Factorization of ultradifferentiable vectors

Andreas Debrouwere
LSU

Harmonic Analysis Seminar

Joint work with Bojan Prangoski and Jasson Vindas

Outline of the talk

(1) Factorization results in analysis.
(2) Ultradifferentiable functions.
(3) Main result.
(9) Examples: Factorization of weighted convolution algebras of smooth functions.

Factorization of L^{1}

Theorem (Rudin, 1957)
For every $f \in L^{1}(\mathbb{R})$ there are $g, h \in L^{1}(\mathbb{R})$ such that $f=g * h$. This means that the convolution algebra $\left(L^{1}(\mathbb{R}), *\right)$ factorizes as follows $L^{1}(\mathbb{R})=L^{1}(\mathbb{R}) * L^{1}(\mathbb{R})$.

Theorem (Cohen, 1959)

Let G be a locally compact group. Then,

$$
L^{1}(G)=L^{1}(G) * L^{1}(G) .
$$

Factorization of L^{1}

Theorem (Rudin, 1957)

For every $f \in L^{1}(\mathbb{R})$ there are $g, h \in L^{1}(\mathbb{R})$ such that $f=g * h$. This means that the convolution algebra $\left(L^{1}(\mathbb{R}), *\right)$ factorizes as follows

$$
L^{1}(\mathbb{R})=L^{1}(\mathbb{R}) * L^{1}(\mathbb{R}) .
$$

Theorem (Cohen, 1959)

Let G be a locally compact group. Then,

$$
L^{1}(G)=L^{1}(G) * L^{1}(G)
$$

Factorization properties

- Let \mathcal{M} be a (left) module over a (non-unital) algebra \mathcal{A}. We set

$$
\mathcal{A} \cdot \mathcal{M}=\{a \cdot m \mid a \in \mathcal{A}, m \in \mathcal{M}\}
$$

- \mathcal{M} is said to satisfy the weak factorization property if

$$
\mathcal{M}=\operatorname{span}(A \cdot \mathcal{M})
$$

- \mathcal{M} is said to satisfy the (strong) factorization property if

Factorization properties

- Let \mathcal{M} be a (left) module over a (non-unital) algebra \mathcal{A}. We set

$$
\mathcal{A} \cdot \mathcal{M}=\{a \cdot m \mid a \in \mathcal{A}, m \in \mathcal{M}\}
$$

- \mathcal{M} is said to satisfy the weak factorization property if

$$
\mathcal{M}=\operatorname{span}(\mathcal{A} \cdot \mathcal{M})
$$

- \mathcal{M} is said to satisfy the (strong) factorization property if

Factorization properties

- Let \mathcal{M} be a (left) module over a (non-unital) algebra \mathcal{A}. We set

$$
\mathcal{A} \cdot \mathcal{M}=\{a \cdot m \mid a \in \mathcal{A}, m \in \mathcal{M}\}
$$

- \mathcal{M} is said to satisfy the weak factorization property if

$$
\mathcal{M}=\operatorname{span}(\mathcal{A} \cdot \mathcal{M})
$$

- \mathcal{M} is said to satisfy the (strong) factorization property if

$$
\mathcal{M}=\mathcal{A} \cdot \mathcal{M}
$$

Factorization properties

- Let \mathcal{M} be a (left) module over a (non-unital) algebra \mathcal{A}. We set

$$
\mathcal{A} \cdot \mathcal{M}=\{a \cdot m \mid a \in \mathcal{A}, m \in \mathcal{M}\}
$$

- \mathcal{M} is said to satisfy the weak factorization property if

$$
\mathcal{M}=\operatorname{span}(\mathcal{A} \cdot \mathcal{M})
$$

- \mathcal{M} is said to satisfy the (strong) factorization property if

$$
\mathcal{M}=\mathcal{A} \cdot \mathcal{M}
$$

Cohen-Hewitt factorization theorem (1)

- Let \mathcal{A} be a Banach algebra. A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is said to be a bounded (left) approximate identity if

$$
\sup _{n \in \mathbb{N}}\left\|a_{n}\right\|_{\mathcal{A}}<\infty \quad \text { and } \quad \lim _{n \rightarrow \infty} a_{n} \cdot a=a, \quad \forall a \in \mathcal{A} .
$$

Theorem (Cohen, 1959)
 Let \mathcal{A} be a Banach algebra having a bounded approximate identity. Then, \mathcal{A} has the factorization property, that is, $\mathcal{A}=\mathcal{A} \cdot \mathcal{A}$.

Cohen-Hewitt factorization theorem (1)

- Let \mathcal{A} be a Banach algebra. A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is said to be a bounded (left) approximate identity if

$$
\sup _{n \in \mathbb{N}}\left\|a_{n}\right\|_{\mathcal{A}}<\infty \quad \text { and } \quad \lim _{n \rightarrow \infty} a_{n} \cdot a=a, \quad \forall a \in \mathcal{A}
$$

Theorem (Cohen, 1959)

Let \mathcal{A} be a Banach algebra having a bounded approximate identity. Then, \mathcal{A} has the factorization property, that is, $\mathcal{A}=\mathcal{A} \cdot \mathcal{A}$.

Cohen-Hewitt factorization theorem (2)

Theorem (Hewitt, 1964)

Let \mathcal{A} be a Banach algebra having a bounded approximate identity $\left(a_{n}\right)_{n \in \mathbb{N}}$ and let \mathcal{M} be a Banach module over \mathcal{A}. For every $u \in \mathcal{M}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n} \cdot u=u \tag{1}
\end{equation*}
$$

there are $a \in \mathcal{A}$ and $v \in \mathcal{M}$ such that $u=a \cdot v$. In particular, if (1) holds for all $u \in \mathcal{M}$, then \mathcal{M} has the factorization property, that is, $\mathcal{M}=\mathcal{A} \cdot \mathcal{M}$.

- The Cohen-Hewitt factorization theorem can be generalized to Fréchet algebras having a uniformly bounded approximate identity. However, non-unital reflexive Fréchet algebras do not even have bounded approximate identities.

Cohen-Hewitt factorization theorem (2)

Theorem (Hewitt, 1964)

Let \mathcal{A} be a Banach algebra having a bounded approximate identity $\left(a_{n}\right)_{n \in \mathbb{N}}$ and let \mathcal{M} be a Banach module over \mathcal{A}. For every $u \in \mathcal{M}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n} \cdot u=u \tag{1}
\end{equation*}
$$

there are $a \in \mathcal{A}$ and $v \in \mathcal{M}$ such that $u=a \cdot v$. In particular, if (1) holds for all $u \in \mathcal{M}$, then \mathcal{M} has the factorization property, that is, $\mathcal{M}=\mathcal{A} \cdot \mathcal{M}$.

- The Cohen-Hewitt factorization theorem can be generalized to Fréchet algebras having a uniformly bounded approximate identity.
However, non-unital reflexive Fréchet algebras do not even have
bounded approximate identities.

Cohen-Hewitt factorization theorem (2)

Theorem (Hewitt, 1964)

Let \mathcal{A} be a Banach algebra having a bounded approximate identity $\left(a_{n}\right)_{n \in \mathbb{N}}$ and let \mathcal{M} be a Banach module over \mathcal{A}. For every $u \in \mathcal{M}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n} \cdot u=u \tag{1}
\end{equation*}
$$

there are $a \in \mathcal{A}$ and $v \in \mathcal{M}$ such that $u=a \cdot v$. In particular, if (1) holds for all $u \in \mathcal{M}$, then \mathcal{M} has the factorization property, that is, $\mathcal{M}=\mathcal{A} \cdot \mathcal{M}$.

- The Cohen-Hewitt factorization theorem can be generalized to Fréchet algebras having a uniformly bounded approximate identity.
However, non-unital reflexive Fréchet algebras do not even have bounded approximate identities.

Cohen-Hewitt factorization theorem (2)

Theorem (Hewitt, 1964)

Let \mathcal{A} be a Banach algebra having a bounded approximate identity $\left(a_{n}\right)_{n \in \mathbb{N}}$ and let \mathcal{M} be a Banach module over \mathcal{A}. For every $u \in \mathcal{M}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n} \cdot u=u \tag{1}
\end{equation*}
$$

there are $a \in \mathcal{A}$ and $v \in \mathcal{M}$ such that $u=a \cdot v$. In particular, if (1) holds for all $u \in \mathcal{M}$, then \mathcal{M} has the factorization property, that is, $\mathcal{M}=\mathcal{A} \cdot \mathcal{M}$.

- The Cohen-Hewitt factorization theorem can be generalized to Fréchet algebras having a uniformly bounded approximate identity. However, non-unital reflexive Fréchet algebras do not even have bounded approximate identities...

Factorization in convolution algebras of smooth functions

Ehrenpreis' problem 1960

Does the convolution algebra $\left(\mathcal{D}\left(\mathbb{R}^{d}\right), *\right)$ has the weak/strong factorization property?

- (Rubel, Squires and Taylor, 1978) $\mathcal{D}\left(\mathbb{R}^{d}\right)=\operatorname{span}\left(\mathcal{D}\left(\mathbb{R}^{d}\right) * \mathcal{D}\left(\mathbb{R}^{d}\right)\right)$
- (Dixmier and Malliavin, 1978) Let $d \geq 2 . \mathcal{D}\left(\mathbb{R}^{d}\right) \subsetneq \mathcal{D}\left(\mathbb{R}^{d}\right) * \mathcal{D}\left(\mathbb{R}^{d}\right)$
- (Yulmukhametov, 1999) $\mathcal{D}(\mathbb{R})=\mathcal{D}(\mathbb{R}) * \mathcal{D}(\mathbb{R})$

Theorem (Petzeltová and P. Vrbová, 1978; Voigt, 1984)

The convolution algehra $\left(\mathcal{S}\left(\mathbb{R}^{d}\right) *\right)$ has the strong factorization property, that is,

Factorization in convolution algebras of smooth functions

Ehrenpreis' problem 1960

Does the convolution algebra $\left(\mathcal{D}\left(\mathbb{R}^{d}\right), *\right)$ has the weak/strong factorization property?

- (Rubel, Squires and Taylor, 1978) $\mathcal{D}\left(\mathbb{R}^{d}\right)=\operatorname{span}\left(\mathcal{D}\left(\mathbb{R}^{d}\right) * \mathcal{D}\left(\mathbb{R}^{d}\right)\right)$.
- (Dixmier and Malliavin, 1978) Let $d \geq 2 . \mathcal{D}\left(\mathbb{R}^{d}\right) \subsetneq \mathcal{D}\left(\mathbb{R}^{d}\right) * \mathcal{D}\left(\mathbb{R}^{d}\right)$
- (Yulmukhametov, 1999) $\mathcal{D}(\mathbb{R})=\mathcal{D}(\mathbb{R}) * \mathcal{D}(\mathbb{R})$.

Theorem (Petzeltová and P. Vrbová, 1978; Voigt, 1984)

The convolution algehra $\left(\mathcal{S}\left(\mathbb{R}^{d}\right)\right.$ *) has the strong factorization property, that is,

Factorization in convolution algebras of smooth functions

Ehrenpreis' problem 1960

Does the convolution algebra $\left(\mathcal{D}\left(\mathbb{R}^{d}\right), *\right)$ has the weak/strong factorization property?

- (Rubel, Squires and Taylor, 1978) $\mathcal{D}\left(\mathbb{R}^{d}\right)=\operatorname{span}\left(\mathcal{D}\left(\mathbb{R}^{d}\right) * \mathcal{D}\left(\mathbb{R}^{d}\right)\right)$.
- (Dixmier and Malliavin, 1978) Let $d \geq 2 . \mathcal{D}\left(\mathbb{R}^{d}\right) \subsetneq \mathcal{D}\left(\mathbb{R}^{d}\right) * \mathcal{D}\left(\mathbb{R}^{d}\right)$.
- (Yulmukhametov, 1999) $\mathcal{D}(\mathbb{R})=\mathcal{D}(\mathbb{R}) * \mathcal{D}(\mathbb{R})$

Theorem (Petzeltová and P. Vrbová, 1978; Voigt, 1984)

The convolution algebra $\left(S\left(\mathbb{R}^{d}\right), *\right)$ has the strong factorization property

 that is,

Factorization in convolution algebras of smooth functions

Ehrenpreis' problem 1960

Does the convolution algebra $\left(\mathcal{D}\left(\mathbb{R}^{d}\right), *\right)$ has the weak/strong factorization property?

- (Rubel, Squires and Taylor, 1978) $\mathcal{D}\left(\mathbb{R}^{d}\right)=\operatorname{span}\left(\mathcal{D}\left(\mathbb{R}^{d}\right) * \mathcal{D}\left(\mathbb{R}^{d}\right)\right)$.
- (Dixmier and Malliavin, 1978) Let $d \geq 2 . \mathcal{D}\left(\mathbb{R}^{d}\right) \subsetneq \mathcal{D}\left(\mathbb{R}^{d}\right) * \mathcal{D}\left(\mathbb{R}^{d}\right)$.
- (Yulmukhametov, 1999) $\mathcal{D}(\mathbb{R})=\mathcal{D}(\mathbb{R}) * \mathcal{D}(\mathbb{R})$.
\square The convolution algebra $\left(\mathcal{S}\left(\mathbb{R}^{d}\right), *\right)$ has the strong factorization property, that is,

Factorization in convolution algebras of smooth functions

Ehrenpreis' problem 1960

Does the convolution algebra $\left(\mathcal{D}\left(\mathbb{R}^{d}\right), *\right)$ has the weak/strong factorization property?

- (Rubel, Squires and Taylor, 1978) $\mathcal{D}\left(\mathbb{R}^{d}\right)=\operatorname{span}\left(\mathcal{D}\left(\mathbb{R}^{d}\right) * \mathcal{D}\left(\mathbb{R}^{d}\right)\right)$.
- (Dixmier and Malliavin, 1978) Let $d \geq 2 . \mathcal{D}\left(\mathbb{R}^{d}\right) \subsetneq \mathcal{D}\left(\mathbb{R}^{d}\right) * \mathcal{D}\left(\mathbb{R}^{d}\right)$.
- (Yulmukhametov, 1999) $\mathcal{D}(\mathbb{R})=\mathcal{D}(\mathbb{R}) * \mathcal{D}(\mathbb{R})$.

Theorem (Petzeltová and P. Vrbová, 1978; Voigt, 1984)

The convolution algebra $\left(\mathcal{S}\left(\mathbb{R}^{d}\right), *\right)$ has the strong factorization property, that is,

$$
\mathcal{S}\left(\mathbb{R}^{d}\right)=\mathcal{S}\left(\mathbb{R}^{d}\right) * \mathcal{S}\left(\mathbb{R}^{d}\right)
$$

Representations of Lie groups

- Let G be a real Lie group and E be a IcHs ($=$ locally convex Hausdorff space). A representation (π, E) of G in E is a homomorphism $\pi: G \rightarrow \mathcal{L}(E)$ such that

$$
G \times E \rightarrow E:(g, e) \rightarrow \pi(g) e
$$

is continuous.

- The orbit map of $e \in E$ is given by the continuous E-valued map $G \rightarrow E: g \rightarrow \pi(g) e$
- Th space E^{∞} of smooth vectors is defined as

$$
E^{\infty}:=\left\{e \in E \mid \gamma_{e} \in C^{\infty}(G ; E)\right\} .
$$

Representations of Lie groups

- Let G be a real Lie group and E be a IcHs ($=$ locally convex Hausdorff space). A representation (π, E) of G in E is a homomorphism $\pi: G \rightarrow \mathcal{L}(E)$ such that

$$
G \times E \rightarrow E:(g, e) \rightarrow \pi(g) e
$$

is continuous.

- The orbit map of $e \in E$ is given by the continuous E-valued map

$$
\gamma_{e}: G \rightarrow E: g \rightarrow \pi(g) e
$$

- Th space E^{∞} of smooth vectors is defined as

$$
E^{\infty}:=\left\{e \in E \mid \gamma_{e} \in C^{\infty}(G ; E)\right\} .
$$

Representations of Lie groups

- Let G be a real Lie group and E be a IcHs ($=$ locally convex Hausdorff space). A representation (π, E) of G in E is a homomorphism $\pi: G \rightarrow \mathcal{L}(E)$ such that

$$
G \times E \rightarrow E:(g, e) \rightarrow \pi(g) e
$$

is continuous.

- The orbit map of $e \in E$ is given by the continuous E-valued map

$$
\gamma_{e}: G \rightarrow E: g \rightarrow \pi(g) e
$$

- Th space E^{∞} of smooth vectors is defined as

$$
E^{\infty}:=\left\{e \in E \mid \gamma_{e} \in C^{\infty}(G ; E)\right\}
$$

The induced action of π

- Assume that E is a Fréchet space. The representation (π, E) induces an action of the convolution algebra $\left(C_{c}^{\infty}(G), *\right)$ on E via

$$
\Pi(\varphi) e:=\int_{G} \varphi(g) \pi(g) e d g, \quad \varphi \in C_{c}^{\infty}(G), e \in E
$$

- Π restricts to an action on E^{∞},i.e., E^{∞} is a module over $\left(C_{c}^{\infty}(G), *\right)$.

The induced action of π

- Assume that E is a Fréchet space. The representation (π, E) induces an action of the convolution algebra $\left(C_{c}^{\infty}(G), *\right)$ on E via

$$
\Pi(\varphi) e:=\int_{G} \varphi(g) \pi(g) e d g, \quad \varphi \in C_{c}^{\infty}(G), e \in E
$$

- Π restricts to an action on E^{∞},i.e., E^{∞} is a module over $\left(C_{c}^{\infty}(G), *\right)$.

The induced action of π

- Assume that E is a Fréchet space. The representation (π, E) induces an action of the convolution algebra $\left(C_{c}^{\infty}(G), *\right)$ on E via

$$
\Pi(\varphi) e:=\int_{G} \varphi(g) \pi(g) e d g, \quad \varphi \in C_{c}^{\infty}(G), e \in E
$$

- Π restricts to an action on E^{∞},i.e., E^{∞} is a module over $\left(C_{c}^{\infty}(G), *\right)$.

Examples

- Let $G=\left(\mathbb{R}^{d},+\right)$ and let $E=L^{p}, 1 \leq p<\infty$.
- Consider the representation of $\left(\mathbb{R}^{d},+\right)$ in L^{p} via translation, i.e.,

$$
\pi(x) f=f(\cdot-x), \quad x \in \mathbb{R}^{d}, f \in L^{p} .
$$

- Then,

$$
\Pi(\varphi) f=\varphi * f, \quad \varphi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right), f \in L^{p} .
$$

and $\left(L^{p}\right)^{\infty}$ is equal to the Schwartz space $\mathcal{D}_{L^{p}}$.

- If $E=C_{0}$, then $E^{\infty}=\dot{\mathcal{B}}$.
- If $E=\lim _{N}(1+|\cdot|)^{-N} C_{0}$, then $E^{\infty}=\mathcal{S}$.

Examples

- Let $G=\left(\mathbb{R}^{d},+\right)$ and let $E=L^{p}, 1 \leq p<\infty$.
- Consider the representation of $\left(\mathbb{R}^{d},+\right)$ in L^{p} via translation, i.e.,

$$
\pi(x) f=f(\cdot-x), \quad x \in \mathbb{R}^{d}, f \in L^{p}
$$

- Then,

and $\left(L^{p}\right)^{\infty}$ is equal to the Schwartz space $\mathcal{D}_{L^{p}}$.
- If $E=C_{0}$, then $E^{\infty}=\dot{\mathcal{B}}$.
- If $E=\lim _{N}(1+|\cdot|)^{-N} C_{0}$, then $E^{\infty}=\mathcal{S}$.

Examples

- Let $G=\left(\mathbb{R}^{d},+\right)$ and let $E=L^{p}, 1 \leq p<\infty$.
- Consider the representation of $\left(\mathbb{R}^{d},+\right)$ in L^{p} via translation, i.e.,

$$
\pi(x) f=f(\cdot-x), \quad x \in \mathbb{R}^{d}, f \in L^{p}
$$

- Then,

$$
\Pi(\varphi) f=\varphi * f, \quad \varphi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right), f \in L^{p}
$$

and $\left(L^{p}\right)^{\infty}$ is equal to the Schwartz space $\mathcal{D}_{L^{p}}$.

- If $E=C_{0}$, then $E^{\infty}=\mathcal{B}$.
- If $E=\lim _{N}(1+|\cdot|)^{-N} C_{0}$, then $E^{\infty}=\mathcal{S}$.

Examples

- Let $G=\left(\mathbb{R}^{d},+\right)$ and let $E=L^{p}, 1 \leq p<\infty$.
- Consider the representation of $\left(\mathbb{R}^{d},+\right)$ in L^{p} via translation, i.e.,

$$
\pi(x) f=f(\cdot-x), \quad x \in \mathbb{R}^{d}, f \in L^{p}
$$

- Then,

$$
\Pi(\varphi) f=\varphi * f, \quad \varphi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right), f \in L^{p}
$$

and $\left(L^{p}\right)^{\infty}$ is equal to the Schwartz space $\mathcal{D}_{L^{p}}$.

- If $E=C_{0}$, then $E^{\infty}=\dot{\mathcal{B}}$.
- If $E=\lim _{N}(1+|\cdot|)^{-N} C_{0}$, then $E^{\infty}=\mathcal{S}$.

Examples

- Let $G=\left(\mathbb{R}^{d},+\right)$ and let $E=L^{p}, 1 \leq p<\infty$.
- Consider the representation of $\left(\mathbb{R}^{d},+\right)$ in L^{p} via translation, i.e.,

$$
\pi(x) f=f(\cdot-x), \quad x \in \mathbb{R}^{d}, f \in L^{p}
$$

- Then,

$$
\Pi(\varphi) f=\varphi * f, \quad \varphi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right), f \in L^{p}
$$

and $\left(L^{p}\right)^{\infty}$ is equal to the Schwartz space $\mathcal{D}_{L^{p}}$.

- If $E=C_{0}$, then $E^{\infty}=\dot{\mathcal{B}}$.
- If $E=\lim _{\leftrightarrows_{N}}(1+|\cdot|)^{-N} C_{0}$, then $E^{\infty}=\mathcal{S}$.

The Dixmier-Malliavin theorem

Theorem (Dixmier and Malliavin, 1978)

Let G be a Lie group and let (π, E) be a representation of G in a Fréchet space E. Then, E^{∞} has the weak factorization property, that is,

$$
E^{\infty}=\operatorname{span}\left(\Pi\left(C_{c}^{\infty}(G)\right) E^{\infty}\right) .
$$

- Examples: Let $X=\mathcal{D}_{L p}, \dot{\mathcal{B}}$, or \mathcal{S}. Then,

$$
X=\operatorname{span}\left(C_{c}^{\infty}\left(\mathbb{R}^{d}\right) * X\right)
$$

- In 2011 Gimperlein, Krötz and Lienau proved, under some technical conditions on (π, E), that the space E^{ω} of analytic vectors satisfies the weak factorization property over an appropriate convolution algebra. Main difficulty: Absence of compactly supported analytic functions on G

The Dixmier-Malliavin theorem

Theorem (Dixmier and Malliavin, 1978)

Let G be a Lie group and let (π, E) be a representation of G in a Fréchet space E. Then, E^{∞} has the weak factorization property, that is,

$$
E^{\infty}=\operatorname{span}\left(\Pi\left(C_{c}^{\infty}(G)\right) E^{\infty}\right)
$$

- Examples: Let $X=\mathcal{D}_{L^{p}}, \dot{\mathcal{B}}$, or \mathcal{S}. Then,

$$
X=\operatorname{span}\left(C_{c}^{\infty}\left(\mathbb{R}^{d}\right) * X\right)
$$

- In 2011 Gimperlein, Krötz and Lienau proved, under some technical conditions on (π, E), that the space E^{ω} of analytic vectors satisfies the weak factorization property over an appropriate convolution algebra. Main difficulty: Absence of compactly supported analytic functions on G

The Dixmier-Malliavin theorem

Theorem (Dixmier and Malliavin, 1978)

Let G be a Lie group and let (π, E) be a representation of G in a Fréchet space E. Then, E^{∞} has the weak factorization property, that is,

$$
E^{\infty}=\operatorname{span}\left(\Pi\left(C_{c}^{\infty}(G)\right) E^{\infty}\right)
$$

- Examples: Let $X=\mathcal{D}_{L^{p}}, \dot{\mathcal{B}}$, or \mathcal{S}. Then,

$$
X=\operatorname{span}\left(C_{c}^{\infty}\left(\mathbb{R}^{d}\right) * X\right)
$$

- In 2011 Gimperlein, Krötz and Lienau proved, under some technical conditions on (π, E), that the space E^{ω} of analytic vectors satisfies the weak factorization property over an appropriate convolution algebra.

The Dixmier-Malliavin theorem

Theorem (Dixmier and Malliavin, 1978)

Let G be a Lie group and let (π, E) be a representation of G in a Fréchet space E. Then, E^{∞} has the weak factorization property, that is,

$$
E^{\infty}=\operatorname{span}\left(\Pi\left(C_{c}^{\infty}(G)\right) E^{\infty}\right)
$$

- Examples: Let $X=\mathcal{D}_{L^{p}}, \dot{\mathcal{B}}$, or \mathcal{S}. Then,

$$
X=\operatorname{span}\left(C_{c}^{\infty}\left(\mathbb{R}^{d}\right) * X\right)
$$

- In 2011 Gimperlein, Krötz and Lienau proved, under some technical conditions on (π, E), that the space E^{ω} of analytic vectors satisfies the weak factorization property over an appropriate convolution algebra. Main difficulty: Absence of compactly supported analytic functions on G.

Our goals

- We generalize the result of $G-K-L$ in the following ways for $G=\left(\mathbb{R}^{d},+\right):$
- Allow E to be a general quasi-complete IcHs.
- Find appropriate growth conditions on (π, E) to ensure that the strong factorization property holds.
- Prove factorization results for spaces of ultradifferentiable vectors, i.e., vectors whose orbit map belongs to a certain Denjoy-Carleman class.

Our goals

- We generalize the result of $G-K-L$ in the following ways for $G=\left(\mathbb{R}^{d},+\right)$:
- Allow E to be a general quasi-complete IcHs.
- Find appropriate growth conditions on (π, E) to ensure that the strong factorization property holds.
- Prove factorization results for spaces of ultradifferentiable vectors, i.e., vectors whose orbit map belongs to a certain Denjoy-Carleman class.

Our goals

- We generalize the result of $G-K-L$ in the following ways for $G=\left(\mathbb{R}^{d},+\right)$:
- Allow E to be a general quasi-complete IcHs.
- Find appropriate growth conditions on (π, E) to ensure that the strong factorization property holds.
- Prove factorization results for spaces of ultradifferentiable vectors, i.e., vectors whose orbit map belongs to a certain Denjoy-Carleman class.

Our goals

- We generalize the result of $G-K-L$ in the following ways for $G=\left(\mathbb{R}^{d},+\right)$:
- Allow E to be a general quasi-complete IcHs.
- Find appropriate growth conditions on (π, E) to ensure that the strong factorization property holds.
- Prove factorization results for spaces of ultradifferentiable vectors, i.e., vectors whose orbit map belongs to a certain Denjoy-Carleman class.

The work of Gevrey

- In 1918 Gevrey showed that all weak solutions of the heat equation are in fact smooth and satisfy

$$
\max _{x \in K}\left|\partial^{\alpha} \varphi(x)\right| \leq C h^{|\alpha|}(|\alpha|!)^{2}, \quad \forall \alpha \in \mathbb{N}^{d+1}
$$

for all $K \Subset \mathbb{R}^{d+1}$ and some $C=C(K)>0, h=h(K)>0$. Moreover, the exponent 2 is optimal.

- This was the starting point of the study of general spaces of ultradifferentiable functions, i.e., spaces of smooth functions whose derivatives are bounded by an arbitrary sequence $\left(M_{p}\right)_{p \in \mathbb{N}}$.

The work of Gevrey

- In 1918 Gevrey showed that all weak solutions of the heat equation are in fact smooth and satisfy

$$
\max _{x \in K}\left|\partial^{\alpha} \varphi(x)\right| \leq C h^{|\alpha|}(|\alpha|!)^{2}, \quad \forall \alpha \in \mathbb{N}^{d+1}
$$

for all $K \Subset \mathbb{R}^{d+1}$ and some $C=C(K)>0, h=h(K)>0$. Moreover, the exponent 2 is optimal.

- This was the starting point of the study of general spaces of ultradifferentiable functions, i.e., spaces of smooth functions whose derivatives are bounded by an arbitrary sequence $\left(M_{p}\right)_{p \in \mathbb{N}}$.

Spaces of ultradifferentiable functions

- Let $\left(M_{p}\right)_{p \in \mathbb{N}}$ be a sequence of positive reals.
- $\mathcal{E}\left\{M_{p}\right\}\left(\mathbb{R}^{d}\right)$ stands for the space of all $\varphi \in C^{\infty}\left(\mathbb{R}^{d}\right)$ such that for all $K \Subset \mathbb{R}^{d}$ there is some $h>0$ such that

- $\mathcal{E}^{\left(M_{p}\right)}\left(\mathbb{R}^{d}\right)$ stand for the space of all $\varphi \in C^{\infty}\left(\mathbb{R}^{d}\right)$ such that for all $K \Subset \mathbb{R}^{d}$ and all $h>0$ the bound (2) holds.
- Examples: $M_{p}=p!^{\sigma}, \sigma>0$
- We shall write * if we want to treat the $\left\{M_{p}\right\}$ - and $\left(M_{p}\right)$-case simultaneously.

Spaces of ultradifferentiable functions

- Let $\left(M_{p}\right)_{p \in \mathbb{N}}$ be a sequence of positive reals.
- $\mathcal{E}^{\left\{M_{p}\right\}}\left(\mathbb{R}^{d}\right)$ stands for the space of all $\varphi \in C^{\infty}\left(\mathbb{R}^{d}\right)$ such that for all $K \Subset \mathbb{R}^{d}$ there is some $h>0$ such that

$$
\begin{equation*}
\sup _{\alpha \in \mathbb{N}^{d}} \max _{x \in K} \frac{\left|\partial^{\alpha} \varphi(x)\right|}{h^{|\alpha|} M_{|\alpha|}}<\infty \tag{2}
\end{equation*}
$$

- $\mathcal{E}^{\left(M_{p}\right)}\left(\mathbb{R}^{d}\right)$ stand for the space of all $\varphi \in C^{\infty}\left(\mathbb{R}^{d}\right)$ such that for all $K \Subset \mathbb{R}^{d}$ and all $h>0$ the bound (2) holds.
- Examples: $M_{p}=p!^{\sigma}, \sigma>0$
- We shall write * if we want to treat the $\left\{M_{p}\right\}$ - and $\left(M_{p}\right)$-case simultaneously.

Spaces of ultradifferentiable functions

- Let $\left(M_{p}\right)_{p \in \mathbb{N}}$ be a sequence of positive reals.
- $\mathcal{E}^{\left\{M_{p}\right\}}\left(\mathbb{R}^{d}\right)$ stands for the space of all $\varphi \in C^{\infty}\left(\mathbb{R}^{d}\right)$ such that for all $K \Subset \mathbb{R}^{d}$ there is some $h>0$ such that

$$
\begin{equation*}
\sup _{\alpha \in \mathbb{N}^{d}} \max _{x \in K} \frac{\left|\partial^{\alpha} \varphi(x)\right|}{h^{|\alpha|} M_{|\alpha|}}<\infty \tag{2}
\end{equation*}
$$

- $\mathcal{E}^{\left(M_{p}\right)}\left(\mathbb{R}^{d}\right)$ stand for the space of all $\varphi \in C^{\infty}\left(\mathbb{R}^{d}\right)$ such that for all $K \Subset \mathbb{R}^{d}$ and all $h>0$ the bound (2) holds.
- Examples: $M_{p}=p!^{\sigma}, \sigma>0$.
- We shall write $*$ if we want to treat the $\left\{M_{p}\right\}$ - and $\left(M_{p}\right)$-case simultaneously.

Spaces of ultradifferentiable functions

- Let $\left(M_{p}\right)_{p \in \mathbb{N}}$ be a sequence of positive reals.
- $\mathcal{E}^{\left\{M_{p}\right\}}\left(\mathbb{R}^{d}\right)$ stands for the space of all $\varphi \in C^{\infty}\left(\mathbb{R}^{d}\right)$ such that for all $K \Subset \mathbb{R}^{d}$ there is some $h>0$ such that

$$
\begin{equation*}
\sup _{\alpha \in \mathbb{N}^{d}} \max _{x \in K} \frac{\left|\partial^{\alpha} \varphi(x)\right|}{h^{|\alpha|} M_{|\alpha|}}<\infty \tag{2}
\end{equation*}
$$

- $\mathcal{E}^{\left(M_{p}\right)}\left(\mathbb{R}^{d}\right)$ stand for the space of all $\varphi \in C^{\infty}\left(\mathbb{R}^{d}\right)$ such that for all $K \Subset \mathbb{R}^{d}$ and all $h>0$ the bound (2) holds.
- Examples: $M_{p}=p!^{\sigma}, \sigma>0$.
- We shall write * if we want to treat the $\left\{M_{p}\right\}$ - and $\left(M_{p}\right)$-case simultaneously.

Spaces of ultradifferentiable functions

- Let $\left(M_{p}\right)_{p \in \mathbb{N}}$ be a sequence of positive reals.
- $\mathcal{E}^{\left\{M_{p}\right\}}\left(\mathbb{R}^{d}\right)$ stands for the space of all $\varphi \in C^{\infty}\left(\mathbb{R}^{d}\right)$ such that for all $K \Subset \mathbb{R}^{d}$ there is some $h>0$ such that

$$
\begin{equation*}
\sup _{\alpha \in \mathbb{N}^{d}} \max _{x \in K} \frac{\left|\partial^{\alpha} \varphi(x)\right|}{h^{|\alpha|} M_{|\alpha|}}<\infty \tag{2}
\end{equation*}
$$

- $\mathcal{E}^{\left(M_{p}\right)}\left(\mathbb{R}^{d}\right)$ stand for the space of all $\varphi \in C^{\infty}\left(\mathbb{R}^{d}\right)$ such that for all $K \Subset \mathbb{R}^{d}$ and all $h>0$ the bound (2) holds.
- Examples: $M_{p}=p!^{\sigma}, \sigma>0$.
- We shall write * if we want to treat the $\left\{M_{p}\right\}$ - and $\left(M_{p}\right)$-case simultaneously.

Conditions on M_{p}

- We shall impose the following conditions on M_{p} : (M.1) $M_{p}^{2} \leq M_{p-1} M_{p+1}, p \in \mathbb{Z}_{+}$.
(M.2) $M_{p+q} \leq C H^{P} M_{p} M_{q}, p, q \in \mathbb{N}$, for some $C, H>0$
(M.5) There exist $C, q>0$ such that M_{p}^{q} is strongly non-quasianalytic, i.e.,

$$
\sum_{j=p+1}^{\infty} \frac{M_{j-1}^{q}}{M_{j}^{q}} \leq C p \frac{M_{p}^{q}}{M_{p+1}^{q}},
$$

- Example: $M_{p}=p!^{\sigma}, \sigma>0$.

Conditions on M_{p}

- We shall impose the following conditions on M_{p} :
(M.1) $M_{p}^{2} \leq M_{p-1} M_{p+1}, p \in \mathbb{Z}_{+}$.
(M.2) $M_{p+q} \leq C H^{p} M_{p} M_{q}, p, q \in \mathbb{N}$, for some $C, H>0$.
(M.5) There exist C,q

- Example: $M_{p}=p!^{\sigma}, \sigma>0$.

Conditions on M_{p}

- We shall impose the following conditions on M_{p} :
(M.1) $M_{p}^{2} \leq M_{p-1} M_{p+1}, p \in \mathbb{Z}_{+}$.
(M.2) $M_{p+q} \leq C H^{p} M_{p} M_{q}, p, q \in \mathbb{N}$, for some $C, H>0$.
(M.5) There exist $C, q>0$ such that M_{p}^{q} is strongly non-quasianalytic, i.e.,

$$
\sum_{j=p+1}^{\infty} \frac{M_{j-1}^{q}}{M_{j}^{q}} \leq C p \frac{M_{p}^{q}}{M_{p+1}^{q}}, \quad p \in \mathbb{Z}_{+}
$$

- Example: $M_{p}=p!^{\sigma}, \sigma>0$.

Conditions on M_{p}

- We shall impose the following conditions on M_{p} :
(M.1) $M_{p}^{2} \leq M_{p-1} M_{p+1}, p \in \mathbb{Z}_{+}$.
(M.2) $M_{p+q} \leq C H^{p} M_{p} M_{q}, p, q \in \mathbb{N}$, for some $C, H>0$.
(M.5) There exist $C, q>0$ such that M_{p}^{q} is strongly non-quasianalytic, i.e.,

$$
\sum_{j=p+1}^{\infty} \frac{M_{j-1}^{q}}{M_{j}^{q}} \leq C p \frac{M_{p}^{q}}{M_{p+1}^{q}}, \quad p \in \mathbb{Z}_{+}
$$

- Example: $M_{p}=p!^{\sigma}, \sigma>0$.

Vector-valued ultradifferentiable functions

- Let M_{p} be a sequence of positive reals and let X be a Banach space.
- $\mathcal{E}{ }^{\left\{M_{p}\right\}}\left(\mathbb{R}^{d} ; X\right)$ stands for the space of all $\varphi \in C^{\infty}\left(\mathbb{R}^{d} ; X\right)$ such that for all $K \Subset \mathbb{R}^{d}$ there is some $h>0$ such that
- $\mathcal{E}^{\left(M_{p}\right)}\left(\mathbb{R}^{d} ; X\right)$ stand for the space of all $\varphi \in C^{\infty}\left(\mathbb{R}^{d} ; X\right)$ such that for all $K \Subset \mathbb{R}^{d}$ and all $h>0$ the bound (3) holds.

Vector-valued ultradifferentiable functions

- Let M_{p} be a sequence of positive reals and let X be a Banach space.
- $\mathcal{E}^{\left\{M_{p}\right\}}\left(\mathbb{R}^{d} ; X\right)$ stands for the space of all $\varphi \in C^{\infty}\left(\mathbb{R}^{d} ; X\right)$ such that for all $K \Subset \mathbb{R}^{d}$ there is some $h>0$ such that

$$
\begin{equation*}
\sup _{\alpha \in \mathbb{N}^{d}} \max _{x \in K} \frac{\left\|\partial^{\alpha} \varphi(x)\right\| x}{h^{|\alpha|} M_{|\alpha|}}<\infty \tag{3}
\end{equation*}
$$

- $\mathcal{E}^{\left(M_{p}\right)}\left(\mathbb{R}^{d} ; X\right)$ stand for the space of all $\varphi \in C^{\infty}\left(\mathbb{R}^{d} ; X\right)$ such that for all $K \Subset \mathbb{R}^{d}$ and all $h>0$ the bound (3) holds.

Vector-valued ultradifferentiable functions

- Let M_{p} be a sequence of positive reals and let X be a Banach space.
- $\mathcal{E}^{\left\{M_{p}\right\}}\left(\mathbb{R}^{d} ; X\right)$ stands for the space of all $\varphi \in C^{\infty}\left(\mathbb{R}^{d} ; X\right)$ such that for all $K \Subset \mathbb{R}^{d}$ there is some $h>0$ such that

$$
\begin{equation*}
\sup _{\alpha \in \mathbb{N}^{d}} \max _{x \in K} \frac{\left\|\partial^{\alpha} \varphi(x)\right\|_{X}}{h^{|\alpha|} M_{|\alpha|}}<\infty \tag{3}
\end{equation*}
$$

- $\mathcal{E}^{\left(M_{p}\right)}\left(\mathbb{R}^{d} ; X\right)$ stand for the space of all $\varphi \in C^{\infty}\left(\mathbb{R}^{d} ; X\right)$ such that for all $K \Subset \mathbb{R}^{d}$ and all $h>0$ the bound (3) holds.

Uniform and exponentially equicontinuous representations

- Let E be a lcHs and let (π, E) be a representation of $\left(\mathbb{R}^{d},+\right)$ in E.
- (π, E) is said to be uniform if for all $p \in \operatorname{csn}(E)$ there is $q \in \operatorname{csn}(E)$ such that

$$
\mathbb{R}^{d} \times E_{q} \rightarrow E_{p}:(x, e) \rightarrow \pi(x) e
$$

is continuous.

- (π, E) is said to be exponentially equicontinuous if there is $k>0$ such that for all $p \in \operatorname{csn}(E)$ there are $q \in \operatorname{csn}(E)$ and $C>0$ such that

$$
p(\pi(x) e) \leq C e^{\kappa|x|} q(e), \quad x \in \mathbb{R}^{d}, e \in E .
$$

- If E is a Banach space, then (π, E) is automatically uniform and exponentially equicontinuous.

Uniform and exponentially equicontinuous representations

- Let E be a lcHs and let (π, E) be a representation of $\left(\mathbb{R}^{d},+\right)$ in E.
- (π, E) is said to be uniform if for all $p \in \operatorname{csn}(E)$ there is $q \in \operatorname{csn}(E)$ such that

$$
\mathbb{R}^{d} \times E_{q} \rightarrow E_{p}:(x, e) \rightarrow \pi(x) e
$$

is continuous.

- (π, E) is said to be exponentially equicontinuous if there is $\kappa>0$ such that for all $p \in \operatorname{csn}(E)$ there are $q \in \operatorname{csn}(E)$ and $C>0$ such that

$$
p(\pi(x) e) \leq C e^{k|x|} q(e), \quad x \in \mathbb{R}^{d}, e \in E .
$$

- If E is a Banach space, then (π, E) is automatically uniform and exponentially equicontinuous.

Uniform and exponentially equicontinuous representations

- Let E be a lcHs and let (π, E) be a representation of $\left(\mathbb{R}^{d},+\right)$ in E.
- (π, E) is said to be uniform if for all $p \in \operatorname{csn}(E)$ there is $q \in \operatorname{csn}(E)$ such that

$$
\mathbb{R}^{d} \times E_{q} \rightarrow E_{p}:(x, e) \rightarrow \pi(x) e
$$

is continuous.

- (π, E) is said to be exponentially equicontinuous if there is $\kappa>0$ such that for all $p \in \operatorname{csn}(E)$ there are $q \in \operatorname{csn}(E)$ and $C>0$ such that

$$
p(\pi(x) e) \leq C e^{\kappa|x|} q(e), \quad x \in \mathbb{R}^{d}, e \in E .
$$

- If E is a Banach space, then (π, E) is automatically uniform and exponentially equicontinuous.

Uniform and exponentially equicontinuous representations

- Let E be a lcHs and let (π, E) be a representation of $\left(\mathbb{R}^{d},+\right)$ in E.
- (π, E) is said to be uniform if for all $p \in \operatorname{csn}(E)$ there is $q \in \operatorname{csn}(E)$ such that

$$
\mathbb{R}^{d} \times E_{q} \rightarrow E_{p}:(x, e) \rightarrow \pi(x) e
$$

is continuous.

- (π, E) is said to be exponentially equicontinuous if there is $\kappa>0$ such that for all $p \in \operatorname{csn}(E)$ there are $q \in \operatorname{csn}(E)$ and $C>0$ such that

$$
p(\pi(x) e) \leq C e^{k|x|} q(e), \quad x \in \mathbb{R}^{d}, e \in E .
$$

- If E is a Banach space, then (π, E) is automatically uniform and exponentially equicontinuous.

Smooth vectors revisited

- Let E be a quasi-complete IcHs and let (π, E) be a representation of $\left(\mathbb{R}^{d},+\right)$ in E. Denote by $\mathcal{B}(E)$ the set of absolutely convex, bounded and closed subsets of E.
- For $B \in \mathcal{B}(E)$ we define

E_{B} is a Banach space and continuously included in E
- $\varphi: \mathbb{R}^{d} \rightarrow E$ is said to be bornologically smooth if there is $B \in B(E)$
such that $\varphi \in C^{\infty}\left(\mathbb{R}^{d} ; E_{B}\right)$.
- $E^{\infty}:=\left\{e \in E \mid \gamma_{e}\right.$ is bornologically smooth $\}$
- Why this definition?

Smooth vectors revisited

- Let E be a quasi-complete IcHs and let (π, E) be a representation of $\left(\mathbb{R}^{d},+\right)$ in E. Denote by $\mathcal{B}(E)$ the set of absolutely convex, bounded and closed subsets of E.
- For $B \in \mathcal{B}(E)$ we define

E_{B} is a Banach space and continuously included in E.
- $\varphi: \mathbb{R}^{d} \rightarrow E$ is said to be bornologically smooth if there is $B \in B(E)$ such that $\varphi \in C^{\infty}\left(\mathbb{R}^{d} ; E_{B}\right)$.
- $E^{\infty}:=\left\{e \in E \mid \gamma_{e}\right.$ is bornologically smooth $\}$
- Why this definition?

Smooth vectors revisited

- Let E be a quasi-complete IcHs and let (π, E) be a representation of $\left(\mathbb{R}^{d},+\right)$ in E. Denote by $\mathcal{B}(E)$ the set of absolutely convex, bounded and closed subsets of E.
- For $B \in \mathcal{B}(E)$ we define

$$
E_{B}:=\operatorname{span} B=\bigcup_{t>0} t B, \quad q_{B}(e):=\inf \{t>0 \mid e \in t B\}
$$

E_{B} is a Banach space and continuously included in E.

- $\varphi: \mathbb{R}^{d} \rightarrow E$ is said to be bornologically smooth if there is $B \in \mathcal{B}(E)$ such that $\varphi \in C^{\infty}\left(\mathbb{R}^{d} ; E_{B}\right)$.
- $E^{\infty}:=\left\{e \in E \mid \gamma_{e}\right.$ is bornologically smooth $\}$
- Why this definition?

Smooth vectors revisited

- Let E be a quasi-complete IcHs and let (π, E) be a representation of $\left(\mathbb{R}^{d},+\right)$ in E. Denote by $\mathcal{B}(E)$ the set of absolutely convex, bounded and closed subsets of E.
- For $B \in \mathcal{B}(E)$ we define

$$
E_{B}:=\operatorname{span} B=\bigcup_{t>0} t B, \quad q_{B}(e):=\inf \{t>0 \mid e \in t B\} .
$$

E_{B} is a Banach space and continuously included in E.

- $\varphi: \mathbb{R}^{d} \rightarrow E$ is said to be bornologically smooth if there is $B \in \mathcal{B}(E)$ such that $\varphi \in C^{\infty}\left(\mathbb{R}^{d} ; E_{B}\right)$.
- $E^{\infty}:=\left\{e \in E \mid \gamma_{e}\right.$ is bornologically smooth $\}$
- Why this definition?

Smooth vectors revisited

- Let E be a quasi-complete IcHs and let (π, E) be a representation of $\left(\mathbb{R}^{d},+\right)$ in E. Denote by $\mathcal{B}(E)$ the set of absolutely convex, bounded and closed subsets of E.
- For $B \in \mathcal{B}(E)$ we define

$$
E_{B}:=\operatorname{span} B=\bigcup_{t>0} t B, \quad q_{B}(e):=\inf \{t>0 \mid e \in t B\} .
$$

E_{B} is a Banach space and continuously included in E.

- $\varphi: \mathbb{R}^{d} \rightarrow E$ is said to be bornologically smooth if there is $B \in \mathcal{B}(E)$ such that $\varphi \in C^{\infty}\left(\mathbb{R}^{d} ; E_{B}\right)$.
- $E^{\infty}:=\left\{e \in E \mid \gamma_{e}\right.$ is bornologically smooth $\}$
- Why this definition?

Smooth vectors revisited

- Let E be a quasi-complete IcHs and let (π, E) be a representation of $\left(\mathbb{R}^{d},+\right)$ in E. Denote by $\mathcal{B}(E)$ the set of absolutely convex, bounded and closed subsets of E.
- For $B \in \mathcal{B}(E)$ we define

$$
E_{B}:=\operatorname{span} B=\bigcup_{t>0} t B, \quad q_{B}(e):=\inf \{t>0 \mid e \in t B\} .
$$

E_{B} is a Banach space and continuously included in E.

- $\varphi: \mathbb{R}^{d} \rightarrow E$ is said to be bornologically smooth if there is $B \in \mathcal{B}(E)$ such that $\varphi \in C^{\infty}\left(\mathbb{R}^{d} ; E_{B}\right)$.
- $E^{\infty}:=\left\{e \in E \mid \gamma_{e}\right.$ is bornologically smooth $\}$.
- Why this definition?

Smooth vectors revisited

- Let E be a quasi-complete IcHs and let (π, E) be a representation of $\left(\mathbb{R}^{d},+\right)$ in E. Denote by $\mathcal{B}(E)$ the set of absolutely convex, bounded and closed subsets of E.
- For $B \in \mathcal{B}(E)$ we define

$$
E_{B}:=\operatorname{span} B=\bigcup_{t>0} t B, \quad q_{B}(e):=\inf \{t>0 \mid e \in t B\} .
$$

E_{B} is a Banach space and continuously included in E.

- $\varphi: \mathbb{R}^{d} \rightarrow E$ is said to be bornologically smooth if there is $B \in \mathcal{B}(E)$ such that $\varphi \in C^{\infty}\left(\mathbb{R}^{d} ; E_{B}\right)$.
- $E^{\infty}:=\left\{e \in E \mid \gamma_{e}\right.$ is bornologically smooth $\}$.
- Why this definition?

Ultradifferentiable vectors

- Let $\left(M_{p}\right)_{p \in \mathbb{N}}$ be a sequence of positive reals.
- $\varphi: \mathbb{R}^{d} \rightarrow E$ is said to be bornologically ultradifferentiable of class * if there is $B \in \mathcal{B}(E)$ such that $\varphi \in \mathcal{E}^{*}\left(\mathbb{R}^{d} ; E_{B}\right)$.
- $E^{*}:=\left\{e \in E \mid \gamma_{e}\right.$ is bornologically ultradifferentiable of class $\left.*\right\}$
- If E is a Fréchet space, then $E^{\{p!\}}$ coincides with the space E^{ω} of analytic vectors considered by G-K-L.

Ultradifferentiable vectors

- Let $\left(M_{p}\right)_{p \in \mathbb{N}}$ be a sequence of positive reals.
- $\varphi: \mathbb{R}^{d} \rightarrow E$ is said to be bornologically ultradifferentiable of class $*$ if there is $B \in \mathcal{B}(E)$ such that $\varphi \in \mathcal{E}^{*}\left(\mathbb{R}^{d} ; E_{B}\right)$.
- $E^{*}:=\left\{e \in E \mid \gamma_{e}\right.$ is bornologically ultradifferentiable of class $\left.*\right\}$
- If E is a Fréchet space, then $E^{\{p!\}}$ coincides with the space E^{ω} of analytic vectors considered by G-K-L.

Ultradifferentiable vectors

- Let $\left(M_{p}\right)_{p \in \mathbb{N}}$ be a sequence of positive reals.
- $\varphi: \mathbb{R}^{d} \rightarrow E$ is said to be bornologically ultradifferentiable of class $*$ if there is $B \in \mathcal{B}(E)$ such that $\varphi \in \mathcal{E}^{*}\left(\mathbb{R}^{d} ; E_{B}\right)$.
- $E^{*}:=\left\{e \in E \mid \gamma_{e}\right.$ is bornologically ultradifferentiable of class $\left.*\right\}$.
- If E is a Fréchet space, then $E\{p!\}$ coincides with the space E^{ω} of analytic vectors considered by G-K-L.

Ultradifferentiable vectors

- Let $\left(M_{p}\right)_{p \in \mathbb{N}}$ be a sequence of positive reals.
- $\varphi: \mathbb{R}^{d} \rightarrow E$ is said to be bornologically ultradifferentiable of class $*$ if there is $B \in \mathcal{B}(E)$ such that $\varphi \in \mathcal{E}^{*}\left(\mathbb{R}^{d} ; E_{B}\right)$.
- $E^{*}:=\left\{e \in E \mid \gamma_{e}\right.$ is bornologically ultradifferentiable of class $\left.*\right\}$.
- If E is a Fréchet space, then $E^{\{p!\}}$ coincides with the space E^{ω} of analytic vectors considered by G-K-L.

Example: Weighted Beurling algebras

- For $k \geq 0$ we define the L_{k}^{1} as the Banach space of all measurable functions f on \mathbb{R}^{d} such that

$$
\|f\|_{L_{k}^{1}}:=\int_{\mathbb{R}^{d}}|f(x)| e^{k|x|} d x<\infty
$$

- Consider the representation of $\left(\mathbb{R}^{d},+\right)$ in L_{k}^{1} via translation. The space $\left(L_{k}^{1}\right)^{*}$ of ultradifferentiable vectors of class $*$ is given by

where $\mathcal{D}_{L_{k}^{1}}^{M_{p}, h}$ is the Banach space of all $\varphi \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}\right)$ such that

- The convolution algebra $\left(\mathcal{D}_{L_{k}^{1}}^{*}, *\right)$ is the suitable analogue of $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ in the present situation.

Example: Weighted Beurling algebras

- For $k \geq 0$ we define the L_{k}^{1} as the Banach space of all measurable functions f on \mathbb{R}^{d} such that

$$
\|f\|_{L_{k}^{1}}:=\int_{\mathbb{R}^{d}}|f(x)| e^{k|x|} d x<\infty
$$

- Consider the representation of $\left(\mathbb{R}^{d},+\right)$ in L_{k}^{1} via translation.

in the present situation.

Example: Weighted Beurling algebras

- For $k \geq 0$ we define the L_{k}^{1} as the Banach space of all measurable functions f on \mathbb{R}^{d} such that

$$
\|f\|_{L_{k}^{1}}:=\int_{\mathbb{R}^{d}}|f(x)| e^{k|x|} d x<\infty
$$

- Consider the representation of $\left(\mathbb{R}^{d},+\right)$ in L_{k}^{1} via translation. The space $\left(L_{k}^{1}\right)^{*}$ of ultradifferentiable vectors of class $*$ is given by

$$
\mathcal{D}_{L_{k}^{1}}^{\left\{M_{p}\right\}}=\bigcup_{h>0} \mathcal{D}_{L_{k}^{p}}^{M_{p}, h}, \quad \mathcal{D}_{L_{k}^{p}}^{\left(M_{p}\right)}=\bigcap_{h>0} \mathcal{D}_{L_{k}^{1}}^{M_{p}, h}
$$

where $\mathcal{D}_{L_{k}^{\prime}}^{M_{p}, h}$ is the Banach space of all $\varphi \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}\right)$ such that

$$
\frac{\left\|\partial^{\alpha} \varphi\right\|_{L_{k}^{1}}}{h^{|\alpha|} M_{\alpha}}<\infty
$$

- The convolution algebra $\left(\mathcal{D}_{L_{k}^{1}}^{*}, *\right)$ is the suitable analogue of $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$
in the present situation.

Example: Weighted Beurling algebras

- For $k \geq 0$ we define the L_{k}^{1} as the Banach space of all measurable functions f on \mathbb{R}^{d} such that

$$
\|f\|_{L_{k}^{1}}:=\int_{\mathbb{R}^{d}}|f(x)| e^{k|x|} d x<\infty
$$

- Consider the representation of $\left(\mathbb{R}^{d},+\right)$ in L_{k}^{1} via translation. The space $\left(L_{k}^{1}\right)^{*}$ of ultradifferentiable vectors of class $*$ is given by

$$
\mathcal{D}_{L_{k}^{1}}^{\left\{M_{p}\right\}}=\bigcup_{h>0} \mathcal{D}_{L_{k}^{P}}^{M_{p}, h}, \quad \mathcal{D}_{L_{k}^{1}}^{\left(M_{p}\right)}=\bigcap_{h>0} \mathcal{D}_{L_{k}^{1}}^{M_{p}, h}
$$

where $\mathcal{D}_{L_{k}^{\prime}}^{M_{p}, h}$ is the Banach space of all $\varphi \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}\right)$ such that

$$
\frac{\left\|\partial^{\alpha} \varphi\right\|_{L_{k}^{1}}}{h^{|\alpha|} M_{\alpha}}<\infty
$$

- The convolution algebra $\left(\mathcal{D}_{L_{k}^{1}}^{*}, *\right)$ is the suitable analogue of $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ in the present situation.

The induced action by π

- Let E be a quasi-complete IcHs space and let (π, E) be a uniform and exponentially equicontinuous representation of $\left(\mathbb{R}^{d},+\right)$ in E.
- Let $k>k$. The representation (π, E) induces an action of $\left(\mathcal{D}_{L_{k}^{1}}^{*}, *\right)$ on E via

$$
\Pi(\varphi) e:=\int_{\mathbb{R}^{d}} f(x) \pi(x) e d x, \quad \varphi \in \mathcal{D}_{L_{k}^{1}}^{*}, e \in E
$$

- Π restricts to an action on E^{*},i.e., E^{*} is a module $\operatorname{over}\left(\mathcal{D}_{L_{k}^{1}}^{*}, *\right)$.

The induced action by π

- Let E be a quasi-complete IcHs space and let (π, E) be a uniform and exponentially equicontinuous representation of $\left(\mathbb{R}^{d},+\right)$ in E.
- Let $k>\kappa$. The representation (π, E) induces an action of $\left(\mathcal{D}_{L_{k}^{1}}^{*}, *\right)$ on E via

$$
\Pi(\varphi) e:=\int_{\mathbb{R}^{d}} f(x) \pi(x) e d x, \quad \varphi \in \mathcal{D}_{L_{k}^{1}}^{*}, e \in E
$$

- Π restricts to an action on E^{*},i.e., E^{*} is a module over $\left(\mathcal{D}_{L_{k}^{1}}^{*}, *\right)$

The induced action by π

- Let E be a quasi-complete IcHs space and let (π, E) be a uniform and exponentially equicontinuous representation of $\left(\mathbb{R}^{d},+\right)$ in E.
- Let $k>\kappa$. The representation (π, E) induces an action of $\left(\mathcal{D}_{L_{k}^{1}}^{*}, *\right)$ on E via

$$
\Pi(\varphi) e:=\int_{\mathbb{R}^{d}} f(x) \pi(x) e d x, \quad \varphi \in \mathcal{D}_{L_{k}^{1}}^{*}, e \in E
$$

- Π restricts to an action on E^{*},i.e., E^{*} is a module $\operatorname{over}\left(\mathcal{D}_{L_{k}^{\frac{1}{2}}}^{*}, *\right)$.

The main result

Theorem

Let E be a quasi-complete IcHs space and let (π, E) be a uniform and exponentially equicontinuous representation of $\left(\mathbb{R}^{d},+\right)$ in E and let $k>\kappa$. Let M_{p} be a weight sequence satisfying (M.1), (M.2), and (M.5). Then, E^{*} has the strong factorization property, that is,

The main result

Theorem

Let E be a quasi-complete IcHs space and let (π, E) be a uniform and exponentially equicontinuous representation of $\left(\mathbb{R}^{d},+\right)$ in E and let $k>\kappa$. Let M_{p} be a weight sequence satisfying (M.1), (M.2), and (M.5).

The main result

Theorem

Let E be a quasi-complete IcHs space and let (π, E) be a uniform and exponentially equicontinuous representation of $\left(\mathbb{R}^{d},+\right)$ in E and let $k>\kappa$. Let M_{p} be a weight sequence satisfying (M.1), (M.2), and (M.5). Then, E^{*} has the strong factorization property, that is,

$$
E^{*}=\Pi\left(\mathcal{D}_{L_{k}^{1}}^{*}\right) E^{*}
$$

Example：Factorization of $\mathcal{D}_{L p}^{*}$ and $\dot{\mathcal{B}}^{*}$

－Let $E=L^{p}, 1 \leq p<\infty$ ，or C_{0} ．
－Let (π, E) be the representation of $\left(\mathbb{R}^{d},+\right)$ in E via translation． Then，$E^{*}=\mathcal{D}_{L^{p}}^{*}$ or $\dot{\mathcal{B}}^{*}$（ultradifferentiable analogues of $\mathcal{D}_{L^{p}}$ and $\dot{\mathcal{B}}$ ）．

Theorem

Let M_{p} be a weight sequence satisfying（M．1），（M．2），and（M．5）．For all $k>0$ it holds that

$$
\mathcal{D}_{L^{p}}^{*}=\mathcal{D}_{L_{k}^{1}}^{*} * \mathcal{D}_{L^{p}}^{*} \quad \text { and } \quad \dot{\mathcal{B}}^{*}=\mathcal{D}_{L_{k}^{1}}^{*} * \dot{\mathcal{B}}^{*}
$$

－A Similar result holds for weighted versions of these spaces．

Example: Factorization of $\mathcal{D}_{L p}^{*}$ and $\dot{\mathcal{B}}^{*}$

- Let $E=L^{p}, 1 \leq p<\infty$, or C_{0}.
- Let (π, E) be the representation of $\left(\mathbb{R}^{d},+\right)$ in E via translation. Then, $E^{*}=\mathcal{D}_{L p}^{*}$ or $\dot{\mathcal{B}}^{*}$ (ultradifferentiable analogues of $\mathcal{D}_{L^{p}}$ and \mathcal{B})

Theorem

let M_{p} be a weight sequence satisfying (M.1), (M.2), and (M.5). For all $k>0$ it holds that

$$
\mathcal{D}_{L^{p}}^{*}=\mathcal{D}_{L_{k}^{1}}^{*} * \mathcal{D}_{L^{p}}^{*} \quad \text { and } \quad \dot{\mathcal{B}}^{*}=\mathcal{D}_{L_{k}^{1}}^{*} * \dot{\mathcal{B}}^{*} .
$$

- A Similar result holds for weighted versions of these spaces.

Example: Factorization of $\mathcal{D}_{L p}^{*}$ and $\dot{\mathcal{B}}^{*}$

- Let $E=L^{p}, 1 \leq p<\infty$, or C_{0}.
- Let (π, E) be the representation of $\left(\mathbb{R}^{d},+\right)$ in E via translation. Then, $E^{*}=\mathcal{D}_{L^{p}}^{*}$ or $\dot{\mathcal{B}}^{*}$ (ultradifferentiable analogues of $\mathcal{D}_{L^{p}}$ and $\dot{\mathcal{B}}$).

Theorem

Let M_{p} be a weight sequence satisfying (M.1), (M.2), and (M.5). For all $k>0$ it holds that

$$
\mathcal{D}_{L^{p}}^{*}=\mathcal{D}_{L_{k}^{1}}^{*} * \mathcal{D}_{L^{p}}^{*} \quad \text { and } \quad \dot{\mathcal{B}}^{*}=\mathcal{D}_{L_{k}^{1}}^{*} * \dot{\mathcal{B}}^{*} .
$$

- A Similar result holds for weighted versions of these spaces.

Example: Factorization of $\mathcal{D}_{L_{p}}^{*}$ and $\dot{\mathcal{B}}^{*}$

- Let $E=L^{p}, 1 \leq p<\infty$, or C_{0}.
- Let (π, E) be the representation of $\left(\mathbb{R}^{d},+\right)$ in E via translation. Then, $E^{*}=\mathcal{D}_{L^{p}}^{*}$ or $\dot{\mathcal{B}}^{*}$ (ultradifferentiable analogues of $\mathcal{D}_{L^{p}}$ and $\dot{\mathcal{B}}$).

Theorem

Let M_{p} be a weight sequence satisfying (M.1), (M.2), and (M.5). For all $k>0$ it holds that

$$
\mathcal{D}_{L^{p}}^{*}=\mathcal{D}_{L_{k}^{1}}^{*} * \mathcal{D}_{L^{p}}^{*} \quad \text { and } \quad \dot{\mathcal{B}}^{*}=\mathcal{D}_{L_{k}^{1}}^{*} * \dot{\mathcal{B}}^{*}
$$

- A Similar result holds for weighted versions of these spaces.

Example: Factorization of $\mathcal{D}_{L^{p}}^{*}$ and $\dot{\mathcal{B}}^{*}$

- Let $E=L^{p}, 1 \leq p<\infty$, or C_{0}.
- Let (π, E) be the representation of $\left(\mathbb{R}^{d},+\right)$ in E via translation. Then, $E^{*}=\mathcal{D}_{L^{p}}^{*}$ or $\dot{\mathcal{B}}^{*}$ (ultradifferentiable analogues of $\mathcal{D}_{L^{p}}$ and $\dot{\mathcal{B}}$).

Theorem

Let M_{p} be a weight sequence satisfying (M.1), (M.2), and (M.5). For all $k>0$ it holds that

$$
\mathcal{D}_{L^{p}}^{*}=\mathcal{D}_{L_{k}^{1}}^{*} * \mathcal{D}_{L^{p}}^{*} \quad \text { and } \quad \dot{\mathcal{B}}^{*}=\mathcal{D}_{L_{k}^{1}}^{*} * \dot{\mathcal{B}}^{*}
$$

- A Similar result holds for weighted versions of these spaces.

Gelfand-Shilov spaces (spaces of type \mathcal{S})

- Let ω be a positive increasing function on $[0, \infty)$ such that $\omega(t) \rightarrow \infty$ as $t \rightarrow \infty$ and let M_{p} be a sequence of positive reals.
- Define $\mathcal{S}_{\omega, h}^{M_{p}, h}, h>0$, as the space of all $\varphi \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}\right)$ such that

- Set

- Example: If $M_{p}=p!^{\sigma}$ and $\omega(t)=t^{1 / \tau}, \sigma, \tau>0$, then $\mathcal{S}_{\{\omega\}}^{\left\{M_{p}\right\}}$ is equal to the Gelfand-Shilov space $\mathcal{S}_{\tau}^{\sigma}$.

Gelfand-Shilov spaces (spaces of type \mathcal{S})

- Let ω be a positive increasing function on $[0, \infty)$ such that $\omega(t) \rightarrow \infty$ as $t \rightarrow \infty$ and let M_{p} be a sequence of positive reals.
- Define $\mathcal{S}_{\omega, h}^{M_{p}, h}, h>0$, as the space of all $\varphi \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}\right)$ such that

$$
\sup _{\alpha \in \mathbb{N}^{d}} \sup _{x \in \mathbb{R}^{d}} \frac{\left|\partial^{\alpha} \varphi(x)\right| e^{\omega(|x| / h)}}{h^{|\alpha|} M_{|\alpha|}}<\infty
$$

- Set

- Example: If $M_{p}=p!^{\sigma}$ and $\omega(t)=t^{1 / \tau}, \sigma, \tau>0$, then $\mathcal{S}_{\{\omega\}}^{\left\{M_{p}\right\}}$ is equal to the Gelfand-Shilov space $\mathcal{S}_{\tau}^{\sigma}$.

Gelfand-Shilov spaces (spaces of type \mathcal{S})

- Let ω be a positive increasing function on $[0, \infty)$ such that $\omega(t) \rightarrow \infty$ as $t \rightarrow \infty$ and let M_{p} be a sequence of positive reals.
- Define $\mathcal{S}_{\omega, h}^{M_{p}, h}, h>0$, as the space of all $\varphi \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}\right)$ such that

$$
\sup _{\alpha \in \mathbb{N}^{d}} \sup _{x \in \mathbb{R}^{d}} \frac{\left|\partial^{\alpha} \varphi(x)\right| e^{\omega(|x| / h)}}{h^{|\alpha|} M_{|\alpha|}}<\infty
$$

- Set

$$
\mathcal{S}_{\{\omega\}}^{\left\{M_{p}\right\}}=\bigcup_{h>0} \mathcal{S}_{\omega, h}^{M_{p}, h} \quad \mathcal{S}_{(\omega)}^{\left(M_{p}\right)}=\bigcap_{h>0} \mathcal{S}_{\omega, h}^{M_{p}, h}
$$

- Example: If $M_{p}=p!^{\sigma}$ and $\omega(t)=t^{1 / \tau}, \sigma, \tau>0$, then $\mathcal{S}_{\{\omega\}}^{\left\{M_{p}\right\}}$ is equal to the Gelfand-Shilov space $\mathcal{S}_{\tau}^{\sigma}$.

Gelfand-Shilov spaces (spaces of type \mathcal{S})

- Let ω be a positive increasing function on $[0, \infty)$ such that $\omega(t) \rightarrow \infty$ as $t \rightarrow \infty$ and let M_{p} be a sequence of positive reals.
- Define $\mathcal{S}_{\omega, h}^{M_{p}, h}, h>0$, as the space of all $\varphi \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}\right)$ such that

$$
\sup _{\alpha \in \mathbb{N}^{d}} \sup _{x \in \mathbb{R}^{d}} \frac{\left|\partial^{\alpha} \varphi(x)\right| e^{\omega(|x| / h)}}{h^{|\alpha|} M_{|\alpha|}}<\infty
$$

- Set

$$
\mathcal{S}_{\{\omega\}}^{\left\{M_{p}\right\}}=\bigcup_{h>0} \mathcal{S}_{\omega, h}^{M_{p}, h} \quad \mathcal{S}_{(\omega)}^{\left(M_{p}\right)}=\bigcap_{h>0} \mathcal{S}_{\omega, h}^{M_{p}, h}
$$

- Example: If $M_{p}=p!^{\sigma}$ and $\omega(t)=t^{1 / \tau}, \sigma, \tau>0$, then $\mathcal{S}_{\{\omega\}}^{\left\{M_{p}\right\}}$ is equal to the Gelfand-Shilov space $\mathcal{S}_{\tau}^{\sigma}$.

Example: Factorization of Gelfand-Shilov spaces (1)

- Define $C_{\omega, h}, h>0$, as the Banach space of all $f \in C\left(\mathbb{R}^{d}\right)$ such that

$$
\sup _{x \in \mathbb{R}^{d}}|f(x)| e^{\omega(|x| / h)}<\infty
$$

- Set

in E via translation:
e (π, \boldsymbol{F}) is almays uniform.
- $\left(\pi, C_{\{\omega\}}\right)$ is exponentially equicontinuous if $\omega(t)=O(t)$.
- $\left(\pi, C_{(\omega)}\right)$ is exponentially equicontinuous if $\omega(t)=o(t)$.

Example: Factorization of Gelfand-Shilov spaces (1)

- Define $C_{\omega, h}, h>0$, as the Banach space of all $f \in C\left(\mathbb{R}^{d}\right)$ such that

$$
\sup _{x \in \mathbb{R}^{d}}|f(x)| e^{\omega(|x| / h)}<\infty .
$$

- Set

$$
C_{\{\omega\}}=\lim _{h \rightarrow \infty} C_{\omega, h}, \quad C_{\{\omega\}}=\lim _{h \rightarrow 0^{+}} C_{\omega, h} .
$$

- Let $E=C_{\{\omega\}}$ or $C_{(\omega)}$ and let (π, E) be the representation of $\left(\mathbb{R}^{d},+\right)$ in E via translation:
- (π, E) is always uniform.
- $\left(\pi, C_{\{\omega\}}\right)$ is exponentially equicontinuous if $\omega(t)=O(t)$.
- $(\pi, C(\omega))$ is exponentially equicontinuous if $\omega(t)=0(t)$.

Example: Factorization of Gelfand-Shilov spaces (1)

- Define $C_{\omega, h}, h>0$, as the Banach space of all $f \in C\left(\mathbb{R}^{d}\right)$ such that

$$
\sup _{x \in \mathbb{R}^{d}}|f(x)| e^{\omega(|x| / h)}<\infty
$$

- Set

$$
C_{\{\omega\}}=\lim _{h \rightarrow \infty} C_{\omega, h}, \quad C_{\{\omega\}}=\lim _{h \rightarrow 0^{+}} C_{\omega, h} .
$$

- Let $E=C_{\{\omega\}}$ or $C_{(\omega)}$ and let (π, E) be the representation of $\left(\mathbb{R}^{d},+\right)$ in E via translation:

Example: Factorization of Gelfand-Shilov spaces (1)

- Define $C_{\omega, h}, h>0$, as the Banach space of all $f \in C\left(\mathbb{R}^{d}\right)$ such that

$$
\sup _{x \in \mathbb{R}^{d}}|f(x)| e^{\omega(|x| / h)}<\infty
$$

- Set

$$
C_{\{\omega\}}=\lim _{h \rightarrow \infty} C_{\omega, h}, \quad C_{\{\omega\}}=\lim _{h \rightarrow 0^{+}} C_{\omega, h} .
$$

- Let $E=C_{\{\omega\}}$ or $C_{(\omega)}$ and let (π, E) be the representation of $\left(\mathbb{R}^{d},+\right)$ in E via translation:
- (π, E) is always uniform.
$-\left(\pi, C_{\{\omega\}}\right)$ is exponentially equicontinuous if $\omega(t)=O(t)$.
$\cdot\left(\pi, C_{(\omega)}\right)$ is exponentially equicontinuous if $\omega(t)=O(t)$.

Example: Factorization of Gelfand-Shilov spaces (1)

- Define $C_{\omega, h}, h>0$, as the Banach space of all $f \in C\left(\mathbb{R}^{d}\right)$ such that

$$
\sup _{x \in \mathbb{R}^{d}}|f(x)| e^{\omega(|x| / h)}<\infty
$$

- Set

$$
C_{\{\omega\}}=\lim _{h \rightarrow \infty} C_{\omega, h}, \quad C_{\{\omega\}}=\lim _{h \rightarrow 0^{+}} C_{\omega, h} .
$$

- Let $E=C_{\{\omega\}}$ or $C_{(\omega)}$ and let (π, E) be the representation of $\left(\mathbb{R}^{d},+\right)$ in E via translation:
- (π, E) is always uniform.
- $\left(\pi, C_{\{\omega\}}\right)$ is exponentially equicontinuous if $\omega(t)=O(t)$.

Example: Factorization of Gelfand-Shilov spaces (1)

- Define $C_{\omega, h}, h>0$, as the Banach space of all $f \in C\left(\mathbb{R}^{d}\right)$ such that

$$
\sup _{x \in \mathbb{R}^{d}}|f(x)| e^{\omega(|x| / h)}<\infty .
$$

- Set

$$
C_{\{\omega\}}=\lim _{h \rightarrow \infty} C_{\omega, h}, \quad C_{\{\omega\}}=\lim _{h \rightarrow 0^{+}} C_{\omega, h} .
$$

- Let $E=C_{\{\omega\}}$ or $C_{(\omega)}$ and let (π, E) be the representation of $\left(\mathbb{R}^{d},+\right)$ in E via translation:
- (π, E) is always uniform.
- ($\left.\pi, C_{\{\omega\}}\right)$ is exponentially equicontinuous if $\omega(t)=O(t)$.
- $\left(\pi, C_{(\omega)}\right)$ is exponentially equicontinuous if $\omega(t)=o(t)$.

Example: Factorization of Gelfand-Shilov spaces (1)

- Define $C_{\omega, h}, h>0$, as the Banach space of all $f \in C\left(\mathbb{R}^{d}\right)$ such that

$$
\sup _{x \in \mathbb{R}^{d}}|f(x)| e^{\omega(|x| / h)}<\infty
$$

- Set

$$
C_{\{\omega\}}=\lim _{h \rightarrow \infty} C_{\omega, h}, \quad C_{\{\omega\}}=\lim _{h \rightarrow 0^{+}} C_{\omega, h} .
$$

- Let $E=C_{\{\omega\}}$ or $C_{(\omega)}$ and let (π, E) be the representation of $\left(\mathbb{R}^{d},+\right)$ in E via translation:
- (π, E) is always uniform.
- ($\left.\pi, C_{\{\omega\}}\right)$ is exponentially equicontinuous if $\omega(t)=O(t)$.
- $\left(\pi, C_{(\omega)}\right)$ is exponentially equicontinuous if $\omega(t)=o(t)$.
- $\left(C_{\{\omega\}}\right)^{\left\{M_{p}\right\}}=\mathcal{S}_{\{\omega\}}^{\left\{M_{p}\right\}}$ and $\left(C_{(\omega)}\right)^{\left(M_{p}\right)}=\mathcal{S}_{(\omega)}^{\left(M_{p}\right)}$.

Example: Factorization of Gelfand-Shilov spaces (2)

Theorem

Let M_{p} be a weight sequence satisfying (M.1), (M.2), and (M.5) and let $\omega(t)=O(t)\left(\omega(t)=o(t)\right.$ in the $\left(M_{p}\right)$-case $)$. Then, for $k>0$ large enough it holds that

$$
\mathcal{S}_{\{\omega\}}^{\left\{M_{p}\right\}}=\mathcal{D}_{L_{k}^{1}}^{\left\{M_{p}\right\}} * \mathcal{S}_{\{\omega\}}^{\left\{M_{p}\right\}} \quad \text { and } \quad \mathcal{S}_{(\omega)}^{\left(M_{p}\right)}=\mathcal{D}_{L_{k}^{1}}^{\left(M_{p}\right)} * \mathcal{S}_{(\omega)}^{\left(M_{p}\right)} .
$$

In particular,

- Similar result holds for spaces of type \mathcal{O}_{C}.

Example: Factorization of Gelfand-Shilov spaces (2)

Theorem

Let M_{p} be a weight sequence satisfying (M.1), (M.2), and (M.5) and let $\omega(t)=O(t)\left(\omega(t)=o(t)\right.$ in the $\left(M_{p}\right)$-case $)$. Then, for $k>0$ large enough it holds that

$$
\mathcal{S}_{\{\omega\}}^{\left\{M_{p}\right\}}=\mathcal{D}_{L_{k}^{1}}^{\left\{M_{p}\right\}} * \mathcal{S}_{\{\omega\}}^{\left\{M_{p}\right\}} \quad \text { and } \quad \mathcal{S}_{(\omega)}^{\left(M_{p}\right)}=\mathcal{D}_{L_{k}^{1}}^{\left(M_{p}\right)} * \mathcal{S}_{(\omega)}^{\left(M_{p}\right)} .
$$

In particular,

$$
\mathcal{S}_{\{\omega\}}^{\left\{M_{p}\right\}}=\mathcal{S}_{\{\omega\}}^{\left\{M_{p}\right\}} * \mathcal{S}_{\{\omega\}}^{\left\{M_{p}\right\}} \quad \text { and } \quad \mathcal{S}_{(\omega)}^{\left(M_{p}\right)}=\mathcal{S}_{(\omega)}^{\left(M_{p}\right)} * \mathcal{S}_{(\omega)}^{\left(M_{p}\right)} .
$$

- Similar result holds for spaces of type \mathcal{O} C

Example: Factorization of Gelfand-Shilov spaces (2)

Theorem

Let M_{p} be a weight sequence satisfying (M.1), (M.2), and (M.5) and let $\omega(t)=O(t)\left(\omega(t)=o(t)\right.$ in the $\left(M_{p}\right)$-case $)$. Then, for $k>0$ large enough it holds that

$$
\mathcal{S}_{\{\omega\}}^{\left\{M_{p}\right\}}=\mathcal{D}_{L_{k}^{1}}^{\left\{M_{p}\right\}} * \mathcal{S}_{\{\omega\}}^{\left\{M_{p}\right\}} \quad \text { and } \quad \mathcal{S}_{(\omega)}^{\left(M_{p}\right)}=\mathcal{D}_{L_{k}^{1}}^{\left(M_{p}\right)} * \mathcal{S}_{(\omega)}^{\left(M_{p}\right)} .
$$

In particular,

$$
\mathcal{S}_{\{\omega\}}^{\left\{M_{p}\right\}}=\mathcal{S}_{\{\omega\}}^{\left\{M_{p}\right\}} * \mathcal{S}_{\{\omega\}}^{\left\{M_{p}\right\}} \quad \text { and } \quad \mathcal{S}_{(\omega)}^{\left(M_{p}\right)}=\mathcal{S}_{(\omega)}^{\left(M_{p}\right)} * \mathcal{S}_{(\omega)}^{\left(M_{p}\right)} .
$$

- Similar result holds for spaces of type \mathcal{O}_{C}.

Future work

- Show the weak factorization property for the space of ultradifferentiable vectors of uniform representations which are not necessarily exponentially equicontinuous. In the analytic case this is
done by G-K-L.
- Show the strong factorization property for the space of smooth vectors of uniform exponentially equicontinuous representations. E.g.

$$
\mathcal{D}_{L^{p}}=\mathcal{D}_{L^{1}} * \mathcal{D}_{L^{p}} .
$$

- Consider representations of general Lie groups. Suitable characterization of ultradifferentiability?

Future work

- Show the weak factorization property for the space of ultradifferentiable vectors of uniform representations which are not necessarily exponentially equicontinuous. In the analytic case this is done by G-K-L.
- Show the strong factorization property for the space of smooth vectors of uniform exponentially equicontinuous representations. E.g.

$$
\mathcal{D}_{L^{p}}=\mathcal{D}_{L^{1}} * \mathcal{D}_{L^{p}} .
$$

- Consider representations of general Lie groups. Suitable characterization of ultradifferentiability?

Future work

- Show the weak factorization property for the space of ultradifferentiable vectors of uniform representations which are not necessarily exponentially equicontinuous. In the analytic case this is done by G-K-L.
- Show the strong factorization property for the space of smooth vectors of uniform exponentially equicontinuous representations.

$$
\mathcal{D}_{L^{p}}=\mathcal{D}_{L^{1}} * \mathcal{D}_{L^{p}} .
$$

- Consider representations of general Lie groups. Suitable characterization of ultradifferentiability?

Future work

- Show the weak factorization property for the space of ultradifferentiable vectors of uniform representations which are not necessarily exponentially equicontinuous. In the analytic case this is done by G-K-L.
- Show the strong factorization property for the space of smooth vectors of uniform exponentially equicontinuous representations. E.g.

$$
\mathcal{D}_{L^{p}}=\mathcal{D}_{L^{1}} * \mathcal{D}_{L^{p}}
$$

- Consider representations of general Lie groups. Suitable characterization of ultradifferentiability?

Future work

- Show the weak factorization property for the space of ultradifferentiable vectors of uniform representations which are not necessarily exponentially equicontinuous. In the analytic case this is done by G-K-L.
- Show the strong factorization property for the space of smooth vectors of uniform exponentially equicontinuous representations. E.g.

$$
\mathcal{D}_{L^{p}}=\mathcal{D}_{L^{1}} * \mathcal{D}_{L^{p}}
$$

- Consider representations of general Lie groups. Suitable characterization of ultradifferentiability?

Future work

- Show the weak factorization property for the space of ultradifferentiable vectors of uniform representations which are not necessarily exponentially equicontinuous. In the analytic case this is done by G-K-L.
- Show the strong factorization property for the space of smooth vectors of uniform exponentially equicontinuous representations. E.g.

$$
\mathcal{D}_{L^{p}}=\mathcal{D}_{L^{1}} * \mathcal{D}_{L^{p}}
$$

- Consider representations of general Lie groups. Suitable characterization of ultradifferentiability?

