Factorization of ultradifferentiable vectors

Andreas Debrouwere

LSU

Harmonic Analysis Seminar

Joint work with Bojan Prangoski and Jasson Vindas

- Factorization results in analysis.
- 2 Ultradifferentiable functions.
- Main result.
- Examples: Factorization of weighted convolution algebras of smooth functions.

Theorem (Rudin, 1957)

For every $f \in L^1(\mathbb{R})$ there are $g, h \in L^1(\mathbb{R})$ such that f = g * h. This means that the convolution algebra $(L^1(\mathbb{R}), *)$ factorizes as follows

 $L^1(\mathbb{R}) = L^1(\mathbb{R}) * L^1(\mathbb{R}).$

Theorem (Cohen, 1959)

Let G be a locally compact group. Then,

 $L^1(G) = L^1(G) * L^1(G).$

Theorem (Rudin, 1957)

For every $f \in L^1(\mathbb{R})$ there are $g, h \in L^1(\mathbb{R})$ such that f = g * h. This means that the convolution algebra $(L^1(\mathbb{R}), *)$ factorizes as follows

 $L^1(\mathbb{R}) = L^1(\mathbb{R}) * L^1(\mathbb{R}).$

Theorem (Cohen, 1959)

Let G be a locally compact group. Then,

 $L^1(G) = L^1(G) * L^1(G).$

• Let \mathcal{M} be a (left) module over a (non-unital) algebra \mathcal{A} . We set

$$\mathcal{A} \cdot \mathcal{M} = \{ a \cdot m \mid a \in \mathcal{A}, m \in \mathcal{M} \}.$$

 $\bullet \ \mathcal{M}$ is said to satisfy the weak factorization property if

$$\mathcal{M} = \operatorname{span}(\mathcal{A} \cdot \mathcal{M}).$$

• $\mathcal M$ is said to satisfy the (strong) factorization property if

$$\mathcal{M}=\mathcal{A}\cdot\mathcal{M}.$$

• Let \mathcal{M} be a (left) module over a (non-unital) algebra \mathcal{A} . We set

$$\mathcal{A} \cdot \mathcal{M} = \{ a \cdot m \mid a \in \mathcal{A}, m \in \mathcal{M} \}.$$

• \mathcal{M} is said to satisfy the weak factorization property if

$$\mathcal{M} = \operatorname{span}(\mathcal{A} \cdot \mathcal{M}).$$

• $\mathcal M$ is said to satisfy the (strong) factorization property if

$$\mathcal{M}=\mathcal{A}\cdot\mathcal{M}.$$

• Let \mathcal{M} be a (left) module over a (non-unital) algebra \mathcal{A} . We set

$$\mathcal{A} \cdot \mathcal{M} = \{ a \cdot m \mid a \in \mathcal{A}, m \in \mathcal{M} \}.$$

• \mathcal{M} is said to satisfy the weak factorization property if

$$\mathcal{M} = \operatorname{span}(\mathcal{A} \cdot \mathcal{M}).$$

• \mathcal{M} is said to satisfy the (strong) factorization property if

$$\mathcal{M} = \mathcal{A} \cdot \mathcal{M}.$$

• Let \mathcal{M} be a (left) module over a (non-unital) algebra \mathcal{A} . We set

$$\mathcal{A} \cdot \mathcal{M} = \{ a \cdot m \mid a \in \mathcal{A}, m \in \mathcal{M} \}.$$

• \mathcal{M} is said to satisfy the weak factorization property if

$$\mathcal{M} = \operatorname{span}(\mathcal{A} \cdot \mathcal{M}).$$

• \mathcal{M} is said to satisfy the (strong) factorization property if

$$\mathcal{M} = \mathcal{A} \cdot \mathcal{M}.$$

Let A be a Banach algebra. A sequence (a_n)_{n∈ℕ} is said to be a bounded (left) approximate identity if

 $\sup_{n\in\mathbb{N}}\|a_n\|_{\mathcal{A}}<\infty\qquad\text{and}\qquad\lim_{n\to\infty}a_n\cdot a=a,\qquad\forall a\in\mathcal{A}.$

Theorem (Cohen, 1959)

Let A be a Banach algebra having a bounded approximate identity. Then, A has the factorization property, that is, $A = A \cdot A$.

Let A be a Banach algebra. A sequence (a_n)_{n∈ℕ} is said to be a bounded (left) approximate identity if

$$\sup_{n\in\mathbb{N}}\|a_n\|_{\mathcal{A}}<\infty \quad \text{ and } \quad \lim_{n\to\infty}a_n\cdot a=a, \quad \forall a\in\mathcal{A}.$$

Theorem (Cohen, 1959)

Let A be a Banach algebra having a bounded approximate identity. Then, A has the factorization property, that is, $A = A \cdot A$.

there are $a \in \mathcal{A}$ and

Let \mathcal{A} be a Banach algebra having a bounded approximate identity $(a_n)_{n \in \mathbb{N}}$ and let \mathcal{M} be a Banach module over \mathcal{A} . For every $u \in \mathcal{M}$ such that

$$\lim_{n\to\infty}a_n\cdot u=u$$

$$v \in \mathcal{M}$$
 such that $u = a \cdot v$. In particular, if (1) holds

for all $u\in\mathcal{M}$, then $\mathcal M$ has the factorization property, that is, $\mathcal M=\mathcal A\cdot\mathcal M$

 The Cohen-Hewitt factorization theorem can be generalized to Fréchet algebras having a uniformly bounded approximate identity. However, non-unital reflexive Fréchet algebras do not even have bounded approximate identities...

Let \mathcal{A} be a Banach algebra having a bounded approximate identity $(a_n)_{n \in \mathbb{N}}$ and let \mathcal{M} be a Banach module over \mathcal{A} . For every $u \in \mathcal{M}$ such that

$$\lim_{n \to \infty} a_n \cdot u = u \tag{1}$$

there are $a \in A$ and $v \in M$ such that $u = a \cdot v$. In particular, if (1) holds for all $u \in M$, then M has the factorization property, that is, $M = A \cdot M$.

• The Cohen-Hewitt factorization theorem can be generalized to Fréchet algebras having a uniformly bounded approximate identity. However, non-unital reflexive Fréchet algebras do not even have bounded approximate identities...

.

Let \mathcal{A} be a Banach algebra having a bounded approximate identity $(a_n)_{n \in \mathbb{N}}$ and let \mathcal{M} be a Banach module over \mathcal{A} . For every $u \in \mathcal{M}$ such that

$$\lim_{n \to \infty} a_n \cdot u = u \tag{1}$$

< ロト < 同ト < ヨト < ヨト

there are $a \in A$ and $v \in M$ such that $u = a \cdot v$. In particular, if (1) holds for all $u \in M$, then M has the factorization property, that is, $M = A \cdot M$.

 The Cohen-Hewitt factorization theorem can be generalized to Fréchet algebras having a uniformly bounded approximate identity. However, non-unital reflexive Fréchet algebras do not even have bounded approximate identities...

Let \mathcal{A} be a Banach algebra having a bounded approximate identity $(a_n)_{n \in \mathbb{N}}$ and let \mathcal{M} be a Banach module over \mathcal{A} . For every $u \in \mathcal{M}$ such that

$$\lim_{n \to \infty} a_n \cdot u = u \tag{1}$$

< ロト < 同ト < ヨト < ヨト

there are $a \in A$ and $v \in M$ such that $u = a \cdot v$. In particular, if (1) holds for all $u \in M$, then M has the factorization property, that is, $M = A \cdot M$.

 The Cohen-Hewitt factorization theorem can be generalized to Fréchet algebras having a uniformly bounded approximate identity. However, non-unital reflexive Fréchet algebras do not even have bounded approximate identities...

Does the convolution algebra $(\mathcal{D}(\mathbb{R}^d), *)$ has the weak/strong factorization property?

- (Rubel, Squires and Taylor, 1978) $\mathcal{D}(\mathbb{R}^d) = \operatorname{span}(\mathcal{D}(\mathbb{R}^d) * \mathcal{D}(\mathbb{R}^d)).$
- (Dixmier and Malliavin, 1978) Let $d \ge 2$. $\mathcal{D}(\mathbb{R}^d) \subsetneq \mathcal{D}(\mathbb{R}^d) * \mathcal{D}(\mathbb{R}^d)$.
- (Yulmukhametov, 1999) $\mathcal{D}(\mathbb{R}) = \mathcal{D}(\mathbb{R}) * \mathcal{D}(\mathbb{R}).$

Theorem (Petzeltová and P. Vrbová, 1978; Voigt, 1984)

The convolution algebra $(\mathcal{S}(\mathbb{R}^d),*)$ has the strong factorization property, that is,

Does the convolution algebra $(\mathcal{D}(\mathbb{R}^d), *)$ has the weak/strong factorization property?

- (Rubel, Squires and Taylor, 1978) $\mathcal{D}(\mathbb{R}^d) = \operatorname{span}(\mathcal{D}(\mathbb{R}^d) * \mathcal{D}(\mathbb{R}^d)).$
- (Dixmier and Malliavin, 1978) Let $d \ge 2$. $\mathcal{D}(\mathbb{R}^d) \subsetneq \mathcal{D}(\mathbb{R}^d) * \mathcal{D}(\mathbb{R}^d)$.
- (Yulmukhametov, 1999) $\mathcal{D}(\mathbb{R}) = \mathcal{D}(\mathbb{R}) * \mathcal{D}(\mathbb{R}).$

Theorem (Petzeltová and P. Vrbová, 1978; Voigt, 1984)

The convolution algebra $(\mathcal{S}(\mathbb{R}^d),*)$ has the strong factorization property, that is,

Does the convolution algebra $(\mathcal{D}(\mathbb{R}^d), *)$ has the weak/strong factorization property?

- (Rubel, Squires and Taylor, 1978) $\mathcal{D}(\mathbb{R}^d) = \operatorname{span}(\mathcal{D}(\mathbb{R}^d) * \mathcal{D}(\mathbb{R}^d)).$
- (Dixmier and Malliavin, 1978) Let $d \ge 2$. $\mathcal{D}(\mathbb{R}^d) \subsetneq \mathcal{D}(\mathbb{R}^d) * \mathcal{D}(\mathbb{R}^d)$.
- (Yulmukhametov, 1999) $\mathcal{D}(\mathbb{R}) = \mathcal{D}(\mathbb{R}) * \mathcal{D}(\mathbb{R}).$

Theorem (Petzeltová and P. Vrbová, 1978; Voigt, 1984)

The convolution algebra $(\mathcal{S}(\mathbb{R}^d),*)$ has the strong factorization property, that is,

Does the convolution algebra $(\mathcal{D}(\mathbb{R}^d), *)$ has the weak/strong factorization property?

- (Rubel, Squires and Taylor, 1978) $\mathcal{D}(\mathbb{R}^d) = \operatorname{span}(\mathcal{D}(\mathbb{R}^d) * \mathcal{D}(\mathbb{R}^d)).$
- (Dixmier and Malliavin, 1978) Let $d \ge 2$. $\mathcal{D}(\mathbb{R}^d) \subsetneq \mathcal{D}(\mathbb{R}^d) * \mathcal{D}(\mathbb{R}^d)$.
- (Yulmukhametov, 1999) $\mathcal{D}(\mathbb{R}) = \mathcal{D}(\mathbb{R}) * \mathcal{D}(\mathbb{R}).$

Theorem (Petzeltová and P. Vrbová, 1978; Voigt, 1984)

The convolution algebra $(\mathcal{S}(\mathbb{R}^d),*)$ has the strong factorization property, that is,

Does the convolution algebra $(\mathcal{D}(\mathbb{R}^d), *)$ has the weak/strong factorization property?

- (Rubel, Squires and Taylor, 1978) $\mathcal{D}(\mathbb{R}^d) = \operatorname{span}(\mathcal{D}(\mathbb{R}^d) * \mathcal{D}(\mathbb{R}^d)).$
- (Dixmier and Malliavin, 1978) Let $d \ge 2$. $\mathcal{D}(\mathbb{R}^d) \subsetneq \mathcal{D}(\mathbb{R}^d) * \mathcal{D}(\mathbb{R}^d)$.
- (Yulmukhametov, 1999) $\mathcal{D}(\mathbb{R}) = \mathcal{D}(\mathbb{R}) * \mathcal{D}(\mathbb{R})$.

Theorem (Petzeltová and P. Vrbová, 1978; Voigt, 1984)

The convolution algebra $(\mathcal{S}(\mathbb{R}^d), *)$ has the strong factorization property, that is,

$$\mathcal{S}(\mathbb{R}^d) = \mathcal{S}(\mathbb{R}^d) * \mathcal{S}(\mathbb{R}^d).$$

Representations of Lie groups

 Let G be a real Lie group and E be a lcHs (= locally convex Hausdorff space). A representation (π, E) of G in E is a homomorphism π : G → L(E) such that

$$G \times E \to E : (g, e) \to \pi(g)e$$

is continuous.

• The orbit map of $e \in E$ is given by the continuous *E*-valued map

$$\gamma_e: G \to E: g \to \pi(g)e$$

• Th space E^{∞} of smooth vectors is defined as

$$E^{\infty} := \{ e \in E \mid \gamma_e \in C^{\infty}(G; E) \}.$$

Representations of Lie groups

 Let G be a real Lie group and E be a lcHs (= locally convex Hausdorff space). A representation (π, E) of G in E is a homomorphism π : G → L(E) such that

$$G \times E \rightarrow E : (g, e) \rightarrow \pi(g)e$$

is continuous.

• The orbit map of $e \in E$ is given by the continuous *E*-valued map

$$\gamma_{e}: G \rightarrow E: g \rightarrow \pi(g)e$$

• Th space E^{∞} of smooth vectors is defined as

$$E^{\infty} := \{ e \in E \mid \gamma_e \in C^{\infty}(G; E) \}.$$

Representations of Lie groups

 Let G be a real Lie group and E be a lcHs (= locally convex Hausdorff space). A representation (π, E) of G in E is a homomorphism π : G → L(E) such that

$$G \times E \rightarrow E : (g, e) \rightarrow \pi(g)e$$

is continuous.

• The orbit map of $e \in E$ is given by the continuous *E*-valued map

$$\gamma_{e}: G \rightarrow E: g \rightarrow \pi(g)e$$

• Th space E^{∞} of smooth vectors is defined as

$$E^{\infty} := \{ e \in E \mid \gamma_e \in C^{\infty}(G; E) \}.$$

 Assume that E is a Fréchet space. The representation (π, E) induces an action of the convolution algebra (C[∞]_c(G), *) on E via

$$\Pi(\varphi)e := \int_{\mathcal{G}} \varphi(g)\pi(g)e \, dg, \qquad \varphi \in C^{\infty}_{c}(\mathcal{G}), e \in E.$$

• Π restricts to an action on E^{∞} , i.e., E^{∞} is a module over $(C_c^{\infty}(G), *)$.

 Assume that E is a Fréchet space. The representation (π, E) induces an action of the convolution algebra (C[∞]_c(G), *) on E via

$$\Pi(\varphi)e := \int_{\mathcal{G}} \varphi(g)\pi(g)e \, dg, \qquad \varphi \in C^{\infty}_{c}(\mathcal{G}), e \in E.$$

• Π restricts to an action on E^{∞} , i.e., E^{∞} is a module over $(C_c^{\infty}(G), *)$.

 Assume that E is a Fréchet space. The representation (π, E) induces an action of the convolution algebra (C[∞]_c(G), *) on E via

$$\Pi(\varphi)e := \int_{\mathcal{G}} \varphi(g)\pi(g)e \, dg, \qquad \varphi \in C^{\infty}_{c}(\mathcal{G}), e \in E.$$

• Π restricts to an action on E^{∞} , i.e., E^{∞} is a module over $(C_c^{\infty}(G), *)$.

• Let $G = (\mathbb{R}^d, +)$ and let $E = L^p$, $1 \le p < \infty$.

• Consider the representation of $(\mathbb{R}^d, +)$ in L^p via translation, i.e.,

$$\pi(x)f = f(\cdot - x), \qquad x \in \mathbb{R}^d, f \in L^p.$$

• Then,

$$\Pi(\varphi)f = \varphi * f, \qquad \varphi \in C^{\infty}_{c}(\mathbb{R}^{d}), f \in L^{p}.$$

and $(L^p)^{\infty}$ is equal to the Schwartz space \mathcal{D}_{L^p} .

- If $E = C_0$, then $E^{\infty} = \dot{\mathcal{B}}$.
- If $E = \lim_{N \to \infty} (1 + |\cdot|)^{-N} C_0$, then $E^{\infty} = S$.

- Let $G = (\mathbb{R}^d, +)$ and let $E = L^p$, $1 \le p < \infty$.
- Consider the representation of $(\mathbb{R}^d, +)$ in L^p via translation, i.e.,

$$\pi(x)f = f(\cdot - x), \qquad x \in \mathbb{R}^d, f \in L^p.$$

• Then,

$$\Pi(\varphi)f = \varphi * f, \qquad \varphi \in C^\infty_c(\mathbb{R}^d), f \in L^p.$$

and $(L^p)^{\infty}$ is equal to the Schwartz space \mathcal{D}_{L^p} .

- If $E = C_0$, then $E^{\infty} = \dot{\mathcal{B}}$.
- If $E = \lim_{N \to \infty} (1 + |\cdot|)^{-N} C_0$, then $E^{\infty} = S$.

- Let $G = (\mathbb{R}^d, +)$ and let $E = L^p$, $1 \le p < \infty$.
- Consider the representation of $(\mathbb{R}^d, +)$ in L^p via translation, i.e.,

$$\pi(x)f = f(\cdot - x), \qquad x \in \mathbb{R}^d, f \in L^p.$$

Then,

$$\Pi(\varphi)f = \varphi * f, \qquad \varphi \in C^{\infty}_{c}(\mathbb{R}^{d}), f \in L^{p}.$$

and $(L^p)^{\infty}$ is equal to the Schwartz space \mathcal{D}_{L^p} .

- If $E = C_0$, then $E^{\infty} = \dot{\mathcal{B}}$.
- If $E = \lim_{N \to \infty} (1 + |\cdot|)^{-N} C_0$, then $E^{\infty} = S$.

- Let $G = (\mathbb{R}^d, +)$ and let $E = L^p$, $1 \le p < \infty$.
- Consider the representation of $(\mathbb{R}^d, +)$ in L^p via translation, i.e.,

$$\pi(x)f = f(\cdot - x), \qquad x \in \mathbb{R}^d, f \in L^p.$$

Then,

$$\Pi(\varphi)f = \varphi * f, \qquad \varphi \in C^{\infty}_{c}(\mathbb{R}^{d}), f \in L^{p}.$$

and $(L^p)^{\infty}$ is equal to the Schwartz space \mathcal{D}_{L^p} .

- If $E = C_0$, then $E^{\infty} = \dot{\mathcal{B}}$.
- If $E = \lim_{N \to \infty} (1 + |\cdot|)^{-N} C_0$, then $E^{\infty} = S$.

- Let $G = (\mathbb{R}^d, +)$ and let $E = L^p$, $1 \le p < \infty$.
- Consider the representation of $(\mathbb{R}^d, +)$ in L^p via translation, i.e.,

$$\pi(x)f = f(\cdot - x), \qquad x \in \mathbb{R}^d, f \in L^p.$$

Then,

$$\Pi(\varphi)f = \varphi * f, \qquad \varphi \in C^{\infty}_{c}(\mathbb{R}^{d}), f \in L^{p}.$$

and $(L^p)^{\infty}$ is equal to the Schwartz space \mathcal{D}_{L^p} .

- If $E = C_0$, then $E^{\infty} = \dot{\mathcal{B}}$.
- If $E = \varprojlim_N (1 + |\cdot|)^{-N} C_0$, then $E^{\infty} = S$.

Let G be a Lie group and let (π, E) be a representation of G in a Fréchet space E. Then, E^{∞} has the weak factorization property, that is,

 $E^{\infty} = \operatorname{span}(\Pi(C_c^{\infty}(G))E^{\infty}).$

• Examples: Let
$$X = \mathcal{D}_{L^p}$$
, $\dot{\mathcal{B}}$, or \mathcal{S} . Then,

$$X = \operatorname{span}(C_c^{\infty}(\mathbb{R}^d) * X)$$

In 2011 Gimperlein, Krötz and Lienau proved, under some technical conditions on (π, E), that the space E^ω of analytic vectors satisfies the weak factorization property over an appropriate convolution algebra. Main difficulty: Absence of compactly supported analytic functions on G.

・ 回 ト ・ ヨ ト ・ ヨ ト

Let G be a Lie group and let (π, E) be a representation of G in a Fréchet space E. Then, E^{∞} has the weak factorization property, that is,

 $E^{\infty} = \operatorname{span}(\Pi(C_c^{\infty}(G))E^{\infty}).$

• Examples: Let $X = \mathcal{D}_{L^p}$, $\dot{\mathcal{B}}$, or \mathcal{S} . Then,

$$X = \operatorname{span}(C^{\infty}_{c}(\mathbb{R}^{d}) * X)$$

In 2011 Gimperlein, Krötz and Lienau proved, under some technical conditions on (π, E), that the space E^ω of analytic vectors satisfies the weak factorization property over an appropriate convolution algebra. Main difficulty: Absence of compactly supported analytic functions on G.

< 回 > < 三 > < 三 >

Let G be a Lie group and let (π, E) be a representation of G in a Fréchet space E. Then, E^{∞} has the weak factorization property, that is,

 $E^{\infty} = \operatorname{span}(\Pi(C_c^{\infty}(G))E^{\infty}).$

• Examples: Let $X = \mathcal{D}_{L^p}$, $\dot{\mathcal{B}}$, or \mathcal{S} . Then,

$$X = \operatorname{span}(C^{\infty}_{c}(\mathbb{R}^{d}) * X)$$

• In 2011 Gimperlein, Krötz and Lienau proved, under some technical conditions on (π, E) , that the space E^{ω} of analytic vectors satisfies the weak factorization property over an appropriate convolution algebra. Main difficulty: Absence of compactly supported analytic functions on G.

< 日 > < 同 > < 三 > < 三 > <

Let G be a Lie group and let (π, E) be a representation of G in a Fréchet space E. Then, E^{∞} has the weak factorization property, that is,

 $E^{\infty} = \operatorname{span}(\Pi(C_c^{\infty}(G))E^{\infty}).$

• Examples: Let $X = \mathcal{D}_{L^p}$, $\dot{\mathcal{B}}$, or \mathcal{S} . Then,

$$X = \operatorname{span}(C^{\infty}_{c}(\mathbb{R}^{d}) * X)$$

• In 2011 Gimperlein, Krötz and Lienau proved, under some technical conditions on (π, E) , that the space E^{ω} of analytic vectors satisfies the weak factorization property over an appropriate convolution algebra. Main difficulty: Absence of compactly supported analytic functions on G.

• We generalize the result of G - K - L in the following ways for $G = (\mathbb{R}^d, +)$:

- Allow E to be a general quasi-complete IcHs.
- Find appropriate growth conditions on (π, E) to ensure that the strong factorization property holds.
- Prove factorization results for spaces of ultradifferentiable vectors, i.e., vectors whose orbit map belongs to a certain Denjoy-Carleman class.

- We generalize the result of G K L in the following ways for $G = (\mathbb{R}^d, +)$:
 - Allow E to be a general quasi-complete lcHs.
 - Find appropriate growth conditions on (π, E) to ensure that the strong factorization property holds.
 - Prove factorization results for spaces of ultradifferentiable vectors, i.e., vectors whose orbit map belongs to a certain Denjoy-Carleman class.
- We generalize the result of G K L in the following ways for $G = (\mathbb{R}^d, +)$:
 - Allow E to be a general quasi-complete lcHs.
 - Find appropriate growth conditions on (π, E) to ensure that the strong factorization property holds.
 - Prove factorization results for spaces of ultradifferentiable vectors, i.e., vectors whose orbit map belongs to a certain Denjoy-Carleman class.

- We generalize the result of G K L in the following ways for $G = (\mathbb{R}^d, +)$:
 - Allow E to be a general quasi-complete lcHs.
 - Find appropriate growth conditions on (π, E) to ensure that the strong factorization property holds.
 - Prove factorization results for spaces of ultradifferentiable vectors, i.e., vectors whose orbit map belongs to a certain Denjoy-Carleman class.

• In 1918 Gevrey showed that all weak solutions of the heat equation are in fact smooth and satisfy

$$\max_{x \in \mathcal{K}} |\partial^{\alpha} \varphi(x)| \le C h^{|\alpha|} (|\alpha|!)^2, \qquad \forall \alpha \in \mathbb{N}^{d+1}.$$

for all $K \in \mathbb{R}^{d+1}$ and some C = C(K) > 0, h = h(K) > 0. Moreover, the exponent 2 is optimal.

 This was the starting point of the study of general spaces of ultradifferentiable functions, i.e., spaces of smooth functions whose derivatives are bounded by an arbitrary sequence (M_p)_{p∈N}.

• In 1918 Gevrey showed that all weak solutions of the heat equation are in fact smooth and satisfy

$$\max_{x \in \mathcal{K}} |\partial^{\alpha} \varphi(x)| \leq C h^{|\alpha|} (|\alpha|!)^2, \qquad \forall \alpha \in \mathbb{N}^{d+1}.$$

for all $K \in \mathbb{R}^{d+1}$ and some C = C(K) > 0, h = h(K) > 0. Moreover, the exponent 2 is optimal.

 This was the starting point of the study of general spaces of ultradifferentiable functions, i.e., spaces of smooth functions whose derivatives are bounded by an arbitrary sequence (M_p)_{p∈N}.

• Let $(M_p)_{p\in\mathbb{N}}$ be a sequence of positive reals.

E^{M_p}(ℝ^d) stands for the space of all φ ∈ C[∞](ℝ^d) such that for all
 K ∈ ℝ^d there is some *h* > 0 such that

$$\sup_{\alpha \in \mathbb{N}^d} \max_{x \in K} \frac{|\partial^{\alpha} \varphi(x)|}{h^{|\alpha|} M_{|\alpha|}} < \infty.$$
(2)

• $\mathcal{E}^{(M_p)}(\mathbb{R}^d)$ stand for the space of all $\varphi \in C^{\infty}(\mathbb{R}^d)$ such that for all $K \in \mathbb{R}^d$ and all h > 0 the bound (2) holds.

• Examples:
$$M_p = p!^{\sigma}$$
, $\sigma > 0$.

• We shall write * if we want to treat the {*M_p*}- and (*M_p*)-case simultaneously.

- Let $(M_p)_{p \in \mathbb{N}}$ be a sequence of positive reals.
- *E*^{M_p}(ℝ^d) stands for the space of all φ ∈ C[∞](ℝ^d) such that for all
 K ∈ ℝ^d there is some *h* > 0 such that

$$\sup_{\alpha \in \mathbb{N}^d} \max_{x \in K} \frac{|\partial^{\alpha} \varphi(x)|}{h^{|\alpha|} M_{|\alpha|}} < \infty.$$
(2)

- $\mathcal{E}^{(M_p)}(\mathbb{R}^d)$ stand for the space of all $\varphi \in C^{\infty}(\mathbb{R}^d)$ such that for all $K \in \mathbb{R}^d$ and all h > 0 the bound (2) holds.
- Examples: $M_p = p!^{\sigma}$, $\sigma > 0$.
- We shall write * if we want to treat the {*M_p*}- and (*M_p*)-case simultaneously.

- Let $(M_p)_{p \in \mathbb{N}}$ be a sequence of positive reals.
- *E*^{M_p}(ℝ^d) stands for the space of all φ ∈ C[∞](ℝ^d) such that for all
 K ∈ ℝ^d there is some *h* > 0 such that

$$\sup_{\alpha \in \mathbb{N}^d} \max_{x \in K} \frac{|\partial^{\alpha} \varphi(x)|}{h^{|\alpha|} M_{|\alpha|}} < \infty.$$
(2)

E^(M_p)(ℝ^d) stand for the space of all φ ∈ C[∞](ℝ^d) such that for all
 K ∈ ℝ^d and all *h* > 0 the bound (2) holds.

• Examples:
$$M_p = p!^{\sigma}$$
, $\sigma > 0$.

• We shall write * if we want to treat the {*M_p*}- and (*M_p*)-case simultaneously.

- Let $(M_p)_{p \in \mathbb{N}}$ be a sequence of positive reals.
- *E*^{M_p}(ℝ^d) stands for the space of all φ ∈ C[∞](ℝ^d) such that for all
 K ∈ ℝ^d there is some *h* > 0 such that

$$\sup_{\alpha \in \mathbb{N}^d} \max_{x \in K} \frac{|\partial^{\alpha} \varphi(x)|}{h^{|\alpha|} M_{|\alpha|}} < \infty.$$
(2)

- *E*^(M_p)(ℝ^d) stand for the space of all φ ∈ C[∞](ℝ^d) such that for all
 K ∈ ℝ^d and all *h* > 0 the bound (2) holds.
- Examples: $M_p = p!^{\sigma}$, $\sigma > 0$.
- We shall write * if we want to treat the {*M_p*}- and (*M_p*)-case simultaneously.

- Let $(M_p)_{p \in \mathbb{N}}$ be a sequence of positive reals.
- *E*^{M_p}(ℝ^d) stands for the space of all φ ∈ C[∞](ℝ^d) such that for all
 K ∈ ℝ^d there is some *h* > 0 such that

$$\sup_{\alpha \in \mathbb{N}^d} \max_{x \in K} \frac{|\partial^{\alpha} \varphi(x)|}{h^{|\alpha|} M_{|\alpha|}} < \infty.$$
(2)

E^(M_p)(ℝ^d) stand for the space of all φ ∈ C[∞](ℝ^d) such that for all
 K ∈ ℝ^d and all *h* > 0 the bound (2) holds.

• Examples:
$$M_p = p!^{\sigma}$$
, $\sigma > 0$.

• We shall write * if we want to treat the {*M_p*}- and (*M_p*)-case simultaneously.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

• We shall impose the following conditions on M_p : (M.1) $M_p^2 \leq M_{p-1}M_{p+1}$, $p \in \mathbb{Z}_+$. (M.2) $M_{p+q} \leq CH^p M_p M_q$, $p, q \in \mathbb{N}$, for some C, H > 0. (M.5) There exist C, q > 0 such that M_p^q is strongly non-quasianalytic, i.e.,

$$\sum_{j=p+1}^{\infty} \frac{M_{j-1}^q}{M_j^q} \leq Cp \frac{M_p^q}{M_{p+1}^q}, \qquad p \in \mathbb{Z}_+.$$

• Example: $M_p = p!^{\sigma}$, $\sigma > 0$.

• We shall impose the following conditions on M_p : (M.1) $M_p^2 \leq M_{p-1}M_{p+1}, p \in \mathbb{Z}_+$. (M.2) $M_{p+q} \leq CH^p M_p M_q, p, q \in \mathbb{N}$, for some C, H > 0. (M.5) There exist C, q > 0 such that M_p^q is strongly non-quasianalytic

$$\sum_{j=p+1}^{\infty} \frac{M_{j-1}^q}{M_j^q} \le Cp \frac{M_p^q}{M_{p+1}^q}, \qquad p \in \mathbb{Z}_+.$$

• Example: $M_p = p!^{\sigma}$, $\sigma > 0$.

• We shall impose the following conditions on M_p :

$$\begin{array}{ll} (M.1) & M_p^2 \leq M_{p-1}M_{p+1}, \ p \in \mathbb{Z}_+.\\ (M.2) & M_{p+q} \leq CH^pM_pM_q, \ p,q \in \mathbb{N}, \ \text{for some } C,H > 0.\\ (M.5) & \text{There exist } C,q > 0 \ \text{such that } M_p^q \ \text{is strongly non-quasianalytic, i.e.,} \end{array}$$

$$\sum_{j=p+1}^{\infty} \frac{M_{j-1}^q}{M_j^q} \leq C p \frac{M_p^q}{M_{p+1}^q}, \qquad p \in \mathbb{Z}_+.$$

• Example: $M_p = p!^{\sigma}$, $\sigma > 0$.

• We shall impose the following conditions on M_p :

$$\begin{array}{ll} (M.1) & M_p^2 \leq M_{p-1}M_{p+1}, \ p \in \mathbb{Z}_+. \\ (M.2) & M_{p+q} \leq CH^pM_pM_q, \ p,q \in \mathbb{N}, \ \text{for some } C,H > 0. \\ (M.5) & \text{There exist } C,q > 0 \ \text{such that } M_p^q \ \text{is strongly non-quasianalytic, i.e.,} \end{array}$$

$$\sum_{j=p+1}^{\infty} \frac{M_{j-1}^q}{M_j^q} \leq C p \frac{M_p^q}{M_{p+1}^q}, \qquad p \in \mathbb{Z}_+.$$

• Example: $M_p = p!^{\sigma}$, $\sigma > 0$.

・ロト・日本・日本・日本・ 日本 うらの

• Let M_p be a sequence of positive reals and let X be a Banach space.

• $\mathcal{E}^{\{M_p\}}(\mathbb{R}^d; X)$ stands for the space of all $\varphi \in C^{\infty}(\mathbb{R}^d; X)$ such that for all $K \Subset \mathbb{R}^d$ there is some h > 0 such that

$$\sup_{\alpha \in \mathbb{N}^d} \max_{x \in K} \frac{\|\partial^{\alpha} \varphi(x)\|_X}{h^{|\alpha|} M_{|\alpha|}} < \infty.$$
(3)

E^(M_p)(ℝ^d; X) stand for the space of all φ ∈ C[∞](ℝ^d; X) such that for all K ∈ ℝ^d and all h > 0 the bound (3) holds.

Let M_p be a sequence of positive reals and let X be a Banach space.
E^{M_p}(ℝ^d; X) stands for the space of all φ ∈ C[∞](ℝ^d; X) such that for all K ∈ ℝ^d there is some h > 0 such that

$$\sup_{\alpha \in \mathbb{N}^d} \max_{x \in K} \frac{\|\partial^{\alpha} \varphi(x)\|_X}{h^{|\alpha|} M_{|\alpha|}} < \infty.$$
(3)

E^(M_p)(ℝ^d; X) stand for the space of all φ ∈ C[∞](ℝ^d; X) such that for all K ∈ ℝ^d and all h > 0 the bound (3) holds.

- Let M_p be a sequence of positive reals and let X be a Banach space.
 E^{M_p}(ℝ^d; X) stands for the space of all φ ∈ C[∞](ℝ^d; X) such that
- $\mathcal{E}^{\{M_p\}}(\mathbb{R}^d; X)$ stands for the space of all $\varphi \in C^{\infty}(\mathbb{R}^d; X)$ such that for all $K \subseteq \mathbb{R}^d$ there is some h > 0 such that

$$\sup_{\alpha\in\mathbb{N}^d}\max_{x\in K}\frac{\|\partial^{\alpha}\varphi(x)\|_{X}}{h^{|\alpha|}M_{|\alpha|}}<\infty. \tag{3}$$

E^(M_p)(ℝ^d; X) stand for the space of all φ ∈ C[∞](ℝ^d; X) such that for all K ∈ ℝ^d and all h > 0 the bound (3) holds.

- Let E be a lcHs and let (π, E) be a representation of $(\mathbb{R}^d, +)$ in E.
- (π, E) is said to be uniform if for all p ∈ csn(E) there is q ∈ csn(E) such that

$$\mathbb{R}^d \times E_q \to E_p : (x, e) \to \pi(x)e$$

is continuous.

(π, E) is said to be exponentially equicontinuous if there is κ > 0 such that for all p ∈ csn(E) there are q ∈ csn(E) and C > 0 such that

$$p(\pi(x)e) \leq Ce^{\kappa|x|}q(e), \qquad x \in \mathbb{R}^d, e \in E.$$

 If E is a Banach space, then (π, E) is automatically uniform and exponentially equicontinuous.

- Let E be a lcHs and let (π, E) be a representation of $(\mathbb{R}^d, +)$ in E.
- (π, E) is said to be uniform if for all p ∈ csn(E) there is q ∈ csn(E) such that

$$\mathbb{R}^d \times E_q \to E_p : (x, e) \to \pi(x)e$$

is continuous.

(π, E) is said to be exponentially equicontinuous if there is κ > 0 such that for all p ∈ csn(E) there are q ∈ csn(E) and C > 0 such that

$$p(\pi(x)e) \leq Ce^{\kappa|x|}q(e), \qquad x \in \mathbb{R}^d, e \in E.$$

 If E is a Banach space, then (π, E) is automatically uniform and exponentially equicontinuous.

- Let E be a lcHs and let (π, E) be a representation of $(\mathbb{R}^d, +)$ in E.
- (π, E) is said to be uniform if for all p ∈ csn(E) there is q ∈ csn(E) such that

$$\mathbb{R}^d imes E_q o E_p : (x, e) o \pi(x)e$$

is continuous.

(π, E) is said to be exponentially equicontinuous if there is κ > 0 such that for all p ∈ csn(E) there are q ∈ csn(E) and C > 0 such that

$$p(\pi(x)e) \leq Ce^{\kappa|x|}q(e), \qquad x \in \mathbb{R}^d, e \in E.$$

 If E is a Banach space, then (π, E) is automatically uniform and exponentially equicontinuous.

・ 御 ト ・ 臣 ト ・ 臣 ト

- Let E be a lcHs and let (π, E) be a representation of $(\mathbb{R}^d, +)$ in E.
- (π, E) is said to be uniform if for all p ∈ csn(E) there is q ∈ csn(E) such that

$$\mathbb{R}^d imes E_q o E_p : (x, e) o \pi(x)e$$

is continuous.

(π, E) is said to be exponentially equicontinuous if there is κ > 0 such that for all p ∈ csn(E) there are q ∈ csn(E) and C > 0 such that

$$p(\pi(x)e) \leq Ce^{\kappa|x|}q(e), \qquad x \in \mathbb{R}^d, e \in E.$$

 If E is a Banach space, then (π, E) is automatically uniform and exponentially equicontinuous.

イロト イヨト イヨト ・

Smooth vectors revisited

- Let E be a quasi-complete lcHs and let (π, E) be a representation of (ℝ^d, +) in E. Denote by B(E) the set of absolutely convex, bounded and closed subsets of E.
- For $B \in \mathcal{B}(E)$ we define

$$E_B := \operatorname{span} B = \bigcup_{t>0} tB, \qquad q_B(e) := \inf\{t > 0 \mid e \in tB\}.$$

 E_B is a Banach space and continuously included in E.

- $\varphi : \mathbb{R}^d \to E$ is said to be bornologically smooth if there is $B \in \mathcal{B}(E)$ such that $\varphi \in C^{\infty}(\mathbb{R}^d; E_B)$.
- $E^{\infty} := \{ e \in E \mid \gamma_e \text{ is bornologically smooth} \}.$
- Why this definition?

Smooth vectors revisited

- Let E be a quasi-complete lcHs and let (π, E) be a representation of (ℝ^d, +) in E. Denote by B(E) the set of absolutely convex, bounded and closed subsets of E.
- For $B \in \mathcal{B}(E)$ we define

$$E_B := \operatorname{span} B = \bigcup_{t>0} tB, \qquad q_B(e) := \inf\{t > 0 \mid e \in tB\}.$$

 E_B is a Banach space and continuously included in E.

- $\varphi : \mathbb{R}^d \to E$ is said to be bornologically smooth if there is $B \in \mathcal{B}(E)$ such that $\varphi \in C^{\infty}(\mathbb{R}^d; E_B)$.
- $E^{\infty} := \{ e \in E \mid \gamma_e \text{ is bornologically smooth} \}.$
- Why this definition?

Smooth vectors revisited

- Let E be a quasi-complete lcHs and let (π, E) be a representation of (ℝ^d, +) in E. Denote by B(E) the set of absolutely convex, bounded and closed subsets of E.
- For $B \in \mathcal{B}(E)$ we define

$$E_B := \operatorname{span} B = \bigcup_{t>0} tB, \qquad q_B(e) := \inf\{t>0 \mid e \in tB\}.$$

 E_B is a Banach space and continuously included in E.

- $\varphi : \mathbb{R}^d \to E$ is said to be bornologically smooth if there is $B \in \mathcal{B}(E)$ such that $\varphi \in C^{\infty}(\mathbb{R}^d; E_B)$.
- $E^{\infty} := \{ e \in E \mid \gamma_e \text{ is bornologically smooth} \}.$
- Why this definition?

- Let E be a quasi-complete lcHs and let (π, E) be a representation of (ℝ^d, +) in E. Denote by B(E) the set of absolutely convex, bounded and closed subsets of E.
- For $B \in \mathcal{B}(E)$ we define

$$E_B := \operatorname{span} B = \bigcup_{t>0} tB, \qquad q_B(e) := \inf\{t>0 \mid e \in tB\}.$$

- $\varphi : \mathbb{R}^d \to E$ is said to be bornologically smooth if there is $B \in \mathcal{B}(E)$ such that $\varphi \in C^{\infty}(\mathbb{R}^d; E_B)$.
- $E^{\infty} := \{ e \in E \mid \gamma_e \text{ is bornologically smooth} \}.$
- Why this definition?

- Let E be a quasi-complete lcHs and let (π, E) be a representation of (ℝ^d, +) in E. Denote by B(E) the set of absolutely convex, bounded and closed subsets of E.
- For $B \in \mathcal{B}(E)$ we define

$$E_B := \operatorname{span} B = \bigcup_{t>0} tB, \qquad q_B(e) := \inf\{t>0 \mid e \in tB\}.$$

- $\varphi : \mathbb{R}^d \to E$ is said to be bornologically smooth if there is $B \in \mathcal{B}(E)$ such that $\varphi \in C^{\infty}(\mathbb{R}^d; E_B)$.
- $E^{\infty} := \{ e \in E \mid \gamma_e \text{ is bornologically smooth} \}.$
- Why this definition?

- Let E be a quasi-complete lcHs and let (π, E) be a representation of (ℝ^d, +) in E. Denote by B(E) the set of absolutely convex, bounded and closed subsets of E.
- For $B \in \mathcal{B}(E)$ we define

$$E_B := \operatorname{span} B = \bigcup_{t>0} tB, \qquad q_B(e) := \inf\{t>0 \mid e \in tB\}.$$

- $\varphi : \mathbb{R}^d \to E$ is said to be bornologically smooth if there is $B \in \mathcal{B}(E)$ such that $\varphi \in C^{\infty}(\mathbb{R}^d; E_B)$.
- $E^{\infty} := \{ e \in E \mid \gamma_e \text{ is bornologically smooth} \}.$
- Why this definition?

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ …

- Let E be a quasi-complete lcHs and let (π, E) be a representation of (ℝ^d, +) in E. Denote by B(E) the set of absolutely convex, bounded and closed subsets of E.
- For $B \in \mathcal{B}(E)$ we define

$$E_B := \operatorname{span} B = \bigcup_{t>0} tB, \qquad q_B(e) := \inf\{t>0 \mid e \in tB\}.$$

- $\varphi : \mathbb{R}^d \to E$ is said to be bornologically smooth if there is $B \in \mathcal{B}(E)$ such that $\varphi \in C^{\infty}(\mathbb{R}^d; E_B)$.
- $E^{\infty} := \{ e \in E \mid \gamma_e \text{ is bornologically smooth} \}.$
- Why this definition?

▲国 と ▲ 国 と ▲ 国 と …

• Let $(M_p)_{p \in \mathbb{N}}$ be a sequence of positive reals.

- $\varphi : \mathbb{R}^d \to E$ is said to be bornologically ultradifferentiable of class * if there is $B \in \mathcal{B}(E)$ such that $\varphi \in \mathcal{E}^*(\mathbb{R}^d; E_B)$.
- $E^* := \{ e \in E \mid \gamma_e \text{ is bornologically ultradifferentiable of class } * \}.$
- If E is a Fréchet space, then E^{p!} coincides with the space E^ω of analytic vectors considered by G-K-L.

- Let $(M_p)_{p \in \mathbb{N}}$ be a sequence of positive reals.
- φ : ℝ^d → E is said to be bornologically ultradifferentiable of class * if there is B ∈ B(E) such that φ ∈ E^{*}(ℝ^d; E_B).
- $E^* := \{ e \in E \mid \gamma_e \text{ is bornologically ultradifferentiable of class } * \}.$
- If E is a Fréchet space, then E^{p!} coincides with the space E^ω of analytic vectors considered by G-K-L.

- Let $(M_p)_{p \in \mathbb{N}}$ be a sequence of positive reals.
- φ : ℝ^d → E is said to be bornologically ultradifferentiable of class * if there is B ∈ B(E) such that φ ∈ E^{*}(ℝ^d; E_B).
- $E^* := \{ e \in E \mid \gamma_e \text{ is bornologically ultradifferentiable of class } * \}.$
- If E is a Fréchet space, then E^{p!} coincides with the space E^ω of analytic vectors considered by G-K-L.

- Let $(M_p)_{p \in \mathbb{N}}$ be a sequence of positive reals.
- φ : ℝ^d → E is said to be bornologically ultradifferentiable of class * if there is B ∈ B(E) such that φ ∈ E^{*}(ℝ^d; E_B).
- $E^* := \{ e \in E \mid \gamma_e \text{ is bornologically ultradifferentiable of class } * \}.$
- If E is a Fréchet space, then E^{p!} coincides with the space E^ω of analytic vectors considered by G-K-L.

• For $k \ge 0$ we define the L_k^1 as the Banach space of all measurable functions f on \mathbb{R}^d such that

$$\|f\|_{L^1_k} := \int_{\mathbb{R}^d} |f(x)| e^{k|x|} dx < \infty.$$

Consider the representation of (R^d, +) in L¹_k via translation. The space (L¹_k)* of ultradifferentiable vectors of class * is given by

$$\mathcal{D}_{L_k^1}^{\{M_p\}} = \bigcup_{h>0} \mathcal{D}_{L_k^1}^{M_p,h}, \qquad \mathcal{D}_{L_k^1}^{(M_p)} = \bigcap_{h>0} \mathcal{D}_{L_k^1}^{M_p,h},$$

where $\mathcal{D}_{L_{k}^{1}}^{M_{p},h}$ is the Banach space of all $\varphi \in \mathcal{C}^{\infty}(\mathbb{R}^{d})$ such that $\frac{\|\partial^{\alpha}\varphi\|_{L_{k}^{1}}}{\|\partial^{\alpha}\varphi\|_{L_{k}^{1}}} < \infty.$

The convolution algebra (D^{*}_{L¹_k},*) is the suitable analogue of C[∞]_c(ℝ^d) in the present situation.

For k ≥ 0 we define the L¹_k as the Banach space of all measurable functions f on ℝ^d such that

$$\|f\|_{L^1_k} := \int_{\mathbb{R}^d} |f(x)| e^{k|x|} dx < \infty.$$

Consider the representation of (R^d, +) in L¹_k via translation. The space (L¹_k)* of ultradifferentiable vectors of class * is given by

$$\mathcal{D}_{L_k^1}^{\{M_p\}} = \bigcup_{h>0} \mathcal{D}_{L_k^1}^{M_p,h}, \qquad \mathcal{D}_{L_k^1}^{(M_p)} = \bigcap_{h>0} \mathcal{D}_{L_k^1}^{M_p,h},$$

where $\mathcal{D}_{L_k^1}^{M_p,h}$ is the Banach space of all $\varphi \in \mathcal{C}^{\infty}(\mathbb{R}^d)$ such that $\frac{\|\partial^{\alpha}\varphi\|_{L_k^1}}{h^{|\alpha|}M} < \infty.$

The convolution algebra (D^{*}_{L¹_k},*) is the suitable analogue of C[∞]_c(ℝ^d) in the present situation.

For k ≥ 0 we define the L¹_k as the Banach space of all measurable functions f on ℝ^d such that

$$\|f\|_{L^1_k} := \int_{\mathbb{R}^d} |f(x)| e^{k|x|} dx < \infty.$$

Consider the representation of (R^d, +) in L¹_k via translation. The space (L¹_k)* of ultradifferentiable vectors of class * is given by

$$\mathcal{D}_{L_k^1}^{\{M_\rho\}} = \bigcup_{h>0} \mathcal{D}_{L_k^1}^{M_\rho,h}, \qquad \mathcal{D}_{L_k^1}^{(M_\rho)} = \bigcap_{h>0} \mathcal{D}_{L_k^1}^{M_\rho,h},$$

where $\mathcal{D}_{L_{k}^{1}}^{M_{\rho},h}$ is the Banach space of all $\varphi \in \mathcal{C}^{\infty}(\mathbb{R}^{d})$ such that $\frac{\|\partial^{\alpha}\varphi\|_{L_{k}^{1}}}{h^{|\alpha|}M_{\alpha}} < \infty.$

The convolution algebra (D^{*}_{L¹_k}, *) is the suitable analogue of C[∞]_c(ℝ^d) in the present situation.

For k ≥ 0 we define the L¹_k as the Banach space of all measurable functions f on ℝ^d such that

$$\|f\|_{L^1_k} := \int_{\mathbb{R}^d} |f(x)| e^{k|x|} \, dx < \infty.$$

Consider the representation of (R^d, +) in L¹_k via translation. The space (L¹_k)* of ultradifferentiable vectors of class * is given by

$$\mathcal{D}_{L_k^1}^{\{M_p\}} = \bigcup_{h>0} \mathcal{D}_{L_k^1}^{M_p,h}, \qquad \mathcal{D}_{L_k^1}^{(M_p)} = \bigcap_{h>0} \mathcal{D}_{L_k^1}^{M_p,h},$$

where $\mathcal{D}_{L_{k}^{1}}^{M_{p},h}$ is the Banach space of all $\varphi \in \mathcal{C}^{\infty}(\mathbb{R}^{d})$ such that $\frac{\|\partial^{\alpha}\varphi\|_{L_{k}^{1}}}{h^{|\alpha|}M_{\infty}} < \infty.$

The convolution algebra (\$\mathcal{D}_{L_k^1}^*,*\$) is the suitable analogue of \$C_c^{\infty}(\mathbb{R}^d)\$ in the present situation.

- Let E be a quasi-complete lcHs space and let (π, E) be a uniform and exponentially equicontinuous representation of (ℝ^d, +) in E.
- Let k > κ. The representation (π, E) induces an action of (D^{*}_{L¹_k},*) on E via

$$\Pi(\varphi)e := \int_{\mathbb{R}^d} f(x)\pi(x)e\,dx, \qquad \varphi \in \mathcal{D}_{L^1_k}^*, e \in E.$$

• Π restricts to an action on E^* ,i.e., E^* is a module over $(\mathcal{D}_{L^1}^*, *)$.
- Let E be a quasi-complete lcHs space and let (π, E) be a uniform and exponentially equicontinuous representation of (R^d, +) in E.
- Let k > κ. The representation (π, E) induces an action of (D^{*}_{L¹_k}, *) on E via

$$\Pi(\varphi)e := \int_{\mathbb{R}^d} f(x)\pi(x)e\,dx, \qquad \varphi \in \mathcal{D}^*_{L^1_k}, e \in E.$$

• Π restricts to an action on E^* , i.e., E^* is a module over $(\mathcal{D}_{l^1}^*, *)$.

- Let E be a quasi-complete lcHs space and let (π, E) be a uniform and exponentially equicontinuous representation of (R^d, +) in E.
- Let k > κ. The representation (π, E) induces an action of (D^{*}_{L¹_k}, *) on E via

$$\Pi(\varphi)e := \int_{\mathbb{R}^d} f(x)\pi(x)e\,dx, \qquad \varphi \in \mathcal{D}^*_{L^1_k}, e \in E.$$

• Π restricts to an action on E^* ,i.e., E^* is a module over $(\mathcal{D}^*_{L^1_{\iota}}, *)$.

Let E be a quasi-complete lcHs space and let (π, E) be a uniform and exponentially equicontinuous representation of $(\mathbb{R}^d, +)$ in E and let $k > \kappa$. Let M_p be a weight sequence satisfying (M.1), (M.2), and (M.5). Then, E^* has the strong factorization property, that is,

$$E^* = \Pi(\mathcal{D}^*_{L^1_k})E^*.$$

ロマネ 雪 マネ 明マネ 明マ うくの

Let E be a quasi-complete lcHs space and let (π, E) be a uniform and exponentially equicontinuous representation of $(\mathbb{R}^d, +)$ in E and let $k > \kappa$. Let M_p be a weight sequence satisfying (M.1), (M.2), and (M.5). Then, E^* has the strong factorization property, that is,

●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●

Let E be a quasi-complete lcHs space and let (π, E) be a uniform and exponentially equicontinuous representation of $(\mathbb{R}^d, +)$ in E and let $k > \kappa$. Let M_p be a weight sequence satisfying (M.1), (M.2), and (M.5). Then, E^* has the strong factorization property, that is,

$$E^* = \Pi(\mathcal{D}^*_{L^1_k})E^*.$$

• Let $E = L^p$, $1 \le p < \infty$, or C_0 .

• Let (π, E) be the representation of $(\mathbb{R}^d, +)$ in E via translation. Then, $E^* = \mathcal{D}_{L^p}^*$ or $\dot{\mathcal{B}}^*$ (ultradifferentiable analogues of \mathcal{D}_{L^p} and $\dot{\mathcal{B}}$).

Theorem

Let M_p be a weight sequence satisfying (M.1), (M.2), and (M.5). For all k > 0 it holds that

$$\mathcal{D}_{L^p}^* = \mathcal{D}_{L^1_k}^* * \mathcal{D}_{L^p}^* \quad \text{ and } \quad \dot{\mathcal{B}}^* = \mathcal{D}_{L^1_k}^* * \dot{\mathcal{B}}^*.$$

• Let
$$E = L^p$$
, $1 \le p < \infty$, or C_0 .

 Let (π, E) be the representation of (ℝ^d, +) in E via translation. Then, E^{*} = D^{*}_{LP} or B^{*} (ultradifferentiable analogues of D_{LP} and B)

I heorem

Let M_p be a weight sequence satisfying (M.1), (M.2), and (M.5). For all k > 0 it holds that

$$\mathcal{D}_{L^p}^* = \mathcal{D}_{L^1_{k}}^* * \mathcal{D}_{L^p}^* \quad \text{ and } \quad \dot{\mathcal{B}}^* = \mathcal{D}_{L^1_{k}}^* * \dot{\mathcal{B}}^*.$$

• Let
$$E = L^p$$
, $1 \le p < \infty$, or C_0 .

 Let (π, E) be the representation of (ℝ^d, +) in E via translation. Then, E^{*} = D^{*}_{L^p} or B^{*} (ultradifferentiable analogues of D_{L^p} and B[']).

I heorem

Let M_p be a weight sequence satisfying (M.1), (M.2), and (M.5). For all k > 0 it holds that

$$\mathcal{D}_{L^p}^* = \mathcal{D}_{L^1_{\nu}}^* * \mathcal{D}_{L^p}^* \quad \text{and} \quad \dot{\mathcal{B}}^* = \mathcal{D}_{L^1_{\nu}}^* * \dot{\mathcal{B}}^*.$$

• Let
$$E = L^p$$
, $1 \le p < \infty$, or C_0 .

 Let (π, E) be the representation of (ℝ^d, +) in E via translation. Then, E^{*} = D^{*}_{L^p} or B^{*} (ultradifferentiable analogues of D_{L^p} and B[']).

Theorem

Let M_p be a weight sequence satisfying (M.1), (M.2), and (M.5). For all k > 0 it holds that

$$\mathcal{D}^*_{L^p} = \mathcal{D}^*_{L^1_k} * \mathcal{D}^*_{L^p} \quad \text{and} \quad \dot{\mathcal{B}}^* = \mathcal{D}^*_{L^1_k} * \dot{\mathcal{B}}^*.$$

- Let $E = L^p$, $1 \le p < \infty$, or C_0 .
- Let (π, E) be the representation of $(\mathbb{R}^d, +)$ in E via translation. Then, $E^* = \mathcal{D}_{L^p}^*$ or $\dot{\mathcal{B}}^*$ (ultradifferentiable analogues of \mathcal{D}_{L^p} and $\dot{\mathcal{B}}$).

Let M_p be a weight sequence satisfying (M.1), (M.2), and (M.5). For all k > 0 it holds that

$$\mathcal{D}_{L^p}^* = \mathcal{D}_{L^1_k}^* * \mathcal{D}_{L^p}^* \quad \text{and} \quad \dot{\mathcal{B}}^* = \mathcal{D}_{L^1_k}^* * \dot{\mathcal{B}}^*.$$

- Let ω be a positive increasing function on [0,∞) such that ω(t) → ∞ as t → ∞ and let M_p be a sequence of positive reals.
- Define $\mathcal{S}^{M_{\rho},h}_{\omega,h}$, h > 0, as the space of all $\varphi \in \mathcal{C}^{\infty}(\mathbb{R}^d)$ such that

$$\sup_{\alpha \in \mathbb{N}^d} \sup_{x \in \mathbb{R}^d} \frac{|\partial^{\alpha} \varphi(x)| e^{\omega(|x|/h)}}{h^{|\alpha|} M_{|\alpha|}} < \infty.$$

• Set

$$\mathcal{S}_{\{\omega\}}^{\{M_p\}} = \bigcup_{h>0} \mathcal{S}_{\omega,h}^{M_p,h} \qquad \mathcal{S}_{(\omega)}^{(M_p)} = \bigcap_{h>0} \mathcal{S}_{\omega,h}^{M_p,h}$$

• Example: If $M_p = p!^{\sigma}$ and $\omega(t) = t^{1/\tau}$, $\sigma, \tau > 0$, then $S_{\{\omega\}}^{\{M_p\}}$ is equal to the Gelfand-Shilov space S_{τ}^{σ} .

- Let ω be a positive increasing function on [0,∞) such that ω(t) → ∞ as t → ∞ and let M_p be a sequence of positive reals.
- Define $\mathcal{S}^{M_{\rho},h}_{\omega,h}$, h > 0, as the space of all $\varphi \in \mathcal{C}^{\infty}(\mathbb{R}^d)$ such that

$$\sup_{\alpha\in\mathbb{N}^d}\sup_{x\in\mathbb{R}^d}\frac{|\partial^{\alpha}\varphi(x)|e^{\omega(|x|/h)}}{h^{|\alpha|}M_{|\alpha|}}<\infty.$$

• Set

$$\mathcal{S}_{\{\omega\}}^{\{M_p\}} = \bigcup_{h>0} \mathcal{S}_{\omega,h}^{M_p,h} \qquad \mathcal{S}_{(\omega)}^{\{M_p\}} = \bigcap_{h>0} \mathcal{S}_{\omega,h}^{M_p,h}$$

• Example: If $M_p = p!^{\sigma}$ and $\omega(t) = t^{1/\tau}$, $\sigma, \tau > 0$, then $S_{\{\omega\}}^{\{M_p\}}$ is equal to the Gelfand-Shilov space S_{τ}^{σ} .

- Let ω be a positive increasing function on [0,∞) such that ω(t) → ∞ as t → ∞ and let M_p be a sequence of positive reals.
- Define $\mathcal{S}^{M_{\rho},h}_{\omega,h}$, h > 0, as the space of all $\varphi \in \mathcal{C}^{\infty}(\mathbb{R}^d)$ such that

$$\sup_{\alpha\in\mathbb{N}^d}\sup_{x\in\mathbb{R}^d}\frac{|\partial^{\alpha}\varphi(x)|e^{\omega(|x|/h)}}{h^{|\alpha|}M_{|\alpha|}}<\infty.$$

Set

$$\mathcal{S}^{\{M_{p}\}}_{\{\omega\}} = igcup_{h>0} \mathcal{S}^{M_{p},h}_{\omega,h} \qquad \mathcal{S}^{(M_{p})}_{(\omega)} = igcup_{h>0} \mathcal{S}^{M_{p},h}_{\omega,h}$$

• Example: If $M_p = p!^{\sigma}$ and $\omega(t) = t^{1/\tau}$, $\sigma, \tau > 0$, then $S_{\{\omega\}}^{\{M_p\}}$ is equal to the Gelfand-Shilov space S_{τ}^{σ} .

- Let ω be a positive increasing function on [0,∞) such that ω(t) → ∞ as t → ∞ and let M_p be a sequence of positive reals.
- Define $\mathcal{S}^{M_{\rho},h}_{\omega,h}$, h > 0, as the space of all $\varphi \in \mathcal{C}^{\infty}(\mathbb{R}^d)$ such that

$$\sup_{\alpha\in\mathbb{N}^d}\sup_{x\in\mathbb{R}^d}\frac{|\partial^{\alpha}\varphi(x)|e^{\omega(|x|/h)}}{h^{|\alpha|}M_{|\alpha|}}<\infty.$$

Set

$$\mathcal{S}^{\{M_p\}}_{\{\omega\}} = igcup_{h>0} \mathcal{S}^{M_p,h}_{\omega,h} \qquad \mathcal{S}^{(M_p)}_{(\omega)} = igcup_{h>0} \mathcal{S}^{M_p,h}_{\omega,h}$$

• Example: If $M_p = p!^{\sigma}$ and $\omega(t) = t^{1/\tau}$, $\sigma, \tau > 0$, then $S_{\{\omega\}}^{\{M_p\}}$ is equal to the Gelfand-Shilov space S_{τ}^{σ} .

• Define $C_{\omega,h}$, h>0, as the Banach space of all $f\in C(\mathbb{R}^d)$ such that

$$\sup_{x\in\mathbb{R}^d}|f(x)|e^{\omega(|x|/h)}<\infty.$$

Set

$$C_{\{\omega\}} = \lim_{h \to \infty} C_{\omega,h}, \qquad C_{\{\omega\}} = \lim_{h \to \infty} C_{\omega,h}$$

- Let $E = C_{\{\omega\}}$ or $C_{(\omega)}$ and let (π, E) be the representation of $(\mathbb{R}^d, +)$ in E via translation:
 - (π, E) is always uniform.
 - $(\pi, C_{\{\omega\}})$ is exponentially equicontinuous if $\omega(t) = O(t)$.
 - $(\pi, C_{(\omega)})$ is exponentially equicontinuous if $\omega(t) = o(t)$.

•
$$(C_{\{\omega\}})^{\{M_p\}} = S_{\{\omega\}}^{\{M_p\}}$$
 and $(C_{(\omega)})^{(M_p)} = S_{(\omega)}^{(M_p)}$.

• Define $C_{\omega,h}$, h>0, as the Banach space of all $f\in C(\mathbb{R}^d)$ such that

$$\sup_{x\in\mathbb{R}^d}|f(x)|e^{\omega(|x|/h)}<\infty.$$

Set

$$C_{\{\omega\}} = \varinjlim_{h \to \infty} C_{\omega,h}, \qquad C_{\{\omega\}} = \varprojlim_{h \to 0^+} C_{\omega,h}.$$

Let E = C_{ω} or C_(ω) and let (π, E) be the representation of (ℝ^d, +) in E via translation:

- (π, E) is always uniform.
- $(\pi, C_{\{\omega\}})$ is exponentially equicontinuous if $\omega(t) = O(t)$.
- $(\pi, C_{(\omega)})$ is exponentially equicontinuous if $\omega(t) = o(t)$.

•
$$(C_{\{\omega\}})^{\{M_p\}} = S_{\{\omega\}}^{\{M_p\}}$$
 and $(C_{(\omega)})^{(M_p)} = S_{(\omega)}^{(M_p)}$.

• Define $\mathcal{C}_{\omega,h}$, h> 0, as the Banach space of all $f\in \mathcal{C}(\mathbb{R}^d)$ such that

$$\sup_{x\in\mathbb{R}^d}|f(x)|e^{\omega(|x|/h)}<\infty.$$

Set

$$C_{\{\omega\}} = \varinjlim_{h \to \infty} C_{\omega,h}, \qquad C_{\{\omega\}} = \varprojlim_{h \to 0^+} C_{\omega,h}.$$

• Let $E = C_{\{\omega\}}$ or $C_{(\omega)}$ and let (π, E) be the representation of $(\mathbb{R}^d, +)$ in E via translation:

- (π, E) is always uniform.
- $(\pi, C_{\{\omega\}})$ is exponentially equicontinuous if $\omega(t) = O(t)$.
- $(\pi, C_{(\omega)})$ is exponentially equicontinuous if $\omega(t) = o(t)$.

•
$$(C_{\{\omega\}})^{\{M_p\}} = S_{\{\omega\}}^{\{M_p\}}$$
 and $(C_{(\omega)})^{(M_p)} = S_{(\omega)}^{(M_p)}$.

• Define $\mathcal{C}_{\omega,h}$, h> 0, as the Banach space of all $f\in \mathcal{C}(\mathbb{R}^d)$ such that

$$\sup_{x\in\mathbb{R}^d}|f(x)|e^{\omega(|x|/h)}<\infty.$$

Set

۲

$$\begin{array}{l} C_{\{\omega\}} = \varinjlim_{h \to \infty} C_{\omega,h}, \qquad C_{\{\omega\}} = \varprojlim_{h \to 0^+} C_{\omega,h}.\\ \text{Let } E = C_{\{\omega\}} \text{ or } C_{(\omega)} \text{ and let } (\pi, E) \text{ be the representation of } (\mathbb{R}^d, +)\\ \text{in } E \text{ via translation:} \end{array}$$

• (π, E) is always uniform.

• $(\pi, C_{\{\omega\}})$ is exponentially equicontinuous if $\omega(t) = O(t)$.

• $(\pi, C_{(\omega)})$ is exponentially equicontinuous if $\omega(t) = o(t)$.

•
$$(C_{\{\omega\}})^{\{M_p\}} = S^{\{M_p\}}_{\{\omega\}}$$
 and $(C_{(\omega)})^{(M_p)} = S^{(M_p)}_{(\omega)}$.

• Define $\mathcal{C}_{\omega,h}$, h>0, as the Banach space of all $f\in \mathcal{C}(\mathbb{R}^d)$ such that

$$\sup_{x\in\mathbb{R}^d}|f(x)|e^{\omega(|x|/h)}<\infty.$$

Set

۲

$$C_{\{\omega\}} = \varinjlim_{h \to \infty} C_{\omega,h}, \qquad C_{\{\omega\}} = \varprojlim_{h \to 0^+} C_{\omega,h}.$$

Let $E = C_{\{\omega\}}$ or $C_{(\omega)}$ and let (π, E) be the representation of $(\mathbb{R}^d, +)$ in E via translation:

- (π, E) is always uniform.
- $(\pi, C_{\{\omega\}})$ is exponentially equicontinuous if $\omega(t) = O(t)$.
- $(\pi, C_{(\omega)})$ is exponentially equicontinuous if $\omega(t) = o(t)$.

•
$$(C_{\{\omega\}})^{\{M_p\}} = S^{\{M_p\}}_{\{\omega\}}$$
 and $(C_{(\omega)})^{(M_p)} = S^{(M_p)}_{(\omega)}$.

• Define $\mathcal{C}_{\omega,h}$, h>0, as the Banach space of all $f\in \mathcal{C}(\mathbb{R}^d)$ such that

$$\sup_{x\in\mathbb{R}^d}|f(x)|e^{\omega(|x|/h)}<\infty.$$

Set

۲

$$C_{\{\omega\}} = \varinjlim_{h \to \infty} C_{\omega,h}, \qquad C_{\{\omega\}} = \varprojlim_{h \to 0^+} C_{\omega,h}.$$

Let $E = C_{\{\omega\}}$ or $C_{(\omega)}$ and let (π, E) be the representation of $(\mathbb{R}^d, +)$ in E via translation:

- (π, E) is always uniform.
- $(\pi, C_{\{\omega\}})$ is exponentially equicontinuous if $\omega(t) = O(t)$.
- $(\pi, C_{(\omega)})$ is exponentially equicontinuous if $\omega(t) = o(t)$.
- $(C_{\{\omega\}})^{\{M_p\}} = S_{\{\omega\}}^{\{M_p\}}$ and $(C_{(\omega)})^{(M_p)} = S_{(\omega)}^{(M_p)}$.

• Define $\mathcal{C}_{\omega,h}$, h>0, as the Banach space of all $f\in \mathcal{C}(\mathbb{R}^d)$ such that

$$\sup_{x\in\mathbb{R}^d}|f(x)|e^{\omega(|x|/h)}<\infty.$$

Set

۲

$$C_{\{\omega\}} = \varinjlim_{h \to \infty} C_{\omega,h}, \qquad C_{\{\omega\}} = \varprojlim_{h \to 0^+} C_{\omega,h}.$$

Let $E = C_{\{\omega\}}$ or $C_{(\omega)}$ and let (π, E) be the representation of $(\mathbb{R}^d, +)$ in E via translation:

- (π, E) is always uniform.
- $(\pi, C_{\{\omega\}})$ is exponentially equicontinuous if $\omega(t) = O(t)$.
- $(\pi, C_{(\omega)})$ is exponentially equicontinuous if $\omega(t) = o(t)$.

•
$$(C_{\{\omega\}})^{\{M_{\rho}\}} = S^{\{M_{\rho}\}}_{\{\omega\}}$$
 and $(C_{(\omega)})^{(M_{\rho})} = S^{(M_{\rho})}_{(\omega)}$

Let M_p be a weight sequence satisfying (M.1), (M.2), and (M.5) and let $\omega(t) = O(t)$ ($\omega(t) = o(t)$ in the (M_p)-case). Then, for k > 0 large enough it holds that

$$\mathcal{S}_{\{\omega\}}^{\{M_p\}} = \mathcal{D}_{L_k^1}^{\{M_p\}} * \mathcal{S}_{\{\omega\}}^{\{M_p\}} \qquad \text{and} \qquad \mathcal{S}_{(\omega)}^{(M_p)} = \mathcal{D}_{L_k^1}^{(M_p)} * \ \mathcal{S}_{(\omega)}^{(M_p)}$$

In particular,

$$\mathcal{S}^{\{M_p\}}_{\{\omega\}} = \mathcal{S}^{\{M_p\}}_{\{\omega\}} * \mathcal{S}^{\{M_p\}}_{\{\omega\}} \quad \text{and} \quad \mathcal{S}^{(M_p)}_{(\omega)} = \mathcal{S}^{(M_p)}_{(\omega)} * \quad \mathcal{S}^{(M_p)}_{(\omega)}.$$

• Similar result holds for spaces of type \mathcal{O}_C .

Let M_p be a weight sequence satisfying (M.1), (M.2), and (M.5) and let $\omega(t) = O(t)$ ($\omega(t) = o(t)$ in the (M_p)-case). Then, for k > 0 large enough it holds that

$$\mathcal{S}_{\{\omega\}}^{\{M_p\}} = \mathcal{D}_{L_k^1}^{\{M_p\}} * \mathcal{S}_{\{\omega\}}^{\{M_p\}} \qquad \text{and} \qquad \mathcal{S}_{(\omega)}^{(M_p)} = \mathcal{D}_{L_k^1}^{(M_p)} * \ \mathcal{S}_{(\omega)}^{(M_p)}$$

In particular,

$$\mathcal{S}^{\{M_p\}}_{\{\omega\}} = \mathcal{S}^{\{M_p\}}_{\{\omega\}} * \mathcal{S}^{\{M_p\}}_{\{\omega\}} \quad \text{and} \quad \mathcal{S}^{(M_p)}_{(\omega)} = \mathcal{S}^{(M_p)}_{(\omega)} * \quad \mathcal{S}^{(M_p)}_{(\omega)}.$$

• Similar result holds for spaces of type \mathcal{O}_C .

Let M_p be a weight sequence satisfying (M.1), (M.2), and (M.5) and let $\omega(t) = O(t)$ ($\omega(t) = o(t)$ in the (M_p)-case). Then, for k > 0 large enough it holds that

$$\mathcal{S}_{\{\omega\}}^{\{M_p\}} = \mathcal{D}_{L_k^1}^{\{M_p\}} * \mathcal{S}_{\{\omega\}}^{\{M_p\}} \qquad \text{and} \qquad \mathcal{S}_{(\omega)}^{(M_p)} = \mathcal{D}_{L_k^1}^{(M_p)} * \ \mathcal{S}_{(\omega)}^{(M_p)}$$

In particular,

 $\mathcal{S}^{\{M_p\}}_{\{\omega\}} = \mathcal{S}^{\{M_p\}}_{\{\omega\}} * \mathcal{S}^{\{M_p\}}_{\{\omega\}} \quad \text{and} \quad \mathcal{S}^{(M_p)}_{(\omega)} = \mathcal{S}^{(M_p)}_{(\omega)} * \quad \mathcal{S}^{(M_p)}_{(\omega)}.$

• Similar result holds for spaces of type \mathcal{O}_C .

*檀 と * 語 と * 語 と … 語

- Show the weak factorization property for the space of ultradifferentiable vectors of uniform representations which are not necessarily exponentially equicontinuous. In the analytic case this is done by G-K-L.
- Show the strong factorization property for the space of smooth vectors of uniform exponentially equicontinuous representations. E.g.

$$\mathcal{D}_{L^p}=\mathcal{D}_{L^1}*\mathcal{D}_{L^p}.$$

- Show the weak factorization property for the space of ultradifferentiable vectors of uniform representations which are not necessarily exponentially equicontinuous. In the analytic case this is done by G-K-L.
- Show the strong factorization property for the space of smooth vectors of uniform exponentially equicontinuous representations. E.g.

$$\mathcal{D}_{L^p}=\mathcal{D}_{L^1}*\mathcal{D}_{L^p}.$$

- Show the weak factorization property for the space of ultradifferentiable vectors of uniform representations which are not necessarily exponentially equicontinuous. In the analytic case this is done by G-K-L.
- Show the strong factorization property for the space of smooth vectors of uniform exponentially equicontinuous representations. E.g.

 $\mathcal{D}_{L^p} = \mathcal{D}_{L^1} * \mathcal{D}_{L^p}.$

• Consider representations of general Lie groups. Suitable characterization of ultradifferentiability?

イロト イヨト イヨト ・

- Show the weak factorization property for the space of ultradifferentiable vectors of uniform representations which are not necessarily exponentially equicontinuous. In the analytic case this is done by G-K-L.
- Show the strong factorization property for the space of smooth vectors of uniform exponentially equicontinuous representations. E.g.

$$\mathcal{D}_{L^p}=\mathcal{D}_{L^1}*\mathcal{D}_{L^p}.$$

- Show the weak factorization property for the space of ultradifferentiable vectors of uniform representations which are not necessarily exponentially equicontinuous. In the analytic case this is done by G-K-L.
- Show the strong factorization property for the space of smooth vectors of uniform exponentially equicontinuous representations. E.g.

$$\mathcal{D}_{L^p}=\mathcal{D}_{L^1}*\mathcal{D}_{L^p}.$$

- Show the weak factorization property for the space of ultradifferentiable vectors of uniform representations which are not necessarily exponentially equicontinuous. In the analytic case this is done by G-K-L.
- Show the strong factorization property for the space of smooth vectors of uniform exponentially equicontinuous representations. E.g.

$$\mathcal{D}_{L^p}=\mathcal{D}_{L^1}*\mathcal{D}_{L^p}.$$