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Factorization of L1

Theorem (Rudin, 1957)

For every f ∈ L1(R) there are g , h ∈ L1(R) such that f = g ∗ h. This
means that the convolution algebra (L1(R), ∗) factorizes as follows

L1(R) = L1(R) ∗ L1(R).

Theorem (Cohen, 1959)

Let G be a locally compact group. Then,

L1(G ) = L1(G ) ∗ L1(G ).
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Factorization properties

Let M be a (left) module over a (non-unital) algebra A. We set

A ·M = {a ·m | a ∈ A, m ∈M}.

M is said to satisfy the weak factorization property if

M = span(A ·M).

M is said to satisfy the (strong) factorization property if

M = A ·M.
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Cohen-Hewitt factorization theorem (1)

Let A be a Banach algebra. A sequence (an)n∈N is said to be a
bounded (left) approximate identity if

sup
n∈N
‖an‖A <∞ and lim

n→∞
an · a = a, ∀a ∈ A.

Theorem (Cohen, 1959)

Let A be a Banach algebra having a bounded approximate identity. Then,
A has the factorization property, that is, A = A · A.

5 / 27



Cohen-Hewitt factorization theorem (1)

Let A be a Banach algebra. A sequence (an)n∈N is said to be a
bounded (left) approximate identity if

sup
n∈N
‖an‖A <∞ and lim

n→∞
an · a = a, ∀a ∈ A.

Theorem (Cohen, 1959)

Let A be a Banach algebra having a bounded approximate identity. Then,
A has the factorization property, that is, A = A · A.

5 / 27



Cohen-Hewitt factorization theorem (2)

Theorem (Hewitt, 1964)

Let A be a Banach algebra having a bounded approximate identity (an)n∈N
and let M be a Banach module over A. For every u ∈M such that

lim
n→∞

an · u = u (1)

there are a ∈ A and v ∈M such that u = a · v. In particular, if (1) holds
for all u ∈M, thenM has the factorization property, that is,M = A·M.

The Cohen-Hewitt factorization theorem can be generalized to
Fréchet algebras having a uniformly bounded approximate identity.
However, non-unital reflexive Fréchet algebras do not even have
bounded approximate identities...
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Factorization in convolution algebras of smooth functions

Ehrenpreis’ problem 1960

Does the convolution algebra (D(Rd), ∗) has the weak/strong
factorization property?

(Rubel, Squires and Taylor, 1978) D(Rd) = span(D(Rd) ∗ D(Rd)).

(Dixmier and Malliavin, 1978) Let d ≥ 2. D(Rd) ( D(Rd) ∗ D(Rd).

(Yulmukhametov, 1999) D(R) = D(R) ∗ D(R).

Theorem (Petzeltová and P. Vrbová, 1978; Voigt, 1984)

The convolution algebra (S(Rd), ∗) has the strong factorization property,
that is,

S(Rd) = S(Rd) ∗ S(Rd).
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Representations of Lie groups

Let G be a real Lie group and E be a lcHs (= locally convex
Hausdorff space). A representation (π,E ) of G in E is a
homomorphism π : G → L(E ) such that

G × E → E : (g , e)→ π(g)e

is continuous.

The orbit map of e ∈ E is given by the continuous E -valued map

γe : G → E : g → π(g)e

Th space E∞ of smooth vectors is defined as

E∞ := {e ∈ E | γe ∈ C∞(G ;E )}.
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The induced action of π

Assume that E is a Fréchet space. The representation (π,E ) induces
an action of the convolution algebra (C∞c (G ), ∗) on E via

Π(ϕ)e :=

∫
G
ϕ(g)π(g)e dg , ϕ ∈ C∞c (G ), e ∈ E .

Π restricts to an action on E∞,i.e., E∞ is a module over (C∞c (G ), ∗).
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Examples

Let G = (Rd ,+) and let E = Lp, 1 ≤ p <∞.

Consider the representation of (Rd ,+) in Lp via translation, i.e.,

π(x)f = f (· − x), x ∈ Rd , f ∈ Lp.

Then,
Π(ϕ)f = ϕ ∗ f , ϕ ∈ C∞c (Rd), f ∈ Lp.

and (Lp)∞ is equal to the Schwartz space DLp .

If E = C0, then E∞ = Ḃ.

If E = lim←−N
(1 + | · |)−NC0, then E∞ = S.
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The Dixmier-Malliavin theorem

Theorem (Dixmier and Malliavin, 1978)

Let G be a Lie group and let (π,E ) be a representation of G in a Fréchet
space E. Then, E∞ has the weak factorization property, that is,

E∞ = span(Π(C∞c (G ))E∞).

Examples: Let X = DLp , Ḃ, or S. Then,

X = span(C∞c (Rd) ∗ X )

In 2011 Gimperlein, Krötz and Lienau proved, under some technical
conditions on (π,E ), that the space Eω of analytic vectors satisfies
the weak factorization property over an appropriate convolution
algebra. Main difficulty: Absence of compactly supported analytic
functions on G .
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Our goals

We generalize the result of G − K − L in the following ways for
G = (Rd ,+):

Allow E to be a general quasi-complete lcHs.
Find appropriate growth conditions on (π,E ) to ensure that the strong
factorization property holds.
Prove factorization results for spaces of ultradifferentiable vectors, i.e.,
vectors whose orbit map belongs to a certain Denjoy-Carleman class.
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The work of Gevrey

In 1918 Gevrey showed that all weak solutions of the heat equation
are in fact smooth and satisfy

max
x∈K
|∂αϕ(x)| ≤ Ch|α|(|α|!)2, ∀α ∈ Nd+1,

for all K b Rd+1 and some C = C (K ) > 0, h = h(K ) > 0. Moreover,
the exponent 2 is optimal.

This was the starting point of the study of general spaces of
ultradifferentiable functions, i.e., spaces of smooth functions whose
derivatives are bounded by an arbitrary sequence (Mp)p∈N.

13 / 27



The work of Gevrey

In 1918 Gevrey showed that all weak solutions of the heat equation
are in fact smooth and satisfy

max
x∈K
|∂αϕ(x)| ≤ Ch|α|(|α|!)2, ∀α ∈ Nd+1,

for all K b Rd+1 and some C = C (K ) > 0, h = h(K ) > 0. Moreover,
the exponent 2 is optimal.

This was the starting point of the study of general spaces of
ultradifferentiable functions, i.e., spaces of smooth functions whose
derivatives are bounded by an arbitrary sequence (Mp)p∈N.

13 / 27



Spaces of ultradifferentiable functions

Let (Mp)p∈N be a sequence of positive reals.

E{Mp}(Rd) stands for the space of all ϕ ∈ C∞(Rd) such that for all
K b Rd there is some h > 0 such that

sup
α∈Nd

max
x∈K

|∂αϕ(x)|
h|α|M|α|

<∞. (2)

E(Mp)(Rd) stand for the space of all ϕ ∈ C∞(Rd) such that for all
K b Rd and all h > 0 the bound (2) holds.

Examples: Mp = p!σ, σ > 0.

We shall write ∗ if we want to treat the {Mp}- and (Mp)-case
simultaneously.
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Conditions on Mp

We shall impose the following conditions on Mp:

(M.1) M2
p ≤ Mp−1Mp+1, p ∈ Z+.

(M.2) Mp+q ≤ CHpMpMq, p, q ∈ N, for some C ,H > 0.
(M.5) There exist C , q > 0 such that Mq

p is strongly non-quasianalytic, i.e.,

∞∑
j=p+1

Mq
j−1

Mq
j

≤ Cp
Mq

p

Mq
p+1

, p ∈ Z+.

Example: Mp = p!σ, σ > 0.
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Vector-valued ultradifferentiable functions

Let Mp be a sequence of positive reals and let X be a Banach space.

E{Mp}(Rd ;X ) stands for the space of all ϕ ∈ C∞(Rd ;X ) such that
for all K b Rd there is some h > 0 such that

sup
α∈Nd

max
x∈K

‖∂αϕ(x)‖X
h|α|M|α|

<∞. (3)

E(Mp)(Rd ;X ) stand for the space of all ϕ ∈ C∞(Rd ;X ) such that for
all K b Rd and all h > 0 the bound (3) holds.
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Uniform and exponentially equicontinuous representations

Let E be a lcHs and let (π,E ) be a representation of (Rd ,+) in E .

(π,E ) is said to be uniform if for all p ∈ csn(E ) there is q ∈ csn(E )
such that

Rd × Eq → Ep : (x , e)→ π(x)e

is continuous.

(π,E ) is said to be exponentially equicontinuous if there is κ > 0 such
that for all p ∈ csn(E ) there are q ∈ csn(E ) and C > 0 such that

p(π(x)e) ≤ Ceκ|x |q(e), x ∈ Rd , e ∈ E .

If E is a Banach space, then (π,E ) is automatically uniform and
exponentially equicontinuous.
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Smooth vectors revisited

Let E be a quasi-complete lcHs and let (π,E ) be a representation of
(Rd ,+) in E . Denote by B(E ) the set of absolutely convex, bounded
and closed subsets of E .

For B ∈ B(E ) we define

EB := spanB =
⋃
t>0

tB, qB(e) := inf{t > 0 | e ∈ tB}.

EB is a Banach space and continuously included in E .

ϕ : Rd → E is said to be bornologically smooth if there is B ∈ B(E )
such that ϕ ∈ C∞(Rd ;EB).

E∞ := {e ∈ E | γe is bornologically smooth}.
Why this definition?
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Ultradifferentiable vectors

Let (Mp)p∈N be a sequence of positive reals.

ϕ : Rd → E is said to be bornologically ultradifferentiable of class ∗ if
there is B ∈ B(E ) such that ϕ ∈ E∗(Rd ;EB).

E ∗ := {e ∈ E | γe is bornologically ultradifferentiable of class ∗}.
If E is a Fréchet space, then E {p!} coincides with the space Eω of
analytic vectors considered by G-K-L.
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Example: Weighted Beurling algebras

For k ≥ 0 we define the L1k as the Banach space of all measurable
functions f on Rd such that

‖f ‖L1k :=

∫
Rd

|f (x)|ek|x | dx <∞.

Consider the representation of (Rd ,+) in L1k via translation. The
space (L1k)∗ of ultradifferentiable vectors of class ∗ is given by

D{Mp}
L1k

=
⋃
h>0

DMp ,h

L1k
, D(Mp)

L1k
=

⋂
h>0

DMp ,h

L1k
,

where DMp ,h

L1k
is the Banach space of all ϕ ∈ C∞(Rd) such that

‖∂αϕ‖L1k
h|α|Mα

<∞.

The convolution algebra (D∗
L1k
, ∗) is the suitable analogue of C∞c (Rd)

in the present situation.
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The induced action by π

Let E be a quasi-complete lcHs space and let (π,E ) be a uniform and
exponentially equicontinuous representation of (Rd ,+) in E .

Let k > κ. The representation (π,E ) induces an action of (D∗
L1k
, ∗) on

E via

Π(ϕ)e :=

∫
Rd

f (x)π(x)e dx , ϕ ∈ D∗L1k , e ∈ E .

Π restricts to an action on E ∗ ,i.e., E ∗ is a module over (D∗
L1k
, ∗).
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The main result

Theorem

Let E be a quasi-complete lcHs space and let (π,E ) be a uniform and
exponentially equicontinuous representation of (Rd ,+) in E and let k > κ.
Let Mp be a weight sequence satisfying (M.1), (M.2), and (M.5). Then,
E ∗ has the strong factorization property, that is,

E ∗ = Π(D∗L1k )E ∗.
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Example: Factorization of D∗Lp and Ḃ∗

Let E = Lp, 1 ≤ p <∞, or C0.

Let (π,E ) be the representation of (Rd ,+) in E via translation.
Then, E ∗ = D∗Lp or Ḃ∗ (ultradifferentiable analogues of DLp and Ḃ).

Theorem

Let Mp be a weight sequence satisfying (M.1), (M.2), and (M.5). For all
k > 0 it holds that

D∗Lp = D∗L1k ∗ D
∗
Lp and Ḃ∗ = D∗L1k ∗ Ḃ

∗.

A Similar result holds for weighted versions of these spaces.
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Gelfand-Shilov spaces (spaces of type S)

Let ω be a positive increasing function on [0,∞) such that ω(t)→∞
as t →∞ and let Mp be a sequence of positive reals.

Define SMp ,h
ω,h , h > 0, as the space of all ϕ ∈ C∞(Rd) such that

sup
α∈Nd

sup
x∈Rd

|∂αϕ(x)|eω(|x |/h)

h|α|M|α|
<∞.

Set
S{Mp}
{ω} =

⋃
h>0

SMp ,h
ω,h S(Mp)

(ω) =
⋂
h>0

SMp ,h
ω,h

Example: If Mp = p!σ and ω(t) = t1/τ , σ, τ > 0, then S{Mp}
{ω} is equal

to the Gelfand-Shilov space Sστ .
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Example: Factorization of Gelfand-Shilov spaces (1)

Define Cω,h, h > 0, as the Banach space of all f ∈ C (Rd) such that

sup
x∈Rd

|f (x)|eω(|x |/h) <∞.

Set
C{ω} = lim−→

h→∞
Cω,h, C{ω} = lim←−

h→0+
Cω,h.

Let E = C{ω} or C(ω) and let (π,E ) be the representation of (Rd ,+)
in E via translation:

(π,E ) is always uniform.
(π,C{ω}) is exponentially equicontinuous if ω(t) = O(t).
(π,C(ω)) is exponentially equicontinuous if ω(t) = o(t).

(C{ω})
{Mp} = S{Mp}

{ω} and (C(ω))
(Mp) = S(Mp)

(ω) .
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Example: Factorization of Gelfand-Shilov spaces (2)

Theorem

Let Mp be a weight sequence satisfying (M.1), (M.2), and (M.5) and let
ω(t) = O(t) (ω(t) = o(t) in the (Mp)-case). Then, for k > 0 large
enough it holds that

S{Mp}
{ω} = D{Mp}

L1k
∗ S{Mp}
{ω} and S(Mp)

(ω) = D(Mp)

L1k
∗ S(Mp)

(ω) .

In particular,

S{Mp}
{ω} = S{Mp}

{ω} ∗ S
{Mp}
{ω} and S(Mp)

(ω) = S(Mp)
(ω) ∗ S

(Mp)
(ω) .

Similar result holds for spaces of type OC .
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Future work

Show the weak factorization property for the space of
ultradifferentiable vectors of uniform representations which are not
necessarily exponentially equicontinuous. In the analytic case this is
done by G-K-L.

Show the strong factorization property for the space of smooth
vectors of uniform exponentially equicontinuous representations. E.g.

DLp = DL1 ∗ DLp .

Consider representations of general Lie groups. Suitable
characterization of ultradifferentiability?
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