)}e^{-2\pi i\xi t}\mathrm{d}t,\ \ (x,\xi)\in\mathbb{R}^{2d}.$$

- ullet The mapping $V_{\psi}:L^2(\mathbb{R}^d) o L^2(\mathbb{R}^{2d})$ is continuous.
- ullet The adjoint of V_ψ is given by the weak integral

$$V_{\psi}^*F = \int \int_{\mathbb{R}^{2d}} F(x,\xi) M_{\xi} T_x \psi \mathrm{d}x \mathrm{d}\xi, \qquad F \in L^2(\mathbb{R}^{2d}).$$

$$rac{1}{\|\psi\|_{L^2}^2}V_\psi^*\circ V_\psi=\mathsf{id}_{L^2(\mathbb{R}^d)}\,.$$

The STFT on $\mathcal{D}'(\mathbb{R}^d)$

• Let $\psi \in \mathcal{D}(\mathbb{R}^d) \setminus \{0\}$. V_{ψ} and V_{ψ}^* can be extended to continuous mappings on $\mathcal{D}'(\mathbb{R}^d)$:

$$V_{\psi}: \mathcal{D}'(\mathbb{R}^d) \to \mathcal{D}'(\mathbb{R}^d_{\mathsf{x}}) \widehat{\otimes} \mathcal{S}'(\mathbb{R}^d_{\xi}), \qquad V_{\psi}f(\mathsf{x}, \xi) := \langle f, \overline{M_{\xi}T_{\mathsf{x}}\psi} \rangle.$$

and

$$V_{\psi}^*: \mathcal{D}'(\mathbb{R}_{\mathsf{x}}^d) \widehat{\otimes} \mathcal{S}'(\mathbb{R}_{\xi}^d) \to \mathcal{D}'(\mathbb{R}^d), \qquad \langle V_{\psi}^* F, \varphi \rangle := \langle F, \overline{V_{\psi} \overline{\varphi}} \rangle.$$

$$\frac{1}{\|\psi\|_{L^2}^2}V_{\psi}^*\circ V_{\psi}=\mathsf{id}_{\mathcal{D}'(\mathbb{R}^d)}.$$

The STFT on $\mathcal{D}'(\mathbb{R}^d)$

• Let $\psi \in \mathcal{D}(\mathbb{R}^d) \setminus \{0\}$. V_{ψ} and V_{ψ}^* can be extended to continuous mappings on $\mathcal{D}'(\mathbb{R}^d)$:

$$V_{\psi}: \mathcal{D}'(\mathbb{R}^d) \to \mathcal{D}'(\mathbb{R}^d_{\mathsf{x}}) \widehat{\otimes} \mathcal{S}'(\mathbb{R}^d_{\xi}), \qquad V_{\psi}f(\mathsf{x},\xi) := \langle f, \overline{M_{\xi}T_{\mathsf{x}}\psi} \rangle.$$

and

$$V_{\psi}^*: \mathcal{D}'(\mathbb{R}_{\mathsf{x}}^d) \widehat{\otimes} \mathcal{S}'(\mathbb{R}_{\xi}^d) \to \mathcal{D}'(\mathbb{R}^d), \qquad \langle V_{\psi}^* F, \varphi \rangle := \langle F, \overline{V_{\psi} \overline{\varphi}} \rangle.$$

$$rac{1}{\|\psi\|_{L^2}^2}V_\psi^*\circ V_\psi=\mathsf{id}_{\mathcal{D}'(\mathbb{R}^d)}\,.$$

- Suppose that $E_1, E_2 \subset \mathcal{D}'(\mathbb{R}^d)$ (with continuous inclusion) and one wants to show that $E_1 = E_2$.
- Find $F \subset \mathcal{D}'(\mathbb{R}^d_x) \widehat{\otimes} \mathcal{S}'(\mathbb{R}^d_\xi)$ such that

$$V_{\psi}: E_i \to F$$
 and $V_{\psi}^*: F \to E_i$

are well-defined mappings for i = 1, 2.

• The inversion formula immediately yields that $E_1 = E_2$!

- Suppose that $E_1, E_2 \subset \mathcal{D}'(\mathbb{R}^d)$ (with continuous inclusion) and one wants to show that $E_1 = E_2$.
- ullet Find $F\subset \mathcal{D}'(\mathbb{R}^d_x)\widehat{\otimes}\mathcal{S}'(\mathbb{R}^d_\xi)$ such that

$$V_{\psi}: E_i \to F$$
 and $V_{\psi}^*: F \to E_i$

are well-defined mappings for i = 1, 2.

• The inversion formula immediately yields that $E_1 = E_2$!

- Suppose that $E_1, E_2 \subset \mathcal{D}'(\mathbb{R}^d)$ (with continuous inclusion) and one wants to show that $E_1 = E_2$.
- ullet Find $F\subset \mathcal{D}'(\mathbb{R}^d_x)\widehat{\otimes}\mathcal{S}'(\mathbb{R}^d_\xi)$ such that

$$V_{\psi}: E_i \to F$$
 and $V_{\psi}^*: F \to E_i$

are well-defined mappings for i = 1, 2.

• The inversion formula immediately yields that $E_1 = E_2$!

- Suppose that $E_1, E_2 \subset \mathcal{D}'(\mathbb{R}^d)$ (with continuous inclusion) and one wants to show that $E_1 = E_2$ topologically.
- ullet Find $F\subset \mathcal{D}'(\mathbb{R}^d_x)\widehat{\otimes}\mathcal{S}'(\mathbb{R}^d_\xi)$ such that

$$V_{\psi}: E_i \to F$$
 and $V_{\psi}^*: F \to E_i$

are well-defined continuous mappings for i = 1, 2.

• The inversion formula immediately yields that $E_1 = E_2$ topologically!

The equality $\mathcal{D}'_{L^1,b} = \mathcal{D}'_{L^1,op}$

• Define $C_{\text{pol}}(\mathbb{R}^d)$ as the space consisting of all $\varphi \in C(\mathbb{R}^d)$ such that there is $N \in \mathbb{N}$ for which

$$\sup_{x\in\mathbb{R}^d}\frac{|\varphi(x)|}{(1+|x|)^N}<\infty.$$

• $C_{\text{pol}}(\mathbb{R}^d)$ is an (LB)-space.

Theorem

Let $\psi \in \mathcal{D}(\mathbb{R}^d) \setminus \{0\}$ and let $\tau = b$ or op. Then,

$$V_{\psi}: \mathcal{D}'_{L^{1}, \tau} \to L^{1}(\mathbb{R}^{d}_{x}) \widehat{\otimes}_{\varepsilon} C_{\mathsf{pol}}(\mathbb{R}^{d}_{\xi})$$

and

$$V_{\psi}^*: L^1(\mathbb{R}^d_{\mathsf{x}}) \widehat{\otimes}_{\varepsilon} C_{\mathsf{pol}}(\mathbb{R}^d_{\xi}) o \mathcal{D}'_{L^1, au}$$

are well-defined continuous mappings. Hence, $\mathcal{D}'_{L^1,b} = \mathcal{D}'_{L^1,op}$.

The equality $\mathcal{D}'_{L^1,b} = \mathcal{D}'_{L^1,op}$

• Define $C_{\text{pol}}(\mathbb{R}^d)$ as the space consisting of all $\varphi \in C(\mathbb{R}^d)$ such that there is $N \in \mathbb{N}$ for which

$$\sup_{x\in\mathbb{R}^d}\frac{|\varphi(x)|}{(1+|x|)^N}<\infty.$$

• $C_{\text{pol}}(\mathbb{R}^d)$ is an (LB)-space.

Theorem

Let $\psi \in \mathcal{D}(\mathbb{R}^d) \setminus \{0\}$ and let $\tau = b$ or op. Then,

$$V_{\psi}: \mathcal{D}'_{L^{1}, \tau} \to L^{1}(\mathbb{R}^{d}_{x}) \widehat{\otimes}_{\varepsilon} C_{\mathsf{pol}}(\mathbb{R}^{d}_{\xi})$$

and

$$V_{\psi}^*: L^1(\mathbb{R}^d_{\mathsf{x}}) \widehat{\otimes}_{\varepsilon} C_{\mathsf{pol}}(\mathbb{R}^d_{\xi}) o \mathcal{D}'_{L^1, \tau}$$

are well-defined continuous mappings. Hence, $\mathcal{D}'_{L^1,b} = \mathcal{D}'_{L^1,op}$.

The equality $\mathcal{D}'_{\mathit{L}^{1},\mathit{b}} = \mathcal{D}'_{\mathit{L}^{1},\mathit{op}}$

• Define $C_{\text{pol}}(\mathbb{R}^d)$ as the space consisting of all $\varphi \in C(\mathbb{R}^d)$ such that there is $N \in \mathbb{N}$ for which

$$\sup_{x\in\mathbb{R}^d}\frac{|\varphi(x)|}{(1+|x|)^N}<\infty.$$

• $C_{\text{pol}}(\mathbb{R}^d)$ is an (LB)-space.

Theorem

Let $\psi \in \mathcal{D}(\mathbb{R}^d) \setminus \{0\}$ and let $\tau = b$ or op. Then,

$$V_{\psi}: \mathcal{D}'_{L^{1}, au}
ightarrow L^{1}(\mathbb{R}^{d}_{x}) \widehat{\otimes}_{\varepsilon} C_{\mathsf{pol}}(\mathbb{R}^{d}_{\xi})$$

and

$$V_{\psi}^*: L^1(\mathbb{R}^d_x) \widehat{\otimes}_{\varepsilon} C_{\mathsf{pol}}(\mathbb{R}^d_{\xi}) \to \mathcal{D}'_{L^1, \tau}$$

are well-defined continuous mappings. Hence, $\mathcal{D}'_{l^1,b} = \mathcal{D}'_{l^1,op}$.

The equality $\mathcal{D}'_{\mathcal{L}^1,b} = \mathcal{D}'_{\mathcal{L}^1,op}$

• Define $C_{\text{pol}}(\mathbb{R}^d)$ as the space consisting of all $\varphi \in C(\mathbb{R}^d)$ such that there is $N \in \mathbb{N}$ for which

$$\sup_{x\in\mathbb{R}^d}\frac{|\varphi(x)|}{(1+|x|)^N}<\infty.$$

• $C_{\text{pol}}(\mathbb{R}^d)$ is an (LB)-space.

Theorem

Let $\psi \in \mathcal{D}(\mathbb{R}^d) \setminus \{0\}$ and let $\tau = b$ or op. Then,

$$V_{\psi}: \mathcal{D}'_{L^{1}, au}
ightarrow L^{1}(\mathbb{R}^{d}_{x}) \widehat{\otimes}_{\varepsilon} C_{\mathsf{pol}}(\mathbb{R}^{d}_{\xi})$$

and

$$V_{\psi}^*: L^1(\mathbb{R}^d_{\mathsf{x}}) \widehat{\otimes}_{\varepsilon} C_{\mathsf{pol}}(\mathbb{R}^d_{\xi}) o \mathcal{D}'_{L^1, \tau}$$

are well-defined continuous mappings. Hence, $\mathcal{D}'_{L^1,b} = \mathcal{D}'_{L^1,op}$.

- Let $W = (w_N)_N$ be an increasing sequence of continuous functions.
- Define \mathcal{B}_{w_N} as the space consisting of all $\varphi \in C^\infty(\mathbb{R}^d)$ such that

$$\sup_{\mathbf{x} \in \mathbb{R}^d} \frac{|\partial^{\alpha} \varphi(\mathbf{x})|}{w_N(\mathbf{x})} < \infty, \qquad \forall \alpha \in \mathbb{N}^d.$$

- \mathcal{B}_{w_N} is a Fréchet space.
- The space $\dot{\mathcal{B}}_{w_N}$ is defined as the closure of $\mathcal{D}(\mathbb{R}^d)$ in \mathcal{B}_{w_N} .
- $\dot{\mathcal{B}}_{w_N}$ is a Fréchet space.
- Define

$$\mathcal{B}_{\mathcal{W}} := \bigcup_{N \in \mathbb{N}} \mathcal{B}_{w_N} \quad \text{and} \quad \dot{\mathcal{B}}_{\mathcal{W}} := \bigcup_{N \in \mathbb{N}} \dot{\mathcal{B}}_{w_N}.$$

- Let $W = (w_N)_N$ be an increasing sequence of continuous functions.
- ullet Define \mathcal{B}_{w_N} as the space consisting of all $arphi\in C^\infty(\mathbb{R}^d)$ such that

$$\sup_{\mathbf{x}\in\mathbb{R}^d}\frac{|\partial^{\alpha}\varphi(\mathbf{x})|}{w_{N}(\mathbf{x})}<\infty, \qquad \forall \alpha\in\mathbb{N}^d.$$

- \mathcal{B}_{w_N} is a Fréchet space.
- The space \mathcal{B}_{w_N} is defined as the closure of $\mathcal{D}(\mathbb{R}^d)$ in \mathcal{B}_{w_N} .
- $\dot{\mathcal{B}}_{W_N}$ is a Fréchet space.
- Define

$$\mathcal{B}_{\mathcal{W}} := \bigcup_{N \in \mathbb{N}} \mathcal{B}_{w_N} \qquad \text{and} \qquad \dot{\mathcal{B}}_{\mathcal{W}} := \bigcup_{N \in \mathbb{N}} \dot{\mathcal{B}}_{w_N}.$$

- Let $W = (w_N)_N$ be an increasing sequence of continuous functions.
- ullet Define \mathcal{B}_{w_N} as the space consisting of all $arphi\in C^\infty(\mathbb{R}^d)$ such that

$$\sup_{\mathbf{x}\in\mathbb{R}^d}\frac{|\partial^{\alpha}\varphi(\mathbf{x})|}{w_N(\mathbf{x})}<\infty, \qquad \forall \alpha\in\mathbb{N}^d.$$

- \mathcal{B}_{W_N} is a Fréchet space.
- The space $\dot{\mathcal{B}}_{w_N}$ is defined as the closure of $\mathcal{D}(\mathbb{R}^d)$ in \mathcal{B}_{w_N} .
- $\dot{\mathcal{B}}_{w_N}$ is a Fréchet space.
- Define

$$\mathcal{B}_{\mathcal{W}} := \bigcup_{N \in \mathbb{N}} \mathcal{B}_{w_N} \qquad \text{and} \qquad \dot{\mathcal{B}}_{\mathcal{W}} := \bigcup_{N \in \mathbb{N}} \dot{\mathcal{B}}_{w_N}.$$

- Let $W = (w_N)_N$ be an increasing sequence of continuous functions.
- ullet Define $\mathcal{B}_{\scriptscriptstyle W_N}$ as the space consisting of all $arphi\in C^\infty(\mathbb{R}^d)$ such that

$$\sup_{\mathbf{x}\in\mathbb{R}^d}\frac{|\partial^{\alpha}\varphi(\mathbf{x})|}{w_N(\mathbf{x})}<\infty, \qquad \forall \alpha\in\mathbb{N}^d.$$

- \mathcal{B}_{w_N} is a Fréchet space.
- The space $\dot{\mathcal{B}}_{w_N}$ is defined as the closure of $\mathcal{D}(\mathbb{R}^d)$ in \mathcal{B}_{w_N} .
- $\dot{\mathcal{B}}_{W_N}$ is a Fréchet space.
- Define

$$\mathcal{B}_{\mathcal{W}} := \bigcup_{N \in \mathbb{N}} \mathcal{B}_{w_N} \qquad \text{and} \qquad \dot{\mathcal{B}}_{\mathcal{W}} := \bigcup_{N \in \mathbb{N}} \dot{\mathcal{B}}_{w_N}.$$

- Let $W = (w_N)_N$ be an increasing sequence of continuous functions.
- ullet Define $\mathcal{B}_{\scriptscriptstyle W_N}$ as the space consisting of all $arphi\in C^\infty(\mathbb{R}^d)$ such that

$$\sup_{\mathbf{x}\in\mathbb{R}^d}\frac{|\partial^{\alpha}\varphi(\mathbf{x})|}{w_N(\mathbf{x})}<\infty, \qquad \forall \alpha\in\mathbb{N}^d.$$

- \mathcal{B}_{W_N} is a Fréchet space.
- The space $\dot{\mathcal{B}}_{w_N}$ is defined as the closure of $\mathcal{D}(\mathbb{R}^d)$ in \mathcal{B}_{w_N} .
- $\dot{\mathcal{B}}_{w_N}$ is a Fréchet space.
- Define

$$\mathcal{B}_{\mathcal{W}} := \bigcup_{N \in \mathbb{N}} \mathcal{B}_{w_N} \qquad \text{and} \qquad \dot{\mathcal{B}}_{\mathcal{W}} := \bigcup_{N \in \mathbb{N}} \dot{\mathcal{B}}_{w_N}.$$

- Let $W = (w_N)_N$ be an increasing sequence of continuous functions.
- ullet Define $\mathcal{B}_{\scriptscriptstyle W_N}$ as the space consisting of all $arphi\in C^\infty(\mathbb{R}^d)$ such that

$$\sup_{\mathbf{x} \in \mathbb{R}^d} \frac{|\partial^{\alpha} \varphi(\mathbf{x})|}{w_{N}(\mathbf{x})} < \infty, \qquad \forall \alpha \in \mathbb{N}^d.$$

- \mathcal{B}_{w_N} is a Fréchet space.
- The space $\dot{\mathcal{B}}_{w_N}$ is defined as the closure of $\mathcal{D}(\mathbb{R}^d)$ in \mathcal{B}_{w_N} .
- $\dot{\mathcal{B}}_{w_N}$ is a Fréchet space.
- Define

$$\mathcal{B}_{\mathcal{W}} := \bigcup_{N \in \mathbb{N}} \mathcal{B}_{w_N} \qquad \text{and} \qquad \dot{\mathcal{B}}_{\mathcal{W}} := \bigcup_{N \in \mathbb{N}} \dot{\mathcal{B}}_{w_N}.$$

- Let $W = (w_N)_N$ be an increasing sequence of continuous functions.
- ullet Define \mathcal{B}_{w_N} as the space consisting of all $arphi\in \mathcal{C}^\infty(\mathbb{R}^d)$ such that

$$\sup_{\mathbf{x} \in \mathbb{R}^d} \frac{|\partial^{\alpha} \varphi(\mathbf{x})|}{w_{N}(\mathbf{x})} < \infty, \qquad \forall \alpha \in \mathbb{N}^d.$$

- \mathcal{B}_{w_N} is a Fréchet space.
- The space $\dot{\mathcal{B}}_{w_N}$ is defined as the closure of $\mathcal{D}(\mathbb{R}^d)$ in \mathcal{B}_{w_N} .
- $\dot{\mathcal{B}}_{w_N}$ is a Fréchet space.
- Define

$$\mathcal{B}_{\mathcal{W}} := \bigcup_{N \in \mathbb{N}} \mathcal{B}_{w_N} \qquad \text{and} \qquad \dot{\mathcal{B}}_{\mathcal{W}} := \bigcup_{N \in \mathbb{N}} \dot{\mathcal{B}}_{w_N}.$$

Completeness of $\mathcal{B}_{\mathcal{W}}$ and $\dot{\mathcal{B}}_{\mathcal{W}}$

• Assume that $\mathcal{W} = (w_N)_N$ satisfies

$$\forall N \exists M \geq N \exists C > 0 \,\forall x \in \mathbb{R}^d : \sup_{y \in [-1,1]^d} w_N(x+y) \leq Cw_M(x).$$

Theorem (D., Vindas, 2018)

TFAE.

• W satisfies the condition (Ω) , i.e.

$$\forall N \exists M \ge N \forall K \ge M \exists \theta \in (0,1) \exists C > 0 \, \forall x \in \mathbb{R}^d :$$
$$w_N(x)^{1-\theta} w_K(x)^{\theta} \le Cw_M(x).$$

- $\mathcal{B}_{\mathcal{W}}$ is complete.
- $\mathcal{B}_{\mathcal{W}}$ is complete.
- An (LF)-space is complete if and only if it is boundedly stable and satisfies (wQ) (Vogt and Wengenroth).

Completeness of $\mathcal{B}_{\mathcal{W}}$ and $\dot{\mathcal{B}}_{\mathcal{W}}$

• Assume that $\mathcal{W} = (w_N)_N$ satisfies

$$\forall N \exists M \geq N \exists C > 0 \, \forall x \in \mathbb{R}^d : \sup_{y \in [-1,1]^d} w_N(x+y) \leq Cw_M(x).$$

Theorem (D., Vindas, 2018)

TFAE:

• W satisfies the condition (Ω) , i.e.

$$\forall N \exists M \geq N \forall K \geq M \exists \theta \in (0,1) \exists C > 0 \forall x \in \mathbb{R}^d :$$

$$w_N(x)^{1-\theta} w_K(x)^{\theta} \leq Cw_M(x).$$

- $\mathcal{B}_{\mathcal{W}}$ is complete.
- ullet $\mathcal{B}_{\mathcal{W}}$ is complete.
- An (LF)-space is complete if and only if it is boundedly stable and satisfies (wQ) (Vogt and Wengenroth).

Completeness of $\mathcal{B}_{\mathcal{W}}$ and $\dot{\mathcal{B}}_{\mathcal{W}}$

• Assume that $\mathcal{W} = (w_N)_N$ satisfies

$$\forall N \exists M \geq N \exists C > 0 \, \forall x \in \mathbb{R}^d : \sup_{y \in [-1,1]^d} w_N(x+y) \leq Cw_M(x).$$

Theorem (D., Vindas, 2018)

TFAE:

• W satisfies the condition (Ω) , i.e.

$$\forall N \exists M \geq N \forall K \geq M \exists \theta \in (0,1) \exists C > 0 \forall x \in \mathbb{R}^d :$$

$$w_N(x)^{1-\theta} w_K(x)^{\theta} \leq Cw_M(x).$$

- $\mathcal{B}_{\mathcal{W}}$ is complete.
- $\mathcal{B}_{\mathcal{W}}$ is complete.
- An (LF)-space is complete if and only if it is boundedly stable and satisfies (wQ) (Vogt and Wengenroth).

Weighted L^1 convolutor spaces

• Define $L^1_{\mathcal{W}}$ as the space consisting of all measurable functions f on \mathbb{R}^d such that

$$\int_{\mathbb{R}^d} f(x) w_N(x) \mathrm{d} x < \infty, \qquad \forall N \in \mathbb{N}.$$

- L_W^1 is a Fréchet space.
- Define

$$\mathcal{O}'_{\mathcal{C}}(\mathcal{D}, L^{1}_{\mathcal{W}}) := \{ f \in \mathcal{D}'(\mathbb{R}^{d}) \, | \, f * \varphi \in L^{1}_{\mathcal{W}} \text{ for all } \varphi \in \mathcal{D}(\mathbb{R}^{d}) \}$$

and endow it with the initial topology w.r.t. the mapping

$$\mathcal{O}'_{\mathcal{C}}(\mathcal{D}, L^1_{\mathcal{W}}) \to L_b(\mathcal{D}(\mathbb{R}^d), L^1_{\mathcal{W}}) : f \to (\varphi \to f * \varphi).$$

Weighted L^1 convolutor spaces

• Define $L^1_{\mathcal{W}}$ as the space consisting of all measurable functions f on \mathbb{R}^d such that

$$\int_{\mathbb{R}^d} f(x) w_N(x) \mathrm{d} x < \infty, \qquad \forall N \in \mathbb{N}.$$

- $L^1_{\mathcal{W}}$ is a Fréchet space.
- Define

$$\mathcal{O}_{\mathcal{C}}'(\mathcal{D}, L^1_{\mathcal{W}}) := \{ f \in \mathcal{D}'(\mathbb{R}^d) \, | \, f * \varphi \in L^1_{\mathcal{W}} \text{ for all } \varphi \in \mathcal{D}(\mathbb{R}^d) \}$$

and endow it with the initial topology w.r.t. the mapping

$$\mathcal{O}'_{\mathcal{C}}(\mathcal{D}, L^1_{\mathcal{W}}) \to L_b(\mathcal{D}(\mathbb{R}^d), L^1_{\mathcal{W}}) : f \to (\varphi \to f * \varphi).$$

Weighted L^1 convolutor spaces

• Define $L^1_{\mathcal{W}}$ as the space consisting of all measurable functions f on \mathbb{R}^d such that

$$\int_{\mathbb{R}^d} f(x) w_N(x) \mathrm{d} x < \infty, \qquad \forall N \in \mathbb{N}.$$

- $L^1_{\mathcal{W}}$ is a Fréchet space.
- Define

$$\mathcal{O}_{\mathcal{C}}'(\mathcal{D}, L^1_{\mathcal{W}}) := \{ f \in \mathcal{D}'(\mathbb{R}^d) \, | \, f * \varphi \in L^1_{\mathcal{W}} \text{ for all } \varphi \in \mathcal{D}(\mathbb{R}^d) \}$$

and endow it with the initial topology w.r.t. the mapping

$$\mathcal{O}'_{\mathcal{C}}(\mathcal{D}, L^1_{\mathcal{W}}) \to L_b(\mathcal{D}(\mathbb{R}^d), L^1_{\mathcal{W}}) : f \to (\varphi \to f * \varphi).$$

The main result

Theorem (D., Vindas, 2018)

The equality $(\dot{\mathcal{B}}_{\mathcal{W}})' = \mathcal{O}'_{\mathcal{C}}(\mathcal{D}, L^1_{\mathcal{W}})$ always holds algebraically. TFAE:

- W satisfies the condition (Ω) .
- $\dot{\mathcal{B}}_{\mathcal{W}}$ and $\mathcal{B}_{\mathcal{W}}$ are complete.
- $\mathcal{O}'_{\mathcal{C}}(\mathcal{D}, L^1_{\mathcal{W}})$ is bornological.
- $\bullet \ (\dot{\mathcal{B}}_{\mathcal{W}})_b' = \mathcal{O}_C'(\mathcal{D}, L_{\mathcal{W}}^1).$

In such a case, the bidual of $\hat{\mathcal{B}}_{\mathcal{W}}$ is topologically isomorphic to $\mathcal{B}_{\mathcal{W}}$

The main result

Theorem (D., Vindas, 2018)

The equality $(\dot{\mathcal{B}}_{\mathcal{W}})' = \mathcal{O}'_{\mathcal{C}}(\mathcal{D}, L^1_{\mathcal{W}})$ always holds algebraically. TFAE:

- W satisfies the condition (Ω) .
- $\dot{\mathcal{B}}_{\mathcal{W}}$ and $\mathcal{B}_{\mathcal{W}}$ are complete.
- $\mathcal{O}'_{\mathcal{C}}(\mathcal{D}, \mathcal{L}^1_{\mathcal{W}})$ is bornological.
- $(\dot{\mathcal{B}}_{\mathcal{W}})'_b = \mathcal{O}'_{\mathcal{C}}(\mathcal{D}, L^1_{\mathcal{W}}).$

In such a case, the bidual of $\hat{\mathcal{B}}_{\mathcal{W}}$ is topologically isomorphic to $\mathcal{B}_{\mathcal{W}}$.

The main result

Theorem (D., Vindas, 2018)

The equality $(\dot{\mathcal{B}}_{\mathcal{W}})' = \mathcal{O}'_{\mathcal{C}}(\mathcal{D}, L^1_{\mathcal{W}})$ always holds algebraically. TFAE:

- W satisfies the condition (Ω) .
- $\dot{\mathcal{B}}_{\mathcal{W}}$ and $\mathcal{B}_{\mathcal{W}}$ are complete.
- $\mathcal{O}'_{\mathcal{C}}(\mathcal{D}, \mathcal{L}^1_{\mathcal{W}})$ is bornological.
- $\bullet \ (\dot{\mathcal{B}}_{\mathcal{W}})_b' = \mathcal{O}_{\mathcal{C}}'(\mathcal{D}, L_{\mathcal{W}}^1).$

In such a case, the bidual of $\dot{\mathcal{B}}_{\mathcal{W}}$ is topologically isomorphic to $\mathcal{B}_{\mathcal{W}}$.