Sequence space representations for Gelfand-Shilov spaces

Andreas Debrouwere

Ghent University

GF2020

September 4, 2020

• More generally, Vogt (1983) obtained sequence space representations for the Fréchet spaces

 $\mathcal{K}(\eta_p) := \{ f \in C^{\infty}(\mathbb{R}) \mid \sup_{x \in \mathbb{R}} \max_{n \le p} |f^{(n)}(x)| \eta_p(x) < \infty, \, \forall p \in \mathbb{N} \}.$

• Pelczinsky-Vogt decomposition method (*E* complemented in $s \widehat{\otimes} F$ and vice versa $\Rightarrow E \cong s \widehat{\otimes} F$).

Main problem

Obtain sequence space representations for spaces of ultradifferentiable functions with rapid decay (= Gelfand-Shilov spaces).

2/14

Introduction

• $S \cong s$ (Hermite expansions).

• More generally, Vogt (1983) obtained sequence space representations for the Fréchet spaces

 $\mathcal{K}(\eta_p) := \{ f \in C^{\infty}(\mathbb{R}) \mid \sup_{x \in \mathbb{R}} \max_{n \le p} |f^{(n)}(x)| \eta_p(x) < \infty, \, \forall p \in \mathbb{N} \}.$

• Pelczinsky-Vogt decomposition method (*E* complemented in $s \widehat{\otimes} F$ and vice versa $\Rightarrow E \cong s \widehat{\otimes} F$).

Main problem

Obtain sequence space representations for spaces of ultradifferentiable functions with rapid decay (= Gelfand-Shilov spaces).

2/14

• More generally, Vogt (1983) obtained sequence space representations for the Fréchet spaces

 $\mathcal{K}(\eta_p) := \{ f \in C^{\infty}(\mathbb{R}) \mid \sup_{x \in \mathbb{R}} \max_{n \leq p} |f^{(n)}(x)| \eta_p(x) < \infty, \, \forall p \in \mathbb{N} \}.$

• Pelczinsky-Vogt decomposition method (*E* complemented in $s \widehat{\otimes} F$ and vice versa $\Rightarrow E \cong s \widehat{\otimes} F$).

Main problem

Obtain sequence space representations for spaces of ultradifferentiable functions with rapid decay (= Gelfand-Shilov spaces).

• More generally, Vogt (1983) obtained sequence space representations for the Fréchet spaces

$$\mathcal{K}(\eta_p) := \{ f \in \mathcal{C}^\infty(\mathbb{R}) \mid \sup_{x \in \mathbb{R}} \max_{n \leq p} |f^{(n)}(x)| \eta_p(x) < \infty, \ \forall p \in \mathbb{N} \}.$$

• Pelczinsky-Vogt decomposition method (*E* complemented in $s \widehat{\otimes} F$ and vice versa $\Rightarrow E \cong s \widehat{\otimes} F$).

Main problem

Obtain sequence space representations for spaces of ultradifferentiable functions with rapid decay (= Gelfand-Shilov spaces).

• More generally, Vogt (1983) obtained sequence space representations for the Fréchet spaces

$$\mathcal{K}(\eta_p) := \{ f \in \mathcal{C}^\infty(\mathbb{R}) \mid \sup_{x \in \mathbb{R}} \max_{n \leq p} |f^{(n)}(x)| \eta_p(x) < \infty, \ \forall p \in \mathbb{N} \}.$$

• Pelczinsky-Vogt decomposition method (*E* complemented in $s \widehat{\otimes} F$ and vice versa $\Rightarrow E \cong s \widehat{\otimes} F$).

Main problem

Obtain sequence space representations for spaces of ultradifferentiable functions with rapid decay (= Gelfand-Shilov spaces).

2/14

• A continuous increasing function $\omega : [0, \infty) \to [0, \infty)$ is called a weight function if $\omega(0) = 0$, log $t = o(\omega(t))$ and there is C > 0 such that

 $\omega(2t) \leq C\omega(t) + C, \qquad \forall t \geq 0.$

- $\omega(t) = t^{\frac{1}{\alpha}} \log(1+t)^{\beta} (\alpha > 0, \beta \in \mathbb{R}); \ \omega(t) = e^{(\log t)^{\alpha}} (0 < \alpha < 1).$
- Given two weight functions ω and η , we define $S_{\eta,\lambda}^{\omega,\lambda}$, $\lambda > 0$, as the Banach space consisting of all $f \in S(\mathbb{R})$ such that

 $\sup_{x \in \mathbb{R}} |f(x)| e^{\lambda \eta(|x|)} < \infty \quad \text{and} \quad \sup_{\xi \in \mathbb{R}} |\widehat{f}(\xi)| e^{\lambda \omega(|\xi|)} < \infty.$

• We set

• A continuous increasing function $\omega : [0, \infty) \to [0, \infty)$ is called a weight function if $\omega(0) = 0$, log $t = o(\omega(t))$ and there is C > 0 such that

 $\omega(2t) \leq C\omega(t) + C, \qquad \forall t \geq 0.$

•
$$\omega(t) = t^{\frac{1}{\alpha}} \log(1+t)^{\beta} (\alpha > 0, \beta \in \mathbb{R}); \ \omega(t) = e^{(\log t)^{\alpha}} (0 < \alpha < 1).$$

• Given two weight functions ω and η , we define $S_{\eta,\lambda}^{\omega,\lambda}$, $\lambda > 0$, as the Banach space consisting of all $f \in S(\mathbb{R})$ such that

 $\sup_{x \in \mathbb{R}} |f(x)| e^{\lambda \eta(|x|)} < \infty \quad \text{and} \quad \sup_{\xi \in \mathbb{R}} |\widehat{f}(\xi)| e^{\lambda \omega(|\xi|)} < \infty.$

• A continuous increasing function $\omega : [0, \infty) \to [0, \infty)$ is called a weight function if $\omega(0) = 0$, log $t = o(\omega(t))$ and there is C > 0 such that

$$\omega(2t) \leq C\omega(t) + C, \qquad \forall t \geq 0.$$

•
$$\omega(t) = t^{\frac{1}{\alpha}} \log(1+t)^{\beta} (\alpha > 0, \beta \in \mathbb{R}); \ \omega(t) = e^{(\log t)^{\alpha}} (0 < \alpha < 1).$$

• Given two weight functions ω and η , we define $S_{\eta,\lambda}^{\omega,\lambda}$, $\lambda > 0$, as the Banach space consisting of all $f \in S(\mathbb{R})$ such that

$$\sup_{x \in \mathbb{R}} |f(x)| e^{\lambda \eta(|x|)} < \infty \quad \text{and} \quad \sup_{\xi \in \mathbb{R}} |\widehat{f}(\xi)| e^{\lambda \omega(|\xi|)} < \infty.$$

• A continuous increasing function $\omega : [0, \infty) \to [0, \infty)$ is called a weight function if $\omega(0) = 0$, log $t = o(\omega(t))$ and there is C > 0 such that

$$\omega(2t) \leq C\omega(t) + C, \qquad \forall t \geq 0.$$

•
$$\omega(t) = t^{\frac{1}{\alpha}} \log(1+t)^{\beta} \, (\alpha > 0, \beta \in \mathbb{R}); \, \omega(t) = e^{(\log t)^{\alpha}} \, (0 < \alpha < 1).$$

• Given two weight functions ω and η , we define $S_{\eta,\lambda}^{\omega,\lambda}$, $\lambda > 0$, as the Banach space consisting of all $f \in S(\mathbb{R})$ such that

$$\sup_{x\in\mathbb{R}}|f(x)|e^{\lambda\eta(|x|)}<\infty\qquad\text{and}\qquad \sup_{\xi\in\mathbb{R}}|\widehat{f}(\xi)|e^{\lambda\omega(|\xi|)}<\infty.$$

• A continuous increasing function $\omega : [0, \infty) \to [0, \infty)$ is called a weight function if $\omega(0) = 0$, log $t = o(\omega(t))$ and there is C > 0 such that

$$\omega(2t) \leq C\omega(t) + C, \qquad \forall t \geq 0.$$

•
$$\omega(t) = t^{\frac{1}{\alpha}} \log(1+t)^{\beta} (\alpha > 0, \beta \in \mathbb{R}); \ \omega(t) = e^{(\log t)^{\alpha}} (0 < \alpha < 1).$$

• Given two weight functions ω and η , we define $S_{\eta,\lambda}^{\omega,\lambda}$, $\lambda > 0$, as the Banach space consisting of all $f \in S(\mathbb{R})$ such that

$$\sup_{x\in\mathbb{R}}|f(x)|e^{\lambda\eta(|x|)}<\infty\qquad\text{and}\qquad \sup_{\xi\in\mathbb{R}}|\widehat{f}(\xi)|e^{\lambda\omega(|\xi|)}<\infty.$$

• We set
$$\mathcal{S}_{(\eta)}^{(\omega)} := \bigcap_{\lambda > 0} \mathcal{S}_{\eta,\lambda}^{\omega,\lambda}, \qquad \mathcal{S}_{\{\eta\}}^{\{\omega\}} := \bigcup_{\lambda > 0} \mathcal{S}_{\eta,\lambda}^{\omega,\lambda}.$$

$$\sup_{x\in\mathbb{R}}\sup_{p,q\in\mathbb{N}}\frac{|x^pf^{(q)}(x)|}{\lambda^{p+q}p!^\beta q!^\alpha}<\infty.$$

We have that

$$\Sigma^{lpha}_{eta} = \mathcal{S}^{(t^{1/lpha})}_{(t^{1/eta})}, \qquad \mathcal{S}^{lpha}_{eta} = \mathcal{S}^{\{t^{1/lpha}\}}_{\{t^{1/eta}\}}.$$

The spaces S^α_β were introduced by Gelfand and Shilov in 1968. They showed that S^α_β ≠ {0} if and only if α + β ≥ 1.

4/14

$$\sup_{x\in\mathbb{R}}\sup_{p,q\in\mathbb{N}}\frac{|x^pf^{(q)}(x)|}{\lambda^{p+q}p!^{\beta}q!^{\alpha}}<\infty.$$

We have that

$$\Sigma^{lpha}_{eta} = \mathcal{S}^{(t^{1/lpha})}_{(t^{1/eta})}, \qquad \mathcal{S}^{lpha}_{eta} = \mathcal{S}^{\{t^{1/lpha}\}}_{\{t^{1/eta}\}}.$$

The spaces S^α_β were introduced by Gelfand and Shilov in 1968. They showed that S^α_β ≠ {0} if and only if α + β ≥ 1.

$$\sup_{x\in\mathbb{R}}\sup_{p,q\in\mathbb{N}}\frac{|x^pf^{(q)}(x)|}{\lambda^{p+q}p!^{\beta}q!^{\alpha}}<\infty.$$

We have that

$$\Sigma^{lpha}_{eta} = \mathcal{S}^{(t^{1/lpha})}_{(t^{1/eta})}, \qquad \mathcal{S}^{lpha}_{eta} = \mathcal{S}^{\{t^{1/lpha}\}}_{\{t^{1/eta}\}}.$$

The spaces S^α_β were introduced by Gelfand and Shilov in 1968. They showed that S^α_β ≠ {0} if and only if α + β ≥ 1.

$$\sup_{x\in\mathbb{R}}\sup_{p,q\in\mathbb{N}}\frac{|x^pf^{(q)}(x)|}{\lambda^{p+q}p!^{\beta}q!^{\alpha}}<\infty.$$

We have that

$$\Sigma^{lpha}_{eta} = \mathcal{S}^{(t^{1/lpha})}_{(t^{1/eta})}, \qquad \mathcal{S}^{lpha}_{eta} = \mathcal{S}^{\{t^{1/lpha}\}}_{\{t^{1/eta}\}}.$$

The spaces S^α_β were introduced by Gelfand and Shilov in 1968. They showed that S^α_β ≠ {0} if and only if α + β ≥ 1.

- Let $\nu = (\nu_n)_{n \in \mathbb{N}}$ be a positive increasing sequence.
- We define $\Lambda^{\lambda}(\nu)$, $\lambda \in \mathbb{R}$, as the space consisting of all $(c_n)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}}$ such that

$$\sup_{n\in\mathbb{N}}|c_n|e^{\lambda\nu_n}<\infty.$$

• We set

$$\Lambda_{\infty}(\nu) := \bigcap_{\lambda > 0} \Lambda^{\lambda}(\nu), \qquad \Lambda_{0}(\nu) := \bigcap_{\lambda > 0} \Lambda^{-\lambda}(\nu).$$

$$\Lambda'_{\infty}(\nu) := \bigcup_{\lambda > 0} \Lambda^{-\lambda}(\nu), \qquad \Lambda'_{0}(\nu) := \bigcup_{\lambda > 0} \Lambda^{\lambda}(\nu).$$

Power series spaces

- Let $\nu = (\nu_n)_{n \in \mathbb{N}}$ be a positive increasing sequence.
- We define $\Lambda^{\lambda}(\nu)$, $\lambda \in \mathbb{R}$, as the space consisting of all $(c_n)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}}$ such that

$$\sup_{n\in\mathbb{N}}|c_n|e^{\lambda\nu_n}<\infty.$$

• We set

$$\Lambda_{\infty}(\nu) := \bigcap_{\lambda > 0} \Lambda^{\lambda}(\nu), \qquad \Lambda_{0}(\nu) := \bigcap_{\lambda > 0} \Lambda^{-\lambda}(\nu).$$

$$\Lambda'_{\infty}(\nu) := \bigcup_{\lambda > 0} \Lambda^{-\lambda}(\nu), \qquad \Lambda'_{0}(\nu) := \bigcup_{\lambda > 0} \Lambda^{\lambda}(\nu).$$

Power series spaces

- Let $\nu = (\nu_n)_{n \in \mathbb{N}}$ be a positive increasing sequence.
- We define $\Lambda^{\lambda}(\nu)$, $\lambda \in \mathbb{R}$, as the space consisting of all $(c_n)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}}$ such that

$$\sup_{n\in\mathbb{N}}|c_n|e^{\lambda\nu_n}<\infty.$$

We set

$$\Lambda_{\infty}(\nu) := igcap_{\lambda>0} \Lambda^{\lambda}(\nu), \qquad \Lambda_0(\nu) := igcap_{\lambda>0} \Lambda^{-\lambda}(\nu).$$

$$\Lambda'_{\infty}(\nu) := \bigcup_{\lambda > 0} \Lambda^{-\lambda}(\nu), \qquad \Lambda'_{0}(\nu) := \bigcup_{\lambda > 0} \Lambda^{\lambda}(\nu).$$

Power series spaces

- Let $\nu = (\nu_n)_{n \in \mathbb{N}}$ be a positive increasing sequence.
- We define $\Lambda^{\lambda}(\nu)$, $\lambda \in \mathbb{R}$, as the space consisting of all $(c_n)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}}$ such that

$$\sup_{n\in\mathbb{N}}|c_n|e^{\lambda\nu_n}<\infty.$$

We set

$$\Lambda_\infty(
u) := igcap_{\lambda>0} \Lambda^\lambda(
u), \qquad \Lambda_0(
u) := igcap_{\lambda>0} \Lambda^{-\lambda}(
u).$$

$$\Lambda'_{\infty}(\nu) := \bigcup_{\lambda > 0} \Lambda^{-\lambda}(\nu), \qquad \Lambda'_{0}(\nu) := \bigcup_{\lambda > 0} \Lambda^{\lambda}(\nu).$$

Langenbruch, 2006

Let $\alpha > 1/2$ ($\alpha \ge 1/2$). Then,

$$\Sigma^{\alpha}_{\alpha} \cong \Lambda_{\infty}(n^{rac{1}{2\alpha}}), \qquad \mathcal{S}^{\alpha}_{\beta} \cong \Lambda'_{0}(n^{rac{1}{2\alpha}}).$$

- Hermite expansions, or more generally, eigenfunction expansions with respect to certain elliptic PDO (Gramchev, Rodino, Pilipovic (2011); Vindas and Vuckovic (2016)).
- If ω = ω_M is the associated function of a weight sequence M subject to some standard conditions, we have that

$$S_{\{M\}}^{(M)} = S_{\{\omega_M\}}^{(\omega_M)} = \Lambda_{\infty}(\omega_M(n^{\frac{1}{2}})),$$

$$S_{\{M\}}^{\{M\}} = S_{\{\omega_M\}}^{\{\omega_M\}} = \Lambda_0'(\omega_M(n^{\frac{1}{2}})).$$

Langenbruch, 2006

Let $\alpha > 1/2$ ($\alpha \ge 1/2$). Then,

$$\Sigma^{\alpha}_{\alpha} \cong \Lambda_{\infty}(n^{rac{1}{2\alpha}}), \qquad \mathcal{S}^{\alpha}_{\beta} \cong \Lambda'_{0}(n^{rac{1}{2\alpha}}).$$

- Hermite expansions, or more generally, eigenfunction expansions with respect to certain elliptic PDO (Gramchev, Rodino, Pilipovic (2011); Vindas and Vuckovic (2016)).
- If ω = ω_M is the associated function of a weight sequence M subject to some standard conditions, we have that

$$S_{\{M\}}^{(M)} = S_{\{\omega_M\}}^{(\omega_M)} = \Lambda_{\infty}(\omega_M(n^{\frac{1}{2}})),$$

$$S_{\{M\}}^{\{M\}} = S_{\{\omega_M\}}^{\{\omega_M\}} = \Lambda_0'(\omega_M(n^{\frac{1}{2}})).$$

Langenbruch, 2006

Let $\alpha > 1/2$ ($\alpha \ge 1/2$). Then,

$$\Sigma^{lpha}_{lpha}\cong \Lambda_{\infty}(n^{rac{1}{2lpha}}), \qquad \mathcal{S}^{lpha}_{eta}\cong \Lambda_0'(n^{rac{1}{2lpha}}).$$

- Hermite expansions, or more generally, eigenfunction expansions with respect to certain elliptic PDO (Gramchev, Rodino, Pilipovic (2011); Vindas and Vuckovic (2016)).
- If ω = ω_M is the associated function of a weight sequence M subject to some standard conditions, we have that

$$\begin{split} \mathcal{S}^{(M)}_{(M)} &= \mathcal{S}^{(\omega_M)}_{(\omega_M)} = \Lambda_{\infty}(\omega_M(n^{\frac{1}{2}})), \\ \mathcal{S}^{\{M\}}_{\{M\}} &= \mathcal{S}^{\{\omega_M\}}_{\{\omega_M\}} = \Lambda'_0(\omega_M(n^{\frac{1}{2}})). \end{split}$$

Langenbruch, 2006

Let $\alpha > 1/2$ ($\alpha \ge 1/2$). Then,

$$\Sigma^{lpha}_{lpha}\cong \Lambda_{\infty}(n^{rac{1}{2lpha}}), \qquad \mathcal{S}^{lpha}_{eta}\cong \Lambda_0'(n^{rac{1}{2lpha}}).$$

- Hermite expansions, or more generally, eigenfunction expansions with respect to certain elliptic PDO (Gramchev, Rodino, Pilipovic (2011); Vindas and Vuckovic (2016)).
- If ω = ω_M is the associated function of a weight sequence M subject to some standard conditions, we have that

$$S^{(M)}_{(M)} = S^{(\omega_M)}_{(\omega_M)} = \Lambda_{\infty}(\omega_M(n^{\frac{1}{2}})),$$

 $S^{\{M\}}_{\{M\}} = S^{\{\omega_M\}}_{\{\omega_M\}} = \Lambda'_0(\omega_M(n^{\frac{1}{2}})).$

Cappiello, Gramchev, Pilipovic, Rodino, 2019

Let $\alpha + \beta > 1$ $(\alpha + \beta \ge 1)$ be such that $\alpha / \beta \in \mathbb{Q}$. Then,

$$\Sigma_{\beta}^{\alpha} \cong \Lambda_{\infty}(n^{rac{1}{lpha+eta}}), \qquad \mathcal{S}_{lpha}^{lpha} \cong \Lambda_{0}'(n^{rac{1}{lpha+eta}}).$$

• Eigenfunction expansions with respect to certain elliptic PDO, e.g.,

$$(-\Delta)^m + x^{2k}$$

for suitable $k, m \in \mathbb{N}$.

Question

Does a similar result hold for the spaces $S_{\{N\}}^{\{M\}}$ and $S_{\{N\}}^{\{M\}}$? What is the correct generalization of the condition $\alpha/\beta \in \mathbb{Q}$?

Cappiello, Gramchev, Pilipovic, Rodino, 2019

Let $\alpha + \beta > 1$ $(\alpha + \beta \ge 1)$ be such that $\alpha / \beta \in \mathbb{Q}$. Then,

$$\Sigma^{lpha}_{eta}\cong \Lambda_{\infty}(n^{rac{1}{lpha+eta}}),\qquad \mathcal{S}^{lpha}_{lpha}\cong \Lambda_0'(n^{rac{1}{lpha+eta}}).$$

• Eigenfunction expansions with respect to certain elliptic PDO, e.g.,

$$(-\Delta)^m + x^{2k}$$

for suitable $k, m \in \mathbb{N}$.

Question

Does a similar result hold for the spaces $S_{\{N\}}^{\{M\}}$ and $S_{\{N\}}^{\{M\}}$? What is the correct generalization of the condition $\alpha/\beta \in \mathbb{Q}$?

Cappiello, Gramchev, Pilipovic, Rodino, 2019

Let $\alpha + \beta > 1$ $(\alpha + \beta \ge 1)$ be such that $\alpha / \beta \in \mathbb{Q}$. Then,

$$\Sigma_{\beta}^{\alpha} \cong \Lambda_{\infty}(n^{rac{1}{lpha+eta}}), \qquad \mathcal{S}_{\alpha}^{lpha} \cong \Lambda_{0}'(n^{rac{1}{lpha+eta}}).$$

• Eigenfunction expansions with respect to certain elliptic PDO, e.g.,

$$(-\Delta)^m + x^{2k}$$

for suitable $k, m \in \mathbb{N}$.

Question

Does a similar result hold for the spaces $S_{(N)}^{(M)}$ and $S_{\{N\}}^{\{M\}}$? What is the correct generalization of the condition $\alpha/\beta \in \mathbb{Q}$?

э

Cappiello, Gramchev, Pilipovic, Rodino, 2019

Let $\alpha + \beta > 1$ $(\alpha + \beta \ge 1)$ be such that $\alpha / \beta \in \mathbb{Q}$. Then,

$$\Sigma_{\beta}^{\alpha} \cong \Lambda_{\infty}(n^{rac{1}{lpha+eta}}), \qquad \mathcal{S}_{\alpha}^{lpha} \cong \Lambda_{0}'(n^{rac{1}{lpha+eta}}).$$

• Eigenfunction expansions with respect to certain elliptic PDO, e.g.,

$$(-\Delta)^m + x^{2k}$$

for suitable $k, m \in \mathbb{N}$.

Question

Does a similar result hold for the spaces $S_{(N)}^{(M)}$ and $S_{\{N\}}^{\{M\}}$? What is the correct generalization of the condition $\alpha/\beta \in \mathbb{Q}$?

э

イロト イボト イヨト イヨト

- For $\lambda > 0$ we set $V_{\lambda} = \{z \in \mathbb{C} \mid | \operatorname{Im} z| < \lambda\}.$
- Given a weight function η, we define H_{η,λ}(V_λ) as the Banach space consisting of all f ∈ O(V_λ) such that

$$\sup_{z\in V_{\lambda}}|f(z)|e^{\lambda\omega(|\operatorname{Re} z|)}<\infty.$$

• We set

$$\mathcal{H}_{(\eta)} := igcap_{\lambda > 0} \mathcal{H}_{\eta, \lambda}(V_{\lambda}), \qquad \mathcal{H}_{\{\eta\}} := igcup_{\lambda > 0} \mathcal{H}_{\eta, \lambda}(V_{\lambda}).$$

We have that

$$\mathcal{H}_{(\eta)} = \mathcal{S}_{(\eta)}^{(t)}, \qquad \mathcal{H}_{\{\eta\}} = \mathcal{S}_{\{\eta\}}^{\{t\}}.$$

- For $\lambda > 0$ we set $V_{\lambda} = \{z \in \mathbb{C} \mid |\operatorname{Im} z| < \lambda\}.$
- Given a weight function η , we define $\mathcal{H}_{\eta,\lambda}(V_{\lambda})$ as the Banach space consisting of all $f \in \mathcal{O}(V_{\lambda})$ such that

$$\sup_{z\in V_{\lambda}}|f(z)|e^{\lambda\omega(|\operatorname{Re} z|)}<\infty.$$

$$\mathcal{H}_{(\eta)} := igcap_{\lambda > 0} \mathcal{H}_{\eta, \lambda}(V_{\lambda}), \qquad \mathcal{H}_{\{\eta\}} := igcup_{\lambda > 0} \mathcal{H}_{\eta, \lambda}(V_{\lambda}).$$

We have that

$$\mathcal{H}_{(\eta)} = \mathcal{S}_{(\eta)}^{(t)}, \qquad \mathcal{H}_{\{\eta\}} = \mathcal{S}_{\{\eta\}}^{\{t\}}.$$

- For $\lambda > 0$ we set $V_{\lambda} = \{z \in \mathbb{C} \mid | \operatorname{Im} z| < \lambda\}.$
- Given a weight function η , we define $\mathcal{H}_{\eta,\lambda}(V_{\lambda})$ as the Banach space consisting of all $f \in \mathcal{O}(V_{\lambda})$ such that

$$\sup_{z\in V_{\lambda}}|f(z)|e^{\lambda\omega(|\operatorname{Re} z|)}<\infty.$$

We set

$$\mathcal{H}_{(\eta)} := igcap_{\lambda > 0} \mathcal{H}_{\eta, \lambda}(V_{\lambda}), \qquad \mathcal{H}_{\{\eta\}} := igcup_{\lambda > 0} \mathcal{H}_{\eta, \lambda}(V_{\lambda}).$$

We have that

$$\mathcal{H}_{(\eta)} = \mathcal{S}_{(\eta)}^{(t)}, \qquad \mathcal{H}_{\{\eta\}} = \mathcal{S}_{\{\eta\}}^{\{t\}}.$$

8/14

- For $\lambda > 0$ we set $V_{\lambda} = \{z \in \mathbb{C} \mid |\operatorname{Im} z| < \lambda\}.$
- Given a weight function η , we define $\mathcal{H}_{\eta,\lambda}(V_{\lambda})$ as the Banach space consisting of all $f \in \mathcal{O}(V_{\lambda})$ such that

$$\sup_{z\in V_{\lambda}}|f(z)|e^{\lambda\omega(|\operatorname{Re} z|)}<\infty.$$

We set

$$\mathcal{H}_{(\eta)} := igcap_{\lambda > 0} \mathcal{H}_{\eta, \lambda}(V_{\lambda}), \qquad \mathcal{H}_{\{\eta\}} := igcup_{\lambda > 0} \mathcal{H}_{\eta, \lambda}(V_{\lambda}).$$

We have that

$$\mathcal{H}_{(\eta)} = \mathcal{S}_{(\eta)}^{(t)}, \qquad \mathcal{H}_{\{\eta\}} = \mathcal{S}_{\{\eta\}}^{\{t\}}.$$

Langenbruch, 2012 and 2016

$$\mathcal{H}_{\{\eta\}} \cong \Lambda'_0(\eta^*(n)) \cong \Lambda'_0(n) \widehat{\otimes} \Lambda'_0(\eta(n)).$$

Vogt, 1982

Let *E* be an infinite-dimensional nuclear Fréchet space satisfying (<u>*DN*</u>) and $(\overline{\Omega})$. Then, $E \cong \Lambda_0(\nu)$ for some positive increasing sequence ν .

- (<u>DN</u>): Quantified decomposition theorem for holomorphic functions on strips with rapid decay.
- $(\overline{\Omega})$: Weighted version of Hadamard's three-lines theorem.
- Determine diametral dimension of $\mathcal{H}'_{\{n\}}$ to show that $\nu = (\eta^*(n))_{n \in \mathbb{N}}$.

ヘロア ヘロア ヘビア ヘビア

Langenbruch, 2012 and 2016

$$\mathcal{H}_{\{\eta\}} \cong \Lambda'_0(\eta^*(n)) \cong \Lambda'_0(n) \widehat{\otimes} \Lambda'_0(\eta(n)).$$

Vogt, 1982

Let *E* be an infinite-dimensional nuclear Fréchet space satisfying (<u>*DN*</u>) and $(\overline{\Omega})$. Then, $E \cong \Lambda_0(\nu)$ for some positive increasing sequence ν .

- (*DN*): Quantified decomposition theorem for holomorphic functions on strips with rapid decay.
- $(\overline{\Omega})$: Weighted version of Hadamard's three-lines theorem.
- Determine diametral dimension of $\mathcal{H}'_{\{n\}}$ to show that $\nu = (\eta^*(n))_{n \in \mathbb{N}}$.

イロト イヨト イヨト

Langenbruch, 2012 and 2016

$$\mathcal{H}_{\{\eta\}} \cong \Lambda'_0(\eta^*(n)) \cong \Lambda'_0(n) \widehat{\otimes} \Lambda'_0(\eta(n)).$$

Vogt, 1982

Let *E* be an infinite-dimensional nuclear Fréchet space satisfying (<u>*DN*</u>) and $(\overline{\Omega})$. Then, $E \cong \Lambda_0(\nu)$ for some positive increasing sequence ν .

- (*DN*): Quantified decomposition theorem for holomorphic functions on strips with rapid decay.
- $(\overline{\Omega})$: Weighted version of Hadamard's three-lines theorem.
- Determine diametral dimension of $\mathcal{H}'_{\{n\}}$ to show that $\nu = (\eta^*(n))_{n \in \mathbb{N}}$.

イロト イヨト イヨト

Langenbruch, 2012 and 2016

$$\mathcal{H}_{\{\eta\}} \cong \Lambda'_0(\eta^*(n)) \cong \Lambda'_0(n) \widehat{\otimes} \Lambda'_0(\eta(n)).$$

Vogt, 1982

Let *E* be an infinite-dimensional nuclear Fréchet space satisfying (<u>*DN*</u>) and ($\overline{\Omega}$). Then, $E \cong \Lambda_0(\nu)$ for some positive increasing sequence ν .

- (<u>DN</u>): Quantified decomposition theorem for holomorphic functions on strips with rapid decay.
- $(\overline{\Omega})$: Weighted version of Hadamard's three-lines theorem.
- Determine diametral dimension of H'_{{n}} to show that ν = (η^{*}(n))_{n∈ℕ}.

・ロト ・四ト ・ヨト ・ヨト

Langenbruch, 2012 and 2016

$$\mathcal{H}_{\{\eta\}} \cong \Lambda'_0(\eta^*(n)) \cong \Lambda'_0(n) \widehat{\otimes} \Lambda'_0(\eta(n)).$$

Vogt, 1982

Let *E* be an infinite-dimensional nuclear Fréchet space satisfying (<u>*DN*</u>) and ($\overline{\Omega}$). Then, $E \cong \Lambda_0(\nu)$ for some positive increasing sequence ν .

- (<u>DN</u>): Quantified decomposition theorem for holomorphic functions on strips with rapid decay.
- $(\overline{\Omega})$: Weighted version of Hadamard's three-lines theorem.
- Determine diametral dimension of $\mathcal{H}'_{\{n\}}$ to show that $\nu = (\eta^*(n))_{n \in \mathbb{N}}$.

<ロ> < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Langenbruch, 2012 and 2016

$$\mathcal{H}_{\{\eta\}} \cong \Lambda'_0(\eta^*(n)) \cong \Lambda'_0(n) \widehat{\otimes} \Lambda'_0(\eta(n)).$$

Vogt, 1982

Let *E* be an infinite-dimensional nuclear Fréchet space satisfying (<u>DN</u>) and ($\overline{\Omega}$). Then, $E \cong \Lambda_0(\nu)$ for some positive increasing sequence ν .

- (<u>DN</u>): Quantified decomposition theorem for holomorphic functions on strips with rapid decay.
- $(\overline{\Omega})$: Weighted version of Hadamard's three-lines theorem.
- Determine diametral dimension of $\mathcal{H}'_{\{n\}}$ to show that $\nu = (\eta^*(n))_{n \in \mathbb{N}}$.

<ロ> < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Langenbruch, 2012 and 2016

$$\mathcal{H}_{\{\eta\}} \cong \Lambda'_0(\eta^*(n)) \cong \Lambda'_0(n) \widehat{\otimes} \Lambda'_0(\eta(n)).$$

Vogt, 1982

Let *E* be an infinite-dimensional nuclear Fréchet space satisfying (<u>*DN*</u>) and ($\overline{\Omega}$). Then, $E \cong \Lambda_0(\nu)$ for some positive increasing sequence ν .

- (<u>DN</u>): Quantified decomposition theorem for holomorphic functions on strips with rapid decay.
- $(\overline{\Omega})$: Weighted version of Hadamard's three-lines theorem.
- Determine diametral dimension of $\mathcal{H}'_{\{\eta\}}$ to show that $\nu = (\eta^*(n))_{n \in \mathbb{N}}$.

イロト イボト イヨト イヨト

Corollary

$$\mathcal{S}^1_{\alpha} \cong \mathcal{S}^{\alpha}_1 \cong \Lambda'_0(n^{\frac{1}{\alpha+1}}), \qquad \alpha > 0.$$

<ロ> < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Corollary

$$\mathcal{S}^1_{\alpha} \cong \mathcal{S}^{\alpha}_1 \cong \Lambda'_0(n^{\frac{1}{\alpha+1}}), \qquad \alpha > 0.$$

<ロ> < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Corollary

$$\mathcal{S}^1_{\alpha} \cong \mathcal{S}^{\alpha}_1 \cong \Lambda'_0(n^{\frac{1}{\alpha+1}}), \qquad \alpha > 0.$$

メロトメ 御と メヨト メヨト 三国

Corollary

$$\mathcal{S}^1_{\alpha} \cong \mathcal{S}^{\alpha}_1 \cong \Lambda'_0(n^{\frac{1}{\alpha+1}}), \qquad \alpha > 0.$$

æ

Corollary

$$\mathcal{S}^1_{\alpha} \cong \mathcal{S}^{\alpha}_1 \cong \Lambda'_0(n^{\frac{1}{\alpha+1}}), \qquad \alpha > 0.$$

《曰》《卽》《臣》《臣》 [] 臣

Corollary

$$\mathcal{S}^1_{\alpha} \cong \mathcal{S}^{\alpha}_1 \cong \Lambda_0'(n^{rac{1}{\alpha+1}}), \qquad lpha > 0.$$

æ

・ロト ・留 ト ・目 ト ・ 田 ト

D., 2020

$$\mathcal{H}_{(\eta)} \cong \Lambda_{\infty}(\eta^*(n)).$$

In particular,

$$\Sigma^1_{\alpha} \cong \Sigma^{\alpha}_1 \cong \Lambda_{\infty}(n^{rac{1}{\alpha+1}}), \qquad \alpha > 0.$$

Vogt, 1982; Aytuna, Krone, Terzioglu, 1989

Let *E* be a nuclear Fréchet space satisfying (*DN*) and (Ω) with $\Delta(E) = \Delta(\Lambda_{\infty}(\nu)) = \Lambda'_{\infty}(\nu)$ for some positive sequence ν with $\nu_{2n} = O(\nu_n)$. Then, $E \cong \Lambda_{\infty}(\nu)$.

- (DN): Weighted version of Hadamard's three-lines theorem.
- (Ω): Mapping properties of the STFT on $\mathcal{H}_{(\eta)}$.
- $\Delta(\mathcal{H}_{(\eta)}) = \Lambda'_{\infty}(\eta^*(\eta))$: STFT + result of Langenbruch.

(日)

D., 2020

$$\mathcal{H}_{(\eta)}\cong \Lambda_{\infty}(\eta^*(n)).$$

In particular,

$$\Sigma^1_{\alpha} \cong \Sigma^{\alpha}_1 \cong \Lambda_{\infty}(n^{\frac{1}{\alpha+1}}), \qquad \alpha > 0.$$

Vogt, 1982; Aytuna, Krone, Terzioglu, 1989

Let *E* be a nuclear Fréchet space satisfying (*DN*) and (Ω) with $\Delta(E) = \Delta(\Lambda_{\infty}(\nu)) = \Lambda'_{\infty}(\nu)$ for some positive sequence ν with $\nu_{2n} = O(\nu_n)$. Then, $E \cong \Lambda_{\infty}(\nu)$.

- (DN): Weighted version of Hadamard's three-lines theorem.
- (Ω): Mapping properties of the STFT on $\mathcal{H}_{(\eta)}$.
- $\Delta(\mathcal{H}_{(\eta)}) = \Lambda'_{\infty}(\eta^*(\eta))$: STFT + result of Langenbruch.

<ロ> <四> <四> <四> <四> <四> <四</p>

D., 2020

$$\mathcal{H}_{(\eta)}\cong \Lambda_{\infty}(\eta^*(n)).$$

In particular,

$$\Sigma^1_{\alpha} \cong \Sigma^{\alpha}_1 \cong \Lambda_{\infty}(n^{\frac{1}{\alpha+1}}), \qquad \alpha > 0.$$

Vogt, 1982; Aytuna, Krone, Terzioglu, 1989

Let *E* be a nuclear Fréchet space satisfying (*DN*) and (Ω) with $\Delta(E) = \Delta(\Lambda_{\infty}(\nu)) = \Lambda'_{\infty}(\nu)$ for some positive sequence ν with $\nu_{2n} = O(\nu_n)$. Then, $E \cong \Lambda_{\infty}(\nu)$.

• (DN): Weighted version of Hadamard's three-lines theorem.

- (Ω): Mapping properties of the STFT on $\mathcal{H}_{(\eta)}$.
- $\Delta(\mathcal{H}_{(\eta)}) = \Lambda'_{\infty}(\eta^*(\eta))$: STFT + result of Langenbruch.

・ロト ・ 御 ト ・ 注 ト ・ 注 ト ・ 注 …

D., 2020

$$\mathcal{H}_{(\eta)}\cong \Lambda_{\infty}(\eta^*(n)).$$

In particular,

$$\Sigma^1_{\alpha} \cong \Sigma^{\alpha}_1 \cong \Lambda_{\infty}(n^{\frac{1}{\alpha+1}}), \qquad \alpha > 0.$$

Vogt, 1982; Aytuna, Krone, Terzioglu, 1989

Let *E* be a nuclear Fréchet space satisfying (*DN*) and (Ω) with $\Delta(E) = \Delta(\Lambda_{\infty}(\nu)) = \Lambda'_{\infty}(\nu)$ for some positive sequence ν with $\nu_{2n} = O(\nu_n)$. Then, $E \cong \Lambda_{\infty}(\nu)$.

- (DN): Weighted version of Hadamard's three-lines theorem.
- (Ω): Mapping properties of the STFT on $\mathcal{H}_{(\eta)}$.
- $\Delta(\mathcal{H}_{(\eta)}) = \Lambda'_{\infty}(\eta^*(\eta))$: STFT + result of Langenbruch.

D., 2020

$$\mathcal{H}_{(\eta)}\cong \Lambda_{\infty}(\eta^*(n)).$$

In particular,

$$\Sigma^1_{\alpha} \cong \Sigma^{\alpha}_1 \cong \Lambda_{\infty}(n^{\frac{1}{\alpha+1}}), \qquad \alpha > 0.$$

Vogt, 1982; Aytuna, Krone, Terzioglu, 1989

Let *E* be a nuclear Fréchet space satisfying (*DN*) and (Ω) with $\Delta(E) = \Delta(\Lambda_{\infty}(\nu)) = \Lambda'_{\infty}(\nu)$ for some positive sequence ν with $\nu_{2n} = O(\nu_n)$. Then, $E \cong \Lambda_{\infty}(\nu)$.

- (DN): Weighted version of Hadamard's three-lines theorem.
- (Ω): Mapping properties of the STFT on $\mathcal{H}_{(\eta)}$.
- $\Delta(\mathcal{H}_{(\eta)}) = \Lambda'_{\infty}(\eta^*(\eta))$: STFT + result of Langenbruch.

<ロ> <四> <四> <四> <四> <四> <四> <四</p>

Sequence space representations for $\mathcal{S}_{(\eta)}^{(\omega)}$ and $\mathcal{S}_{\{\eta\}}^{\{\omega\}}$

• Let ω and η be weight functions. We define $\omega \sharp \eta = (\omega^{-1}(t)\eta^{-1}(t))^{-1}$.

D., 2020

Suppose that there are a, b > 0 and $\psi, \gamma \in \mathcal{S}_{\{\eta\}}^{(\omega)}$ $(\psi, \gamma \in \mathcal{S}_{\{\eta\}}^{\{\omega\}})$ such that

$$\sum_{j\in\mathbb{Z}^d}\psi(x-aj-bk)\gamma(x-aj)=\delta_{k,0},\qquad k\in\mathbb{Z}.$$
(1)

Then,

$$\mathcal{S}_{(\eta)}^{(\omega)} \cong \Lambda_{\infty}(\omega \sharp \eta(n)) \cong \Lambda_{\infty}(\omega(n)) \widehat{\otimes} \Lambda_{\infty}(\eta(n)),$$

 $\mathcal{S}_{\{\eta\}}^{\{\omega\}} \cong \Lambda_0'(\omega \sharp \eta(n)) \cong \Lambda_0'(\omega(n)) \widehat{\otimes} \Lambda_0'(\eta(n)).$

• Pelczinsky-Vogt decomposition method (*E* complemented in $\Lambda_{\infty}(\nu)$ ($\Lambda_{0}(\nu)$) and vice versa $\Rightarrow E \cong \Lambda_{\infty}(\nu)$ ($E \cong \Lambda_{0}(\nu)$) (Vogt, 1982).

• Let ω and η be weight functions. We define $\omega \sharp \eta = (\omega^{-1}(t)\eta^{-1}(t))^{-1}$.

D., 2020

Suppose that there are a, b > 0 and $\psi, \gamma \in \mathcal{S}^{\{\omega\}}_{(\eta)}$ $(\psi, \gamma \in \mathcal{S}^{\{\omega\}}_{\{\eta\}})$ such that

$$\sum_{j\in\mathbb{Z}^d}\psi(x-aj-bk)\gamma(x-aj)=\delta_{k,0}, \qquad k\in\mathbb{Z}.$$
 (1)

Then,

$$\mathcal{S}_{(\eta)}^{(\omega)} \cong \Lambda_{\infty}(\omega \sharp \eta(n)) \cong \Lambda_{\infty}(\omega(n)) \widehat{\otimes} \Lambda_{\infty}(\eta(n)),$$

 $S^{\{\omega\}}_{\{\eta\}} \cong \Lambda'_0(\omega \sharp \eta(n)) \cong \Lambda'_0(\omega(n)) \widehat{\otimes} \Lambda'_0(\eta(n)).$

• Pelczinsky-Vogt decomposition method (*E* complemented in $\Lambda_{\infty}(\nu)$ ($\Lambda_{0}(\nu)$) and vice versa $\Rightarrow E \cong \Lambda_{\infty}(\nu)$ ($E \cong \Lambda_{0}(\nu)$) (Vogt, 1982).

▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 → ���

• Let ω and η be weight functions. We define $\omega \sharp \eta = (\omega^{-1}(t)\eta^{-1}(t))^{-1}$.

D., 2020

Suppose that there are a, b > 0 and $\psi, \gamma \in \mathcal{S}^{\{\omega\}}_{(\eta)}$ $(\psi, \gamma \in \mathcal{S}^{\{\omega\}}_{\{\eta\}})$ such that

$$\sum_{j\in\mathbb{Z}^d}\psi(x-aj-bk)\gamma(x-aj)=\delta_{k,0}, \qquad k\in\mathbb{Z}.$$
 (1)

Then,

$$\mathcal{S}^{(\omega)}_{(\eta)} \cong \Lambda_{\infty}(\omega \sharp \eta(n)) \cong \Lambda_{\infty}(\omega(n)) \widehat{\otimes} \Lambda_{\infty}(\eta(n)),$$

 $S^{\{\omega\}}_{\{\eta\}} \cong \Lambda'_0(\omega \sharp \eta(n)) \cong \Lambda'_0(\omega(n)) \widehat{\otimes} \Lambda'_0(\eta(n)).$

• Pelczinsky-Vogt decomposition method (*E* complemented in $\Lambda_{\infty}(\nu)$ ($\Lambda_{0}(\nu)$) and vice versa $\Rightarrow E \cong \Lambda_{\infty}(\nu)$ ($E \cong \Lambda_{0}(\nu)$) (Vogt, 1982).

▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 → ���

• Let ω and η be weight functions. We define $\omega \sharp \eta = (\omega^{-1}(t)\eta^{-1}(t))^{-1}$.

D., 2020

Suppose that there are a, b > 0 and $\psi, \gamma \in \mathcal{S}^{\{\omega\}}_{(\eta)}$ $(\psi, \gamma \in \mathcal{S}^{\{\omega\}}_{\{\eta\}})$ such that

$$\sum_{j\in\mathbb{Z}^d}\psi(x-aj-bk)\gamma(x-aj)=\delta_{k,0}, \qquad k\in\mathbb{Z}.$$
 (1)

Then,

$$\mathcal{S}^{(\omega)}_{(\eta)}\cong \Lambda_\infty(\omega\sharp\eta(n))\cong \Lambda_\infty(\omega(n))\widehat{\otimes}\Lambda_\infty(\eta(n)),$$

 $S^{\{\omega\}}_{\{\eta\}} \cong \Lambda'_0(\omega \sharp \eta(n)) \cong \Lambda'_0(\omega(n)) \widehat{\otimes} \Lambda'_0(\eta(n)).$

• Pelczinsky-Vogt decomposition method (*E* complemented in $\Lambda_{\infty}(\nu)$ ($\Lambda_{0}(\nu)$) and vice versa $\Rightarrow E \cong \Lambda_{\infty}(\nu)$ ($E \cong \Lambda_{0}(\nu)$) (Vogt, 1982).

▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 → ���

• Let ω and η be weight functions. We define $\omega \sharp \eta = (\omega^{-1}(t)\eta^{-1}(t))^{-1}$.

D., 2020

Suppose that there are a, b > 0 and $\psi, \gamma \in \mathcal{S}^{\{\omega\}}_{(\eta)}$ $(\psi, \gamma \in \mathcal{S}^{\{\omega\}}_{\{\eta\}})$ such that

$$\sum_{i\in\mathbb{Z}^d}\psi(x-aj-bk)\gamma(x-aj)=\delta_{k,0}, \qquad k\in\mathbb{Z}.$$
 (1)

Then,

$$\mathcal{S}^{(\omega)}_{(\eta)} \cong \Lambda_{\infty}(\omega \sharp \eta(n)) \cong \Lambda_{\infty}(\omega(n)) \widehat{\otimes} \Lambda_{\infty}(\eta(n)),$$

$$S^{\{\omega\}}_{\{\eta\}} \cong \Lambda'_0(\omega \sharp \eta(n)) \cong \Lambda'_0(\omega(n)) \widehat{\otimes} \Lambda'_0(\eta(n)).$$

• Pelczinsky-Vogt decomposition method (*E* complemented in $\Lambda_{\infty}(\nu)$ ($\Lambda_{0}(\nu)$) and vice versa $\Rightarrow E \cong \Lambda_{\infty}(\nu)$ ($E \cong \Lambda_{0}(\nu)$) (Vogt, 1982).

▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● の Q @

• Let ω and η be weight functions. We define $\omega \sharp \eta = (\omega^{-1}(t)\eta^{-1}(t))^{-1}$.

D., 2020

Suppose that there are a, b > 0 and $\psi, \gamma \in \mathcal{S}^{\{\omega\}}_{(\eta)}$ $(\psi, \gamma \in \mathcal{S}^{\{\omega\}}_{\{\eta\}})$ such that

$$\sum_{i\in\mathbb{Z}^d}\psi(x-aj-bk)\gamma(x-aj)=\delta_{k,0}, \qquad k\in\mathbb{Z}.$$
 (1)

Then,

$$\mathcal{S}^{(\omega)}_{(\eta)}\cong \Lambda_\infty(\omega\sharp\eta(n))\cong \Lambda_\infty(\omega(n))\widehat{\otimes}\Lambda_\infty(\eta(n)),$$

$$S^{\{\omega\}}_{\{\eta\}} \cong \Lambda'_0(\omega \sharp \eta(n)) \cong \Lambda'_0(\omega(n)) \widehat{\otimes} \Lambda'_0(\eta(n)).$$

• Pelczinsky-Vogt decomposition method (*E* complemented in $\Lambda_{\infty}(\nu)$ ($\Lambda_{0}(\nu)$) and vice versa $\Rightarrow E \cong \Lambda_{\infty}(\nu)$ ($E \cong \Lambda_{0}(\nu)$) (Vogt, 1982).

▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● の Q @

Sequence space representations for $\mathcal{S}_{(\eta)}^{(\omega)}$ and $\mathcal{S}_{\{\eta\}}^{\{\omega\}}$

• Let ω and η be weight functions. We define $\omega \sharp \eta = (\omega^{-1}(t)\eta^{-1}(t))^{-1}$.

D., 2020

Suppose that there are a, b > 0 and $\psi, \gamma \in \mathcal{S}^{\{\omega\}}_{(\eta)}$ $(\psi, \gamma \in \mathcal{S}^{\{\omega\}}_{\{\eta\}})$ such that

$$\sum_{i\in\mathbb{Z}^d}\psi(x-aj-bk)\gamma(x-aj)=\delta_{k,0}, \qquad k\in\mathbb{Z}.$$
 (1)

Then,

$$\mathcal{S}^{(\omega)}_{(\eta)} \cong \Lambda_{\infty}(\omega \sharp \eta(n)) \cong \Lambda_{\infty}(\omega(n)) \widehat{\otimes} \Lambda_{\infty}(\eta(n)),$$

$$S^{\{\omega\}}_{\{\eta\}} \cong \Lambda'_0(\omega \sharp \eta(n)) \cong \Lambda'_0(\omega(n)) \widehat{\otimes} \Lambda'_0(\eta(n)).$$

• Pelczinsky-Vogt decomposition method (*E* complemented in $\Lambda_{\infty}(\nu)$ ($\Lambda_{0}(\nu)$) and vice versa $\Rightarrow E \cong \Lambda_{\infty}(\nu)$ ($E \cong \Lambda_{0}(\nu)$) (Vogt, 1982).

• Condition (1) is satisfied in the following two cases:

ω is non-quasianalytic: Existence of cut-off functions.
 ω = o(t²) and η = o(t²) (ω = O(t²) and η = O(t²)): Condition (1) is equivalent to the existence of a dual pair of Gabor frame windows in S^(ω)_(η) (S^{ω}_{η}) (Wexler-Raz biorthogonality relations). Bölcskei and Janssen (2000) showed that there exist a dual pair of Gabor frame windows in S^{1/2}_{1/2}.

Corollary

$$\Sigma_{\beta}^{\alpha} \cong \Lambda_{\infty}(n^{\frac{1}{\alpha+\beta}}), \qquad S_{\beta}^{\alpha} \cong \Lambda_{0}'(n^{\frac{1}{\alpha+\beta}}),$$

provided that either

$$\alpha \geq 1 \text{ or } \beta \geq 1$$

or

lpha>1/2 and eta>1/2 ($lpha\geq1/2$ and $eta\geq1/2$)

イロト イボト イヨト イヨト

• Condition (1) is satisfied in the following two cases:

ω is non-quasianalytic: Existence of cut-off functions.
 ω = o(t²) and η = o(t²) (ω = O(t²) and η = O(t²)): Condition (1) is equivalent to the existence of a dual pair of Gabor frame windows in S^(ω)_(η) (S^{ω}_{η}) (Wexler-Raz biorthogonality relations). Bölcskei and Janssen (2000) showed that there exist a dual pair of Gabor frame windows in S^{1/2}_{1/2}.

Corollary

$$\Sigma_{\beta}^{\alpha} \cong \Lambda_{\infty}(n^{\frac{1}{\alpha+\beta}}), \qquad S_{\beta}^{\alpha} \cong \Lambda_{0}'(n^{\frac{1}{\alpha+\beta}}),$$

provided that either

$$\alpha \geq 1 \text{ or } \beta \geq 1$$

or

 $\alpha > 1/2$ and $\beta > 1/2$ ($\alpha \ge 1/2$ and $\beta \ge 1/2$)

イロト イポト イヨト イヨト

• Condition (1) is satisfied in the following two cases:

(1) ω is non-quasianalytic: Existence of cut-off functions.

2 $\omega = o(t^2)$ and $\eta = o(t^2)$ ($\omega = O(t^2)$ and $\eta = O(t^2)$): Condition (1) is equivalent to the existence of a dual pair of Gabor frame windows in $S_{(\eta)}^{(\omega)}$ ($S_{\{\eta\}}^{\{\omega\}}$) (Wexler-Raz biorthogonality relations). Bölcskei and Janssen (2000) showed that there exist a dual pair of Gabor frame windows in $S_{1/2}^{1/2}$.

Corollary

$$\Sigma_{\beta}^{\alpha} \cong \Lambda_{\infty}(n^{\frac{1}{\alpha+\beta}}), \qquad S_{\beta}^{\alpha} \cong \Lambda_{0}'(n^{\frac{1}{\alpha+\beta}}),$$

provided that either

$$\alpha \geq 1 \text{ or } \beta \geq 1$$

or

lpha>1/2 and eta>1/2 ($lpha\geq1/2$ and $eta\geq1/2$)

イロト イポト イヨト イヨト

• Condition (1) is satisfied in the following two cases:

() ω is non-quasianalytic: Existence of cut-off functions.

2)
$$\omega=o(t^2)$$
 and $\eta=o(t^2)$ $(\omega=O(t^2)$ and $\eta=O(t^2))$: Condition (1) is

equivalent to the existence of a dual pair of Gabor frame windows in $\mathcal{S}_{(\eta)}^{(\omega)}$ ($\mathcal{S}_{\{\eta\}}^{\{\omega\}}$) (Wexler-Raz biorthogonality relations). Bölcskei and Janssen (2000) showed that there exist a dual pair of Gabor frame windows in $\mathcal{S}_{1/2}^{1/2}$.

Corollary

$$\Sigma_{\beta}^{\alpha} \cong \Lambda_{\infty}(n^{\frac{1}{\alpha+\beta}}), \qquad S_{\beta}^{\alpha} \cong \Lambda_{0}'(n^{\frac{1}{\alpha+\beta}}),$$

provided that either

$$\alpha \geq 1 \text{ or } \beta \geq 1$$

or

 $\alpha>1/2 \text{ and } \beta>1/2 \left(\alpha\geq 1/2 \text{ and } \beta\geq 1/2\right)$

< 日 > < 同 > < 回 > < 回 > < 回 > <

• Condition (1) is satisfied in the following two cases:

- **(**) ω is non-quasianalytic: Existence of cut-off functions.
- **2** $\omega = o(t^2)$ and $\eta = o(t^2)$ ($\omega = O(t^2)$ and $\eta = O(t^2)$): Condition (1) is equivalent to the existence of a dual pair of Gabor frame windows in $S_{(\eta)}^{(\omega)}$ ($S_{\{\eta\}}^{\{\omega\}}$) (Wexler-Raz biorthogonality relations). Bölcskei and Janssen (2000) showed that there exist a dual pair of Gabor frame windows in $S_{1/2}^{1/2}$.

Corollary

$$\Sigma_{\beta}^{\alpha} \cong \Lambda_{\infty}(n^{\frac{1}{\alpha+\beta}}), \qquad S_{\beta}^{\alpha} \cong \Lambda_{0}'(n^{\frac{1}{\alpha+\beta}}),$$

provided that either

$$\alpha \geq 1 \text{ or } \beta \geq 1$$

or

lpha>1/2 and eta>1/2 ($lpha\geq1/2$ and $eta\geq1/2$)

• Condition (1) is satisfied in the following two cases:

- () ω is non-quasianalytic: Existence of cut-off functions.
- **2** $\omega = o(t^2)$ and $\eta = o(t^2)$ ($\omega = O(t^2)$ and $\eta = O(t^2)$): Condition (1) is equivalent to the existence of a dual pair of Gabor frame windows in $S_{(\eta)}^{(\omega)}$ ($S_{\{\eta\}}^{\{\omega\}}$) (Wexler-Raz biorthogonality relations). Bölcskei and Janssen (2000) showed that there exist a dual pair of Gabor frame windows in $S_{1/2}^{1/2}$.

Corollary

$$\Sigma_{\beta}^{\alpha} \cong \Lambda_{\infty}(n^{rac{1}{lpha+eta}}), \qquad \mathcal{S}_{\beta}^{lpha} \cong \Lambda_{0}'(n^{rac{1}{lpha+eta}}),$$

provided that either

$$\alpha \geq 1 \text{ or } \beta \geq 1$$

or

 $\alpha > 1/2$ and $\beta > 1/2$ ($\alpha \ge 1/2$ and $\beta \ge 1/2$)

• Condition (1) is satisfied in the following two cases:

- **(**) ω is non-quasianalytic: Existence of cut-off functions.
- **2** $\omega = o(t^2)$ and $\eta = o(t^2)$ ($\omega = O(t^2)$ and $\eta = O(t^2)$): Condition (1) is equivalent to the existence of a dual pair of Gabor frame windows in $S_{(\eta)}^{(\omega)}$ ($S_{\{\eta\}}^{\{\omega\}}$) (Wexler-Raz biorthogonality relations). Bölcskei and Janssen (2000) showed that there exist a dual pair of Gabor frame windows in $S_{1/2}^{1/2}$.

Corollary

$$\Sigma^{lpha}_{eta}\cong \Lambda_{\infty}(n^{rac{1}{lpha+eta}}), \qquad \mathcal{S}^{lpha}_{eta}\cong \Lambda_0'(n^{rac{1}{lpha+eta}}),$$

provided that either

$$\alpha \geq 1 \text{ or } \beta \geq 1$$

or

$$\alpha>1/2$$
 and $\beta>1/2$ ($\alpha\geq1/2$ and $\beta\geq1/2$).

(日本) (日本) (日本)

$$\mathcal{S}_{(\eta)}^{(\omega)} \cong \Lambda_{\infty}(\omega \sharp \eta(n)), \qquad \mathcal{S}_{\{\eta\}}^{\{\omega\}} \cong \Lambda_{0}'(\omega \sharp \eta(n))$$

- By using the STFT one can show that S^(ω)_(η) and (S^{ω}_{η})' satisfy the suitable (DN) and (Ω) type conditions. How to determine the diametral dimension of these spaces?
- Does each non-trivial space $S_{(\eta)}^{(\omega)}$ ($S_{\{\eta\}}^{\{\omega\}}$) contain a pair of functions satisfying (1)? Equivalently, does it contain a dual pair of Gabor frame windows? Does S_{β}^{α} , $\alpha + \beta \geq 1$, contain a dual pair of Gabor frame windows?

$$\mathcal{S}_{(\eta)}^{(\omega)} \cong \Lambda_{\infty}(\omega \sharp \eta(n)), \qquad \mathcal{S}_{\{\eta\}}^{\{\omega\}} \cong \Lambda_{0}'(\omega \sharp \eta(n))$$

- By using the STFT one can show that S^(ω)_(η) and (S^{ω}_{η})' satisfy the suitable (DN) and (Ω) type conditions. How to determine the diametral dimension of these spaces?
- Does each non-trivial space $S_{(\eta)}^{(\omega)}$ ($S_{\{\eta\}}^{\{\omega\}}$) contain a pair of functions satisfying (1)? Equivalently, does it contain a dual pair of Gabor frame windows? Does S_{β}^{α} , $\alpha + \beta \geq 1$, contain a dual pair of Gabor frame windows?

$$\mathcal{S}^{(\omega)}_{(\eta)}\cong \Lambda_\infty(\omega\sharp\eta(n)), \qquad \mathcal{S}^{\{\omega\}}_{\{\eta\}}\cong \Lambda_0'(\omega\sharp\eta(n))$$

- By using the STFT one can show that S^(ω)_(η) and (S^{ω}_{η})' satisfy the suitable (DN) and (Ω) type conditions. How to determine the diametral dimension of these spaces?
- Does each non-trivial space $S_{(\eta)}^{(\omega)}$ ($S_{\{\eta\}}^{\{\omega\}}$) contain a pair of functions satisfying (1)? Equivalently, does it contain a dual pair of Gabor frame windows? Does S_{β}^{α} , $\alpha + \beta \geq 1$, contain a dual pair of Gabor frame windows?

$$\mathcal{S}^{(\omega)}_{(\eta)} \cong \Lambda_{\infty}(\omega \sharp \eta(n)), \qquad \mathcal{S}^{\{\omega\}}_{\{\eta\}} \cong \Lambda_{0}'(\omega \sharp \eta(n))$$

- By using the STFT one can show that S^(ω)_(η) and (S^{ω}_{η})' satisfy the suitable (DN) and (Ω) type conditions. How to determine the diametral dimension of these spaces?
- Does each non-trivial space S^(ω)_(η) (S^{ω}_{η}) contain a pair of functions satisfying (1)? Equivalently, does it contain a dual pair of Gabor frame windows? Does S^α_β, α + β ≥ 1, contain a dual pair of Gabor frame windows?

$$\mathcal{S}^{(\omega)}_{(\eta)}\cong \Lambda_\infty(\omega\sharp\eta(n)), \qquad \mathcal{S}^{\{\omega\}}_{\{\eta\}}\cong \Lambda_0'(\omega\sharp\eta(n))$$

- By using the STFT one can show that S^(ω)_(η) and (S^{ω}_{η})' satisfy the suitable (DN) and (Ω) type conditions. How to determine the diametral dimension of these spaces?
- Does each non-trivial space S^(ω)_(η) (S^{ω}_{η}) contain a pair of functions satisfying (1)? Equivalently, does it contain a dual pair of Gabor frame windows? Does S^α_β, α + β ≥ 1, contain a dual pair of Gabor frame windows?

$$\mathcal{S}^{(\omega)}_{(\eta)}\cong \Lambda_\infty(\omega\sharp\eta(n)), \qquad \mathcal{S}^{\{\omega\}}_{\{\eta\}}\cong \Lambda_0'(\omega\sharp\eta(n))$$

- By using the STFT one can show that S^(ω)_(η) and (S^{ω}_{η})' satisfy the suitable (DN) and (Ω) type conditions. How to determine the diametral dimension of these spaces?
- Does each non-trivial space $S_{(\eta)}^{(\omega)}$ ($S_{\{\eta\}}^{\{\omega\}}$) contain a pair of functions satisfying (1)? Equivalently, does it contain a dual pair of Gabor frame windows? Does S_{β}^{α} , $\alpha + \beta \geq 1$, contain a dual pair of Gabor frame windows?