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Abstract

We classify all local Veronesean caps in finite-finite-dimdimensional projective spaces.
This yields a common description and geometric characterization of the Veronesean rep-
resentations of all projective spaces defined over finite-dimensional quadratic alternative
division rings.

1 Introduction

It is well known that, to every quadratic alternative division algebra A over the field K, cor-
responds a Veronesean representation of the projective plane associated with A in a projective
space over K of dimension 3d+2, where d = dimKA. Such Veronesean representations realise
in a geometric way the Tits indices 2(A2×A2)

(1)
2 , A(2)

5,2 and E286,2 of real forms of simple split
algebraic groups, thus providing homogeneous descriptions of the corresponding geometries.
Mazzocca & Melone [10] proposed in 1984 an axiom system for Veronesean representations of
projective spaces in case K = A is a finite field. The advantage of that axiom system is that,
if suitably extended, it can be thought of as a “functor” from the class of quadrics to the class
of Veronesean representations of certain Tits-buildings, and this without presupposing the “out-
put” geometries. To be more explicit, it is not built in the axioms which geometries one aims to
characterise; they only state some properties of the Veronesean representations as differential
varieties in the real and complex case (see below). The axioms gave rise to much classification
and characterization work. The sets satisfying the axioms of Mazzocca & Melone are usually
called Veronesean caps, although they are really only “caps” if the input quadrics have Witt in-
dex 1. Also, one distinguishes between global and local Veronesean caps. The former model the
geometries of the second row of the Freudenthal-Tits magic square, and the latter also include
the higher rank analogues of that second row. The ultimate goal is to classify all Veronesean
caps. If we restrict ourselves to the case where we really have caps, hence where the input is a
quadric of Witt index 1, or more generally, an ovoid in a projective space (as introduced by Tits
[16]), then the finite case was completely settled by Mazzocca & Melone [10], Hirschfeld &
Thas [5], Thas & Van Maldeghem [15], and Cooperstein, Thas & Van izationMaldeghem [3]. In
the general case, partial results were obtained by Schillewaert & Van Maldeghem [11, 12] and
Krauss [7], and a complete classification of all global Veronesean caps was achieved recently
by Krauss, Schillewaert & Van Maldeghem [8]. Besides the ordinary quadric Veroneseans and
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the Veronesean representations of the projective planes related to the Tits indices mentioned
above, a new kind of Veronesean was found, corresponding to a purely inseparable extension
A of the field K in characteristic 2 such that K contains all squares of A. In the latter case, the
dimension of the ambient projective space could even be infinite. Also, in that case, the “func-
toriality” of the Mazzocca-Melone axioms was illustrated by the fact that a lot of properties of
the input quadrics carry over to the output geometry, such as the existence of a large nucleus
and the indecomposability and reducibility of the projective representation of the correspond-
ing linear group. In the present paper, we completely finish the job in the finite-dimensional
case and for quadrics of Witt index 1 by classifying the local Veronesean caps embedded in
finite-dimensional projective space. We show there exists a certain universal object, called the
standard Veronesean cap V (K,A), of which all other local Veronesean caps are projections.
On the one hand, this job seems very feasible given the classification of the global case (and
the global Veronesean caps are subcaps of the local ones), and given the scheme in [3] that
can roughly be followed in the general case. However, on the other hand, the existence and
appearance of the purely inseparable case complicates things drastically. Indeed, with below
notation and terminology, it is enough, in the ‘regular’ case, to “make all hyperplanes full”, see
Lemma 4.8 below. For the inseparable case, this does not suffice as the subspace from which
one can project could be entirely situated in the nucleus subspace. This requires new arguments
compared to [3]. It should also be mentioned that some typical counting arguments of the latter
paper had to be replaced with other, more geometric, reasonings. This is not always straight-
forward. Our proof holds in general and hence provides alternative arguments for the finite
case.
In the last section of the present paper, we take a look at the corresponding linear groups
PSLn(A) and investigate how they act on the corresponding modules. In particular, we show
that PSLn(A) is induced in V (K,A) by PSL(V ), with above notation. Also, these groups act
irreducibly in the regular case (and we include the case A = K with char K = 2 in the purely
inseparable case) and reducibly otherwise. We determine all invariant subspaces and show
that the representation is nevertheless indecomposable. As a corollary, we show that the only
“homogeneous” local Veronesean caps (meaning, those admitting PSLn(A) induced from the
ambient projective space) are the standard local Veronesean caps.

2 Definitions and Statement of the Main Result

2.1 Definition of a local Veronesean cap

An ovoid O in a possibly infinite-dimensional projective space Σ is a set of points of Σ such
that no line of Σ intersects O more than 2 points, and for every point x ∈ O, there is a unique
hyperplane π through x intersecting O in only x and containing all lines through x that meet O
in only x. The hyperplane π is called the tangent hyperplane at x to O and denoted Tx(O). The
dimension of the ovoid is equal to −1+dimΣ.
Let V be a possibly infinite-dimensional right vector space over some skew field K, and let P(V )
be the corresponding projective space. Let X be a spanning point set of P(V ) and let Ξ be a
collection of subspaces of P(V ), which we shall refer to as the elliptic spaces of X , such that,
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for any ξ ∈ Ξ, the intersection ξ ∩X is an ovoid X(ξ ) in ξ of dimension at least 1 (and then,
for x ∈ X(ξ ), we sometimes denote Tx(X(ξ )) simply by Tx(ξ )). We call (X ,Ξ), or briefly X , a
local Veronesean cap if the following properties (V1), (V2) and (V3) hold.

(V1) Any two points x and y of X lie in a unique element of Ξ, denoted by [x,y].

(V2) If ξ1,ξ2 ∈ Ξ, with ξ1 6= ξ2, then ξ1∩ξ2 ⊂ X .

(V3) For every x ∈ X , every ξ ∈ Ξ, with x /∈ ξ , and every triple of distinct points y1,y2,y3 ∈
X(ξ ), we have Tx([x,y3])⊆ 〈Tx([x,y1]),Tx([x,y2])〉.

If, instead of (V3), the following stronger axiom (V3*) holds, then we speak of a global Verone-
sean cap.

(V3*) For every x ∈ X and every every triple ξ1,ξ2,ξ3 ∈ Ξ, with x ∈ ξ1 ∩ ξ2 ∩ ξ3, we have
Tx(ξ1)⊆ 〈Tx(ξ2),Tx(ξ3)〉.

Ovoids which are the intersection of an elliptic space with X are called X-ovoids. If V is finite-
dimensional, then we say that X is a finite-dimensional local or global Veronesean cap. If all
X-ovoids have the same dimension k, then we say that X has subdimension k.

Lemma 2.1 Every local Veronesean cap (X ,Ξ) admits a subdimension.

Proof The same proof as for the global case holds for local Veronesean caps, see (the proof
of) Lemma 4.1 of [8]. �

For x ∈ X and x /∈ ξ ∈ Ξ, we denote by T (x,ξ ) the subspace of P(V ) generated by all Tx(φ),
for x ∈ φ and φ ∩ ξ 6= /0. Axiom (V3) implies that T (x,ξ ) = 〈Tx(φ1),Tx(φ2)〉, for every pair
φ1,φ2 ∈ Ξ with φi∩ξ 6= /0, i = 1,2, and φ1 6= φ2.

2.2 Standard local Veronesean caps

We now present a class of examples of local Veronesean caps. Trivially, all global Veronesean
caps are local Veronesean caps. But there are additional examples, which we now present.
Let A be a quadratic associative division algebra over the field K, where we assume K ⊆ A.
This means that A is a skew field, K is a subfield of the center centerof A and every element
x ∈ A satisfies a quadratic equation with coefficients in K. Recall that one of the following
situations holds.

• A=K (and dimKA= 1);

• A is a quadratic Galois extension of K (and dimKA= 2);

• A is a quaternion division algebra with center K (and dimKA= 4);

• A is a purely inseparable extension of K in characteristic 2 such that K contains the
squares of all elements of A (and either dimKA is infinite or dimKA= 2`, with `≥ 2).
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In each case there exists a unique involution σ on A, which is an anti-automorphism (i.e.,
(xy)σ = yσ xσ , for all x,y ∈ A) , which is the identity on K and for which both a+aσ and aaσ

belong to K (and we call σ the standard involution). In fact, every a ∈ A then satisfies the
quadratic equation x2− (a+aσ )x+aσ a = 0.
Let n be a natural number not smaller than 2. We define the following vector space over K.

V :=K⊕K⊕·· ·⊕K︸ ︷︷ ︸
n+1 terms

⊕A⊕A⊕·· ·⊕A︸ ︷︷ ︸
n(n+1)

2 terms

.

We can label the first n+1 terms with 0,1, . . . ,n, and the other ones with ( j, `), j, `∈{0,1, . . . ,n},
j < `. Consider An+1 as an (n+ 1)-dimensional right vector space over A. For every 1-space
(x0,x1, . . . ,xn)A ∈ An+1 we define the 1-space K(yi,y j,`)0≤i≤n,0≤ j<`≤n of V as follows.

• yi = xixσ
i , 0≤ i≤ n;

• y j,` = x jxσ
` , 0≤ j < `≤ n.

This is well-defined since right multiplication in An+1 with some a∈A results in multiplication
of the yi and the y j,` with aaσ ∈ K. Let X be the corresponding set of points of P(V ). Note
that X is the standard Veronesean embedding of the n-dimensional projective space Pn(A)
over A when A is not an inseparable extension of K, and it yields a new type of Veronesean
embedding when A is an inseparable extension of K in characteristic 2. The points of Pn(A)
are in bijective correspondence with the elements of X . Every line of Pn(A) corresponds to
a point set in X isomorphic to a quadric of Witt index 1 that spans a subspace of dimension
1+ dimKA. If we define these subspaces to be the elliptic subspaces, then we will show in
Theorem 3.3 below that X is a local Veronesean cap of subdimension dimKA. We denote it by
Vn(K,A) and call it the standard local Veronesean cap of index n associated with (K,A).
Note that for n = 2 this construction provides examples of global Veronesean caps. The Main
Result of [8] states that these are the only global Veronesean caps, except for an example when
A is the nonassociative but alternative Cayley-Dickson division algebra (but which we shall
not need in the present paper since it has no analogue for local Veronesean caps that are not
global Veronesean caps). Finally, the construction also works for n = 1, and it gives us a
parametrization of a standard X-ovoid of Vn(K,A).
Now let n≥ 3. Given the pair (K,A) as above, and the standard local Veronesean cap Vn(K,A)
in the projective space P(V ), then we call a subspace S of P(V ) admissible if S does not meet the
span of any pair of elliptic spaces. The projection of Vn(K,A) from S is also a local Veronesean
cap, see Theorem 3.3 below, which we call a legal projection, and moreover proper if S is
nonempty.

2.3 Statement of the Main Result

Main Result. Every finite-dimensional local Veronesean cap which is not a global Veronesean
cap is projectively equivalent to a legal projection of Vn(K,A), for some natural number n ≥
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3, some commutative field K and some quadratic associative division algebra A over K. In
particular, the subdimension is a power of 2, and if char K 6= 2, then the subdimension can only
take the values 1,2,4. Proper legal projections do not occur for n = 3.

Some special cases of the Main Result are already known in the literature, such as the complete
finite case. For a historic overview we refer to the introduction and to [8].

3 The projective space associated with a local Veronesean
cap

When dealing with a local Veronesean cap (X ,Ξ), it is tacitly assumed that X spans the pro-
jective space P(V ), for some vector space V over a skew field K. So let V = (X ,Ξ) be a local
Veronesean cap, where X is a set of points in P(V ), for some right vector space V over the skew
field K, and Ξ is a set of elliptic spaces satisfying (V1), (V2) and (V3) introduced before.
Associated with V we can consider the geometry P(X ,Ξ) having point set X and line set Ξ,
endowed with the natural incidence. We usually write P for P(X ,Ξ)

Proposition 3.1 The geometry P is a (possibly infinite-dimensional) projective space.

Proof If K is finite, then this follows from Lemma 3.1 of [11] and Theorem 3.1 of [12].
Henceforth we assume that K is an infinite skew field. In particular, every X-ovoid has infinitely
many points (but te proof below works for |K| ≥ 3).
We use the characterization of (possibly infinite-dimensional) projective spaces given by Veblen
& Young [18]; for a modern account see Theorem 6.7.1 of [14]. By (V1) and the fact that
every X-ovoid contains infinitely many points, we only have to show Veblen’s axiom, i.e., if
O1,O2,O3,O4 are four X-ovoids such that Oi ∩O j = {xi j}, for 1 ≤ i < j ≤ 4, (i, j) 6= (3,4),
with x12 /∈ {x13,x14,x23,x24} and O3 6= O4, then O3∩O4 is also a point of X .
We may assume that O4 does not contain x13 nor x23. Put W := 〈O1,O2,O3〉 and O5 :=
X([x13,x24]). We claim that O4,O5 ⊆W . Indeed, since both Tx13(O3) and Tx13(O1) belong
to 〈O1,O3〉 ⊆W , also Tx13(O5) does by applying (V3) with as point x13 and as X-ovoid O2, and
hence O5 = 〈Tx13(O5),x24〉⊆W . Likewise, from applying (V3) to x24 and O1 we obtain O4⊆W .
Our claim is proved. Similar arguments show that O1 ⊆ 〈O2,O3,O5〉, hence W = 〈O2,O3,O5〉.
We project W \〈O2〉 from 〈O2〉 onto a subspace Π in W complementary to 〈O2〉 and denote the
projection map by ρ . Set x25 = x24 for notational reasons.Let Π∞

j be the projection of Tx2 j(O j),
j = 3,4,5.
Since each line in 〈O j〉 through x2 j is either contained in Tx2 j(O j) or intersects O j in a second
point, the projection of O j \{x2 j} is an affine space in Π which, completed with Π∞

j , becomes
a projective space Π j, j = 3,4,5. Moreover, Axiom (V3) implies Π∞

4 = Π∞
5 .

We claim that ρ is injective on (W \ 〈O2〉)∩X . Indeed, suppose two distinct points y1,y2 ∈
(W \ 〈O2〉)∩X are such that yρ

1 = yρ

2 . Then 〈y1,y2〉 intersects 〈O2〉 in some point y; by (V2)
y ∈ X([y1,y2])∩O2, in particular y ∈ X([y1,y2]), contradicting the fact that X([y1,y2]) is a cap
and y1,y2,y are collinear. The claim is proved.
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Since W = 〈O2,O3,O5〉, we see that Π = 〈Π3,Π5〉. Notice that xρ

13 ∈ Π3∩Π5. We claim that
{xρ

13} = Π3 ∩Π5. Indeed, assume for a contradiction that some point y 6= xρ

13 is in Π3 ∩Π5.
Since there are infinitely many points on the line 〈xρ

13,y〉, we may assume that y does not belong
to either Π∞

3 or Π∞
5 . Then there exist points yk ∈Ok \{x13}, k = 3,5, with yρ

k = y, contradicting
the injectivity of ρ on (W \ 〈O2〉)∩X . The claim is proved.
Since {xρ

13}= Π3∩Π5, it follows that Π3 and Π∞
4 (as the latter equals Π∞

5 ) are complementary
subspaces in Π. By symmetry, it follows that also Π4 and Π∞

3 are complementary subspaces in
Π. As a consequence, Π3 and Π4 intersect each other in a point z, and moreover, z /∈Π∞

3 ∪Π∞
4 .

The injectivity of ρ on (W \ 〈O2〉)∩X then implies that the points of O3 and O4 which project
onto z coincide, and so O3 and O4 have a point in common, proving the proposition. �

From now on we call the dimension of P the index of (X ,Ξ). If the index is equal to 2, then all
elliptic spaces intersect each other and hence T (x,ξ ) is independent of ξ , for every x ∈ X and
every ξ ∈ Ξ with x /∈ ξ . This means that Axiom (V3*) holds and that the local Veronesean cap
is a global Veronesean cap. In [8] we showed the following theorem.

Theorem 3.2 Every global Veronesean cap, and hence every local Veronesean cap of index
2, is projectively equivalent to V2(K,A), for some commutative field K and some quadratic
alternative division algebra A over K. In particular, the subdimension is either infinite or a
power of 2, and if char K 6= 2, then the subdimension can only take the values 1,2,4,8.

We can now show one direction of our Main Result.

Theorem 3.3 Any legal projection of Vn(K,A), n≥ 3, with A a quadratic associative division
algebra over K, is a local Veronesean cap with subdimension dimKA.

Proof First we show the assertion for Vn(K,A), n≥ 3, itself.
We start by noting that, for every nonzero a,b ∈ A, the mapping A→ A : x 7→ axb is a linear
permutation of the K-vector space A. It follows that PGLn+1(A) (acting on the left) extends to
P(V ) in its natural action on Vn(K,A). In particular, the transitivity of PGLn+1(A) on the lines
of Pn(A) implies that every line of Pn(A) is isomorphic to V1(K,A), the standard X-ovoid,
and so (V1) holds. Now suppose O1 and O2 are two distinct X-ovoids. We distinguish two
cases.

• Suppose O1∩O2 6= /0. Then, by the action of PGLn+1(A), we may assume that O1 consists
of the points K(yi,y( j,`))0≤i≤n,0≤ j<`≤n of P(V ) with only nonzero coordinates y0 = x0xσ

0 ,
y1 = x1xσ

1 and y0,1 = x0xσ
1 , x0,x1 ∈ A, (x0,x1) 6= (0,0), and similarly for O2, where we

have y1 = x1xσ
1 , y2 = x2xσ

2 and y1,2 = x1xσ
2 , x1,x2 ∈ A, (x1,x2) 6= (0,0). Clearly 〈O1〉∩

〈O2〉 = {p}, where p is the 1-space defined by a vector with all coordinates zero except
for y1, and the corresponding projective point belongs to Vn(K,A).

• Suppose O1 ∩O2 = /0. Then we may take O1 as above, and O2 can be redefined as
consisting of the points K(yi,y( j,`))0≤i≤n,0≤ j<`≤n of P(V ) with only nonzero coordinates
y2 = x2xσ

2 , y3 = x3xσ
3 and y2,3 = x2xσ

3 , x2,x3 ∈A, (x2,x3) 6= (0,0). Clearly 〈O1〉∩〈O2〉=
/0.
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This proves (V2). For (V3) we remark that the lines of Pn(A) through a fixed point and
intersecting a given line not through that point all lie in a plane. By the action of PGLn+1(A)
we may assume that this plane corresponds to V2(K,A), where (V3) holds by Theorem 3.3 of
[8].
Now let S be an admissible subspace of P(V ) and let X ′ be the projection from S of Vn(K,A)
onto some complementary subspace. Then, since S does not contain any point of any elliptic
space, all elliptic spaces are projected bijectively onto their image, so that (V1) holds for X ′.
Also, since S does not contain any point in the span of any two elliptic spaces, every pair
of elliptic spaces is projected in an isomorphic way and so (V2) holds. Finally, since every
point of the subspace generated by each global Veronesean subcap (X1,Ξ1) (local of index 2)
is contained in the span of two elliptic spaces of (X1,Ξ1) (see Corollary 4.7 of [8]), no point
of S is contained in the subspace generated by any global Veronesean subcap (isomorphic to
V2(K,A)) of Vn(K,A), and so (V3) holds for X ′. �

4 Local Veronesean caps of arbitrary finite index in projec-
tive spaces of finite dimension

Let (X ,Ξ) be a local Veronesean cap in the projective space P(V ) (so X spans P(V )) and suppose
dimV = N +1, N ∈ N. Suppose the index of (X ,Ξ) is equal to n ∈ N, n≥ 2. By Theorem 3.2,
we may suppose that n≥ 3. Let P be the associated projective space of dimension n. We will
identify the points of P with the points of X . But when we want to emphasise the structure
of X as a projective space, we will mention P , and when we want to emphasise the inclusion
of P in P(V ), then we mention X . Let X1 be the set of points of a plane P1 of P and let
Ξ1 be the subset of Ξ consisting of those elliptic spaces that contain at least two points of X1.
Then (X1,Ξ1) is clearly a global Veronesean cap in the subspace generated by X1. Again by
Theorem 3.2, K is commutative and (X1,Ξ1) is projectively equivalent to V2(K,A), for some
quadratic alternative division ring A over K. Since n≥ 3, we know that A is in fact associative.
Also, since N is finite, we know that dimKA=: k is finite.
The proof of our Main Result has two parts. The strategy of the first part is based on [3]. With
below terminology, the result is that we may assume that all hyperplanes of P are full. If A is
not a purely inseparable extension of K, and if char K 6= 2 when K=A, then this implies that N
is maximal, and the Main Result follows, as we shall see. The second part is devoted to the case
where A is a purely inseparable extension of K, or A=K and char K= 2. In that case, the fact
that all hyperplanes of P are full does not imply that N is maximal, and this complicates things
significantly. When A = K, the arguments in [15] show a direct way to resolve this problem.
However, when dimKA> 1, then that method does not work well anymore. We use an entirely
different method here which also works in the case A = K and hence provides an alternative
proof for the Main Result of [15].
The first part requires some new ideas compared to [3] since many arguments cease to hold in
the infinite case. So we will be sketchy for the parts which do not need much adjusting from
[3]. The second part is entirely new and will be explained in full detail.
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We will need some basic properties of the standard Veronesean cap. We present those in Sec-
tion 5 since it is a more natural place to prove them.

4.1 First part of the proof

For x ∈ X , let Tx(X), or briefly Tx if no confusion is possible, be the subspace of P(V ) generated
by all Tx(ξ ), with x ∈ ξ ∈ Ξ.

Lemma 4.1 For all x ∈ X we have that Tx is the union of all Tx(ξ ) with x ∈ ξ ∈ Ξ, and also
dimTx = kn.

Proof This is proved by induction on n in exactly the same way as Proposition 3.1 of [3],
the result for n = 2 being Fact 3 of [8]. Briefly, one chooses a hyperplane Y in P with x ∈ Y
and a line L of P with x ∈ L 6⊆ Y . Then Y induces a local Veronesean cap in some sub-
space H of P(V ) and the induction hypothesis implies that Tx(Y ) is the union of all Tx(ξ ),
with ξ ∈ Ξ corresponding to a line of Y through x. Moreover, dimTx(Y ) = k(n− 1). Now
let ξL ∈ Ξ be the elliptic space corresponding to L, i.e, X(ξL) = L. Then dimTx(ξL) = k and
so dim〈Tx(Y ),Tx(ξL)〉 = kn. By considering planes of P through L, we see that every point
of 〈Tx(Y ),Tx(ξL)〉 is contained in some Tx(Π), for Π the point set of a plane of P containing
L, and in fact Tx(X) = 〈Tx(Y ),Tx(ξL)〉. Since the result holds true for n = 2, the lemma then
follows. �

An immediate consequence is the following assertion (using (V2)).

Corollary 4.2 If x ∈ X and x /∈ ξ ∈ Ξ, then Tx∩ξ = /0.

Lemma 4.3 Let Y be a hyperplane of P and let x ∈ X \Y . Then 〈Y,Tx〉= 〈X〉.

Proof Consider z ∈ X \Y . Then there exists y ∈ Y with [z,x]∩Y = {y}. Hence we obtain
z ∈ 〈y,Tx[x,z]〉 ⊆ 〈Y,Tx〉. �

Since we have finite index and finite-dimensional ovoids we can bound the dimension of the
ambient space N of the local Veronesean cap by an easy induction argument, see Lemma 5.1 of
[3]. More precisely, let N(n,k) = 1

2kn2 + 1
2kn+n.

Lemma 4.4 We always have N ≤ N(n,k). Also, if equality holds then for every hyperplane Y
in P , we have dim〈Y 〉= N(n−1,k).

Proof For n = 2 this is Theorem 3.2. For n > 2 let Y be a hyperplane, then by induction on
n and Lemmas 4.1 and 4.3, we have N ≤ dim〈Y 〉+ kn+1≤ N(n−1,k)+ kn+1 = N(n,k). If
equality holds, then the second inequality becomes an equality and implies dim〈Y 〉 = N(n−
1,k). �

One of the main steps is the following result, which is in the finite case Theorem 5.3 of [3].
Recall that k = dimKA, see the beginning of this section. The proof below is different from its
finite analogue since we avoid the use of field automorphisms, which have an easier behaviour
in the finite case.
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Proposition 4.5 Let (X ,Ξ) be a local Veronesean cap of index n and subdimension k in P(V ),
with dimV = N(n,k)+ 1. Then X is projectively equivalent to the standard local Veronesean
cap Vn(K,A).

Proof We use induction on n, the result for n = 2 being Theorem 3.2.
For n > 2, let Vn(K,A) be embedded in the projective space P(W ), with dimW = N(n,k)+1,
and denote the point set of Vn(K,A) by X̃ . Set P = P(X ,Ξ). Let X1 and X2 be the point sets
of two hyperplanes in P , and let L be the point set of a line of P not intersecting X1∩X2.
By Lemma 4.4 we have dim〈X1〉= dim〈X2〉= N(n−1,k), and similarly dim〈X1∩X2〉= N(n−
2,k).
Now we claim that P(V ) = 〈X1,X2,L〉. Indeed, let x ∈ X \ (X1∪X2∪L), then there is a unique
plane π of P containing L and x, and π also contains two lines L1,L2 in X1,X2, respec-
tively. Hence, by Corollary 4.8 of [8], the corresponding global Veronesean cap is contained
in 〈L1,L2,L〉 ⊆ 〈X1,X2,L〉. This shows the claim. Now, this implies that dim(〈X1〉 ∩ 〈X2〉) ≤
2N(n− 1,k)+ k−N(n,k) = N(n− 2,k), whereas X1 ∩X2 ⊆ 〈X1〉 ∩ 〈X2〉 leads to dim(〈X1〉 ∩
〈X2〉)≥ N(n−2,k). Hence 〈X1〉∩ 〈X2〉= 〈X1∩X2〉.
Let, for clarity, (X̃ , Ξ̃) be the standard local Veronesean cap Vn(K,A). By the induction hypoth-
esis, X2 is projectively isomorphic to the standard local Veronesean cap Vn−1(K,A), which can
be obtained from (X̃ , Ξ̃) = Vn(K,A) by intersecting with an appropriate N(n−1,k)-space. Let
X̃2 be that intersection; then 〈X̃2〉 is the mentioned appropriate N(n−1,k)-space. Also, we have
an isomorphism ϕ : 〈X2〉 → 〈X̃2〉 mapping X2 to X̃2. It is a well-know and elementary fact in
projective geometry that there exists an isomorphism P(X ,Ξ)→ (P(X̃ , X̃ i)) inducing a map
θ : X→ X̃ such that the restriction of θ to X2 coincides with ϕ on X2. Let Xθ

1 = X̃1, Lθ = L̃ and,
selecting c ∈ X \ (X1∪X2∪L), let cθ = c̃.
By Lemmas 4.1 and 4.3, Tc is a subspace of P(V ) complementary to both 〈X1〉 and 〈X2〉. Since
each member ξ of Ξ through c intersects Tc in a hyperplane of ξ , the projection ρ of 〈X1〉
from Tc onto 〈X2〉 induces a bijection of X1 onto X2, which is clearly seen to coincide in P
with the projection of X1 to X2 from c. Since the latter projection is clearly independent of
the local Veronesean cap (X ,Ξ), the projection ρ̃ from Tc̃ mapping 〈X̃1〉 onto 〈X̃2〉 maps X̃1
onto X̃2. It follows that ρϕρ̃−1 is an isomorphism from 〈X1〉 to 〈X̃1〉 mapping X1 bijectively
onto X̃1, and clearly coinciding with ϕ over X1 ∩X2. Hence we can extend ϕ to 〈X1〉 ∪ 〈X2〉,
and subsequently to 〈X1,X2〉; the latter is mapped projectively onto 〈X̃1, X̃2〉. Moreover, the
restriction of ϕ to X1∪X2 coincides with θ restricted to X1∪X2.
Let x ∈ X1∩X2 be arbitrary but such that the plane Π of P containing x and L does not contain
c. Put Πθ = Π̃. Similarly as above, we use the projection from c of Π onto X2 to obtain that we
can extend ϕ to 〈X1,X2,L〉 and that the restriction of ϕ to X1∪X2∪Π coincides with θ restricted
to X1∪X2∪Π.
Now, since 〈X1,X2,L〉 is the whole point set of P(V ), we are only left to show that ϕ coincides
with θ over X . This is already true over X1∪X2∪Π. Let p be any point of X \ (X1∪X2∪Π).
Then the plane Πp of P generated by p and L intersects X1∩X2 in a point x0; let x1 = L∩X1 and
x2 = L∩X2. Put xθ

j = x̃ j, j = 0,1,2. Since Tx0 is determined by X1∪X2 and Tx j is determined
by X j∪L, j = 1,2, and likewise for Tx̃ j , j = 0,1,2, we see that ϕ maps Tx j onto Tx̃ j , j = 0,1,2.
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Now Πp and Π̃p = Πθ
p are local Veronesean caps of index 2 and the previous paragraph implies

that ϕ maps the tangent spaces Tx j(Πp) (with obvious notation) to the tangent spaces Tx̃ j(Π̃p),
j = 0,1,2. Now put x j j′ = 〈p,x j′′〉 ∩ 〈x j,x j′〉, { j, j′, j′′} = {0,1,2}. Then, by Lemma 6.4
of [8], we have {p} = 〈Tx0(Πp),x12〉 ∩ 〈Tx1(Πp),x02〉 ∩ 〈Tx2(Πp),x01〉, and likewise {pθ} =
〈Tx̃0(Π̃p),x

ϕ

12〉∩ 〈Tx̃1(Π̃p),x
ϕ

02〉∩ 〈Tx̃2(Π̃p),x
ϕ

01〉. This implies that pϕ = pθ and the proposition
is proved. �

Subspaces Y of P with X ∩ 〈Y 〉 = Y will be called full. The analogue in the finite case of
the following lemma is Lemma 5.4 of [3], but its proof is not valid in the present infinite case
(mainly because of the existence of the inseparable case). Hence we present another proof.

Lemma 4.6 Let π ⊆ X be a plane of P . Then π is full.

Proof Suppose to the contrary that p is a point of X \ π in 〈π〉. By Corollary 4.7 of [8],
there are two distinct elliptic spaces ξ1 and ξ2 corresponding to two respective lines of π such
that p ∈ 〈ξ1,ξ2〉. Set x = ξ1∩ ξ2. If p would be in Tx(π), then it would be contained in some
elliptic space ξ ⊆ π by Lemma 4.1, which is a contradiction. Hence the unique plane α of
P(V ) containing p and x and intersecting both ξ1 and ξ2 in a respective line L1 and L2 has the
property that at least one of L1 or L2, say L1, is not tangent to X ∩ ξ1. Hence L1 contains a
point y1 ∈ π \ {x}. But then [p,y1] intersects ξ2 in a point y2 ∈ 〈p,y1〉 of L2 distinct from x,
contradicting the fact that X is a cap. �

The proof of the following lemma is again similar to the finite case, Theorem 5.5 of [3].

Lemma 4.7 Let (X ,Ξ) have index 3. Then N = N(3,k) = 6k+3.

Proof By Lemma 4.4, N ≤ N(3,k). Suppose now for a contradiction that N < N(3,k). Let π

be any (hyper)plane in P . Then dim〈π〉= 3k+2. Lemma 4.1 implies that, for any x∈ X\π , we
have dimTx = 3k. Consequently Tx∩〈π〉 6= /0. Let a ∈ Tx∩〈π〉, then by Lemma 4.1 there exists
ξ ∈ Ξ such that a∈ Tx(ξ ). Set y := X(ξ )∩π . As the line 〈a,y〉 belongs to ξ and ξ ∩π = {y} by
Lemma 4.6, we have a ∈ Ty(ξ ) ⊆ Ty. Now a /∈ Ty(π) as otherwise, by Lemma 4.1, a ∈ ξ ′ ∈ Ξ

with X(ξ ′)⊆ π , and so a ∈ ξ ∩ξ ′, contradicting (V2). Hence dim(Ty∩〈π〉)> dimTy(π) = 2k.
Now let ξ ′′ ∈ Ξ with y /∈ ξ ′′ and X(ξ ′′) ⊆ π . Then by a dimension argument Ty ∩ ξ ′′ 6= /0,
contradicting Corollary 4.2. �

Note that Lemma 4.1 of [15] leaves the possibility N(3,1) = 8 open. With the above lemma,
this is now excluded and then Proposition 4.2 of [15] becomes superfluous.
The analogue of Lemma 5.6 of [3] would be that, if N < N(n,k), then some hyperplane of P
is not full. However, this is only true in the “separable” case, as we will show now. We shorten
an argument in the proof of Lemma 5.6 of [3].

Lemma 4.8 Let (X ,Ξ) be a local Veronesean cap with index n and subdimension k. If N <
N(n,k), and if A is not an inseparable extension of K, and char K 6= 2 if A = K, then there
exists a non-full hyperplane of P .
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Proof Note that the assumptions on A are equivalent to saying that the X-ovoids have a trivial
nucleus, i.e., if Q is an X-ovoid, then no point of 〈Q〉 is contained in every tangent hyperplane
of Q.
We prove this by induction on the index n, the case n = 2 is Theorem 3.2 and the case n = 3 is
Lemma 4.7 (in these cases N is always equal to N(n,k)). So suppose n≥ 4.
Let Y ⊆ X be a hyperplane of P . If it is not full, we are done. So suppose it is and first suppose
that dim〈Y 〉< N(n−1,k). Then by induction there is a non-full hyperplane of Y , say Z. Then
the hyperplane spanned by Z and a point x ∈ X \Y is not full.
So suppose that dim〈Y 〉 = N(n−1,k). Then by a dimension argument, for all x ∈ X \Y , there
exists a ∈ Tx∩〈Y 〉. By Lemma 4.1, there exists a point y ∈ Y with a ∈ Tx([x,y]). Exactly as in
the proof of the previous lemma, we obtain dim(Ty∩〈Y 〉)> k(n−1).
Pick a hyperplane Z of the subspace Y of P not containing y, then, by Lemma 4.4, we have
dim〈Z〉 = N(n−2,k). Hence by the above there exists a point b ∈ Ty∩〈Z〉, and since Ty(Y )∩
〈Z〉 = /0, there exists a w ∈ X \Y with b ∈ 〈[y,w]〉 and we have [y,w]∩Y = y /∈ Z. By Lemma
4.5, Z is projectively equivalent to the standard local Veronesean cap Vn−2(K,A). Hence, since
X([y,w]) has a trivial nucleus, there exist two points x1,x2 ∈ [y,w] with b ∈ 〈x1,x2〉. Since y /∈ Z
and w /∈Y , we have Z∩ [w,y] = /0. Hence, in P , the subspace Z and the point x1 ∈ [w,y] generate
a hyperplane Y ′, which does not contain x2. But clearly x2 ∈ 〈Z,x1〉 ⊆ 〈Y ′〉. So Y ′ is not full. �

In case a non-full hyperplane exists, we will show, using the technique of Section 6 of [3], that
X is a quotient (or, in geometric terms, a projection) of a local Veronesean cap in a higher-
dimensional space. The finite-dimensionality of the projective space then implies that X is a
quotient of a local Veronesean cap without non-full hyperplanes. Then, in the case that X-
ovoids have trivial nuclei, by Lemma 4.8, N = N(n,k) and Lemma 4.5 completes the proof of
our Main Result in that case.
In order to show that an object F is the central projection of another object F ′ from a point,
one may always choose F ′ in such a way that F ′ ∩ 〈F〉 is a pre-assigned hyperplane section
H of F ′, and ultimately of the standard local Veronesean cap. Moreover, it is convenient that
H spans 〈F〉, as this shows that 〈F〉 is a hyperplane of 〈F ′〉 and thus the projection is not an
isomorphism of projective spaces. The points of H are then fixed under the projection. In our
case, the simplest geometric hyperplanes to handle are the Hermitian pencils of hyperplanes,
which we introduce now.

Lemma 4.9 Let the standard local Veronesean cap Vn(K,A) = (X ,Ξ) in the projective space
P correspond to the projective space P . Let Z ⊆ Vn(K,A) be an (n−2)-dimensional subspace
of P and let the X-ovoid Q ⊆ Vn(K,A) correspond to a line of P disjoint from Z. Let Y0
and Y1 be two hyperplanes of P both containing Z. Let H be a hyperplane of 〈Q〉 containing
(Y0∪Y1)∩Q. For a point x ∈ H ∩Q, let Yx ⊆ Vn(K,A) be the hyperplane in P containing Z
and x. Then the union U (Z,Q∩H) of all Yx, with x ranging over H ∩Q, spans a hyperplane of
P.

Proof Put U = U (Z,Q∩H) for short. Let X be the point set of Vn(K,A). Put x j = Yj ∩Q,
j = 0,1. We project X \Y0 from 〈Y0〉 onto Tx1 . By Proposition 5.7, this projection is injective,
and the Yx, x∈ (H∩Q)\{x0} project into affine spaces of dimension k(n−1) which all share the
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same projective completion (a projective space W of dimension kn− k− 1). Clearly, all these
affine spaces intersect the projection of H \ 〈Y0〉, which is a hyperplane H ′ of the projection L′

(a k-dimensional affine space, see Proposition 5.7) of 〈Q〉 \ 〈Y0〉. Since Q∩Z = /0, Remark 5.8
implies that W ∩〈L′〉= /0. A dimension argument now shows that Tx1 = 〈W,L′〉. But clearly, the
projection of U \Y0 coincides with 〈W,H ′〉 \W . Since 〈W,H ′〉 is a hyperplane of 〈W,L′〉, the
lemma follows. �

The set of points of P corresponding to U (Z,Q∩H) in the statement of the previous lemma
will be called a Hermitian pencil of hyperplanes (of P).

Lemma 4.10 Let (X ,Ξ) be a local Veronesean cap in P(V ) with index n and subdimension k.
If Y0 ⊆ X is a non-full hyperplane of P with x ∈ (X ∩〈Y0〉)\Y0, then X is the image of a local
Veronesean cap X ′ (with corresponding projective geometry P ′ isomorphic to P) under a cen-
tral projection ρ such that for the unique point x′ ∈ X ′ with x′ρ = x and the unique hyperplane
Y ′0 ⊆ X ′ of P ′ with Y ′0

ρ = Y0 we have x′ /∈ 〈Y ′0〉.

Proof First note that, since every plane of P induces the structure of a global Veronesean
cap on X , and also on Vn(K,A), Theorem 3.2 implies that, if Q is any X-ovoid, and if Q′

is the corresponding quadric in Vn(K,A), then hyperplanes in 〈Q〉 intersecting Q nontrivially
correspond bijectively to hyperplanes in 〈Q′〉 intersecting Q′ nontrivially.
Now, by Lemma 4.7, we have n > 3. Let Z be an (n− 2)-space of P contained in Y0 and let
Q be an X-ovoid disjoint from Z and containing x. Consider a hyperplane H of the subspace
〈Q〉 which does not contain x, but which does contain Y0 ∩Q. Let U = U (Z,Q∩H) be the
corresponding Hermitian pencil of hyperplanes (well-defined by the previous paragraph).
We claim that 〈U 〉= P(V ). Indeed, let u be any point of X , and we may assume that u /∈U . If
we show that u ∈ 〈U 〉, then we have P(V ) = 〈X〉 ⊆ 〈U 〉 ⊆ P(V ) and 〈U 〉= P(V ) follows.
If u ∈Q, then there is nothing to prove since u ∈ 〈Q∩H,x〉= 〈Q〉. (This also shows Q⊆ 〈U 〉.)
Hence we may assume that u and Q are contained in a unique plane π of P , which intersects
Z in a unique point z. The plane π induces a global Veronesean cap of index 2 on X . Let Y
be any hyperplane of P through Z inside U different from Y0. Then π ∩Y is a quadric that
corresponds to a line in π , and it follows that π ∩U is a Hermitian pencil of lines in π . Hence,
by Lemma 4.9, 〈π ∩U 〉 is a hyperplane of 〈π〉. But x ∈ 〈π〉 \U and x ∈ 〈U 〉. It follows that
〈π〉 ⊆ 〈U 〉 and hence u ∈ 〈U 〉. The claim is proved.
Now we embed P(V ) as a hyperplane in P(V ′), where V ′ is a vector space of dimension N +
2 over K containing V as an (N + 1)-dimensional subspace. Let c be an arbitrary point in
P(V ′)\P(V ). We want to define for each point p ∈ X a point pθ ∈ P(V ′) such that p, pθ ,c are
collinear and Xθ = {yθ : y ∈ X} is the point set of a local Veronesean cap in P(V ′) with index n
and subdimension k isomorphic to (X ,Ξ) (and the restriction to Xθ of the natural projection of
P(V ′)\{c} from c onto P(V ) is an isomorphism). We pick xθ 6= c in P(V ′)\P(V ) such that c,x
and xθ are collinear.
For y ∈U we set yθ := y. Since U spans P(V ), we will certainly have that Xθ will span P(V ′),
as the latter is spanned by P(V ) and xθ .
For y∈ X \U , consider the set Cy :=U ∩ [x,y]. If X([x,y])∩Z = /0, then Cy contains at least two
points. If X([x,y])∩Z 6= /0, then Cy contains a unique point, say t ∈ Z. Either way, since on the
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standard local Veronesean cap Vn(K,A), the set U corresponds to a hyperplane of the ambient
projective space, and y to a point not contained in there, the set Cy is a non-empty hyperplane
section of [x,y], say Cy = Hy∩X([x,y]), with Hy a hyperplane in [x,y]. We define yθ := 〈c,y〉∩
〈Hy,xθ 〉. Note that these indeed have a unique point in common, as we are considering the
intersection of a k-space and a line (which are not incident) inside the (k+1)-space 〈[x,y],xθ 〉.
Finally, we define Xθ := {yθ : y∈ X}, Lθ := {yθ | y∈ L} for L∈L , and Ξθ := {〈Lθ 〉 | L∈L }.
We now show that (Xθ ,Ξθ ) is a local Veronesean cap of index n and subdimension k isomorphic
to (X ,Ξ). To that aim, let S ⊆ X correspond to the point set of a 3-space of P , with x ∈ S
and such that S∩ Z is a line of P . Then U ∩ S is a Hermitian pencil of hyperplanes in S.
Lemmas 4.7, 4.9 and the definition of Hermitian pencil of hyperplanes assert that U ∩S spans a
hyperplane of 〈S〉. By the definition of θ , whenever y∈ S\U , we have yθ ∈ 〈U ∩S,xθ 〉\〈U ∩
S〉. Hence, for an arbitrary such point y, we also have xθ ∈ 〈U ∩S,yθ 〉. Moreover, 〈U ∩S,xθ 〉
is a hyperplane of 〈S,c〉 not containing c (otherwise it would also contain x and hence 〈S〉, a
contradiction). It follows that θ restricted to S is the projection of 〈S〉 onto 〈U ∩S,xθ 〉 from c
restricted to S. This now has two important consequences:

(1) Sθ = {yθ : y ∈ S} is isomorphic to the standard local Veronesean cap V3(K,A);

(2) the definition of θ does not depend on the pair (x,xθ ). Indeed, let y,z∈ X \U be arbitrary
and suppose we define zθ starting from the pair (y,yθ ). We can include the triplet of points
x,y,z ∈ X \U in a 3-space of P intersecting Z in a line. Then the above arguments show
that US = 〈U ∩S,xθ 〉= 〈U ∩S,yθ 〉 is independent of x, and so is zθ = 〈c,z〉∩US.

We now check the properties (V1), (V2), (V3).

V1 Every pair of points of Xθ is contained in a quadric of dimension k since we can include
every pair of points of P in a 3-space S of P intersecting Z in a line, and then the quadric
we are looking for belongs to Sθ . This is (V1).

V2 Let L1,L2 be two arbitrary lines of P . Suppose that they generate a subspace W of P
that contains a plane of Z. One possibility is that they are both contained in Z. Since
Zθ = Z, it follows that 〈Lθ

1 〉∩ 〈Lθ
2 〉 = Lθ

1 ∩Lθ
2 . The other possibility is that they are not

contained in Z, but are contained in a hyperplane Y of P that contains Z. If Y ⊆U , then
again Lθ

1 = L1 and Lθ
2 = L2 and 〈Lθ

1 〉∩ 〈Lθ
2 〉= Lθ

1 ∩Lθ
2 . If Y is not contained in U , then

W ∩U = W ∩ Z. Let T be the unique hyperplane of 〈W 〉 intersecting W in W ∩ Z. It
follows from the definition of θ and the independence of x noted above that for any point
y ∈W \Z we have 〈W θ 〉= 〈T,yθ 〉, and again W θ is the bijective projection from c of W .
So again 〈Lθ

1 〉∩ 〈Lθ
2 〉= Lθ

1 ∩Lθ
2 .

If W does not contain a plane of Z, then we can include it in a 3-space of P intersecting
Z in a line of P , and then 〈Lθ

1 〉 ∩ 〈Lθ
2 〉 = Lθ

1 ∩Lθ
2 follows from the projection property

from c. We have shown that (V2) holds.

V3 Finally, we must show that (V3) holds. In fact, this is true whenever any point and line
in P can be included in a global Veronesean subcap in Xθ . But this follows from the
fact that any plane of P either is contained in Z, or can be included in a 3-space of P
intersecting Z in a line.
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We have shown that (X ,Ξ), where X spans an N-space, is the image of (Xθ ,Ξθ ), where Xθ

spans an (N + 1)-space, under a central projection. Hence, putting Xθ = X ′ and ρ the central
projection of X ′ onto X from c, concludes the proof. �

So starting from a non-full hyperplane of P , we can apply the “lifting”-construction of the
previous lemma. If we find another non-full hyperplane, then we can repeat this construction
over and over again until all hyperplanes are full. That this procedure ends after a finite number
of steps is guaranteed by the fact that, if the dimension of the surrounding projective space is
N(n,k), then all hyperplanes are full.
Hence we can state the following proposition.

Proposition 4.11 Every local Veronesean cap (X ,Ξ) (with corresponding projective space P)
in the projective space P(V ) with index n and subdimension k is the (bijective) projection of
a local Veronesean cap (X ′,Ξ′) in some projective space P(V ′) containing P(V ), where all
hyperplanes of P are full in (X ′,Ξ′). In particular, if A is not an inseparable extension of K,
then (X ′,Ξ′) is isomorphic to the standard local Veronesean cap Vn(K,A) and (X ,Ξ) is a legal
projection thereof.

Proof The first assertion follows from the paragraph preceding the proposition. The second
assertion follows from Lemma 4.8 and Proposition 4.5. �

4.2 Second part of the proof

Hence, in order to have a complete proof of our Main Result, we may, in view of Proposi-
tion 4.11, from now on assume that every hyperplane of P is full, that the characteristic of K
is 2, A=K or A is a purely inseparable extension of K such that K contains the squares of all
elements of A. Of course, in view of Proposition 4.5, we may still assume that N < N(n,k).
This is the second part of our proof.

Lemma 4.12 Under the above assumptions, there exists a hyperplane Y of P and a point
x ∈ X \Y such that Tx∩〈Y 〉 is nonempty. Further, for every a ∈ Tx∩〈Y 〉, we have that a belongs
to the nucleus of a unique X-ovoid Q through x.

Proof Since N < N(n,k), and since every 3-dimensional subspace of P gives rise to a local
Veronesean subcap which spans a space of dimension N(3,k) (by Lemma 4.7), there exists a
minimal number j, 3 < j≤ n, such that some j-dimensional subspace U ⊆ X of P gives rise to
a local Veronesean subcap which spans a subspace 〈U〉 of dimension strictly less than N( j,k)
(and so every ( j−1)-dimensional subspace of P gives rise to a local Veronesean subcap which
spans a subspace of dimension exactly N( j−1,k)).
Let U1 be any ( j− 1)-dimensional subspace in P of U ; then by the choice of j we have
dim〈U1〉=N( j−1,k). Let x∈U \U1. Since dim〈U〉<N( j,k) and dimTx(U)= k j, a dimension
argument implies that we can find a point a ∈ Tx(U)∩ 〈U1〉. Choose a hyperplane Y of P
arbitrarily but such that x /∈Y ⊇U1. Since Tx(U)⊆ Tx(X) and 〈U1〉 ⊆ 〈Y 〉, we have a ∈ Tx(X)∩
〈Y 〉.
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Since a ∈ Tx, Lemma 4.1 implies that the line 〈a,x〉 is contained in a unique ξ ∈ Ξ, and it is
tangent to the X-ovoid O = X ∩ ξ . Put y = Q∩Y . Since Y is full, the subspace 〈Y 〉 does not
contain further points of Q (only y), hence the line 〈a,y〉 is also tangent to Q. This implies that
a belongs to the nucleus of Q. �

Let Ny(Y ) be the union of the nuclei of the ovoids X(ξ ), ξ ∈ Ξ, with y ∈ X(ξ ) ⊆ Y . Now,
we may assume by induction on n that Y , endowed with all elliptic spaces ξ ∈ Ξ such that
X(ξ ) ⊆ Y , is projectively equivalent to a legal projection of the standard local Veronesean cap
Vn−1(K,A).

Lemma 4.13 The set Ny(Y ) as defined above is a subspace of dimension kn− k−1.

Proof Clearly, Ny(Y ) is contained in Ty(Y ), which has dimension kn− k by Lemma 4.1.
Hence Ty(Y ) is an isomorphic projection of the corresponding tangent space of the standard
local Veronesean cap.
Now, on the one hand, again by Lemma 4.1, every line L in Ty(Y ) through y is tangent to some
X-ovoid Y ∩ ζ , with ζ ∈ Ξ and ζ ∩X ⊆ Y . Hence L contains a unique point of Ny(Y ). On the
other hand, by Corollary 5.6, Ny(Y ) is contained in the projection of the nucleus subspace of
the standard local Veronesean cap, which is a subspace not containing y and hence intersecting
Ty(Y ) in a proper subspace P 63 y. But P contains a point of every line through y, hence it is a
hyperplane and coincides with Ny(Y ). �

Let Q,x,y and a be as in Lemma 4.12. We claim that a /∈ Ny(Y ). Indeed, otherwise a ∈ 〈Q′〉,
with Q′ an X-ovoid contained in Y . Since also a∈ 〈Q〉, Axiom (V2) leads to a∈X , contradicting
the assumption that all hyperplanes of V , and hence also Y , are full.
We now show that there is a natural bijection between the points of 〈Ny(Y ),a〉 \Ny(Y ) and the
X-ovoids not contained in Y but containing y. We need a slightly more general result, however.

Lemma 4.14 Let U be a subspace of P . Let y ∈U and x /∈U, x ∈ X. Set Q = X([x,y]). Let a
be any point of Tx(Q)∩Ty(Q). Let U ′ be the subspace of P generated by U and x. Then every
point of 〈a,Ny(U)〉\Ny(U) belongs to the nucleus of some X-ovoid Q′ ⊆U ′, with y ∈Q′ and Q′

not contained in U. Conversely, the nucleus of every X-ovoid Q′ ⊆U ′, with y ∈ Q′ and Q′ not
contained in U, contains a unique point of 〈a,Ny(U)〉 \Ny(U).

Proof Let a′ be a point of 〈a,Ny(U)〉 \Ny(U) and we may assume a 6= a′. The line 〈a,a′〉
intersects Ny(U) in a point b, which belongs to the nucleus space of a unique X-ovoid in U , say
b ∈ ζ ∈ Ξ, with X(ζ ) ⊆U . Let ξ = [x,y] correspond to the line L of P , and let ζ correspond
to the line M of P . The lines L and M define a unique plane π of P , which induces on X a
global Veronesean cap. Both a and b belong to the nucleus space of that cap, and to the tangent
space at y. Hence also a′ belongs to both spaces. So there is some X-ovoid Q′ ⊆ π , with y ∈ Q′

and with a′ ∈ 〈Q′〉. Clearly Q′ ⊆U ′, but Q′ does not belong to U .
Conversely, let Q′ ⊆U ′ be an X-ovoid such that U ∩Q′ = {y}. We may assume Q′ 6= Q. The
plane π of P containing the X-ovoids Q and Q′ has a line M contained in U ; suppose ζ ∈ Ξ

corresponds to M. The nucleus subspace B of the X-ovoid X(ζ ) is contained in Ny(U). The
tangent space Ty(π) in y of the global Veronesean cap defined by π has dimension 2k and
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intersects the nucleus subspace N(π) of π in a subspace Ny(π) of dimension 2k− 1. If A,A′

are the nucleus subspaces of X(ξ ) and X(ξ ′), respectively, then the (k− 1)-spaces B,A,A′ are
all contained in Ny(π). Hence, by a dimension argument, the subspace 〈B,a〉 intersects A′ in at
least a point a′, but not in a line as that line would intersect B and lead to the contradiction that
A′∩B would be nonempty. Hence a′ is the unique point we want. �

Remark 4.15 We use the notation of the previous lemma. The points of 〈Ny(U),a〉 \Ny(U)
together with the k-spaces of 〈Ny(U),a〉 not contained in Ny(U) but intersecting Ny(U) in the
nucleus subspace of some X-ovoid in U ′, is an André/Bruck-Bose representation [1, 2] of the
(point-line part of the) affine space whose points are the lines of P through y contained in U ′

but not in U and whose lines are the planes of P through y contained in U ′ but not in U . This
is easily seen using the previous lemma.

Standing hypothesis. From now on we use the notation Y,Q,x,y and a as in Lemma 4.12 for
the rest of this section.
In order to start the lifting procedure, we only have to find an appropriate Hermitian pencil U
of hyperplanes of P which generates P(V ). We accomplish this in the following lemma.

Lemma 4.16 With the above notation, let Z ⊆ Y correspond to an (n− 2)-dimensional space
of P , with y /∈ Z. Let H be any hyperplane of 〈Q〉 = [x,y] containing y and not containing a.
Then dim〈Q∩H〉= k and U = U (Z,Q∩H) spans P(V ).

Proof Note that, since H does not contain a, it is not a tangent hyperplane of Q. Hence
〈Q∩H〉 is a hyperplane of 〈Q〉, so that U is well-defined as a Hrmitian pencil of yperplanes.
Note also that 〈U 〉 contains a, as a ∈ 〈Y 〉 and Y ⊆ U . Hence, as [x,y] = 〈H,a〉, we deduce
Q ⊆ 〈U 〉. Now the rest of the proof is completely similar to the fourth paragraph of the proof
of Lemma 4.10. �

We are now ready to prove the final step.

Lemma 4.17 Let (X ,Ξ) be a local Veronesean cap in P(V ) with index n and subdimension
k. If Y ⊆ X is a full hyperplane of P , and if 〈Y 〉 contains some point a which belongs to the
nucleus subspace of an X-ovoid X ∩ξ , with ξ ∈ Ξ and Y ∩ξ = {y}, then X is the image under
a central projection ρ of a local Veronesean cap X ′ (with corresponding projective geometry
P ′) spanning some (N +1)-dimensional projective space.

Proof We embed P(V ) as a hyperplane in a projective space P(V ′) of dimension N +1, and
we choose a point c in P(V ′) not in P(V ). On the line 〈c,a〉 we choose a point which we denote
by a∗, and we choose it such that a 6= a∗ 6= c. Set Ny = Ny(Y ). It follows that the space 〈Ny,a〉
is the bijective projection from c onto P(V ) of the space 〈Ny,a∗〉. For any point e ∈ 〈Ny,a〉\Ny,
we denote by e∗ the unique point of 〈e,c〉 ∩ 〈Ny,a∗〉. This way, we see that a and e play the
same role.
Recall that a belongs to the nucleus subspace of the X-ovoid Q = X([x,y]). Let H be a hyper-
plane of [x,y] containing y and not containing a, as in the statement of the lemma.
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We pick an (n−2)-space Z of P contained in Y , but not containing y. We define for each point
u ∈ U = U (Z,H ∩Q) the point uθ as u itself. Now let w ∈ X \U ; in particular w /∈ Y . By
Lemma 4.14 (putting U = Y ), there is a unique point e in Tw∩〈Ny,a〉. Denote Qe = X([w,y]).
We claim that 〈Qe ∩U 〉 does not contain e. Indeed, since Q and Qe intersect in y, we can
include them in a unique (common) global Veronesean cap, say with point set π . Let QY be the
X-ovoid corresponding to the line π ∩Y of P . Then π ∩U is a Hermitian pencil of lines and
generates a hyperplane of π not containing a, but containing the nucleus subspace N′ of QY . If
〈π ∩U 〉 would contain e, then also 〈N′,e〉 3 a, a contradiction. Hence e lies outside 〈Qe∩U 〉
and the claim is proved.
Hence Qe∩U defines a hyperplane section He∩Qe, with He a k-space of [w,y] not containing
e. Then the spaces [w,y] = 〈He,e〉 and 〈He,e∗〉 are a central projection of each other from c, and
hence the X-ovoid Qe is the central projection of an ovoid Q∗e ⊆ 〈He,e∗〉. Hence, for each point
p ∈Qe, there is a unique point pθ ∈Q∗e with pθ ∈ 〈c, p〉, and pθ = p if and only if p ∈U . Now
put Xθ = {zθ : z ∈ X}.
Let S⊆ X correspond to the point set of a 3-space of P such that S∩Z is a line of P and y ∈ S.
Then U ∩ S is a Hermitian pencil of planes in S. Lemma 4.7 and the definition of Hermitian
pencil of hyperplanes assert that U ∩S spans a hyperplane of 〈S〉. Set π = S∩Y . Let Ny(π) be
the union of all nucleus subspaces of ovoids through y in π (then by Lemma 4.13, Ny(π) is a
subspace of dimension 2k−1). Let O be some X-ovoid in S not entirely contained in π and with
y ∈ O. Then, by Lemma 4.14 applied for U = Y , there is a point e in the nucleus of O which is
contained in 〈Ny,a〉 \Ny. Then, again by Lemma 4.14 now applied to U = π and U ′ = S, there
is a natural bijective correspondence between the points of 〈Ny(π),e〉 \Ny(π) and the ovoids
through y entirely contained in S but not in Y . By construction, Sθ := {sθ : s ∈ S} is contained
in 〈U ∩S,e∗〉. The latter does not contain c as it would otherwise also contain 〈Ny(π),e〉, and
hence 〈S〉, implying it would have dimension N(3,k) + 1, a contradiction. Hence Sθ is the
bijective projection of S from c. This implies that Sθ , endowed with all projections of ovoids, is
a local Veronesean cap of index 3 isomorphic to V3(K,A).
Since every line L of P , not contained in Y , can be put into a 3-space of P containing also y,
and intersecting Z in a line, we see that, Lθ := {uθ : u ∈ L} is an ovoid. Putting Ξθ = {〈Lθ 〉 :
L ∈L }, the pair (Xθ ,Ξθ ) already satisfies (V1).
Now we consider and fix any point x ∈ X \U . Let u be any other point. We can put x,u and y
in a 3-space S of P intersecting Z in a line. The above argument implies that Sθ is contained
in 〈S∩U ,xθ 〉, and so uθ is the unique point in 〈c,u〉 ∩ 〈S∩U ,xθ 〉. Consequently, we can
define θ starting from xθ . Clearly, this is independent of x! Hence, we can now repeat the
arguments in the proof of Lemma 4.10 and conclude that (Xθ ,Ξθ ) is a local Veronesean cap in
P(V ′). Consequently, (X ,Ξ) is the image of (Xθ ,Ξθ ) under the central projection ρ with center
c, where (xθ )ρ = x, for all x ∈ X . Hence, putting Xθ = X ′, the lemma is proved. �

End of the proof of the Main Result. The previous lemma implies that, if every hyperplane of
P is full for (X ,Ξ), and if N <N(n,k), then (X ,Ξ) is the projection of another local Veronesean
cap of index n and subdimension k for which the associated projective space is isomorphic to
P . Applying this again when N + 1 < N(n,k), and then again until we reach the dimension
N(n,k), proves the Main Result for the inseparable case. �
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5 Induced projective representations

Let V = Vn(K,A) be the standard local Veronesean cap of index n ≥ 3 (for n = 2, see [8],
Section 7) associated to the associative quadratic algebra A over the field K, in the finite-
dimensional projective space P(V ), with V as in Section 2. A collineation of a projective space
is a permutation of its point set inducing a permutation of its line set. An elation of a projective
space is a collineation ϕ(p,H) that fixes a hyperplane H pointwise (and H is called the axis),
and also fixes all hyperplanes (globally) through a certain point p ∈ H (and p is called the cen-
ter). Let G be the so-called little projective group of P = Pn(A), i.e., G is the collineation
group generated by all elations of P . We can identify the point set of P with the point set X
of V . Hence we can view G as a set of permutations of V preserving the family of X-ovoids.
In this section (see Subsection 5.1) we show that G is induced by a unique collineation group G†

of P(V ) and hence we obtain a projective representation of G in P(V ). We determine all invari-
ant subspaces of that projective representation, and we identify the projective representations
induced in the invariant subspaces and the corresponding quotients (see the end of Subsec-
tion 5.2). Our results show that G acts irreducibly on P(V ), except in the purely inseparable
case and the case K= A wth char K= 2, where the action is nevertheless indecomposable.
The latter case gives rise to some special geometric features. In this case, we not only have
the standard local Veronesean cap V , but there is a nucleus subspace in which we can see a
representation of the line Grassmann space corresponding to P . The projection of the standard
local Veronesean cap from the nucleus space yields an (ordinary though not necessarily full)
embedding of P into an n-dimensional subspace of P(V ) corresponding to the inclusion A2 ⊆
K.
In the first part of Subsection 5.2, we show that G is never induced in any proper legal projection
of V by the collineation group of the ambient projective space. In fact, we show a slightly
stronger result except if K = A = F2, see Theorem 5.11. Here, we also include the case n = 2
in the stronger result.

5.1 (Ir)reducibility and indecomposability

From now on, we are given the standard local Veronesean cap V = Vn(K,A) in P(V ), with little
projective group G. For the time being, we assume n≥ 3.

Proposition 5.1 With the above notation, G is induced by a collineation group G† of P(V ).
More precisely, the action of G on V can be uniquely extended to an action on P(V ) yielding a
collineation group G† ∼= G of P(V ).

Proof Since G is generated by all elations ϕ(p,H), with p ranging over de points and H
ranging over the hyperplanes through p, it suffices to consider, with respect to an arbitrary
coordinatization and for all i, j ∈ {0,1, . . . ,n}, the central collineations ϕ(pi,H j), i 6= j, where
pi is the point with only nonzero coordinate at position i, and H j consist of all points whose
coordinate at position j is zero (indeed, one checks that the group generated by these elations
acts transitively on the set of all pairs (p,H), where p is a point and H a hyperplane with p∈H).
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Without loss of generality we may take j = 0. For i we could take, also without loss, any of
1,2, . . . ,n, but we will later need the general form of any elation with axis H0 and center an
arbitrary point c of H0.
Let c be given by (0,γ1, . . . ,γn), with γi ∈ A, i = 1,2, . . . ,n. Let θ0,c be the collineation of
P(V ) induced by the following K-linear map of V (which we also denote by θ0,c), with obvious
notation (i, j,k ∈ {1,2, . . . ,n}, j < k).

θ0,c : V →V : (y0,yi;y0,i,y j,k) 7→
(y0,yi + γiγ

σ
i y0 + γiy0,i + yσ

0,iγ
σ
i ;y0,i + γσ

i y0,y j,k + γ jy0,k + yσ
0, jγ

σ
k + γ jγ

σ
k y0).

One easily checks that θ0,c preserves V and acts on P as

(x0, · · · ,xn) 7→ (x0,x1 + γ1x0, · · · ,xn + γnx0),

which is obviously a generic elation with axis H0 and center c (to obtain all elations with given
center c one has to consider all coordinate tuples representing c, i.e., consider all nonzero scalar
A-multiples of (0,γ1, . . . ,γn)). Note that θ0,c heavily depends on the given coordinates of c;
hence the c in the index is to be read as the corresponding (n+1)-tuple rather than as the point
c.
If we denote for a given elation η of P the corresponding collineation of P(V ) preserving V
as found above by η , then it remains to show that the η really generate a group isomorphic to
G. To that aim it suffices to prove that every collineation ϕ of P(V ) fixing V pointwise is the
identity.
To that aim, consider the three hyperplanes H0,H1,H2 of P . Then, since 〈Hi〉∩ 〈H j〉 6= /0, for
i, j ∈ {0,1,2}, the collineation ϕ fixes 〈H0,H1,H2〉 pointwise. Now, clearly Tx ⊆ 〈H1,H2〉, for
every x ∈ H1 ∩H2, and so Lemma 4.3 applied to p0 and H0 implies that 〈H0,H1,H2〉 = P(V )
and we are done. �

Lemma 5.2 Let Y be the subset of V corresponding to a hyperplane of P . Then there is a
unique hyperplane H0 of P(V ) intersecting V in Y , i.e., H0∩V = Y .

Proof This lemma can be shown in a completely geometric way using our axioms, but since
below we need an algebraic expression anyway, we establish this in an algebraic way. Without
loss of generality, we may assume that Y corresponds to H0 (with above notation). The subspace
〈Y 〉 of P(V ) generated by Y is given by the equations y0 = y0,i = 0, i ∈ {1,2, . . . ,n}. Let H0
be the hyperplane of P(V ) with equation y0 = 0. Then clearly H0∩V = Y . Now let H ∗ be
a hyperplane of P(V ) containing Y , but distinct from H0. Then H ∗ contains a point p with
coordinates (1,yi;y j,k)1≤i≤n;0≤ j<k≤n. Define the point (1,yσ

0,k)1≤k≤n of P . The corresponding
point p∗ of V has coordinates

(1,y0,iyσ
0,i;y0, j,yσ

0,ky0,`)1≤i≤n;1≤ j≤n;1≤l<`≤n,

and hence we see that the line 〈p, p∗〉 intersects 〈Y 〉 nontrivially. Hence H ∗ ⊇ 〈Y, p〉 contains
p∗ ∈ V . It follows that H0 is the unique hyperplane intersecting V precisely in Y . �

With the notation of the previous lemma we call H0 a tangent hyperplane (tangent at Y ). We
have the following result.
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Lemma 5.3 With the above notation, the (common) intersection of all tangent hyperplanes is
empty if and only if A is not a proper inseparable field extension of K and K 6=A if char K= 2.
If it is not empty, it is a subspace of dimension k n(n+1)

2 −1.

Proof Suppose first that A2 ⊆ K and char K = 2. Let H be a tangent hyperplane and let the
equation of the corresponding hyperplane of P be ∑

n
i=1 aixi = 0, where ai ∈K, i = 0,1, . . . ,n.

Then one can verify that H has the equation ∑
n
i=1 a2

i yi = 0. Consequently H contains the sub-
space N with equations y0 = y1 = · · ·= yn = 0. Hence N is clearly the common intersection of
all tangent hyperplanes and has dimension k n(n+1)

2 −1.

Now suppose A2 is not contained in K or char K 6= 2. Let p = (yi;y j,k)0≤i≤n;0≤ j<k≤n be con-
tained in every tangent hyperplane. Since the tangent hyperplane Hi corresponding to the
hyperplane of P with equation xi = 0, i∈ {0,1, . . . ,n}, has equation yi = 0 in P(V ), we see that
y0 = y1 = · · ·= yn = 0. Without loss of generality we may assume that y0,1 6= 0. If char K 6= 2,
then we define γ1 = yσ

0,1; if char K= 2, then σ is not the identity, we select a ∈ A with a 6= aσ

and we define γ1 = ay−1
0,1. Putting c = (0,γ1,0, . . . ,0), we easily see that θ0,c maps p to a point

with nonzero second coordinate, hence not belonging to the tangent hyperplane H1. Hence p
does not belong to the tangent hyperplane θ

−1
0,c (H1). �

The common intersection of all tangent hyperplanes, if nonempty, will be called the nucleus of
V and denoted by N(V ).

Proposition 5.4 Suppose that A is not a proper inseparable field extension of K and K 6= A if
char K= 2. Then G† acts irreducibly on P(V ).

Proof We have to show that the orbit pG†
generates P(V ), for every point p of P(V ). If p∈V ,

then this follows from the fact that G† acts transitively on V . Hence we may suppose that p
does not belong to V . By our assumptions, p is not contained in every tangent hyperplane.
Without loss of generality, this means that we may assume that the first coordinate of p in P(V )
is equal to 1. Let p be represented by (1,yi;y j,k)1≤i≤n;0≤ j<k≤n.
Suppose first that |K| > 2. Let t ∈ K \ {0,1} be arbitrary and let c be the point of P having
coordinates (0, t,0, . . . ,0). We compute the coordinates of the point q on the line 〈p,θ0,c(p)〉
obtained by adding t−1 times the original coordinate tuple of p to the coordinate type of θ0,c(p)
obtained above. We obtain for q the coordinates

(t, ty1 + t2 + ty0,1 + tyσ
0,1, tyi; ty0,1 + t, ty0,i, ty1, j + ty0, j, tyk,`)2≤i≤n;2≤ j≤n;2≤k<`≤n.

Now we put c′ = (0,−1,0, . . . ,0) and we compute θ0,c′(q). We obtain the following coordinate
tuple:

(t, ty1 + t2− t, tyi; ty0,1, ty0,i, ty1, j, tyk,`)2≤i≤n;2≤ j≤n;2≤k<`≤n.

If we connect this point with p and intersect the obtained line with the hyperplane with equation
Y0 = 0, then we see that the point r = (0, t2− t,0, . . . ,0;0, . . . ,0) belongs to the span of pG†

.
Since r also belongs to V , and the orbit of r generates P(V ) by the first lines of the proof, we
conclude P(V ) = 〈V 〉 ⊆ 〈pG†〉.
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Now suppose |K|= 2. Our assumptions imply that A is the field of order 4; set A= {0,1,ε,ε +
1}. We choose t ∈ A\{0} arbitrary. Define c = (0, t,0, . . . ,0) again. Then the “third point” qt
on the line joining p with θ0,c(p) has coordinates

(0,1+ ty0,1 + tσ yσ
0,1,0, . . . ,0; tσ ,0, . . . ,0, ty0,i,0, . . . ,0)2≤i≤n,

where ty0,i is positioned in the entry (1, i), for all i∈ {2,3 . . . ,n}. But now we see that q1+qε +

qε+1, which belongs to 〈pG†〉, is exactly the point p1 = (0,1,0, . . . ,0) and hence belongs to V .
As in the first part of the proof, we conclude P(V ) = 〈V 〉 ⊆ 〈pG†〉. �

Proposition 5.5 Suppose that A is a proper inseparable field extension of K or K = A and
char K= 2. Then N(V ) is the only proper subspace of P(V ) that is invariant under G†. Hence
the action of G† on P(V ) is indecomposable.

Proof We first show that the orbit pG†
generates P(V ), for every point p of P(V ) \N(V ).

Since p /∈ N(V ), we may assume by the proof of Lemma 5.3 that, without loss of generality,
the first coordinate of p in P(V ) is equal to 1. A similar calculation as performed in the first part
of the proof of Proposition 5.4 shows that, if |K|> 2, the point p1 = (0,1,0, . . . ,0) is contained
in both pG†

and V , implying 〈pG†〉= P(V ).
Now suppose |K|= 2. Then A=K. Let p again have coordinates (1,yi;y j,k)1≤i≤n;1≤ j<k≤n. We
may suppose y0,i = 0, for i∈ {2, . . . ,n}, since the mapping θ0,c, with c= (0,0,y0,2,y0,3, . . . ,y0,n)
interchanges 0 and 1 in the position (0, i). Define c′ = (0,1,0, . . . ,0). Then the “third point” q
on the line joining p with θ0,c′(p) has coordinates

(0,1,0, . . . ,0;1,0, . . . ,0)2≤i≤n.

The point q belongs to the subspace generated by the (standard) global Veronesean V012 induced
by the plane spanned by p0, p1 and p2 in P , but not to its nucleus N(V012). The stabiliser of
V012 in G† only stabilises N(V012), hence 〈V012〉 ⊆ 〈pG†〉, In particular, 〈pG†〉 contains elements
of V and hence contains V and we conclude 〈pG†〉= P(V ).
Now let p = (0, . . . ,0;yi, j)o≤i< j≤n belong to N(V ). It is easily checked that p is a fixed point of
the group T0≤G† with generic element θ0,c, with c= (0,γ1, . . . ,γn), γi ∈A, i= 1,2, . . . ,n, if and
only if y0, j = 0, for all j ∈ {1,2, . . . ,n}. So, if p is fixed under T0, then p belongs to the nucleus
of the standard local Veronesean cap V0 of index n− 1 generated by the points p1, p2, . . . , pn.
If p is not fixed under the group T0, then there is some element τ ∈ T0 such that p 6= pτ and
there is a unique point q on the line 〈p, pτ〉 with first 2n+ 1 coordinates zero (so besides Yi =

0 we also have Y0, j = 0, for j ∈ {1,2, . . . ,n}). Since q ∈ 〈pG†〉, we conclude that 〈pG†〉 ∩
N(V0) 6= /0. Restricting G† to the stabiliser of V0, we find, in a similar way, a point of 〈pG†〉∩
N(V1), where V1 is the standard local Veronesean cap of index n− 2 generated by the points
p2, p3, . . . , pn. Continuing like that, we eventually obtain a nonempty intersection of 〈pG†〉 with
the (standard) global Veronesean cap Vn−3 generated by pn−2, pn−1, pn. By Proposition 7.2
of [8], we have N(Vn−3) ⊆ 〈pG†〉. In particular the subspace of P(V ) consisting of all points
(0, . . . ,0;0, . . . ,0,a), with a ∈ A \ {0} is entirely contained in 〈pG†〉. Likewise this holds for
every subspace of N(V ) “generated by one A-entry” in the coordinate representation. This
implies that N(V )⊆ 〈pG†〉. Equality follows from the first part of the proof. �
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Corollary 5.6 The subspace of P(V ) generated by the nuclei of the X-ovoids coincides with
N(V ).

Proof Let N be the subspace generated by the nuclei of the X-ovoids of V . Clearly, N is
invariant under G†. So it suffices to prove that N is contained in N(V ).
Let Y be a hyperplane of P with corresponding tangent hyperplane H , and let Q be an X-
ovoid with nucleus subspace S. If Q ⊆ Y , then clearly S ⊆ N(V ). If Q∩Y = {y}, then, by the
definition of H , we have H ∩Q = {y}, and so H ∩〈Q〉 is a hyperplane of 〈Q〉 tangent to Q
at y and hence contains S. Consequently S⊆H , implying N ⊆ N(V ). �

As an application to the existence and uniqueness of the tangent hyperplanes, we can prove the
following proposition.

Proposition 5.7 Let Y be a hyperplane of P with corresponding tangent hyperplane H and
let x ∈ X \Y . Then the projection ρ from 〈Y 〉 onto Tx is a bijection from the affine space P \Y
to the affine space Tx \H mapping parallel lines onto parallel k-spaces and hence parallel
i-spaces to parallel ik-spaces, 1≤ i≤ n−1.

Proof First we note that Lemmas 4.1, 4.3 and 4.4 imply that Tx and 〈Y 〉 are really comple-
mentary subspaces of P(V ). This implies that, if ξ ∈ Ξ, then either ξ ⊆ 〈Y 〉 or ξ ∩ 〈Y 〉 is a
singleton y ∈ Y . Hence, for two distinct points x1,x2 ∈ X(ξ )\{y}, the line 〈x1,x2〉 never meets
〈Y 〉 as no three points of X are collinear. This shows that ρ is injective on X \Y . Clearly,
for every point z ∈ X \Y , the point zρ does not belong to H . We now claim that every point
u ∈ Tx \H is the image under ρ of a point of X \Y . Indeed, the line 〈x,u〉 is, by Lemma 4.1,
tangent to some X-ovoid Q 3 x, which intersects Y is a unique point y. Then 〈y,u〉 is not con-
tained in H ⊇ Ty(Q), hence 〈y,u〉 intersects Q in a second point z 6= y. Clearly zρ = u. Hence
ρ is bijective from X \Y onto Tx \H .
Set Hx = Tx∩H . It is clear that, for every X-ovoid Q, with Q∩Y = {y}, we have 〈Qρ〉∩Hx =
Ty(Q)∩Tx, and since 〈Q〉 ∩ 〈Y 〉 = {y}, the subspace Ty(Q)∩Tx is (k− 1)-dimensional, while
〈Qρ〉 is k-dimensional.
Let Q′ be a second X-ovoid containing y. Then Ty(Q′) ⊆ 〈Ty(Q),Y 〉, as follows straight from
(V3). Symmetry implies 〈Ty(Q),Y 〉 = 〈Ty(Q′),T 〉. Hence, since Ty(Q)∩Tx = 〈Ty(Q),Y 〉 ∩Tx
(as 〈Y 〉 and Tx are disjoint subspaces), we also have

Ty(Q′)∩Tx = 〈Ty(Q′),Y 〉∩Tx = 〈Ty(Q),Y 〉∩Tx = Ty(Q)∩Tx.

This shows that ρ maps parallel lines of the affine space P \Y onto parallel k-spaces of the
affine space Tx \Hx. �

Remark 5.8 With the notation of the previous proposition, let L1,L2 be two non-parallel lines
of the affine space P \Y . Then the images Lρ

1 and Lρ

2 span projective subspaces which have
at most one point in common, and this point belongs to Tx \H . This is easily seen if L1 and
L2 intersect; if they do not, then we consider a translate of L2 that intersects L1 to reach our
assertion.
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5.2 Homogeneity

Let G be the little projective group of P . Then an injective projection of Vn(K,A), where
we now allow n = 2, into a subspace W of P(V ) is called G-homogeneous if G is induced by
the collineations of W stabilizing the said projection. We now prepare the classification of the
G-homogeneous local Veronesean caps with the following lemmas. We will eventually prove a
slightly stronger result by showing that any G-homogeneous injective projection of the standard
local Veronesean cap is either the cap itself, or its projection from the entire nucleus space,
except if K = A = F2. This will follow from the fact that, if we project Vn(K,A) injectively
from a subspace U of P(V ) onto a complementary subspace W , then a member ϕ of the little
projective group of P acting on the said projection is induced by a collineation of W if and
only if the collineation ϕ ′ of P(V ) inducing ϕ on Vn(K,A) stabilizes U . This is our first aim to
prove (and will be accomplished in Theorem 5.11).
There is a general result along the same lines in the literature about automorphisms of projec-
tions of embedded geometries, see Theorem 13 of [9], but this requires the projected embedded
geometry to have enough lines, whereas we do not have any line. The naive idea of adding lines,
such as all secants, perhaps works in the case where the nucleus space is trivial, but certainly
fails otherwise. Nevertheless, our approach uses the idea of working with the secant lines, but
without actually adding them to the geometry.
Recall that two subspaces A and B of another subspace D of a projective space P(V ) are called
complementary if A∩B = /0 and 〈A,B〉= D. A Segre variety S of type (1,k) is the set of points
of a projective space spanning some subspace D of dimension 2k+1 which are on a line (such
line is called a generator of S ) that intersects three given mutually complementary subspaces
of D (necessarily of dimension k).

Lemma 5.9 Let S,S′,T ′ be three subspaces of a projective space U. Suppose dimT ′ = k ≥ 0,
both S and S′ are complementary to T ′ and U = 〈S,S′〉. Let S′′ be an arbitrary subspace of
S complementary to S∩ S′ in S (then dimS′′ = dimT ′). Then each line intersecting all three
subspaces S,S′,T ′ is contained in a cone C with vertex S∩ S′ and base a Segre variety S
of type (1,k), where k = dimT ′, containing the subspaces T ′, S′′ and a subspace S′′′ of S′

complementary to S∩S′ in S′.

Proof Set ` = dimS. Then dimU = k + `+ 1 and dim(S∩ S′) = `− k− 1 ≥ −1, so that
`≥ k. We further compute dimS′′ = dimS−dim(S∩S′)−1 = k. Let p ∈ T ′ be arbitrary. Then
〈p,S′′〉 has dimension k+1 and hence intersects S′ in a unique point p′; the line 〈p, p′〉 in 〈p,S′′〉
intersects S′′ in a unique point p′′. The map p 7→ p′ is a projectivity and hence varying p over
T ′, the point p′ moves across a subspace S′′′ of dimension k and clearly disjoint from S∩S′. The
lines 〈p, p′〉 form a Segre Variety S of type (1,k).
Now let L be a line of U intersecting all of S,S′,T ′. If L∩S∩S′ 6= /0, then L is contained in C.
Otherwise, let r, p, p′ be the respective distinct intersections of L with T ′,S,S′, and let M = 〈q,q′〉
(with q∈ S′′ and q′ ∈ S′′′) be the unique line in S through r, see the above construction. Clearly,
M and L are contained in a plane and hence the lines 〈q, p〉 and q′.p′〉 intersect each other in a
point s ∈ S∩S′. So L⊆ 〈s,M〉 ⊆C. �

The set C of the previous lemma is referred to as a Segre cone (with vertex S∩S′).
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Lemma 5.10 Let θ be a linear collineation of the projective K-space P(V ) of dimension n+
m, with n ≥ 0 and n + m ≥ 3. Let S be a subspace of P(V ) of dimension n and let T be
complementary to S in P(V ), with the property that T θ ∩ S = /0. Let θT be the map from T to
itself given by sending the point p∈ T to the unique point of T ∩〈S, pθ 〉. Then θT is well-defined
and is a linear collineation of T . Set S′ = Sθ−1

, U = 〈S,S′〉 and T ′ = T ∩U. Let C be the Segre
cone in U with vertex S∩S′ containing S,S′ and T ′. Then the set P of points p of P(V ) with the
property that (〈S, p〉∩T )θT = 〈S, pθ 〉∩T is precisely (C∪〈S∩S′,T 〉)\ (S∪S′). In particular,
if S 6= Sθ , then either P is contained in C (if U = P(V )) or in the union of two proper subspaces,
namely P⊆ 〈S∩S′,T 〉∪U (if W 6= P(V )).

Proof Clearly θT is well-defined since no point of T is mapped into S. Also, as θT is the
composition of the restriction of θ to T and a projection, it is a linear collineation of T .
Let p be an arbitrary point not contained in S∪ S′. Clearly T ⊆ P, so we may assume p /∈ T .
None of p and pθ is contained in S. Hence 〈S, p〉∩T and 〈S, pθ 〉∩T are well-defined points,
say pT and p′T . Clearly, pθT

T = p′T if and only if pθ
T ∈ 〈S, pθ 〉. This happens if and only if the

line 〈pθ
T , pθ 〉 (well-defined since we assume p 6= pT ) is contained in 〈S, pθ 〉, which is equivalent

to L := 〈pT , p〉 ⊆ 〈S′, p〉. If p /∈ 〈S,S′〉, then this is equivalent with p ∈ 〈S∩S′,T 〉. If p ∈ 〈S,S′〉,
then there are again two possibilities.

• The line L intersects S∩S′. In this case p is automatically in P. Hence 〈S∩S′,T 〉\S⊆ P.

• The line L intersects S and S′ in distinct points. Since L also intersects T , necessarily in
a point of T ′, the assertion p ∈ P is in this case equivalent with p belonging to the Segre
cone in W with vertex S∩S′ containing S,S′ and T ′.

The lemma is proved. �

Recall that we denote by G the little projective group of Vn(K,A), and by G† the group of
extension of the elements of G to the ambient projective space P(V ) of Vn(K,A). The next
theorem is the main accomplishment of this subsection. For n = 2, we also allow A to be
an octonion division algebra over K. For the precise definition of the corresponding standard
global Veronesean cap V2(K,A) we refer to [8].

Theorem 5.11 Suppose we are not in the case A = K = F2. Let ρ be the injective projection
of Vn(K,A), n≥ 2, from a subspace S of P(V ). Denote by † : G→G† the natural isomorphism
between the little projective group of Vn(K,A) and the group of collineations of P(V ) inducing
G on Vn(K,A) (cf. Proposition 5.1). Let g ∈ G and denote

gρ : (Vn(K,A))ρ → (Vn(K,A))ρ : pρ 7→ pgρ ,

where p ∈ Vn(K,A). Then gρ is induced by a collineation of the quotient projective space
P(V )/S if and only if g† stabilises S. Hence,

• any G-homogeneous injective image of the standard local Veronesean cap is either the
cap itself, or the projection from its non-trivial nucleus space;
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• each G-homogeneous local Veronesean cap (X ′,Ξ′) with P(X ′,Ξ′) = Pn(A) is projec-
tively equivalent with Vn(K,A).

Proof Let g ∈ G. Let Vn(K,A) have point set X . Since X generates P(V ), it contains a basis
B of P(V ). Then Bρ contains a basis B′ρ of the image projection space, with B′ ⊆ B. We set
T = 〈B′〉. Then S and T are complementary. We can visualise ρ by projecting onto T , i.e., we
may assume bρ = b, for all b ∈ B′. From now on, we denote by X ′ the image of the projection
of Vn(K,A) from S onto T . If T g† ∩S 6= /0, then gρ maps the independent set B′ of points onto
a dependent set of points (since dim〈S,T g†〉 < N), and so gρ has no projective extension in T .
Note that S 6= Sg†

in this case.

Hence we may assume that T g† ∩ S = /0. We now suppose for a contradiction that S 6= Sg†

and that there is a linear collineation h of T such that its restriction to X ′ yields gρ (the ‘if’-
part of the assertion being trivial). We want to apply Lemma 5.10 with θ = g†. Since clearly
〈S, p〉∩T = pρ , for all p ∈ T , we have θT = g†ρ . We first claim that g†ρ coincides with h over
the whole of T . In order to prove this, we start by showing that, given any pair of distinct points
p,q ∈ B′, each point r ∈ 〈p,q〉 satisfies rh = rg†ρ .
Indeed, for r ∈ {p,q}, that is really the definition (since g and g† coincide over X), hence
suppose r /∈ {p,q}. Let O be the X-ovoid containing p,q.

• If 〈O〉 ∩ S 6= /0, then the line 〈p,q〉 contains at least three images of X under ρ , and the
result follows from the fact that gρ is linear and a linear map on a projective line is
determined by three images.

• Suppose now 〈O〉∩ S = /0. Then, similarly as above, 〈Og〉∩ S = 〈O〉g† ∩ S = /0. Hence,
since for each point x ∈ O we have xρgρ

= xgρ , the map gρ : Oρ → Ogρ defines a unique
projectivity from 〈O〉ρ to 〈O〉g†ρ and the image of any point zρ of 〈O〉ρ , with z ∈ 〈O〉, is
given by zg†ρ , by uniqueness of g† given g. If in particular z = r ∈ T , then rh = rg†ρ .

Now this implies that h coincides with g†ρ over a basis and all points of all lines joining any two
basis points. This determines h uniquely, and since g†ρ = θT is a projectivity (cf. Lemma 5.10),
we have that h coincides with g†ρ over the whole of T . The claim is proved.

Set S′ = S(g
†)−1

. Applying Lemma 5.10 with θ = g† we claim that X ⊆ P, with P = {p ∈
P(V )\ (S∪S′) : pρg†ρ = pg†ρ} as in Lemma 5.10. Indeed, by definition of h, we have for each
x ∈ X that xρh = xρgρ

, and the definition of gρ then yields xρgρ

= xgρ , which equals xg†ρ by the
definition of g†. By our previous claim, we know xρh = xρg†ρ . The claim is proved.
Consequently, Lemma 5.10 implies that X is contained in either the union of the two proper
subspaces 〈S,S′〉 and 〈S∩S′,T 〉, or in a Segre cone C with vertex S∩S′. We show that none of
this is possible under the given assumptions.

• Suppose J = 〈S,S′〉 and K = 〈S∩ S,T 〉 are proper subspaces and X ⊆ J ∪K. Since X
spans P(V ), there exist a point x1 ∈ X ∩ (J \K) and a point x2 ∈ X ∩ (K \ J). Let k be
a conic in X containing x1 and x2. Then the plane π spanned by k intersects J and K
in proper subspaces of π . hence k is contained in the union of two proper subspaces of
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π , which each contain at most 2 points of k. Hence |k| ≤ 4, implying |K| ∈ {2,3} and
|A| ∈ {K|, |K|2}.
First let |A| = |K|2 = 9. Then, in the argument of the previous paragraph, we consider
the ovoidO = X([x1,x2]). Then similarly as above, O, which contains 10 points, is the
union of two proper subspace sections, which each contain at most 4 points (the number
of points on a conic), a contradiction.

Set N = n2 + n = dimP(V ). Now we show that, if (N, |A|) 6= (2, |K|), then dimJ +
dimK ≤ 2N−4.Indeed, suppose for a contradiction that dimJ +dimK ≥ 2N−3. Since
dimJ ≤ n− 1 ≥ dimK, we have dimJ,dimK ∈ {N− 1,N− 2}. Set dimK = N− a, a ∈
{1,2}, and dimJ = N−b, b ∈ {1,2}, with a+b ∈ {2,3}. Then dim(S∩S′)+a = dimS
and so dim〈S,S′〉− a = dimS, leading to dimS = N− a− b. Hence, in this case, 〈T 〉,
which has dimension a+ b− 1 is either a line or a plane and by the injectivity of ρ that
we assume, |X | ≤ |K|2 + |K|+ 1, a contradiction for (n, |A|) 6= (2, |K|). Note that, if
a = b = 1, then |X | ≤ |K|+1, a contradiction in all cases.

Now let |A| = |K‖ = 3. By the last line of the foregoing paragraph we may assume
that one of J,K is not a hyperplane, say dimJ ≤ N− 2 (the reasoning if dimK ≤ N−
2 ia completely the same). By extending K if necessary, we may assume that K is a
hyperplane. Then Q := K ∩ X is a quadric in P . Suppose Q contains a conic; then
it is easily checked that every point not contained in the vertex of Q (the vertex is the
intersection of all maximal subspaces of Q in P) is contained in a plane π of P with
te property that π ∩X is not the union of two lines in π . But then the complement of
π ∩X in π is not contained in any conic of π (not even in a degenerate one) and so all
points of π must belong to J. Hence J contains al points of X except fore the vertex,
a contradiction since this set is not contained in a quadric. We have shown that Q does
not contain a conic, hence Q is the union of two hyperplanes H1 and H2 of P . Then J
contains all points off H1∪H2. We claim that J also contains H1∩H2. Indeed, let L be a
line of P intersecting H1∩H2 in a unique point x and not contained in H1∩H2. Then the
3 points of L \ (H1∩H2) generate a plane of P(V ) which entirely contains L. Hence the
claim. Consequently J contains (X \ (H1 ∪H2))∪ (H1 ∩H2), which is the union of two
hyperplanes of P . Hence J is a hyperplane of P(V ) after all, a contradiction.

Finally let |A| = |K|2 = 4. Then, completely similar to the previous paragraph, we may
assume that K is a hyperplane, K ∩X is the union of three hyperplanes H1,H2,H3 of P
with H1∩H2 = H2∩H3 = H3∩H1, and J is generated by the points of the union of the
two hyperplanes H4,H5 of P completing H1,H2,H3 to a pencil of hyperplanes. Since
both H4 and H5 induce local Veronesean caps of index n−1, and 〈H4〉∩〈H5〉∩X is local
Veronesean cap of index n− 2, we deduce dimJ ≥ dim〈H4〉+ dim〈H5〉 − dim(〈H4〉 ∩
〈H5〉) = n2 + 2n− 2 = dimP(V )− 2. We also deduce that, if dimJ = N− 2, then J ∩X
is the union of two hyperplanes of P . This immediately implies that one of J,K is a
hyperplane of P(V ), and this then contradicts dimJ+dimK ≤ 2N−4.

• Suppose now X ⊆ C. Since X admits an injective projection from S, it also admits an
injective projection ρ ′′ from S∩S′. The image X ′′ of X under ρ ′′ is contained in a Segre
variety S of type (1,k), for some positive integer k. Since X spans P(V ), we find two
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points p,q of X ′′ in different k-spaces of S . These points are not on a common generator
of S as the projection from S is also injective. But then it is easy to see that 〈p,q〉∩S =
{p,q}. Hence S∩S′ is disjoint from 〈O〉, with O the unique X-ovoid through p and q. So,
considering any plane conic D on O containing p,q, we see that S must contain a conic
through p and q. However, it is easily calculated that any plane through p and q either
intersects S in a pair of lines, one of which is a generator of S and hence cannot contain
two points of X , or has only three points in common with S . Hence K = F2. Then S
is the union of 3 k-spaces, two of which correspond to S and S′ and hence which do not
contain any point of X ′′. Hence X ′′ is contained in a k-space, contradicting the fact that X
spans P(V ) and the projection of X from S∩S′ spans a subspace of dimension 2k+1.

Now taking into account Propositions 5.4 and 5.5, the theorem is proved. �

If |A|= |K|= 2, then the method of proof in Theorem 5.11 fails. However, we believe the result
is stil true. We can easily show the most important global part of it.

Corollary 5.12 Let G be the little projective group of P . Each G-homogeneous local Verone-
sean cap of index n, n≥ 2, is projectively equivalent with Vn(K,A).

Proof In view of Theorem 5.11 we only need to show this in the case K= A= F2.
Let X be the point set of a G-homogeneous local Veronesean cap. Suppose first that some
hyperplane Y of P is not full and let x ∈ 〈Y 〉 be a point of P off Y . Let g ∈ G be an elation of
P with axis Y . Then g fixes Y pointwise and hence the corresponding collineation g† of 〈X〉
fixes 〈X〉 pointwise (as it fixes a generating point set and K = F2), a contradiction, as g† then
also fixes x, whereas g does nt fix x. We conclude that every hyperplane is full.
Hence, if X is not projectively equivalent with Vn(K,A), then by Lemma 4.12, there is an X-
conic C not contained in some hyperplane Y of P such that the nucleus of X is contained in
〈Y 〉. Hence 〈C〉∩ 〈Y 〉 is a line L. Any elation of Pwith axis Y not fixing C extends in 〈X〉 to
a collineation fixing 〈Y 〉 pointwise and mapping C to some X-conic C′ with L ⊆ 〈C′〉. Hence
〈C〉∩ 〈C′〉 ⊇ L, contradicting Axiom (V2).
The corollary is proved. �

If A is a proper inseparable field extension of K or K = A and char K = 2, then for all n ≥ 2,
there is a unique nontrivial subspace stabilised by G and that is the nucleus subspace. We now
describe the corresponding G-homogeneous projection.

Proposition 5.13 Suppose that A is a proper inseparable field extension of K or K = A and
char K = 2. Then the projection of V from N(V ) is projectively equivalent to the standard
embedding of Pn(A2) into Pn(K) given by restricting coordinates. (Here, A2 denotes the field
of squares of A.)

Proof This follows from the fact that, by the proof of Lemma 5.3, and with the notation of
Subsection 2.2, N(V ) consists of the projective points (yi,y j,`)0≤i≤n,0≤ j<`≤n, with yi = 0 for all
i∈ {0,1, . . . ,n}. Indeed, the projection of an arbitrary point K(x2

i ;x jx`)0≤i≤n,0≤ j<`≤n of V onto
the obvious complementary subspace of N(V ) is given by (x2

0,x
2
1, . . . ,x

2
n;0,0, . . . ,0). �
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Proposition 5.14 Let P be the set of nuclei spaces of all X-ovoids. Then every member of P
is contained in N(V ). Also, if two members N1,N2 ∈ P correspond to intersecting elements
ξ1,ξ2 of Ξ, respectively, then the members of P contained in 〈N1,N2〉 constitute a partition
(spread) S of 〈N1,N2〉. Moreover, a member N ∈P is contained in 〈N1,N2〉 if and only if the
corresponding member ξ of Ξ contains ξ1∩ ξ2 and is contained in the global Veronesean cap
generated by ξ1,ξ2.
If we denote by L the set of such spreads, then (P,L) with natural incidence defines the point-
line space naturally associated with the line-Grassmannian of P .

Proof We use the notation of Subsection 2.2. In order to prove the first assertion, we note
that, since G† acts transitively on the family of X-ovoids, and since N(V ) is stable under the
action of G†, it suffices to show that the nucleus space of at least one X-ovoid is contained in
N(V ). We consider the X-ovoid corresponding with the line (∗,∗,0, . . . ,0) of P . Clearly, its
nucleus subspace is the space defined by yi = 0, for every i ∈ {0,1, . . . ,n}, and yi j = 0, for
every i and j, i < j, i, j ∈ {0,1, . . . ,n}, except for (i, j) = (0,1). The first assertion follows.
From our argument follows in particularly that nucleus space of an X-ovoid O has dimension
2`− 1, and that it is the intersection of 〈O〉 with N(V ). We now write down what the nucleus
subspace of a general X-ovoid O looks like. Let the corresponding line of P be given by the
points p = A(x0,x1, . . . ,xn) and q = A(y0,y1, . . . ,yn), and let p′,q′ be the corresponding points
of O. Then every point of the nucleus of O is the nucleus of a conic C ⊆ O, with {p′,q′} ⊆C,
and hence is obtained by intersecting an arbitrary plane through p′ and q′ with N(V ). Such
an arbitrary plane will contain at least one additional member of O, for which we can take the
point r′ on O corresponding to r =A(kxi + `yi)0≤i≤n, k, ` ∈A. If we just add the coordinates of
p′,q′ and r′ as given in Subsection 2.2, then we obtain

Kk`(0,0, . . . ,0︸ ︷︷ ︸
n+1 zeros

,xiy j + x jyi)0≤i< j≤n.

Hence, if we reinterpret the subspace of V containing the n(n+1)
2 direct factors isomorphic to A

in the definition of V as a projective space over A, then each element of P corresponds with a
unique point of the line Grassmannian of P via the Plücker coordinates, in the standard way.
Now all assertions follow from the standard properties of Grassmannians. �

It now also follows that the action of G† on N(V ) is induced by the natural action of SLn(A) on
the vector space defined by the Plücker coordinates of the vector space over A underlying P ,
but considered over K (also in the natural way). This is completely similar to Proposition 7.2
of [8].
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