Sequence space representations for Gelfand-Shilov spaces

Andreas Debrouwere
Ghent University

GF2020
September 4, 2020

Introduction

- $\mathcal{S} \cong \boldsymbol{s}$ (Hermite expansions).
- More generally, Vogt (1983) obtained sequence space representations for the Fréchet spaces

$$
\mathcal{K}\left(\eta_{p}\right):=\left\{f \in \mathcal{C}^{\infty}(\mathbb{R})\left|\sup _{x \in \mathbb{R}} \max _{n \leq p}\right| f^{(n)}(x) \mid \eta_{p}(x)<\infty, \forall p \in \mathbb{N}\right\}
$$

- Pelczinsky-Vogt decomposition method (E complemented in $s \widehat{\otimes} F$ and vice versa $\Rightarrow E \cong s \widehat{\otimes} F)$.

Main problem

Obtain sequence space representations for spaces of ultradifferentiable functions with rapid decay ($=$ Gelfand-Shilov spaces).

Introduction

－ $\mathcal{S} \cong s$（Hermite expansions）．
－More generally，Vogt（1983）obtained sequence space representations for the Fréchet spaces

$$
\mathbb{C}\left(\eta_{p}\right):=\left\{f \in \mathbb{C}^{\infty}(\mathbb{R})\left|\sup _{x \in \mathbb{R}} \max _{n \leq p}\right| f^{(n)}(x) \mid \eta_{p}(x)<\infty, \forall p \in \mathbb{N}\right\}
$$

－Pelczinsky－Vogt decomposition method（ E complemented in $s \widehat{\otimes} F$ and vice versa $\Rightarrow E \cong s \widehat{\otimes} F)$ ．

Main problem

Obtain sequence space representations for spaces of ultradifferentiable functions with rapid decay（ $=$ Gelfand－Shilov spaces）．

Introduction

- $\mathcal{S} \cong s$ (Hermite expansions).
- More generally, Vogt (1983) obtained sequence space representations for the Fréchet spaces

$$
\mathcal{K}\left(\eta_{p}\right):=\left\{f \in C^{\infty}(\mathbb{R})\left|\sup _{x \in \mathbb{R}} \max _{n \leq p}\right| f^{(n)}(x) \mid \eta_{p}(x)<\infty, \forall p \in \mathbb{N}\right\}
$$

- Pelczinsky-Vogt decomposition method (E complemented in $s \widehat{\otimes} F$ and vice versa $\Rightarrow E \cong s \widehat{\otimes} F)$.

Main problem
 Obtain sequence space representations for spaces of ultradifferentiable functions with rapid decay ($=$ Gelfand-Shilov spaces)

Introduction

- $\mathcal{S} \cong s$ (Hermite expansions).
- More generally, Vogt (1983) obtained sequence space representations for the Fréchet spaces

$$
\mathcal{K}\left(\eta_{p}\right):=\left\{f \in C^{\infty}(\mathbb{R})\left|\sup _{x \in \mathbb{R}} \max _{n \leq p}\right| f^{(n)}(x) \mid \eta_{p}(x)<\infty, \forall p \in \mathbb{N}\right\}
$$

- Pelczinsky-Vogt decomposition method (E complemented in $s \widehat{\otimes} F$ and vice versa $\Rightarrow E \cong s \widehat{\otimes} F$).

Main problem
 Obtain sequence space representations for spaces of ultradifferentiable functions with rapid decay ($=$ Gelfand-Shilov spaces)

Introduction

- $\mathcal{S} \cong s$ (Hermite expansions).
- More generally, Vogt (1983) obtained sequence space representations for the Fréchet spaces

$$
\mathcal{K}\left(\eta_{p}\right):=\left\{f \in C^{\infty}(\mathbb{R})\left|\sup _{x \in \mathbb{R}} \max _{n \leq p}\right| f^{(n)}(x) \mid \eta_{p}(x)<\infty, \forall p \in \mathbb{N}\right\}
$$

- Pelczinsky-Vogt decomposition method (E complemented in $s \widehat{\otimes} F$ and vice versa $\Rightarrow E \cong s \widehat{\otimes} F$).

Main problem

Obtain sequence space representations for spaces of ultradifferentiable functions with rapid decay (= Gelfand-Shilov spaces).

Gelfand-Shilov spaces

- A continuous increasing function $\omega:[0, \infty) \rightarrow[0, \infty)$ is called a weight function if $\omega(0)=0, \log t=o(\omega(t))$ and there is $C>0$ such that

$$
\omega(2 t) \leq C \omega(t)+C, \quad \forall t \geq 0
$$

- $\omega(t)=t^{\frac{1}{\alpha}} \log (1+t)^{\beta}(\alpha>0, \beta \in \mathbb{R}) ; \omega(t)=e^{(\log t)^{\alpha}}(0<\alpha<1)$.
- Given two weight functions ω and η, we define $\mathcal{S}_{n, \lambda}^{\omega, \lambda}, \lambda>0$, as the Banach space consisting of all $f \in \mathcal{S}(\mathbb{R})$ such that

- We set

Gelfand-Shilov spaces

- A continuous increasing function $\omega:[0, \infty) \rightarrow[0, \infty)$ is called a weight function if $\omega(0)=0, \log t=o(\omega(t))$ and there is $C>0$ such that

$$
\omega(2 t) \leq C \omega(t)+C, \quad \forall t \geq 0
$$

- $\omega(t)=t^{\frac{1}{\alpha}} \log (1+t)^{\beta}(\alpha>0, \beta \in \mathbb{R})$;
- Given two weight functions ω and η, we define $\mathcal{S}_{\eta, \lambda}^{\omega, \lambda}, \lambda>0$, as the Banach space consisting of all $f \in \mathcal{S}(\mathbb{R})$ such that
- We set

Gelfand-Shilov spaces

- A continuous increasing function $\omega:[0, \infty) \rightarrow[0, \infty)$ is called a weight function if $\omega(0)=0, \log t=o(\omega(t))$ and there is $C>0$ such that

$$
\omega(2 t) \leq C \omega(t)+C, \quad \forall t \geq 0
$$

- $\omega(t)=t^{\frac{1}{\alpha}} \log (1+t)^{\beta}(\alpha>0, \beta \in \mathbb{R}) ; \omega(t)=e^{(\log t)^{\alpha}}(0<\alpha<1)$.
- Given two weight functions ω and η, we define $\mathcal{S}_{\eta, \lambda}^{\omega, \lambda}, \lambda>0$, as the Banach space consisting of all $f \in \mathcal{S}(\mathbb{R})$ such that
- We set

Gelfand-Shilov spaces

- A continuous increasing function $\omega:[0, \infty) \rightarrow[0, \infty)$ is called a weight function if $\omega(0)=0, \log t=o(\omega(t))$ and there is $C>0$ such that

$$
\omega(2 t) \leq C \omega(t)+C, \quad \forall t \geq 0
$$

- $\omega(t)=t^{\frac{1}{\alpha}} \log (1+t)^{\beta}(\alpha>0, \beta \in \mathbb{R}) ; \omega(t)=e^{(\log t)^{\alpha}}(0<\alpha<1)$.
- Given two weight functions ω and η, we define $\mathcal{S}_{\eta, \lambda}^{\omega, \lambda}, \lambda>0$, as the Banach space consisting of all $f \in \mathcal{S}(\mathbb{R})$ such that

$$
\sup _{x \in \mathbb{R}}|f(x)| e^{\lambda \eta(|x|)}<\infty \quad \text { and } \quad \sup _{\xi \in \mathbb{R}}|\widehat{f}(\xi)| e^{\lambda \omega(|\xi|)}<\infty
$$

- We set

Gelfand-Shilov spaces

- A continuous increasing function $\omega:[0, \infty) \rightarrow[0, \infty)$ is called a weight function if $\omega(0)=0, \log t=o(\omega(t))$ and there is $C>0$ such that

$$
\omega(2 t) \leq C \omega(t)+C, \quad \forall t \geq 0
$$

- $\omega(t)=t^{\frac{1}{\alpha}} \log (1+t)^{\beta}(\alpha>0, \beta \in \mathbb{R}) ; \omega(t)=e^{(\log t)^{\alpha}}(0<\alpha<1)$.
- Given two weight functions ω and η, we define $\mathcal{S}_{\eta, \lambda}^{\omega, \lambda}, \lambda>0$, as the Banach space consisting of all $f \in \mathcal{S}(\mathbb{R})$ such that

$$
\sup _{x \in \mathbb{R}}|f(x)| e^{\lambda \eta(|x|)}<\infty \quad \text { and } \quad \sup _{\xi \in \mathbb{R}}|\widehat{f}(\xi)| e^{\lambda \omega(|\xi|)}<\infty
$$

- We set

$$
\mathcal{S}_{(\eta)}^{(\omega)}:=\bigcap_{\lambda>0} \mathcal{S}_{\eta, \lambda}^{\omega, \lambda}, \quad \mathcal{S}_{\{\eta\}}^{\{\omega\}}:=\bigcup_{\lambda>0} \mathcal{S}_{\eta, \lambda}^{\omega, \lambda}
$$

The classical Gelfand-Shilov spaces

- Let $\alpha, \beta>0$. We define $\sum_{\beta}^{\alpha}\left(\mathcal{S}_{\beta}^{\alpha}\right)$ as the space consisting of all $f \in C^{\infty}(\mathbb{R})$ such that for all $\lambda>0$ (for some $\lambda>0$)

$$
\sup _{x \in \mathbb{R}} \sup _{p, q \in \mathbb{N}} \frac{\left|x^{p} f^{(q)}(x)\right|}{\lambda^{p+q} p!^{\beta} q!^{\alpha}}<\infty .
$$

- We have that

- The spaces $\mathcal{S}_{\beta}^{\alpha}$ were introduced by Gelfand and Shilov in 1968. They showed that $\mathcal{S}_{\beta}^{\alpha} \neq\{0\}$ if and only if $\alpha+\beta \geq 1$.

The classical Gelfand-Shilov spaces

- Let $\alpha, \beta>0$. We define $\sum_{\beta}^{\alpha}\left(\mathcal{S}_{\beta}^{\alpha}\right)$ as the space consisting of all $f \in C^{\infty}(\mathbb{R})$ such that for all $\lambda>0$ (for some $\lambda>0$)

$$
\sup _{x \in \mathbb{R}} \sup _{p, q \in \mathbb{N}} \frac{\left|x^{p} f^{(q)}(x)\right|}{\lambda^{p+q} p!^{\beta} q!^{\alpha}}<\infty .
$$

- We have that

$$
\Sigma_{\beta}^{\alpha}=\mathcal{S}_{\left(t^{1 / \beta}\right)}^{\left(t^{1 / \alpha}\right)}, \quad \mathcal{S}_{\beta}^{\alpha}=\mathcal{S}_{\left\{t^{1 / \beta}\right\}}^{\left\{t^{1 / \alpha}\right\}}
$$

- The spaces $\mathcal{S}_{\beta}^{\alpha}$ were introduced by Gelfand and Shilov in 1968. They showed that $\mathcal{S}_{\beta}^{\alpha} \neq\{0\}$ if and only if $\alpha+\beta \geq 1$.

The classical Gelfand-Shilov spaces

- Let $\alpha, \beta>0$. We define $\sum_{\beta}^{\alpha}\left(\mathcal{S}_{\beta}^{\alpha}\right)$ as the space consisting of all $f \in C^{\infty}(\mathbb{R})$ such that for all $\lambda>0$ (for some $\lambda>0$)

$$
\sup _{x \in \mathbb{R}} \sup _{p, q \in \mathbb{N}} \frac{\left|x^{p} f^{(q)}(x)\right|}{\lambda^{p+q} p!^{\beta} q!^{\alpha}}<\infty .
$$

- We have that

$$
\Sigma_{\beta}^{\alpha}=\mathcal{S}_{\left(t^{1 / \beta}\right)}^{\left(t^{1 / \alpha}\right)}, \quad \mathcal{S}_{\beta}^{\alpha}=\mathcal{S}_{\left\{t^{1 / \beta}\right\}}^{\left\{t^{1 / \alpha}\right\}}
$$

- The spaces $\mathcal{S}_{\beta}^{\alpha}$ were introduced by Gelfand and Shilov in 1968.

The classical Gelfand-Shilov spaces

- Let $\alpha, \beta>0$. We define $\sum_{\beta}^{\alpha}\left(\mathcal{S}_{\beta}^{\alpha}\right)$ as the space consisting of all $f \in C^{\infty}(\mathbb{R})$ such that for all $\lambda>0$ (for some $\lambda>0$)

$$
\sup _{x \in \mathbb{R}} \sup _{p, q \in \mathbb{N}} \frac{\left|x^{p} f^{(q)}(x)\right|}{\lambda^{p+q} p!^{\beta} q!^{\alpha}}<\infty .
$$

- We have that

$$
\Sigma_{\beta}^{\alpha}=\mathcal{S}_{\left(t^{1 / \beta}\right)}^{\left(t^{1 / \alpha}\right)}, \quad \mathcal{S}_{\beta}^{\alpha}=\mathcal{S}_{\left\{t^{1 / \beta}\right\}}^{\left\{t^{1 / \alpha}\right\}}
$$

- The spaces $\mathcal{S}_{\beta}^{\alpha}$ were introduced by Gelfand and Shilov in 1968. They showed that $\mathcal{S}_{\beta}^{\alpha} \neq\{0\}$ if and only if $\alpha+\beta \geq 1$.

Power series spaces

- Let $\nu=\left(\nu_{n}\right)_{n \in \mathbb{N}}$ be a positive increasing sequence.
- We define $\Lambda^{\lambda}(\nu), \lambda \in \mathbb{R}$, as the space consisting of all $\left(c_{n}\right)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}}$ such that
- We set

- If $\log (n)=o\left(\nu_{n}\right)$, we have that

Power series spaces

- Let $\nu=\left(\nu_{n}\right)_{n \in \mathbb{N}}$ be a positive increasing sequence.
- We define $\Lambda^{\lambda}(\nu), \lambda \in \mathbb{R}$, as the space consisting of all $\left(c_{n}\right)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}}$ such that

$$
\sup _{n \in \mathbb{N}}\left|c_{n}\right| e^{\lambda \nu_{n}}<\infty
$$

- We set

- If $\log (n)=o\left(\nu_{n}\right)$, we have that

Power series spaces

- Let $\nu=\left(\nu_{n}\right)_{n \in \mathbb{N}}$ be a positive increasing sequence.
- We define $\Lambda^{\lambda}(\nu), \lambda \in \mathbb{R}$, as the space consisting of all $\left(c_{n}\right)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}}$ such that

$$
\sup _{n \in \mathbb{N}}\left|c_{n}\right| e^{\lambda \nu_{n}}<\infty
$$

- We set

$$
\Lambda_{\infty}(\nu):=\bigcap_{\lambda>0} \Lambda^{\lambda}(\nu), \quad \Lambda_{0}(\nu):=\bigcap_{\lambda>0} \Lambda^{-\lambda}(\nu)
$$

- If $\log (n)=o\left(\nu_{n}\right)$, we have that

$$
\Lambda_{\infty}^{\prime}(\nu):=\bigcup_{\lambda>0}^{\prime} \Lambda^{-\lambda}(\nu), \quad \Lambda_{0}^{\prime}(\nu):=\bigcup_{\lambda>0} \wedge^{\lambda}(\nu)
$$

Power series spaces

- Let $\nu=\left(\nu_{n}\right)_{n \in \mathbb{N}}$ be a positive increasing sequence.
- We define $\Lambda^{\lambda}(\nu), \lambda \in \mathbb{R}$, as the space consisting of all $\left(c_{n}\right)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}}$ such that

$$
\sup _{n \in \mathbb{N}}\left|c_{n}\right| e^{\lambda \nu_{n}}<\infty
$$

- We set

$$
\Lambda_{\infty}(\nu):=\bigcap_{\lambda>0} \Lambda^{\lambda}(\nu), \quad \Lambda_{0}(\nu):=\bigcap_{\lambda>0} \Lambda^{-\lambda}(\nu)
$$

- If $\log (n)=o\left(\nu_{n}\right)$, we have that

$$
\Lambda_{\infty}^{\prime}(\nu):=\bigcup_{\lambda>0} \Lambda^{-\lambda}(\nu), \quad \Lambda_{0}^{\prime}(\nu):=\bigcup_{\lambda>0} \Lambda^{\lambda}(\nu)
$$

Known results (1)

Langenbruch, 2006

Let $\alpha>1 / 2(\alpha \geq 1 / 2)$. Then,

$$
\Sigma_{\alpha}^{\alpha} \cong \Lambda_{\infty}\left(n^{\frac{1}{2 \alpha}}\right), \quad \mathcal{S}_{\beta}^{\alpha} \cong \Lambda_{0}^{\prime}\left(n^{\frac{1}{2 \alpha}}\right)
$$

- Hermite expansions, or more generally, eigenfunction expansions with respect to certain elliptic PDO (Gramchev, Rodino, Pilipovic (2011); Vindas and Vuckovic (2016)).
- If $\omega=\omega_{M}$ is the associated function of a weight sequence M subject to some standard conditions, we have that

$$
\begin{aligned}
& S_{(M)}^{(M)}=\mathcal{S}_{\left(\omega_{M}\right)}^{\left(\omega_{M}\right)}=\Lambda_{\infty}\left(\omega_{M}\left(n^{\frac{1}{2}}\right)\right), \\
& S_{\{M\}}^{\{M\}}=S_{\left\{\omega_{M}\right\}}^{\left\{\omega_{M}\right\}}=\Lambda_{0}^{\prime}\left(\omega_{M}\left(n^{\frac{1}{2}}\right)\right) .
\end{aligned}
$$

- The above spaces are invariant under the Fourier transform!

Known results (1)

Langenbruch, 2006

Let $\alpha>1 / 2(\alpha \geq 1 / 2)$. Then,

$$
\Sigma_{\alpha}^{\alpha} \cong \Lambda_{\infty}\left(n^{\frac{1}{2 \alpha}}\right), \quad \mathcal{S}_{\beta}^{\alpha} \cong \Lambda_{0}^{\prime}\left(n^{\frac{1}{2 \alpha}}\right)
$$

- Hermite expansions, or more generally, eigenfunction expansions with respect to certain elliptic PDO (Gramchev, Rodino, Pilipovic (2011); Vindas and Vuckovic (2016)).
- If $\omega=\omega_{M}$ is the associated function of a weight sequence M subject to some standard conditions, we have that

- The above spaces are invariant under the Fourier transform!

Known results (1)

Langenbruch, 2006

Let $\alpha>1 / 2(\alpha \geq 1 / 2)$. Then,

$$
\Sigma_{\alpha}^{\alpha} \cong \Lambda_{\infty}\left(n^{\frac{1}{2 \alpha}}\right), \quad \mathcal{S}_{\beta}^{\alpha} \cong \Lambda_{0}^{\prime}\left(n^{\frac{1}{2 \alpha}}\right)
$$

- Hermite expansions, or more generally, eigenfunction expansions with respect to certain elliptic PDO (Gramchev, Rodino, Pilipovic (2011); Vindas and Vuckovic (2016)).
- If $\omega=\omega_{M}$ is the associated function of a weight sequence M subject to some standard conditions, we have that

$$
\begin{aligned}
& \mathcal{S}_{(M)}^{(M)}=\mathcal{S}_{\left(\omega_{M}\right)}^{\left(\omega_{M}\right)}=\Lambda_{\infty}\left(\omega_{M}\left(n^{\frac{1}{2}}\right)\right), \\
& \mathcal{S}_{\{M\}}^{\{M\}}=\mathcal{S}_{\left\{\omega_{M}\right\}}^{\left\{\omega_{M}\right\}}=\Lambda_{0}^{\prime}\left(\omega_{M}\left(n^{\frac{1}{2}}\right)\right) .
\end{aligned}
$$

- The above spaces are invariant under the Fourier transform!

Known results (1)

Langenbruch, 2006

Let $\alpha>1 / 2(\alpha \geq 1 / 2)$. Then,

$$
\Sigma_{\alpha}^{\alpha} \cong \Lambda_{\infty}\left(n^{\frac{1}{2 \alpha}}\right), \quad \mathcal{S}_{\beta}^{\alpha} \cong \Lambda_{0}^{\prime}\left(n^{\frac{1}{2 \alpha}}\right)
$$

- Hermite expansions, or more generally, eigenfunction expansions with respect to certain elliptic PDO (Gramchev, Rodino, Pilipovic (2011); Vindas and Vuckovic (2016)).
- If $\omega=\omega_{M}$ is the associated function of a weight sequence M subject to some standard conditions, we have that

$$
\begin{aligned}
& \mathcal{S}_{(M)}^{(M)}=\mathcal{S}_{\left(\omega_{M}\right)}^{\left(\omega_{M}\right)}=\Lambda_{\infty}\left(\omega_{M}\left(n^{\frac{1}{2}}\right)\right), \\
& \mathcal{S}_{\{M\}}^{\{M\}}=\mathcal{S}_{\left\{\omega_{M}\right\}}^{\left\{\omega_{M}\right\}}=\Lambda_{0}^{\prime}\left(\omega_{M}\left(n^{\frac{1}{2}}\right)\right) .
\end{aligned}
$$

- The above spaces are invariant under the Fourier transform!

Known results (2)

Cappiello, Gramchev, Pilipovic, Rodino, 2019
Let $\alpha+\beta>1(\alpha+\beta \geq 1)$ be such that $\alpha / \beta \in \mathbb{Q}$. Then,

$$
\Sigma_{\beta}^{\alpha} \cong \Lambda_{\infty}\left(n^{\frac{1}{\alpha+\beta}}\right), \quad \mathcal{S}_{\alpha}^{\alpha} \cong \Lambda_{0}^{\prime}\left(n^{\frac{1}{\alpha+\beta}}\right) .
$$

- Eigenfunction expansions with respect to certain elliptic PDO, e.g.,

for suitable $k, m \in \mathbb{N}$.

Question

Does a similar result hold for the spaces $\mathcal{S}_{(N)}^{(M)}$ and $\mathcal{S}_{\{N\}}^{\{M\}}$? What is the correct generalization of the condition $\alpha / \beta \in \mathbb{Q}$?

Known results (2)

Cappiello, Gramchev, Pilipovic, Rodino, 2019

Let $\alpha+\beta>1(\alpha+\beta \geq 1)$ be such that $\alpha / \beta \in \mathbb{Q}$. Then,

$$
\Sigma_{\beta}^{\alpha} \cong \Lambda_{\infty}\left(n^{\frac{1}{\alpha+\beta}}\right), \quad \mathcal{S}_{\alpha}^{\alpha} \cong \Lambda_{0}^{\prime}\left(n^{\frac{1}{\alpha+\beta}}\right)
$$

- Eigenfunction expansions with respect to certain elliptic PDO, e.g.,

$$
(-\Delta)^{m}+x^{2 k}
$$

for suitable $k, m \in \mathbb{N}$.

Question

Does a similar result hold for the spaces $S_{(N)}^{(M)}$ and $S_{\{N\}}^{\{M\}}$? What is the correct generalization of the condition $\alpha / \beta \in \mathbb{Q}$?

Known results (2)

Cappiello, Gramchev, Pilipovic, Rodino, 2019

Let $\alpha+\beta>1(\alpha+\beta \geq 1)$ be such that $\alpha / \beta \in \mathbb{Q}$. Then,

$$
\Sigma_{\beta}^{\alpha} \cong \Lambda_{\infty}\left(n^{\frac{1}{\alpha+\beta}}\right), \quad \mathcal{S}_{\alpha}^{\alpha} \cong \Lambda_{0}^{\prime}\left(n^{\frac{1}{\alpha+\beta}}\right) .
$$

- Eigenfunction expansions with respect to certain elliptic PDO, e.g.,

$$
(-\Delta)^{m}+x^{2 k}
$$

for suitable $k, m \in \mathbb{N}$.

Question

Does a similar result hold for the spaces $\mathcal{S}_{(N)}^{(M)}$ and $\mathcal{S}_{\{N\}}^{\{M\}}$? correct generalization of the condition $\alpha / \beta \in \mathbb{Q}$?

Known results (2)

Cappiello, Gramchev, Pilipovic, Rodino, 2019

Let $\alpha+\beta>1(\alpha+\beta \geq 1)$ be such that $\alpha / \beta \in \mathbb{Q}$. Then,

$$
\Sigma_{\beta}^{\alpha} \cong \Lambda_{\infty}\left(n^{\frac{1}{\alpha+\beta}}\right), \quad \mathcal{S}_{\alpha}^{\alpha} \cong \Lambda_{0}^{\prime}\left(n^{\frac{1}{\alpha+\beta}}\right) .
$$

- Eigenfunction expansions with respect to certain elliptic PDO, e.g.,

$$
(-\Delta)^{m}+x^{2 k}
$$

for suitable $k, m \in \mathbb{N}$.

Question

Does a similar result hold for the spaces $\mathcal{S}_{(N)}^{(M)}$ and $\mathcal{S}_{\{N\}}^{\{M\}}$? What is the correct generalization of the condition $\alpha / \beta \in \mathbb{Q}$?

The case $\omega(t)=t$

- For $\lambda>0$ we set $V_{\lambda}=\{z \in \mathbb{C}| | \operatorname{lm} z \mid<\lambda\}$.
- Given a weight function η, we define $\mathcal{H}_{\eta, \lambda}\left(V_{\lambda}\right)$ as the Banach space consisting of all $f \in \mathcal{O}\left(V_{\lambda}\right)$ such that

$$
\sup _{z \in V_{\lambda}}|f(z)| e^{\lambda \omega(|R e z|)}<\infty .
$$

- We set

$$
\mathcal{H}_{(\eta)}:=\bigcap_{\lambda>0} \mathcal{H}_{\eta, \lambda}\left(V_{\lambda}\right), \quad \mathcal{H}_{\{\eta\}}:=\bigcup_{\lambda>0} \mathcal{H}_{\eta, \lambda}\left(V_{\lambda}\right) .
$$

- We have that

$$
\mathcal{H}_{(\eta)}=\mathcal{S}_{(\eta)}^{(t)},
$$

$$
\mathcal{H}_{\{\eta\}}=\mathcal{S}_{\{\eta\}}^{\{t\}} .
$$

The case $\omega(t)=t$

- For $\lambda>0$ we set $V_{\lambda}=\{z \in \mathbb{C}| | \operatorname{lm} z \mid<\lambda\}$.
- Given a weight function η, we define $\mathcal{H}_{\eta, \lambda}\left(V_{\lambda}\right)$ as the Banach space consisting of all $f \in \mathcal{O}\left(V_{\lambda}\right)$ such that

$$
\sup _{z \in V_{\lambda}}|f(z)| e^{\lambda \omega(|\operatorname{Re} z|)}<\infty
$$

- We set

- We have that

The case $\omega(t)=t$

- For $\lambda>0$ we set $V_{\lambda}=\{z \in \mathbb{C}| | \operatorname{lm} z \mid<\lambda\}$.
- Given a weight function η, we define $\mathcal{H}_{\eta, \lambda}\left(V_{\lambda}\right)$ as the Banach space consisting of all $f \in \mathcal{O}\left(V_{\lambda}\right)$ such that

$$
\sup _{z \in V_{\lambda}}|f(z)| e^{\lambda \omega(|\operatorname{Re} z|)}<\infty
$$

- We set

$$
\mathcal{H}_{(\eta)}:=\bigcap_{\lambda>0} \mathcal{H}_{\eta, \lambda}\left(V_{\lambda}\right), \quad \mathcal{H}_{\{\eta\}}:=\bigcup_{\lambda>0} \mathcal{H}_{\eta, \lambda}\left(V_{\lambda}\right) .
$$

- We have that

The case $\omega(t)=t$

- For $\lambda>0$ we set $V_{\lambda}=\{z \in \mathbb{C}| ||\operatorname{lm} z|<\lambda\}$.
- Given a weight function η, we define $\mathcal{H}_{\eta, \lambda}\left(V_{\lambda}\right)$ as the Banach space consisting of all $f \in \mathcal{O}\left(V_{\lambda}\right)$ such that

$$
\sup _{z \in V_{\lambda}}|f(z)| e^{\lambda \omega(|\operatorname{Re} z|)}<\infty
$$

- We set

$$
\mathcal{H}_{(\eta)}:=\bigcap_{\lambda>0} \mathcal{H}_{\eta, \lambda}\left(V_{\lambda}\right), \quad \mathcal{H}_{\{\eta\}}:=\bigcup_{\lambda>0} \mathcal{H}_{\eta, \lambda}\left(V_{\lambda}\right)
$$

- We have that

$$
\mathcal{H}_{(\eta)}=\mathcal{S}_{(\eta)}^{(t)}, \quad \mathcal{H}_{\{\eta\}}=\mathcal{S}_{\{\eta\}}^{\{t\}}
$$

Sequence space representations for $\mathcal{H}_{\{\eta\}}$

- Let η be a weight function. We define $\eta^{*}=\left(t \eta^{-1}(t)\right)^{-1}$.

Langenbruch, 2012 and 2016

$$
\mathcal{H}_{\{\eta\}} \cong \Lambda_{0}^{\prime}\left(\eta^{*}(n)\right) \cong \Lambda_{0}^{\prime}(n) \widehat{\otimes} \Lambda_{0}^{\prime}(\eta(n)) .
$$

Vogt, 1982

Let E be an infinite-dimensional nuclear Fréchet space satisfying (DN) and $(\bar{\Omega})$. Then, $E \cong \Lambda_{0}(\nu)$ for some positive increasing sequence ν.

- (DN): Quantified decomposition theorem for holomorphic functions on strips with rapid decay.
- $(\bar{\Omega})$: Weighted version of Hadamard's three-lines theorem.
- Determine diametral dimension of $\mathcal{H}_{\{\eta\}}^{\prime}$ to show that $\nu=\left(\eta^{*}(n)\right)_{n \in \mathbb{N}}$

Sequence space representations for $\mathcal{H}_{\{\eta\}}$

- Let η be a weight function. We define $\eta^{*}=\left(t \eta^{-1}(t)\right)^{-1}$.

Langenbruch, 2012 and 2016

$$
\mathcal{H}_{\{\eta\}} \cong \Lambda_{0}^{\prime}\left(\eta^{*}(n)\right) \cong \Lambda_{0}^{\prime}(n) \delta \Lambda_{0}^{\prime}(\eta(n)) .
$$

Vogt, 1982

Let E be an infinite-dimensional nuclear Fréchet space satisfying (DN) and $(\bar{\Omega})$. Then, $E \cong \Lambda_{0}(\nu)$ for some positive increasing sequence ν.

- (DN): Quantified decomposition theorem for holomorphic functions on strips with rapid decay.
- $(\bar{\Omega})$: Weighted version of Hadamard's three-lines theorem.
- Determine diametral dimension of $\mathcal{H}_{\{\eta\}}^{\prime}$ to show that $\nu=\left(\eta^{*}(n)\right)_{n \in \mathbb{R}}$

Sequence space representations for $\mathcal{H}_{\{\eta\}}$

- Let η be a weight function. We define $\eta^{*}=\left(t \eta^{-1}(t)\right)^{-1}$.

Langenbruch, 2012 and 2016

$$
\mathcal{H}_{\{\eta\}} \cong \Lambda_{0}^{\prime}\left(\eta^{*}(n)\right) \cong \Lambda_{0}^{\prime}(n) \widehat{\otimes} \Lambda_{0}^{\prime}(\eta(n)) .
$$

Vogt, 1982

Let E be an infinite-dimensional nuclear Fréchet space satisfying (DN) and $(\bar{\Omega})$. Then, $E \cong \Lambda_{0}(\nu)$ for some positive increasing sequence ν.

- (DN): Quantified decomposition theorem for holomorphic functions on strips with rapid decay.
- $(\bar{\Omega})$: Weighted version of Hadamard's three-lines theorem.
- Determine diametral dimension of $\mathcal{H}_{\{\eta\}}^{\prime}$ to show that $\nu=\left(\eta^{*}(n)\right)_{n \in \mathbb{R}}$

Sequence space representations for $\mathcal{H}_{\{\eta\}}$

- Let η be a weight function. We define $\eta^{*}=\left(t \eta^{-1}(t)\right)^{-1}$.

Langenbruch, 2012 and 2016

$$
\mathcal{H}_{\{\eta\}} \cong \Lambda_{0}^{\prime}\left(\eta^{*}(n)\right) \cong \Lambda_{0}^{\prime}(n) \widehat{\otimes} \Lambda_{0}^{\prime}(\eta(n)) .
$$

Vogt, 1982

Let E be an infinite-dimensional nuclear Fréchet space satisfying ($\underline{D N}$) and $(\bar{\Omega})$. Then, $E \cong \Lambda_{0}(\nu)$ for some positive increasing sequence ν.
> - (DN): Quantified decomposition theorem for holomorphic functions on strips with rapid decay.
> - $(\bar{\Omega})$: Weighted version of Hadamard's three-lines theorem
> - Determine diametral dimension of $\mathcal{H}_{\{\eta\}}^{\prime}$ to show that $\nu=\left(\eta^{*}(n)\right)_{n \in \mathbb{R}}$

Sequence space representations for $\mathcal{H}_{\{\eta\}}$

- Let η be a weight function. We define $\eta^{*}=\left(t \eta^{-1}(t)\right)^{-1}$.

Langenbruch, 2012 and 2016

$$
\mathcal{H}_{\{\eta\}} \cong \Lambda_{0}^{\prime}\left(\eta^{*}(n)\right) \cong \Lambda_{0}^{\prime}(n) \widehat{\otimes} \Lambda_{0}^{\prime}(\eta(n)) .
$$

Vogt, 1982

Let E be an infinite-dimensional nuclear Fréchet space satisfying ($\underline{D N}$) and $(\bar{\Omega})$. Then, $E \cong \Lambda_{0}(\nu)$ for some positive increasing sequence ν.

- ($(\underline{N N})$: Quantified decomposition theorem for holomorphic functions on strips with rapid decay.
- $(\bar{\Omega})$: Weighted version of Hadamard's three-lines theorem
- Determine diametral dimension of $\mathcal{H}_{\{\eta\}}^{\prime}$ to show that $\nu=\left(\eta^{*}(n)\right)_{n \in \mathbb{N}}$

Sequence space representations for $\mathcal{H}_{\{\eta\}}$

- Let η be a weight function. We define $\eta^{*}=\left(t \eta^{-1}(t)\right)^{-1}$.

Langenbruch, 2012 and 2016

$$
\mathcal{H}_{\{\eta\}} \cong \Lambda_{0}^{\prime}\left(\eta^{*}(n)\right) \cong \Lambda_{0}^{\prime}(n) \widehat{\otimes} \Lambda_{0}^{\prime}(\eta(n))
$$

Vogt, 1982

Let E be an infinite-dimensional nuclear Fréchet space satisfying ($\underline{D N}$) and $(\bar{\Omega})$. Then, $E \cong \Lambda_{0}(\nu)$ for some positive increasing sequence ν.

- ($(\underline{N N})$: Quantified decomposition theorem for holomorphic functions on strips with rapid decay.
- $(\bar{\Omega})$: Weighted version of Hadamard's three-lines theorem.
- Determine diametral dimension of $\mathcal{H}_{\{\eta\}}^{\prime}$ to show that $\nu=\left(\eta^{*}(n)\right)_{n \in \mathbb{N}}$

Sequence space representations for $\mathcal{H}_{\{\eta\}}$

- Let η be a weight function. We define $\eta^{*}=\left(t \eta^{-1}(t)\right)^{-1}$.

Langenbruch, 2012 and 2016

$$
\mathcal{H}_{\{\eta\}} \cong \Lambda_{0}^{\prime}\left(\eta^{*}(n)\right) \cong \Lambda_{0}^{\prime}(n) \widehat{\otimes} \Lambda_{0}^{\prime}(\eta(n))
$$

Vogt, 1982

Let E be an infinite-dimensional nuclear Fréchet space satisfying ($\underline{D N}$) and $(\bar{\Omega})$. Then, $E \cong \Lambda_{0}(\nu)$ for some positive increasing sequence ν.

- ($\underline{D N}$): Quantified decomposition theorem for holomorphic functions on strips with rapid decay.
- $(\bar{\Omega})$: Weighted version of Hadamard's three-lines theorem.
- Determine diametral dimension of $\mathcal{H}_{\{\eta\}}^{\prime}$ to show that $\nu=\left(\eta^{*}(n)\right)_{n \in \mathbb{N}}$.

Examples

- Up to O-equivalence, we have that

Examples

- Up to O-equivalence, we have that

η	η^{*}
$t^{\frac{1}{\alpha}}$	$t^{\frac{1}{\alpha+1}}$
$t^{\frac{1}{\alpha}} \log (1+t)^{\beta}$	$t^{\frac{1}{\alpha+1}} \log (1+t)^{\frac{\alpha \beta}{\alpha+1}}$

Examples

- Up to O-equivalence, we have that

η	η^{*}
$t^{\frac{1}{\alpha}}$	$t^{\frac{1}{\alpha+1}}$
$t^{\frac{1}{\alpha}} \log (1+t)^{\beta}$	$t^{\frac{1}{\alpha+1}} \log (1+t)^{\frac{\alpha \beta}{\alpha+1}}$
$e^{(\log t)^{\alpha}}$	$e^{(\log t)^{\alpha}}$ if $0<\alpha<1 / 2$

Corollary

$\mathcal{S}_{\alpha}^{1} \cong \mathcal{S}_{1}^{\alpha} \cong \Lambda_{0}^{\prime}\left(n^{\frac{1}{\alpha+1}}\right)$,

Examples

- Up to O-equivalence, we have that

η	η^{*}
$t^{\frac{1}{\alpha}}$	$t^{\frac{1}{\alpha+1}}$
$t^{\frac{1}{\alpha}} \log (1+t)^{\beta}$	$t^{\frac{1}{\alpha+1}} \log (1+t)^{\frac{\alpha \beta}{\alpha+1}}$
$e^{(\log t)^{\alpha}}$	$e^{(\log t)^{\alpha}}$ if $0<\alpha<1 / 2$
	$e^{(\log t)^{\alpha}-\alpha(\log t)^{2 \alpha-1}}$ if $1 / 2 \leq \alpha<2 / 3$

Examples

- Up to O-equivalence, we have that

η	η^{*}
$t^{\frac{1}{\alpha}}$	$t^{\frac{1}{\alpha+1}}$
$t^{\frac{1}{\alpha}} \log (1+t)^{\beta}$	$t^{\frac{1}{\alpha+1}} \log (1+t)^{\frac{\alpha \beta}{\alpha+1}}$
$e^{(\log t)^{\alpha}}$	$e^{(\log t)^{\alpha}}$ if $0<\alpha<1 / 2$
	$e^{(\log t)^{\alpha}-\alpha(\log t)^{2 \alpha-1}}$ if $1 / 2 \leq \alpha<2 / 3$
	\ldots

Examples

- Up to O-equivalence, we have that

η	η^{*}
$t^{\frac{1}{\alpha}}$	$t^{\frac{1}{\alpha+1}}$
$t^{\frac{1}{\alpha}} \log (1+t)^{\beta}$	$t^{\frac{1}{\alpha+1}} \log (1+t)^{\frac{\alpha \beta}{\alpha+1}}$
$e^{(\log t)^{\alpha}}$	$e^{(\log t)^{\alpha}}$ if $0<\alpha<1 / 2$
	$e^{(\log t)^{\alpha}-\alpha(\log t)^{2 \alpha-1}}$ if $1 / 2 \leq \alpha<2 / 3$

Corollary

$$
\mathcal{S}_{\alpha}^{1} \cong \mathcal{S}_{1}^{\alpha} \cong \Lambda_{0}^{\prime}\left(n^{\frac{1}{\alpha+1}}\right), \quad \alpha>0
$$

Sequence space representations for $\mathcal{H}_{(\eta)}$

D., 2020

$$
\mathcal{H}_{(\eta)} \cong \Lambda_{\infty}\left(\eta^{*}(n)\right) .
$$

In particular,

$$
\Sigma_{\alpha}^{1} \cong \Sigma_{1}^{\alpha} \cong \Lambda_{\infty}\left(n^{\frac{1}{\alpha+1}}\right), \quad \alpha>0 .
$$

Vogt, 1982; Aytuna, Krone, Terzioglu, 1989

Let E be a nuclear Fréchet space satisfying (DN) and (Ω) with $\Delta(E)=\Delta\left(\Lambda_{\infty}(\nu)\right)=\Lambda_{\infty}^{\prime}(\nu)$ for some positive sequence ν with $\nu_{2 n}=O\left(\nu_{n}\right)$. Then, $E \cong \Lambda_{\infty}(\nu)$.

- (DN): Weighted version of Hadamard's three-lines theorem.
- (Ω) : Mapping properties of the STFT on $\mathcal{H}_{(\eta)}$
- $\Delta\left(\mathcal{H}_{(\eta)}\right)=\Lambda_{\infty}^{\prime}\left(\eta^{*}(\eta)\right)$: STFT + result of Langenbruch

Sequence space representations for $\mathcal{H}_{(\eta)}$

D., 2020

$$
\mathcal{H}_{(\eta)} \cong \Lambda_{\infty}\left(\eta^{*}(n)\right) .
$$

In particular,

$$
\Sigma_{\alpha}^{1} \cong \Sigma_{1}^{\alpha} \cong \Lambda_{\infty}\left(n^{\frac{1}{\alpha+1}}\right), \quad \alpha>0 .
$$

Vogt, 1982; Aytuna, Krone, Terzioglu, 1989

Let E be a nuclear Fréchet space satisfying (DN) and (Ω) with $\Delta(E)=\Delta\left(\Lambda_{\infty}(\nu)\right)=\Lambda_{\infty}^{\prime}(\nu)$ for some positive sequence ν with $\nu_{2 n}=O\left(\nu_{n}\right)$. Then, $E \cong \Lambda_{\infty}(\nu)$.

- (DN): Weighted version of Hadamard's three-lines theorem.
- (Ω) : Mapping properties of the STFT on $\mathcal{H}_{(\eta)}$
- $\Delta\left(\mathcal{H}_{(\eta)}\right)=\Lambda_{\infty}^{\prime}\left(\eta^{*}(\eta)\right)$: STFT + result of Langenbruch

Sequence space representations for $\mathcal{H}_{(\eta)}$

D., 2020

$$
\mathcal{H}_{(\eta)} \cong \Lambda_{\infty}\left(\eta^{*}(n)\right) .
$$

In particular,

$$
\Sigma_{\alpha}^{1} \cong \Sigma_{1}^{\alpha} \cong \Lambda_{\infty}\left(n^{\frac{1}{\alpha+1}}\right), \quad \alpha>0 .
$$

Vogt, 1982; Aytuna, Krone, Terzioglu, 1989

Let E be a nuclear Fréchet space satisfying (DN) and (Ω) with $\Delta(E)=\Delta\left(\Lambda_{\infty}(\nu)\right)=\Lambda_{\infty}^{\prime}(\nu)$ for some positive sequence ν with $\nu_{2 n}=O\left(\nu_{n}\right)$. Then, $E \cong \Lambda_{\infty}(\nu)$.

- (DN): Weighted version of Hadamard's three-lines theorem.
- (Ω): Mapping properties of the STFT on $\mathcal{H}_{(\eta)}$
- $\Delta\left(\mathcal{H}_{(\eta)}\right)=\Lambda_{\infty}^{\prime}\left(\eta^{*}(\eta)\right)$: STFT + result of Langenbruch

Sequence space representations for $\mathcal{H}_{(\eta)}$

D., 2020

$$
\mathcal{H}_{(\eta)} \cong \Lambda_{\infty}\left(\eta^{*}(n)\right) .
$$

In particular,

$$
\Sigma_{\alpha}^{1} \cong \Sigma_{1}^{\alpha} \cong \Lambda_{\infty}\left(n^{\frac{1}{\alpha+1}}\right), \quad \alpha>0 .
$$

Vogt, 1982; Aytuna, Krone, Terzioglu, 1989

Let E be a nuclear Fréchet space satisfying ($D N$) and (Ω) with $\Delta(E)=\Delta\left(\Lambda_{\infty}(\nu)\right)=\Lambda_{\infty}^{\prime}(\nu)$ for some positive sequence ν with $\nu_{2 n}=O\left(\nu_{n}\right)$. Then, $E \cong \Lambda_{\infty}(\nu)$.

- (DN): Weighted version of Hadamard's three-lines theorem.
- (Ω) : Mapping properties of the STFT on $\mathcal{H}_{(\eta)}$.
- $\Delta\left(\mathcal{H}_{(\eta)}\right)=\Lambda_{\infty}^{\prime}\left(\eta^{*}(\eta)\right)$: STFT + result of Langenbruch.

Sequence space representations for $\mathcal{H}_{(\eta)}$

D., 2020

$$
\mathcal{H}_{(\eta)} \cong \Lambda_{\infty}\left(\eta^{*}(n)\right) .
$$

In particular,

$$
\Sigma_{\alpha}^{1} \cong \Sigma_{1}^{\alpha} \cong \Lambda_{\infty}\left(n^{\frac{1}{\alpha+1}}\right), \quad \alpha>0 .
$$

Vogt, 1982; Aytuna, Krone, Terzioglu, 1989

Let E be a nuclear Fréchet space satisfying (DN) and (Ω) with $\Delta(E)=\Delta\left(\Lambda_{\infty}(\nu)\right)=\Lambda_{\infty}^{\prime}(\nu)$ for some positive sequence ν with $\nu_{2 n}=O\left(\nu_{n}\right)$. Then, $E \cong \Lambda_{\infty}(\nu)$.

- (DN): Weighted version of Hadamard's three-lines theorem.
- (Ω) : Mapping properties of the STFT on $\mathcal{H}_{(\eta)}$.
- $\Delta\left(\mathcal{H}_{(\eta)}\right)=\Lambda_{\infty}^{\prime}\left(\eta^{*}(\eta)\right)$: STFT + result of Langenbruch.

Sequence space representations for $\mathcal{S}_{(\eta)}^{(\omega)}$ and $\mathcal{S}_{\{\eta\}}^{\{\omega\}}$

- Let ω and η be weight functions. We define $\omega \sharp \eta=\left(\omega^{-1}(t) \eta^{-1}(t)\right)^{-1}$.

Suppose that there are $a, b>0$ and $\psi, \gamma \in \mathcal{S}_{(\eta)}^{(\omega)}\left(\psi, \gamma \in \mathcal{S}_{\{\eta\}}^{\{\omega\}}\right)$ such that

$$
\begin{equation*}
\sum_{j \in \mathbb{Z}^{d}} \psi(x-a j-b k) \gamma(x-a j)=\delta_{k, 0}, \quad k \in \mathbb{Z} \tag{1}
\end{equation*}
$$

Then,

$$
\begin{aligned}
& \mathcal{S}_{(\eta)}^{(\omega)} \cong \Lambda_{\infty}(\omega \sharp \eta(n)) \\
& \mathcal{S}_{\{\eta\}}^{\{\omega\}} \cong \Lambda_{\infty}(\omega(n)) \widehat{\otimes} \Lambda_{\infty}(\eta(n)), \\
&(\omega \sharp \eta(n)) \cong \Lambda_{0}^{\prime}(\omega(n)) \widehat{\otimes} \Lambda_{0}^{\prime}(\eta(n)) .
\end{aligned}
$$

- Pelczinsky-Vogt decomposition method (E complemented in $\Lambda_{\infty}(\nu)$ ($\left.\Lambda_{0}(\nu)\right)$ and vice versa $\Rightarrow E \cong \Lambda_{\infty}(\nu)\left(E \cong \Lambda_{0}(\nu)\right)$ (Vogt, 1982).

Sequence space representations for $\mathcal{S}_{(\eta)}^{(\omega)}$ and $\mathcal{S}_{\{\eta\}}^{\{\omega\}}$

- Let ω and η be weight functions. We define $\omega \sharp \eta=\left(\omega^{-1}(t) \eta^{-1}(t)\right)^{-1}$.

D., 2020

Suppose that there are $a, b>0$ and $\psi, \gamma \in \mathcal{S}_{(\eta)}^{(\omega)}\left(\psi, \gamma \in \mathcal{S}_{\{\eta\}}^{\{\omega\}}\right)$ such that

$$
\begin{equation*}
\sum_{j \in \mathbb{Z}^{d}} \psi(x-a j-b k) \gamma(x-a j)=\delta_{k, 0}, \quad k \in \mathbb{Z} \tag{1}
\end{equation*}
$$

Then,

$$
\mathcal{S}_{(\eta)}^{(\omega)} \cong \Lambda_{\infty}(\omega \sharp \eta(n)) \cong \Lambda_{\infty}(\omega(n)) \widehat{\otimes} \Lambda_{\infty}(\eta(n)),
$$

- Pelczinsky-Vogt decomposition method (E complemented in $\Lambda_{\infty}(\nu)$ ($\left.\Lambda_{0}(\nu)\right)$ and vice versa $\Rightarrow E \cong \Lambda_{\infty}(\nu)\left(E \cong \Lambda_{0}(\nu)\right)($ Vogt, 1982 $)$

Sequence space representations for $\mathcal{S}_{(\eta)}^{(\omega)}$ and $\mathcal{S}_{\{\eta\}}^{\{\omega\}}$

- Let ω and η be weight functions. We define $\omega \sharp \eta=\left(\omega^{-1}(t) \eta^{-1}(t)\right)^{-1}$.

D., 2020

Suppose that there are $a, b>0$ and $\psi, \gamma \in \mathcal{S}_{(\eta)}^{(\omega)}\left(\psi, \gamma \in \mathcal{S}_{\{\eta\}}^{\{\omega\}}\right)$ such that

$$
\begin{equation*}
\sum_{j \in \mathbb{Z}^{d}} \psi(x-a j-b k) \gamma(x-a j)=\delta_{k, 0}, \quad k \in \mathbb{Z} \tag{1}
\end{equation*}
$$

Then,

$$
\mathcal{S}_{(\eta)}^{(\omega)} \cong \Lambda_{\infty}(\omega \sharp \eta(n)) \cong \Lambda_{\infty}(\omega(n)) \widehat{\Delta} \Lambda_{\infty}(\eta(n))
$$

$$
\cong \Lambda_{0}^{\prime}(\omega \sharp \eta(n)) \cong \Lambda_{0}^{\prime}(\omega(n)) \widehat{\otimes} \Lambda_{0}^{\prime}(\eta(n))
$$

- Pelczinsky-Vogt decomposition method (E complemented in $\Lambda_{\infty}(\nu)$ ($\left.\Lambda_{0}(\nu)\right)$ and vice versa $\Rightarrow E \cong \Lambda_{\infty}(\nu)\left(E \cong \Lambda_{0}(\nu)\right)($ Vogt, 1982 $)$

Sequence space representations for $\mathcal{S}_{(\eta)}^{(\omega)}$ and $\mathcal{S}_{\{\eta\}}^{\{\omega\}}$

- Let ω and η be weight functions. We define $\omega \sharp \eta=\left(\omega^{-1}(t) \eta^{-1}(t)\right)^{-1}$.

D., 2020

Suppose that there are $a, b>0$ and $\psi, \gamma \in \mathcal{S}_{(\eta)}^{(\omega)}\left(\psi, \gamma \in \mathcal{S}_{\{\eta\}}^{\{\omega\}}\right)$ such that

$$
\begin{equation*}
\sum_{j \in \mathbb{Z}^{d}} \psi(x-a j-b k) \gamma(x-a j)=\delta_{k, 0}, \quad k \in \mathbb{Z} \tag{1}
\end{equation*}
$$

Then,

$$
\mathcal{S}_{(\eta)}^{(\omega)} \cong \Lambda_{\infty}(\omega \sharp \eta(n)) \cong \Lambda_{\infty}(\omega(n)) \widehat{\otimes} \Lambda_{\infty}(\eta(n)),
$$

$$
\cong \Lambda_{0}^{\prime}(\omega \sharp \eta(n)) \cong \Lambda_{0}^{\prime}(\omega(n)) \widehat{\otimes} \Lambda_{0}^{\prime}(\eta(n)) .
$$

[^0]
Sequence space representations for $\mathcal{S}_{(\eta)}^{(\omega)}$ and $\mathcal{S}_{\{\eta\}}^{\{\omega\}}$

- Let ω and η be weight functions. We define $\omega \sharp \eta=\left(\omega^{-1}(t) \eta^{-1}(t)\right)^{-1}$.

D., 2020

Suppose that there are $a, b>0$ and $\psi, \gamma \in \mathcal{S}_{(\eta)}^{(\omega)}\left(\psi, \gamma \in \mathcal{S}_{\{\eta\}}^{\{\omega\}}\right)$ such that

$$
\begin{equation*}
\sum_{j \in \mathbb{Z}^{d}} \psi(x-a j-b k) \gamma(x-a j)=\delta_{k, 0}, \quad k \in \mathbb{Z} \tag{1}
\end{equation*}
$$

Then,

$$
\begin{gathered}
\mathcal{S}_{(\eta)}^{(\omega)} \cong \Lambda_{\infty}(\omega \sharp \eta(n)) \cong \Lambda_{\infty}(\omega(n)) \widehat{\otimes} \Lambda_{\infty}(\eta(n)), \\
\mathcal{S}_{\{\eta\}}^{\{\omega\}} \cong \Lambda_{0}^{\prime}(\omega \sharp \eta(n)) \cong \Lambda_{0}^{\prime}(\omega(n)) \widehat{\otimes} \Lambda_{0}^{\prime}(\eta(n)) .
\end{gathered}
$$

[^1]
Sequence space representations for $\mathcal{S}_{(\eta)}^{(\omega)}$ and $\mathcal{S}_{\{\eta\}}^{\{\omega\}}$

- Let ω and η be weight functions. We define $\omega \sharp \eta=\left(\omega^{-1}(t) \eta^{-1}(t)\right)^{-1}$.

D., 2020

Suppose that there are $a, b>0$ and $\psi, \gamma \in \mathcal{S}_{(\eta)}^{(\omega)}\left(\psi, \gamma \in \mathcal{S}_{\{\eta\}}^{\{\omega\}}\right)$ such that

$$
\begin{equation*}
\sum_{j \in \mathbb{Z}^{d}} \psi(x-a j-b k) \gamma(x-a j)=\delta_{k, 0}, \quad k \in \mathbb{Z} \tag{1}
\end{equation*}
$$

Then,

$$
\begin{aligned}
& \mathcal{S}_{(\eta)}^{(\omega)} \cong \Lambda_{\infty}(\omega \sharp \eta(n)) \\
& \mathcal{S}_{\{\eta\}}^{\{\omega\}} \cong \Lambda_{\infty}(\omega(n)) \widehat{\otimes} \Lambda_{\infty}^{\prime}(\eta(n)), \\
&(\omega \sharp \eta(n)) \cong \Lambda_{0}^{\prime}(\omega(n)) \widehat{\otimes} \Lambda_{0}^{\prime}(\eta(n)) .
\end{aligned}
$$

[^2]
Sequence space representations for $\mathcal{S}_{(\eta)}^{(\omega)}$ and $\mathcal{S}_{\{\eta\}}^{\{\omega\}}$

- Let ω and η be weight functions. We define $\omega \sharp \eta=\left(\omega^{-1}(t) \eta^{-1}(t)\right)^{-1}$.

D., 2020

Suppose that there are $a, b>0$ and $\psi, \gamma \in \mathcal{S}_{(\eta)}^{(\omega)}\left(\psi, \gamma \in \mathcal{S}_{\{\eta\}}^{\{\omega\}}\right)$ such that

$$
\begin{equation*}
\sum_{j \in \mathbb{Z}^{d}} \psi(x-a j-b k) \gamma(x-a j)=\delta_{k, 0}, \quad k \in \mathbb{Z} \tag{1}
\end{equation*}
$$

Then,

$$
\begin{aligned}
& \mathcal{S}_{(\eta)}^{(\omega)} \cong \Lambda_{\infty}(\omega \sharp \eta(n)) \cong \Lambda_{\infty}(\omega(n)) \widehat{\otimes} \Lambda_{\infty}(\eta(n)), \\
& \mathcal{S}_{\{\eta\}}^{\{\omega\}} \cong \Lambda_{0}^{\prime}(\omega \sharp \eta(n)) \cong \Lambda_{0}^{\prime}(\omega(n)) \widehat{\otimes} \Lambda_{0}^{\prime}(\eta(n)) .
\end{aligned}
$$

- Pelczinsky-Vogt decomposition method (E complemented in $\Lambda_{\infty}(\nu)$ ($\left.\Lambda_{0}(\nu)\right)$ and vice versa $\Rightarrow E \cong \Lambda_{\infty}(\nu)\left(E \cong \Lambda_{0}(\nu)\right)($ Vogt, 1982).

On the condition (1)

- Condition (1) is satisfied in the following two cases:

```
(3)}\omega\mathrm{ is non-quasianalytic: Existence of cut-off functions
(2) }\omega=o(\mp@subsup{t}{}{2})\mathrm{ and }\eta=o(\mp@subsup{t}{}{2})(\omega=O(\mp@subsup{t}{}{2})\mathrm{ and }\eta=O(\mp@subsup{t}{}{2})):\mathrm{ :ondition (1) is
equivalent to the existence of a dual pair of Gabor frame windows in
S
Janssen (2000) showed that there exist a dual pair of Gabor frame
windows in S}\mp@subsup{\mathcal{S}}{1/2}{1/2
```


Corollary

$$
\Sigma_{\beta}^{\alpha} \cong \Lambda_{\infty}\left(n^{\frac{1}{\alpha+\beta}}\right), \quad \mathcal{S}_{\beta}^{\alpha} \cong \Lambda_{0}^{\prime}\left(n^{\frac{1}{\alpha+\beta}}\right)
$$

provided that either

On the condition (1)

- Condition (1) is satisfied in the following two cases:
(1) ω is non-quasianalytic:
(2) $\omega=o\left(t^{2}\right)$ and $\eta=o\left(t^{2}\right)\left(\omega=O\left(t^{2}\right)\right.$ and $\left.\eta=O\left(t^{2}\right)\right)$: Condition (1) is
equivalent to the existence of a dual pair of Gabor frame windows in
$\mathcal{S}_{(\eta)}^{(\omega)}\left(\mathcal{S}_{S_{\eta\}}}^{\{\omega\}}\right)$ (Wexler-Raz biorthogonality relations). Bölcskei and Janssen (2000) showed that there exist a dual pair of Gabor frame windows in $\mathcal{S}_{1 / 2}^{1 / 2}$

Corollary

$$
\Sigma_{\beta}^{\alpha} \cong \Lambda_{\infty}\left(n^{\frac{1}{\alpha+\beta}}\right), \quad \mathcal{S}_{\beta}^{\alpha} \cong \Lambda_{0}^{\prime}\left(n^{\frac{1}{\alpha+\beta}}\right),
$$

provided that either

On the condition (1)

- Condition (1) is satisfied in the following two cases:
(1) ω is non-quasianalytic: Existence of cut-off functions.

Corollary

$$
\Sigma_{\beta}^{\alpha} \cong \Lambda_{\infty}\left(n^{\frac{1}{\alpha+\beta}}\right), \quad \mathcal{S}_{\beta}^{\alpha} \cong \Lambda_{0}^{\prime}\left(n^{\frac{1}{\alpha+\beta}}\right)
$$

provided that either

On the condition (1)

- Condition (1) is satisfied in the following two cases:
(1) ω is non-quasianalytic: Existence of cut-off functions.
(2) $\omega=o\left(t^{2}\right)$ and $\eta=o\left(t^{2}\right)\left(\omega=O\left(t^{2}\right)\right.$ and $\left.\eta=O\left(t^{2}\right)\right)$:

Janssen (2000) showed that there exist a dual pair of Gabor frame windows in $\mathcal{S}_{1 / 2}^{1 / 2}$

Corollary

$$
\Sigma_{\beta}^{\alpha} \cong \Lambda_{\infty}\left(n^{\frac{1}{\alpha+\beta}}\right), \quad \mathcal{S}_{\beta}^{\alpha} \cong \Lambda_{0}^{\prime}\left(n^{\frac{1}{\alpha+\beta}}\right)
$$

provided that either

On the condition (1)

- Condition (1) is satisfied in the following two cases:
(1) ω is non-quasianalytic: Existence of cut-off functions.
(2) $\omega=o\left(t^{2}\right)$ and $\eta=o\left(t^{2}\right)\left(\omega=O\left(t^{2}\right)\right.$ and $\left.\eta=O\left(t^{2}\right)\right)$: Condition (1) is equivalent to the existence of a dual pair of Gabor frame windows in $\mathcal{S}_{(\eta)}^{(\omega)}\left(\mathcal{S}_{\{\eta\}}^{\{\omega\}}\right)$ (Wexler-Raz biorthogonality relations).
Janssen (2000) showed that there exist a dual pair of Gabor frame
windows in $\mathcal{S}_{1 / 2}^{1 / 2}$

Corollary

provided that either

On the condition (1)

- Condition (1) is satisfied in the following two cases:
(1) ω is non-quasianalytic: Existence of cut-off functions.
(2) $\omega=o\left(t^{2}\right)$ and $\eta=o\left(t^{2}\right)\left(\omega=O\left(t^{2}\right)\right.$ and $\left.\eta=O\left(t^{2}\right)\right)$: Condition (1) is equivalent to the existence of a dual pair of Gabor frame windows in $\mathcal{S}_{(\eta)}^{(\omega)}\left(\mathcal{S}_{\{\eta\}}^{\{\omega\}}\right)$ (Wexler-Raz biorthogonality relations). Bölcskei and Janssen (2000) showed that there exist a dual pair of Gabor frame windows in $\mathcal{S}_{1 / 2}^{1 / 2}$.

Corollary

provided that either

On the condition (1)

- Condition (1) is satisfied in the following two cases:
(1) ω is non-quasianalytic: Existence of cut-off functions.
(2) $\omega=o\left(t^{2}\right)$ and $\eta=o\left(t^{2}\right)\left(\omega=O\left(t^{2}\right)\right.$ and $\left.\eta=O\left(t^{2}\right)\right)$: Condition (1) is equivalent to the existence of a dual pair of Gabor frame windows in $\mathcal{S}_{(\eta)}^{(\omega)}\left(\mathcal{S}_{\{\eta\}}^{\{\omega\}}\right)$ (Wexler-Raz biorthogonality relations). Bölcskei and Janssen (2000) showed that there exist a dual pair of Gabor frame windows in $\mathcal{S}_{1 / 2}^{1 / 2}$.

Corollary

$$
\Sigma_{\beta}^{\alpha} \cong \Lambda_{\infty}\left(n^{\frac{1}{\alpha+\beta}}\right), \quad \mathcal{S}_{\beta}^{\alpha} \cong \Lambda_{0}^{\prime}\left(n^{\frac{1}{\alpha+\beta}}\right)
$$

provided that either

$$
\alpha \geq 1 \text { or } \beta \geq 1
$$

or

$$
\alpha>1 / 2 \text { and } \beta>1 / 2(\alpha \geq 1 / 2 \text { and } \beta \geq 1 / 2)
$$

Open problems

Conjecture

$$
\mathcal{S}_{(\eta)}^{(\omega)} \cong \Lambda_{\infty}(\omega \sharp \eta(n)), \quad \mathcal{S}_{\{\eta\}}^{\{\omega\}} \cong \Lambda_{0}^{\prime}(\omega \sharp \eta(n))
$$

for all non-trivial spaces $\mathcal{S}_{(\eta)}^{(\omega)}\left(\mathcal{S}_{\{\eta\}}^{\{\omega\}}\right)$

- By using the STFT one can show that $\mathcal{S}_{(\eta)}^{(\omega)}$ and $\left(\mathcal{S}_{\{\eta\}}^{\{\omega\}}\right)^{\prime}$ satisfy the suitable $(D N)$ and (Ω) type conditions. How to determine the diametral dimension of these spaces?
- Does each non-trivial space $\mathcal{S}_{(\eta)}^{(\omega)}\left(\mathcal{S}_{\{\eta\}}^{\{\omega\}}\right)$ contain a pair of functions satisfying (1)? Equivalently, does it contain a dual pair of Gabor frame windows? Does $\mathcal{S}_{\beta}^{\alpha}, \alpha+\beta \geq 1$, contain a dual pair of Gabor frame windows?

Open problems

Conjecture

$$
\mathcal{S}_{(\eta)}^{(\omega)} \cong \Lambda_{\infty}(\omega \sharp \eta(n)), \quad \mathcal{S}_{\{\eta\}}^{\{\omega\}} \cong \Lambda_{0}^{\prime}(\omega \sharp \eta(n))
$$

for all non-trivial spaces $\mathcal{S}_{(\eta)}^{(\omega)}\left(\mathcal{S}_{\{\eta\}}^{\{\omega\}}\right)$

- By using the STFT one can show that $\mathcal{S}_{(\eta)}^{(\omega)}$ and $\left(\mathcal{S}_{\{\eta\}}^{\{\omega\}}\right)^{\prime}$ satisfy the suitable (DN) and (Ω) type conditions.
diametral dimension of these spaces?
- Does each non-trivial space $\mathcal{S}_{(\eta)}^{(\omega)}\left(\mathcal{S}_{\{\eta\}}^{\{\omega\}}\right)$ contain a pair of functions satisfying (1)? Equivalently, does it contain a dual pair of Gabor frame windows? Does $\mathcal{S}_{\beta}^{\alpha}, \alpha+\beta \geq 1$, contain a dual pair of Gabor frame windows?

Open problems

Conjecture

$$
\mathcal{S}_{(\eta)}^{(\omega)} \cong \Lambda_{\infty}(\omega \sharp \eta(n)), \quad \mathcal{S}_{\{\eta\}}^{\{\omega\}} \cong \Lambda_{0}^{\prime}(\omega \sharp \eta(n))
$$

for all non-trivial spaces $\mathcal{S}_{(\eta)}^{(\omega)}\left(\mathcal{S}_{\{\eta\}}^{\{\omega\}}\right)$

- By using the STFT one can show that $\mathcal{S}_{(\eta)}^{(\omega)}$ and $\left(\mathcal{S}_{\{\eta\}}^{\{\omega\}}\right)^{\prime}$ satisfy the suitable ($D N$) and (Ω) type conditions. How to determine the diametral dimension of these spaces?
- Does each non-trivial space $\mathcal{S}_{(\eta)}^{(\omega)}\left(\mathcal{S}_{\{\eta\}}^{\{\omega\}}\right)$ contain a pair of functions satisfying (1)? Equivalently, does it contain a dual pair of Gabor frame windows? Does $\mathcal{S}_{\beta}^{\alpha}, \alpha+\beta \geq 1$, contain a dual pair of Gabor frame windows?

Open problems

Conjecture

$$
\mathcal{S}_{(\eta)}^{(\omega)} \cong \Lambda_{\infty}(\omega \sharp \eta(n)), \quad \mathcal{S}_{\{\eta\}}^{\{\omega\}} \cong \Lambda_{0}^{\prime}(\omega \sharp \eta(n))
$$

for all non-trivial spaces $\mathcal{S}_{(\eta)}^{(\omega)}\left(\mathcal{S}_{\{\eta\}}^{\{\omega\}}\right)$

- By using the STFT one can show that $\mathcal{S}_{(\eta)}^{(\omega)}$ and $\left(\mathcal{S}_{\{\eta\}}^{\{\omega\}}\right)^{\prime}$ satisfy the suitable ($D N$) and (Ω) type conditions. How to determine the diametral dimension of these spaces?
- Does each non-trivial space $\mathcal{S}_{(\eta)}^{(\omega)}\left(\mathcal{S}_{\{\eta\}}^{\{\omega\}}\right)$ contain a pair of functions satisfying (1)?
frame windows? Does $\mathcal{S}_{\beta}^{\alpha}, \alpha+\beta \geq 1$, contain a dual pair of Gabor frame windows?

Open problems

Conjecture

$$
\mathcal{S}_{(\eta)}^{(\omega)} \cong \Lambda_{\infty}(\omega \sharp \eta(n)), \quad \mathcal{S}_{\{\eta\}}^{\{\omega\}} \cong \Lambda_{0}^{\prime}(\omega \sharp \eta(n))
$$

for all non-trivial spaces $\mathcal{S}_{(\eta)}^{(\omega)}\left(\mathcal{S}_{\{\eta\}}^{\{\omega\}}\right)$

- By using the STFT one can show that $\mathcal{S}_{(\eta)}^{(\omega)}$ and $\left(\mathcal{S}_{\{\eta\}}^{\{\omega\}}\right)^{\prime}$ satisfy the suitable ($D N$) and (Ω) type conditions. How to determine the diametral dimension of these spaces?
- Does each non-trivial space $\mathcal{S}_{(\eta)}^{(\omega)}\left(\mathcal{S}_{\{\eta\}}^{\{\omega\}}\right)$ contain a pair of functions satisfying (1)? Equivalently, does it contain a dual pair of Gabor frame windows?

Open problems

Conjecture

$$
\mathcal{S}_{(\eta)}^{(\omega)} \cong \Lambda_{\infty}(\omega \sharp \eta(n)), \quad \mathcal{S}_{\{\eta\}}^{\{\omega\}} \cong \Lambda_{0}^{\prime}(\omega \sharp \eta(n))
$$

for all non-trivial spaces $\mathcal{S}_{(\eta)}^{(\omega)}\left(\mathcal{S}_{\{\eta\}}^{\{\omega\}}\right)$

- By using the STFT one can show that $\mathcal{S}_{(\eta)}^{(\omega)}$ and $\left(\mathcal{S}_{\{\eta\}}^{\{\omega\}}\right)^{\prime}$ satisfy the suitable ($D N$) and (Ω) type conditions. How to determine the diametral dimension of these spaces?
- Does each non-trivial space $\mathcal{S}_{(\eta)}^{(\omega)}\left(\mathcal{S}_{\{\eta\}}^{\{\omega\}}\right)$ contain a pair of functions satisfying (1)? Equivalently, does it contain a dual pair of Gabor frame windows? Does $\mathcal{S}_{\beta}^{\alpha}, \alpha+\beta \geq 1$, contain a dual pair of Gabor frame windows?

[^0]: - Pelczinsky-Vogt decomposition method (E complemented in $\Lambda_{\infty}(\nu)($ $\left.\Lambda_{0}(\nu)\right)$ and vice versa $\Rightarrow E \cong \Lambda_{\infty}(\nu)\left(E \cong \Lambda_{0}(\nu)\right)($ Vogt, 1982)

[^1]: - Pelczinsky-Vogt decomposition method (E complemented in $\Lambda_{\infty}(\nu)$ ($\left.\Lambda_{0}(\nu)\right)$ and vice versa $\Rightarrow E \cong \Lambda_{\infty}(\nu)\left(E \cong \Lambda_{0}(\nu)\right)($ Vogt, 1982)

[^2]: - Pelczinsky-Vogt decomposition method (E complemented in $\wedge_{\infty}(\nu)$ ($\left.\Lambda_{0}(\nu)\right)$ and vice versa $\Rightarrow E \cong \Lambda_{\infty}(\nu)\left(E \cong \Lambda_{0}(\nu)\right)($ Vogt, 1982)

