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Introduction

S ∼= s (Hermite expansions).

More generally, Vogt (1983) obtained sequence space representations
for the Fréchet spaces

K(ηp) := {f ∈ C∞(R) | sup
x∈R

max
n≤p
|f (n)(x)|ηp(x) <∞, ∀p ∈ N}.

Pelczinsky-Vogt decomposition method (E complemented in s⊗̂F
and vice versa ⇒ E ∼= s⊗̂F ).

Main problem

Obtain sequence space representations for spaces of ultradifferentiable
functions with rapid decay (= Gelfand-Shilov spaces).
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Gelfand-Shilov spaces

A continuous increasing function ω : [0,∞)→ [0,∞) is called a
weight function if ω(0) = 0, log t = o(ω(t)) and there is C > 0 such
that

ω(2t) ≤ Cω(t) + C , ∀t ≥ 0.

ω(t) = t
1
α log(1 + t)β (α > 0, β ∈ R); ω(t) = e(log t)

α
(0 < α < 1).

Given two weight functions ω and η, we define Sω,λη,λ ,λ > 0, as the
Banach space consisting of all f ∈ S(R) such that

sup
x∈R
|f (x)|eλη(|x |) <∞ and sup

ξ∈R
|f̂ (ξ)|eλω(|ξ|) <∞.

We set
S(ω)(η) :=

⋂
λ>0

Sω,λη,λ , S{ω}{η} :=
⋃
λ>0

Sω,λη,λ .
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The classical Gelfand-Shilov spaces

Let α, β > 0. We define Σα
β (Sαβ ) as the space consisting of all

f ∈ C∞(R) such that for all λ > 0 (for some λ > 0)

sup
x∈R

sup
p,q∈N

|xpf (q)(x)|
λp+qp!βq!α

<∞.

We have that
Σα
β = S(t

1/α)

(t1/β)
, Sαβ = S{t

1/α}
{t1/β} .

The spaces Sαβ were introduced by Gelfand and Shilov in 1968. They
showed that Sαβ 6= {0} if and only if α + β ≥ 1.
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Power series spaces

Let ν = (νn)n∈N be a positive increasing sequence.

We define Λλ(ν), λ ∈ R, as the space consisting of all (cn)n∈N ∈ CN

such that
sup
n∈N
|cn|eλνn <∞.

We set

Λ∞(ν) :=
⋂
λ>0

Λλ(ν), Λ0(ν) :=
⋂
λ>0

Λ−λ(ν).

If log(n) = o(νn), we have that

Λ′∞(ν) :=
⋃
λ>0

Λ−λ(ν), Λ′0(ν) :=
⋃
λ>0

Λλ(ν).
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Known results (1)

Langenbruch, 2006

Let α > 1/2 (α ≥ 1/2). Then,

Σα
α
∼= Λ∞(n

1
2α ), Sαβ ∼= Λ′0(n

1
2α ).

Hermite expansions, or more generally, eigenfunction expansions with
respect to certain elliptic PDO (Gramchev, Rodino, Pilipovic (2011);
Vindas and Vuckovic (2016)).

If ω = ωM is the associated function of a weight sequence M subject
to some standard conditions, we have that

S(M)
(M) = S(ωM)

(ωM) = Λ∞(ωM(n
1
2 )),

S{M}{M} = S{ωM}
{ωM} = Λ′0(ωM(n

1
2 )).

The above spaces are invariant under the Fourier transform!

6 / 14



Known results (1)

Langenbruch, 2006

Let α > 1/2 (α ≥ 1/2). Then,

Σα
α
∼= Λ∞(n

1
2α ), Sαβ ∼= Λ′0(n

1
2α ).

Hermite expansions, or more generally, eigenfunction expansions with
respect to certain elliptic PDO (Gramchev, Rodino, Pilipovic (2011);
Vindas and Vuckovic (2016)).

If ω = ωM is the associated function of a weight sequence M subject
to some standard conditions, we have that

S(M)
(M) = S(ωM)

(ωM) = Λ∞(ωM(n
1
2 )),

S{M}{M} = S{ωM}
{ωM} = Λ′0(ωM(n

1
2 )).

The above spaces are invariant under the Fourier transform!

6 / 14



Known results (1)

Langenbruch, 2006

Let α > 1/2 (α ≥ 1/2). Then,

Σα
α
∼= Λ∞(n

1
2α ), Sαβ ∼= Λ′0(n

1
2α ).

Hermite expansions, or more generally, eigenfunction expansions with
respect to certain elliptic PDO (Gramchev, Rodino, Pilipovic (2011);
Vindas and Vuckovic (2016)).

If ω = ωM is the associated function of a weight sequence M subject
to some standard conditions, we have that

S(M)
(M) = S(ωM)

(ωM) = Λ∞(ωM(n
1
2 )),

S{M}{M} = S{ωM}
{ωM} = Λ′0(ωM(n

1
2 )).

The above spaces are invariant under the Fourier transform!

6 / 14



Known results (1)

Langenbruch, 2006

Let α > 1/2 (α ≥ 1/2). Then,

Σα
α
∼= Λ∞(n

1
2α ), Sαβ ∼= Λ′0(n

1
2α ).

Hermite expansions, or more generally, eigenfunction expansions with
respect to certain elliptic PDO (Gramchev, Rodino, Pilipovic (2011);
Vindas and Vuckovic (2016)).

If ω = ωM is the associated function of a weight sequence M subject
to some standard conditions, we have that

S(M)
(M) = S(ωM)

(ωM) = Λ∞(ωM(n
1
2 )),

S{M}{M} = S{ωM}
{ωM} = Λ′0(ωM(n

1
2 )).

The above spaces are invariant under the Fourier transform!

6 / 14



Known results (2)

Cappiello, Gramchev, Pilipovic, Rodino, 2019

Let α + β > 1 (α + β ≥ 1) be such that α/β ∈ Q. Then,

Σα
β
∼= Λ∞(n

1
α+β ), Sαα ∼= Λ′0(n

1
α+β ).

Eigenfunction expansions with respect to certain elliptic PDO, e.g.,

(−∆)m + x2k

for suitable k ,m ∈ N.

Question

Does a similar result hold for the spaces S(M)
(N) and S{M}{N} ? What is the

correct generalization of the condition α/β ∈ Q?
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The case ω(t) = t

For λ > 0 we set Vλ = {z ∈ C | | Im z | < λ}.
Given a weight function η, we define Hη,λ(Vλ) as the Banach space
consisting of all f ∈ O(Vλ) such that

sup
z∈Vλ

|f (z)|eλω(|Re z|) <∞.

We set

H(η) :=
⋂
λ>0

Hη,λ(Vλ), H{η} :=
⋃
λ>0

Hη,λ(Vλ).

We have that
H(η) = S(t)(η), H{η} = S{t}{η}.
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Sequence space representations for H{η}

Let η be a weight function. We define η∗ = (tη−1(t))−1.

Langenbruch, 2012 and 2016

H{η} ∼= Λ′0(η∗(n)) ∼= Λ′0(n)⊗̂Λ′0(η(n)).

Vogt, 1982

Let E be an infinite-dimensional nuclear Fréchet space satisfying (DN) and
(Ω). Then, E ∼= Λ0(ν) for some positive increasing sequence ν.

(DN): Quantified decomposition theorem for holomorphic functions
on strips with rapid decay.

(Ω): Weighted version of Hadamard’s three-lines theorem.

Determine diametral dimension of H′{η} to show that ν = (η∗(n))n∈N.
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Examples

Up to O-equivalence, we have that

η η∗

t
1
α t

1
α+1

t
1
α log(1 + t)β t

1
α+1 log(1 + t)

αβ
α+1

e(log t)
α

e(log t)
α

if 0 < α < 1/2

e(log t)
α−α(log t)2α−1

if 1/2 ≤ α < 2/3
· · ·

Corollary

S1α ∼= Sα1 ∼= Λ′0(n
1
α+1 ), α > 0.

10 / 14



Examples

Up to O-equivalence, we have that

η η∗

t
1
α t

1
α+1

t
1
α log(1 + t)β t

1
α+1 log(1 + t)

αβ
α+1

e(log t)
α

e(log t)
α

if 0 < α < 1/2

e(log t)
α−α(log t)2α−1

if 1/2 ≤ α < 2/3
· · ·

Corollary

S1α ∼= Sα1 ∼= Λ′0(n
1
α+1 ), α > 0.

10 / 14



Examples

Up to O-equivalence, we have that

η η∗

t
1
α t

1
α+1

t
1
α log(1 + t)β t

1
α+1 log(1 + t)

αβ
α+1

e(log t)
α

e(log t)
α

if 0 < α < 1/2

e(log t)
α−α(log t)2α−1

if 1/2 ≤ α < 2/3
· · ·

Corollary

S1α ∼= Sα1 ∼= Λ′0(n
1
α+1 ), α > 0.

10 / 14



Examples

Up to O-equivalence, we have that

η η∗

t
1
α t

1
α+1

t
1
α log(1 + t)β t

1
α+1 log(1 + t)

αβ
α+1

e(log t)
α

e(log t)
α

if 0 < α < 1/2

e(log t)
α−α(log t)2α−1

if 1/2 ≤ α < 2/3
· · ·

Corollary

S1α ∼= Sα1 ∼= Λ′0(n
1
α+1 ), α > 0.

10 / 14



Examples

Up to O-equivalence, we have that

η η∗

t
1
α t

1
α+1

t
1
α log(1 + t)β t

1
α+1 log(1 + t)

αβ
α+1

e(log t)
α

e(log t)
α

if 0 < α < 1/2

e(log t)
α−α(log t)2α−1

if 1/2 ≤ α < 2/3
· · ·

Corollary

S1α ∼= Sα1 ∼= Λ′0(n
1
α+1 ), α > 0.

10 / 14



Examples

Up to O-equivalence, we have that

η η∗

t
1
α t

1
α+1

t
1
α log(1 + t)β t

1
α+1 log(1 + t)

αβ
α+1

e(log t)
α

e(log t)
α

if 0 < α < 1/2

e(log t)
α−α(log t)2α−1

if 1/2 ≤ α < 2/3
· · ·

Corollary

S1α ∼= Sα1 ∼= Λ′0(n
1
α+1 ), α > 0.

10 / 14



Sequence space representations for H(η)

D., 2020

H(η)
∼= Λ∞(η∗(n)).

In particular,

Σ1
α
∼= Σα

1
∼= Λ∞(n

1
α+1 ), α > 0.

Vogt, 1982; Aytuna, Krone, Terzioglu, 1989

Let E be a nuclear Fréchet space satisfying (DN) and (Ω) with
∆(E ) = ∆(Λ∞(ν)) = Λ′∞(ν) for some positive sequence ν with
ν2n = O(νn). Then, E ∼= Λ∞(ν).

(DN): Weighted version of Hadamard’s three-lines theorem.

(Ω): Mapping properties of the STFT on H(η).

∆(H(η)) = Λ′∞(η∗(η)): STFT + result of Langenbruch.
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Sequence space representations for S(ω)
(η) and S{ω}{η}

Let ω and η be weight functions. We define ω]η = (ω−1(t)η−1(t))−1.

D., 2020

Suppose that there are a, b > 0 and ψ, γ ∈ S(ω)(η) (ψ, γ ∈ S{ω}{η} ) such that∑
j∈Zd

ψ(x − aj − bk)γ(x − aj) = δk,0, k ∈ Z. (1)

Then,
S(ω)(η)

∼= Λ∞(ω]η(n)) ∼= Λ∞(ω(n))⊗̂Λ∞(η(n)),

S{ω}{η} ∼= Λ′0(ω]η(n)) ∼= Λ′0(ω(n))⊗̂Λ′0(η(n)).

Pelczinsky-Vogt decomposition method (E complemented in Λ∞(ν) (
Λ0(ν)) and vice versa ⇒ E ∼= Λ∞(ν) ( E ∼= Λ0(ν)) (Vogt, 1982).
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On the condition (1)

Condition (1) is satisfied in the following two cases:
1 ω is non-quasianalytic: Existence of cut-off functions.
2 ω = o(t2) and η = o(t2) (ω = O(t2) and η = O(t2)): Condition (1) is

equivalent to the existence of a dual pair of Gabor frame windows in

S(ω)(η) (S{ω}{η} ) (Wexler-Raz biorthogonality relations). Bölcskei and

Janssen (2000) showed that there exist a dual pair of Gabor frame

windows in S1/21/2 .

Corollary

Σα
β
∼= Λ∞(n

1
α+β ), Sαβ ∼= Λ′0(n

1
α+β ),

provided that either
α ≥ 1 or β ≥ 1

or
α > 1/2 and β > 1/2 (α ≥ 1/2 and β ≥ 1/2).
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Open problems

Conjecture

S(ω)(η)
∼= Λ∞(ω]η(n)), S{ω}{η} ∼= Λ′0(ω]η(n))

for all non-trivial spaces S(ω)(η) (S{ω}{η} )

By using the STFT one can show that S(ω)(η) and (S{ω}{η} )′ satisfy the

suitable (DN) and (Ω) type conditions. How to determine the
diametral dimension of these spaces?

Does each non-trivial space S(ω)(η) (S{ω}{η} ) contain a pair of functions

satisfying (1)? Equivalently, does it contain a dual pair of Gabor
frame windows? Does Sαβ , α + β ≥ 1, contain a dual pair of Gabor
frame windows?
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