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The space of integrable distributions (1)

The space B consists of all ϕ ∈ C∞(Rd) such that

‖∂αϕ‖L∞ <∞, ∀α ∈ Nd .

The space B is a Fréchet space.

The space Ḃ is given by the closure of D(Rd) in B, i.e. it consists of
all ϕ ∈ C∞(Rd) such that

lim
|x |→∞

∂αϕ(x) = 0, ∀α ∈ Nd .

The space Ḃ is a Fréchet space.

The space D′L1 of integrable distributions is given by the topological

dual of Ḃ.
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The space of integrable distributions (2)

Theorem (Schwartz, 1950)

Let f ∈ D′(Rd). Then, f ∈ D′L1 if and only if f ∗ϕ ∈ L1 for all ϕ ∈ D(Rd).

Two natural topologies on D′L1 :

1 The strong topology b(D′L1 , Ḃ).
2 The initial topology op w.r.t. the mapping

D′L1 → Lb(D(Rd), L1) : f → (ϕ→ f ∗ ϕ).

Theorem (Schwartz, 1950)

The spaces D′L1,b and D′L1,op have the same bounded sets and null
sequences.

Do the topologies b and op coincide on D′L1?
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The space of rapidly decreasing distributions (1)

The space OC consists of all ϕ ∈ C∞(Rd) such that there is N ∈ N
for which

sup
x∈Rd

|∂αϕ(x)|
(1 + |x |)N

<∞, ∀α ∈ Nd .

OC is an (LF )-space (countable inductive limit of Fréchet spaces).

The space O′C of rapidly decreasing distributions is given by the
topological dual of OC .
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The space of rapidly decreasing distributions (2)

Theorem (Schwartz, 1950)

Let f ∈ D′(Rd). Then, f ∈ O′C if and only if, for all ϕ ∈ D(Rd),

(1 + | · |)N(f ∗ ϕ) ∈ L1, ∀N ∈ N.

O′C is sometimes called the space of convolutors.

Define the topologies b and op on O′C as before.

Theorem (Grothendieck, 1955)

The space O′C ,op is complete, semi-reflexive, and bornological.
Consequently, O′C ,b = O′C ,op and the (LF )-space OC is complete.

He showed that O′C ,op is isomorphic to a complemented subspace of

s⊗̂s ′ and proved that s⊗̂s ′ is bornological. Moreover, he showed that
(O′C ,op)′b = OC .
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Goals

Show the full topological identity D′L1,b = D′L1,op and extend it to

weighted D′L1 spaces (unified approach for D′L1 and O′C ).

To this end, we study the structural and topological properties of a
general class of weighted L1 convolutor spaces.

Our arguments are based on the mapping properties of the short-time
Fourier transform.

C. Bargetz, N. Ortner, Characterization of L. Schwartz’
convolutor and multiplier spaces O′C and OM by the short-time
Fourier transform, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A
Math. RACSAM 108 (2014), 833–847.
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The short-time Fourier transform (STFT)

Tx f := f ( · − x) and Mξf := e2πiξt f (t) for x , ξ ∈ Rd .

The STFT of f ∈ L2(Rd) w.r.t. a window function ψ ∈ L2(Rd)\{0} is
defined as

Vψf (x , ξ) := (f ,MξTxψ)L2 =

∫
Rd

f (t)ψ(t − x)e−2πiξtdt, (x , ξ) ∈ R2d .

The mapping Vψ : L2(Rd)→ L2(R2d) is continuous.

The adjoint of Vψ is given by the weak integral

V ∗ψF =

∫ ∫
R2d

F (x , ξ)MξTxψdxdξ, F ∈ L2(R2d).

Inversion formula

1

‖ψ‖2
L2
V ∗ψ ◦ Vψ = idL2(Rd ) .
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The STFT on D′(Rd)

Let ψ ∈ D(Rd)\{0}. Vψ and V ∗ψ can be extended to continuous

mappings on D′(Rd):

Vψ : D′(Rd)→ D′(Rd
x )⊗̂S ′(Rd

ξ ), Vψf (x , ξ) := 〈f ,MξTxψ〉.

and

V ∗ψ : D′(Rd
x )⊗̂S ′(Rd

ξ )→ D′(Rd), 〈V ∗ψF , ϕ〉 := 〈F ,Vψϕ〉.

Inversion formula

1

‖ψ‖2
L2
V ∗ψ ◦ Vψ = idD′(Rd ) .
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General strategy

Suppose that E1,E2 ⊂ D′(Rd) (with continuous inclusion) and one
wants to show that E1 = E2 .

Find F ⊂ D′(Rd
x )⊗̂S ′(Rd

ξ ) such that

Vψ : Ei → F and V ∗ψ : F → Ei

are well-defined mappings for i = 1, 2.

The inversion formula immediately yields that E1 = E2 !
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General strategy

Suppose that E1,E2 ⊂ D′(Rd) (with continuous inclusion) and one
wants to show that E1 = E2 topologically.

Find F ⊂ D′(Rd
x )⊗̂S ′(Rd

ξ ) such that

Vψ : Ei → F and V ∗ψ : F → Ei

are well-defined continuous mappings for i = 1, 2.
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The equality D′L1,b = D′L1,op
Define Cpol(Rd) as the space consisting of all ϕ ∈ C (Rd) such that
there is N ∈ N for which

sup
x∈Rd

|ϕ(x)|
(1 + |x |)N

<∞.

Cpol(Rd) is an (LB)-space.

Theorem

Let ψ ∈ D(Rd)\{0} and let τ = b or op. Then,

Vψ : D′L1,τ → L1(Rd
x )⊗̂εCpol(Rd

ξ )

and
V ∗ψ : L1(Rd

x )⊗̂εCpol(Rd
ξ )→ D′L1,τ

are well-defined continuous mappings. Hence, D′L1,b = D′L1,op.
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Weighted inductive limits of smooth functions

Let W = (wN)N be an increasing sequence of continuous functions.

Define BwN
as the space consisting of all ϕ ∈ C∞(Rd) such that

sup
x∈Rd

|∂αϕ(x)|
wN(x)

<∞, ∀α ∈ Nd .

BwN
is a Fréchet space.

The space ḂwN
is defined as the closure of D(Rd) in BwN

.

ḂwN
is a Fréchet space.

Define
BW :=

⋃
N∈N
BwN

and ḂW :=
⋃
N∈N
ḂwN

.

BW and ḂW are (LF )-spaces.
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is a Fréchet space.

The space ḂwN
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is defined as the closure of D(Rd) in BwN

.
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is a Fréchet space.

Define
BW :=

⋃
N∈N
BwN

and ḂW :=
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ḂwN

.
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Completeness of BW and ḂW

Assume that W = (wN)N satisfies

∀N ∃M ≥ N ∃C > 0∀x ∈ Rd : sup
y∈[−1,1]d

wN(x + y) ≤ CwM(x).

Theorem (D., Vindas, 2018)

TFAE:

W satisfies the condition (Ω), i.e.

∀N ∃M ≥ N ∀K ≥ M ∃θ ∈ (0, 1)∃C > 0 ∀x ∈ Rd :

wN(x)1−θwK (x)θ ≤ CwM(x).
ḂW is complete.

BW is complete.

An (LF )-space is complete if and only if it is boundedly stable and
satisfies (wQ) (Vogt and Wengenroth).
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ḂW is complete.

BW is complete.

An (LF )-space is complete if and only if it is boundedly stable and
satisfies (wQ) (Vogt and Wengenroth).

12 / 14



Completeness of BW and ḂW
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Weighted L1 convolutor spaces

Define L1W as the space consisting of all measurable functions f on
Rd such that ∫

Rd

f (x)wN(x)dx <∞, ∀N ∈ N.

L1W is a Fréchet space.

Define

O′C (D, L1W) := {f ∈ D′(Rd) | f ∗ ϕ ∈ L1W for all ϕ ∈ D(Rd)}

and endow it with the initial topology w.r.t. the mapping

O′C (D, L1W)→ Lb(D(Rd), L1W) : f → (ϕ→ f ∗ ϕ).
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The main result

Theorem (D., Vindas, 2018)

The equality (ḂW)′ = O′C (D, L1W) always holds algebraically. TFAE:

W satisfies the condition (Ω).

ḂW and BW are complete.

O′C (D, L1W) is bornological.

(ḂW)′b = O′C (D, L1W).

In such a case, the bidual of ḂW is topologically isomorphic to BW .
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