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@ More generally, Vogt (1983) obtained sequence space representations
for the Fréchet spaces

K(np) = {F € C2(R) | sup max |7 (x)lno(x) < o0, ¥p € N,
x€ER N=P

@ Pelczinsky-Vogt decomposition method (E complemented in SQF
and vice versa = E = s®F).

Main problem

Obtain sequence space representations for spaces of ultradifferentiable
functions with rapid decay (= Gelfand-Shilov spaces).
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The classical Gelfand-Shilov spaces

o Let o, 3> 0. We define L3 (Sg‘) as the space consisting of all
f € C*(R) such that for all A > 0 (for some A > 0)

|pr(q)(x), _
sup sup ——————— < o0
x€R p,geN )\p+qp!/j'q!a

@ We have that

a (tl/a) a {tl/a}
55 =S S8 =Sim-

@ The spaces SE‘ were introduced by Gelfand and Shilov in 1968. They
showed that S§ # {0} if and only if a 4+ 3 > 1.
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Power series spaces

@ Let v = (v,)nen be a positive increasing sequence.
o We define /\’\(V), A € R, as the space consisting of all (¢;)nen € CN

such that

sup |c,|eM" < oc.
neN

o We set

Ao(v) = (VM W),  Mo(v):=[JA W)

A>0 A>0

o If log(n) = o(v,), we have that

Now) = JAW),  Aolv) = [ M)

A>0 A>0
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T2 A(n2), S = NAy(n).

@ Hermite expansions, or more generally, eigenfunction expansions with
respect to certain elliptic PDO (Gramchev, Rodino, Pilipovic (2011);
Vindas and Vuckovic (2016)).

@ If w = wy is the associated function of a weight sequence M subject
to some standard conditions, we have that

w, 1
S((Il\\/,ﬂ)) = S(( Il\:’)) = /\OO(WM(I’IZ)),
w 1

@ The above spaces are invariant under the Fourier transform!
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T5 & An(n77), S8 = Ny(n).

o Eigenfunction expansions with respect to certain elliptic PDO, e.g.,
(_A)m + X2k

for suitable k, m € N.

Does a similar result hold for the spaces S(,\A,/I)) and S™M7 What is the

(
correct generalization of the condition /3 € Q7

{n}y -
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The case w(t) =t

@ For A\ >0weset Vy ={zeC||Imz| < A}.
e Given a weight function 7, we define #,, x(V5) as the Banach space
consisting of all f € O(V,) such that

Aw(| Re z|) <

sup [f(2)]e 00.

zeV)y

o We set

Hp = (1 Hoa(Va), Hiy = U Hya (V).

A>0 A>0

@ We have that
t

—s® _ oft}
/H(n) = S(n)7 H{T)} = S{n}.
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Sequence space representations for Hy,,

o Let 7 be a weight function. We define n* = (tn~1(t)) 1.

Langenbruch, 2012 and 2016

Hiny = No(n7(n)) = No(m)@Ng(1(n))-

Vogt, 1982

Let E be an infinite-dimensional nuclear Fréchet space satisfying (D) and
(2). Then, E = Ao(v) for some positive increasing sequence v.

v

e (DN): Quantified decomposition theorem for holomorphic functions
on strips with rapid decay.

e (Q): Weighted version of Hadamard's three-lines theorem.

@ Determine diametral dimension of Hf{n} to show that v = (7*(n))pen.
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@ Up to O-equivalence, we have that

77 U
T .
ta ta+l
1 o ey
ta log(1+ t)? toil log(1 + t)ar
e(leet)* if 0 < o < 1/2
ellog t)*—a(log t)**~1 ¢ 1/2<a<?2/3

e(log t)*
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In particular,
1
YLeye A (na1),  a>0.

Vogt, 1982; Aytuna, Krone, Terzioglu, 1989

Let E be a nuclear Fréchet space satisfying (DN) and (2) with
A(E) = A(Ao(v)) = N (v) for some positive sequence v with
von = O(vp). Then, E = Ao(v).

@ (DN): Weighted version of Hadamard's three-lines theorem.
@ (Q): Mapping properties of the STFT on H,,).
o A(H(y) = Noo(n*(n)): STFT + result of Langenbruch.
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Sequence space representations for S((;J)) and S{'n}

e Let w and 7 be weight functions. We define win = (w™1(t)n~1(t)) .

D., 2020

Suppose that there are a,b > 0 and 1, € S((:;)) (v,v € Sf{{:}}) such that

D (x—aj — bk)y(x — aj) =bko, k€L (1)
jezd

Then,
S 2 Moo wn(m) = Ao(w(m) Doc(n(n).

i) 2 No(win(n) = Ao(w(n))BAg(n(n)).

v

@ Pelczinsky-Vogt decomposition method (E complemented in Ay (v) (
No(v)) and vice versa = E = Ao (v) ( E = Ao(v)) (Vogt, 1982).
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e Condition (1) is satisfied in the following two cases:

@ w is non-quasianalytic: Existence of cut-off functions.

Q w = o(t?) and = o(t?) (w = O(t?) and n = O(t?)): Condition (1) is
equivalent to the existence of a dual pair of Gabor frame windows in
St) (S{4)) (Wexler-Raz biorthogonality relations). Bolcskei and

Janssen (2000) showed that there exist a dual pair of Gabor frame
1/2
1/2°

Corollary

T8 & A(n7F), 8§ No(nE),

windows in S

provided that either
a>lorp>1

a>1/2and §>1/2(a>1/2 and g >1/2).

v
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St = Aclwin(n),  S{a) = Ay(win(n))

(m)

i (W) (clw}
for all non-trivial spaces 8(77) (S{n})

@ By using the STFT one can show that S((;J)) and (8?:}})’ satisfy the

suitable (DN) and () type conditions. How to determine the
diametral dimension of these spaces?

@ Does each non-trivial space S((:]J)) (anw}}) contain a pair of functions
satisfying (1)? Equivalently, does it contain a dual pair of Gabor
frame windows? Does Sg, a4+ B > 1, contain a dual pair of Gabor

frame windows?
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