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The space B is a Fréchet space.

The space D’Ll of integrable distributions is given by the topological
dual of B.
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Theorem (Schwartz, 1950)
Let f € D'(RY). Then, f € D}, if and only if f x ¢ € L* for all ¢ € D(R?).

e Two natural topologies on D;:

© The strong topology b(Dy, B).
@ The initial topology op w.r.t. the mapping

D)y — Lp(D(RY), LY) - f — (p — f ).

Theorem (Schwartz, 1950)

The spaces D}, , and D}, op have the same bounded sets and null
sequences.

@ Do the topologies b and op coincide on D’Ll?
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Let f € D'(RY). Then, f € OF if and only if, for all p € D(R?),

(1+] - DN(Fxp)ell!,;, VYNeN.

e O is sometimes called the space of convolutors.

o Define the topologies b and op on O as before.

Theorem (Grothendieck, 1955)

The space (’)’C’ op 1S complete, semi-reflexive, and bornological.
Consequently, O¢ , = O¢ ,,, and the (LF)-space Oc is complete.

e He showed that O op is isomorphic to a complemented subspace of

s®s’ and proved that s®s’ is bornological. Moreover, he showed that
(O’C’OP)'b = Oc.
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Goals

o Show the full topological identity D}, , = D}, op and extend it to

weighted D/, spaces (unified approach for D), and O).
@ To this end, we study the structural and topological properties of a
general class of weighted L! convolutor spaces.

@ Our arguments are based on the mapping properties of the short-time
Fourier transform.

& C. Bargetz, N. Ortner, Characterization of L. Schwartz’
convolutor and multiplier spaces O and Oy by the short-time

Fourier transform, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A
Math. RACSAM 108 (2014), 833-847.
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The short-time Fourier transform (STFT)

o T f :=f(-—x)and Mcf := e®™¢tf(t) for x,¢ € RY.
® The STFT of f € L2(RY) w.r.t. a window function 1 € L2(R9)\{0} is
defined as

Vi f(x,€) i= (f, M Tyt)) 12 = /R ) f()y(t — x)e 2™t dt, (x,€) € R,

o The mapping Vy, : L2(R?) — L2(R29) is continuous.
@ The adjoint of V,; is given by the weak integral

ViF = //de F(x, )M Tbdxde,  F € L3(R?9).

Inversion formula

||1/1|| Vw oVy = IdLZ(Rd) .
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General strategy

o Suppose that £1, £, C D'(R?) (with continuous inclusion) and one
wants to show that E; = E; topologically.

e Find F C D’(Rg)@S’(Rg) such that
Vy: Ei — F and VJ:F—>E;

are well-defined continuous mappings for i =1, 2.

@ The inversion formula immediately yields that E; = E, topologically!
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o Define B, as the space consisting of all ¢ € C*°(R?) such that

aO{
sup m < 00, Va e N¢.
x€Rd WN(X)
Buw, is a Fréchet space.
The space By, is defined as the closure of D(RY) in By,

B, is a Fréchet space.
Define

By = U Buw, and By = U BWN.
NeN NeN

o By and Byy are (LF)-spaces.
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Theorem (D., Vindas, 2018)
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o W satisfies the condition (), i.e.

VN3IM > NVK > M30 € (0,1)3C >0Vx € R :

_ wi (%) wk (x)? < Cww(x).
e Byy is complete.

o Byy is complete.

@ An (LF)-space is complete if and only if it is boundedly stable and
satisfies (wQ) (Vogt and Wengenroth).
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Weighted L' convolutor spaces

@ Define L)l/v as the space consisting of all measurable functions f on
RY such that

/ f(x)wy(x)dx < oo, VN € N.
Rd

° L11/v is a Fréchet space.

o Define
O (D, Ly) = {f € D'(RY) | f x ¢ € L}, for all ¢ € D(R?)}
and endow it with the initial topology w.r.t. the mapping

Oc(D, L}y) — Lp(D(RY), L}y) : £ — (@ — f ).
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The equality (Bw) = O'=(D, L},,) always holds algebraically. TFAE:
e W satisfies the condition ().
e By and By are complete.

o O(D, L3,) is bornological.
o (Bw), = OL(D. L)
In such a case, the bidual of By is topologically isomorphic to Byy.
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