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Abstract

Hjelmslev-Moufang planes are point-line geometries related to the exceptional al-
gebraic groups of type Eg. More generally, point-line geometries related to spherical
Tits-buildings—Lie incidence geometries—are the prominent examples of parapolar
spaces: axiomatically defined geometries consisting of points, lines and symplecta
(structures isomorphic to polar spaces). In this paper we classify the parapolar spaces
with a similar behaviour as the Hjelmslev-Moufang planes, in the sense that their
symplecta never have a non-empty intersection. Under standard assumptions, we ob-
tain that the only such parapolar spaces are exactly given by the Hjelmslev-Moufang
planes and their close relatives (arising from taking certain restrictions). On the one
hand, this work complements the algebraic approach to these structures with Jordan
algebras due to Faulkner in his book “The Role of Nonassociative Algebra in Projec-
tive Geometry”, published by the AMS in 2014; on the other hand, it provides a new
tool for classification and characterisation problems in the general theory of parapolar
spaces.
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1 Introduction

1.1 Origin of the problem

The natural geometries of “groups of algebraic origin” (by which we mean semi-simple
algebraic groups and their classical and mixed type analogues) are the (Tits-)buildings, in-
troduces by Jacques Tits in his monumental work [14]. Special cases were considered be-
fore, especially to get a grip on the algebraic groups of exceptional type. One of these con-
cerned the (split) groups of type Eg. The associated geometry is the so-called Hjelmslev-
Moufang plane &7 (defined over a field k), as was formally introduced by Springer and
Veldkamp [12] for the case char(k) # 2,3; and studied avant-la-lettre by Tits [13] in the
general case. This geometry has some remarkable and interesting properties. One is that
the lines of &2, which carry the structure of a hyperbolic quadric in a projective space
of dimension 9, pairwise intersect non-trivially. This is one of the defining properties of
projective remoteness planes, which were introduced by Faulkner in [6]. He constructs
such geometries using the Jordan algebras of 3 x 3 Hermitian matrices over composition
algebras, which yields the Hjelmslev-Moufang plane and its relatives (essentially given
by subplanes). Our results in particular give evidence that no other algebraic structures
are likely to produce projective remoteness planes (certainly not when the lines have the
structure of a polar space).

After Springer and Veldkamp introduced the Hjelmslev-Moufang planes (hence-
forth: HM-planes), and after Tits developed his theory of buildings, people started to de-
fine other, more general, point-line geometries to get an even better grip on the algebraic
groups and the corresponding buildings. One of the central ideas was that of a parapolar
space, introduced by Bruce Cooperstein [4] in the late 1970s. Roughly speaking, a parap-
olar space is a connected point-line geometry in which every quadrangle with at least one
non-collinear diagonal pair of points is contained in a convex subgeometry isomorphic to a
polar space (for the precise definition we refer to Definition 2.6). These subgeometries are
usually called symplecta or, briefly, symps. Cooperstein’s approach was very successful
and ever since, parapolar spaces have been studied in depth, in particular by Cohen and
Shult. This evolved in a rich theory, discussed at length in [1] and [10]. Although almost
all known examples of parapolar spaces are related to buildings, a full classification result
is not within reach.

So, in modern terminology, and referring to the definitions in Section 2.2, an HM-
plane is a parapolar space of symplectic rank 5 (meaning that all its symps have rank
5), in which every two symps share at least a point (in fact, either a single point, or a
maximal singular subspace, see Proposition 3.9 of [12]) and in which every pair of points
is contained in a symp.

1.2 The main result

The question that we put forward in this paper can now be informally stated as: Which
parapolar spaces behave like HM-planes when the point-symp structure is considered?
In other words, can we classify all parapolar spaces with the properties that every pair of



points is contained in at least one symp, and every pair of symps intersect nontrivially?
We obtain the following theorem (referring to Section 2.2 for undefined notions).

Theorem 1.1. Let Q = (X,.%) be a parapolar space in which every pair of points is
contained in at least one symplecton, and every pair of symplecta intersects in at least
one point. Then Q is one of the following point-line geometries.

— The Cartesian product of a projective line and an arbitrary projective plane;

— The Cartesian product of two arbitrary not necessarily isomorphic projective planes;
— The line Grassmannian A4 (k) for any skew field k;

— The line Grassmannian As »(k) for any skew field k;

— The Lie incidence geometry Eg 1(k) for any field k.

Theorem 1.1 is a special case of our main result (Theorem 3.1), as we can relax
the assumptions strongly. Indeed, we can also carry out a classification of the above-
mentioned parapolar spaces when replacing the requirement “all pairs of points are con-
tained in a symp” by “if there is a symp of rank 2, then pairs points which can be joined
by a shortest path of length 2, are contained in a symp”. In technical terms, this means that
we put no restriction on the diameter, but we do require that, in case there is a symp of
rank 2, then the parapolar space should be strong. This classification yields the same ge-
ometries as does Theorem 1.1, except for a class of parapolar spaces with the property that
all symps intersect each other in exactly a point, a situation we deal with in Theorem 3.2.

In some sense, the case in which the symps of the parapolar spaces all have rank
at least 3 is the generic one (giving rise to A4 »(k), As 2(k) and Eg 1 (k)). Nonetheless, the
proof of the case of where there are symps of rank 2 (in which case we will prove that
actually all symps have rank 2) is by far the most intricate (as is also reflected by the fact
that strongness is required here). In that connection we quote Shult [9]: It is not easy to
live in a world with no symplecton of rank at least three in sight.

Finally, let us explain why we could have expected the geometries, other than the
Es 1 (k)-geometry, occurring in Theorem 1.1-the fact that no others do is the main achieve-
ment of this paper. The line Grassmannian As » (k) and the Cartesian product of two pro-
jective planes over k (also know as the Segre variety .3 »(k)) are close relatives of the
Es 1 (k)-geometry. Indeed, by restricting the coordinatizing algebra of the HM-plane over
k (the split octonions over k) to the split quaternions over k or to k X k, we exactly obtain
As 2 (k) and .7 5 (k), respectively. The latter geometries have similar incidence properties
as the Hjelmslev-Moufang planes, as was also noted by Springer and Veldkamp (cf. [12],
page 254). This holds true even when k is no longer commutative for As»(k), or when
considering the Cartesian product of any two (not necessarily isomorphic) axiomatic pro-
jective planes. The geometries A4 2 (k) and the Cartesian product of a projective line and
an arbitrary projective plane are natural subgeometries of the latter, respectively.

1.3 Future perspectives

Our main theorem characterises the Eq | (K)-geometry and its relatives as parapolar spaces
in which two symps can never have an empty intersection. It turns out that many other
(exceptional) Lie incidence geometries are parapolar spaces in which there are other gaps



in the spectrum of dimensions of intersections of pairs of symps. For instance, in Eg (K),
whose symps have rank 7, two symps can never intersect in a k-space where k € {1,3,4}.
This then implies that in the latter’s point-residue, E7 7(KK), two symps can never intersect
in a k-space where k € {0,2,3}. In general, letting k be any integer with k > —1, we call
a parapolar space k-lacunary if k ¢ {dim(&; N &) | &1, &, symps of Q}.

The current paper can be used to classify the k-lacunary parapolar spaces Q for
k > 0, provided that each symp of Q has rank at least k + 3. Indeed, one can then deduce
that Q has a residue which is —1-lacunary, and these are listed in our current main result.
Although it is not hard to predict the possibilities for  given this list, it requires non-
trivial arguments to actually prove this—this will be pursued in another paper. The locally
connected parapolar spaces we obtain are E¢ »(K), E7 1 (K), Eg 3(K) (which are long-root
geometries) and their relatives (more precisely: residues). Surprisingly, these three Lie
incidence geometries, their point-residues (namely, As 3(K), Eq 1(K), E77(KK), respec-
tively) and the latter’s point-residues (namely, A 1 (K) x Az 1 (K), D5 5(K), Es 1 (K), re-
spectively), produce precisely the 3 x 3 lower south-east corner of the Freudenthal-Tits
magic square.

The result mentioned above provides an additional strong tool in (classification)
work related to parapolar spaces, in particular for work aiming at exceptional Lie inci-
dence geometries. For instance, if one proves that a gap in the spectrum of intersection
dimensions of symps occurs, then the problem reduces to a neat list of parapolar spaces,
or, if one assumes the parapolar space does not occur in the given list, one may rely on
the fact that each (sensible) dimension occurs as the dimension of the intersection of two
symps.

Before stating the precise version of our main results (Theorems 3.1 and 3.2), we
introduce in the next section the necessary terminology concerning parapolar spaces, in-
cluding the examples relevant for this paper.

2 Parapolar spaces

We provide a gentle introduction into the theory of parapolar spaces to keep the paper
self-contained. We refer to [1] and [10] for more information.

2.1 Generalities on point-line geometries

Definition 2.1. A pair Q = (X,.%) is a point-line geometry if X is a set and £ is a family
of subsets of X of size at least 2 covering X, the elements of X are called points and those
of & lines.

Some terminology. e Let Q = (X, %) be a point-line geometry. Two distinct points
x,y of X that are contained in a common line are called collinear, denoted x | y. The set
of points equal or collinear to a given point x is denoted x*, and for a set S C X, we denote
St= ﬂsGS st



e A subset Y C X is called a subspace of Q if for every pair of collinear points
x,y € Y, all lines joining x and y are entirely contained in Y; it is called proper if Y # X.
A geometric hyperplane is a proper subspace which intersects every line nontrivially. A
subspace Y C X is called singular if every pair of distinct points of Y is collinear. The
generation of a subset A C X is the intersection of all subspaces of Q containing A and is
a subspace again, we denote it by (A).

eThe collinearity graph T'(X,.Z) of Q is the graph with vertex set X where adja-
cency is collinearity. A subspace Y is called convex if for every pair of points x,y €Y,
all points on any shortest path from x to y (in the collinearity graph) belong to Y. The
intersection of all convex subspaces of Q containing a given subset A C X is called the
convex closure of A and denoted cl(A). A point-line geometry is called connected if its
collinearity graph is connected. The diameter of a connected point-line geometry is the
diameter of its collinearity graph.

Definition 2.2. If a point-line geometry (X,.£) is such that every pair of distinct points
is contained in (at most) exactly one line, then it is a (partial) linear space; if it is such that
every pair of lines intersect in exactly one point, then it is a dual linear space. The latter
it is called nontrivial if there are at least two lines.

Note that in the above definition, since .# covers X, a dual linear space is automat-
ically connected.

Definition 2.3. A projective plane is a point-line geometry (X, £) which is both a linear
space and a dual linear space and which does not contain lines of size 2; a projective
space is a point-line geometry containing at least two lines and such that every triple of
points not contained in a common line generates a projective plane.

Every projective space is either a projective plane or obtained from a vector space
of dimension at least 4 by taking the 1-spaces as points and the 2-spaces as lines (with
containment as incidence relation). The dimension of a projective space is 2 if it is a
projective plane, and it is 7 is it is constructed from a vector space of dimension n+ 1 as
above. In all cases the dimension is one less than the minimum size of a generating set.
For convenience we will call the more or less trivial singular point-line geometry (X,{X})
a projective space of dimension 1 provided |X| > 3. These will also be referred to as
projective lines. A single point will sometimes be called a projective space of dimension
0 and the empty set a projective space of dimension —1.

For each point-line geometry Q = (X,.%) we can study the local structure in any of
its points x € X as follows. Let %, be the set of lines of Q containing x and let I, be the
set of singular subspaces of Q generated by two members of ., (there is no guarantee
that this set is nonempty), where we identify each member of IT, with the set of lines
through x it contains.

Definition 2.4. Let Q = (X,.Z) be a point-line geometry and let x € X be arbitrary. The
point-line geometry Q, = (£, 1) is called the local geometry (at x), or the point residual
(at x). If every point residual is connected, then we say that Q is locally connected.



2.2 The definitions of polar and parapolar spaces
Before giving the definition of a parapolar space, we need to know that of a polar space:

Definition 2.5. A point-line geometry A = (X,.%) is a polar space if the following ax-

ioms hold.

(PS1) Every line has at least three points.

(PS2) No point is collinear to all other points.

(PS3) Every nested sequence of singular subspaces is finite.

(PS4) For each pair (x,L) € X x £ either exactly one, or all points of L are collinear to
X.

Polar spaces turn out to be partial linear spaces but not linear spaces. Note that
the joint axioms (PS2) and (PS4) are equivalent to “x* is a geometric hyperplane, for
all x € X”. Every singular subspace of a polar space is a finite-dimensional projective
space, and for each given polar space A = (X,.Z) there exists a natural number r > 1,
called the rank of A, such that some singular subspace of A has dimension r — 1, but no
singular subspace of dimension r exists in A. The singular subspaces of A of dimension
r — 1 will—rightfully—be referred to as maximal singular subspaces, whereas singular
subspaces of dimension r — 2 will be referred to as submaximal singular subspaces. The
number ¢ of maximal singular subspaces containing a given submaximal singular sub-
space only depends on A, and not on the submaximal singular subspace. If t > 2, then we
call A thick; otherwise t = 2 and A is hyperbolic. The set of maximal singular subspaces of
a hyperbolic polar space can be partitioned in two subsets such that two maximal singular
subspaces belong to the same subset if and only if the dimension of their intersection has
the same parity as their own dimension. We often call a maximal singular subspace of a
hyperbolic polar space a generator.

In a polar space A = (X,.%) of rank r > 3, it is easy to see that the point-residual
Ay, x € X, is a polar space of rank r — 1, which is canonically isomorphic to the subspace
xt Ny, for every y € X not collinear to x. Also, A is hyperbolic if and only if A, is
hyperbolic.

Definition 2.6. A point-line geometry Q = (X,.%) is called a parapolar space if the
following axioms hold:
(PPS1) Q is connected and, for each pair (x,L) € X x .Z either none, one or all of the
points of L are collinear to p, and there exists a pair (p,L) € X X £ such that p
is collinear to no point of L.
(PPS2) For every pair of non-collinear points p and g in X, one of the following holds:
(a) cl({p,q}) is a polar space, called a symplecton, or symp for short;
(b) ptnNg™* is asingle point;
© ptngt=o.
(PPS3) Every line is contained in at least one symplecton.
A parapolar space € is called strong if p* Ng" is never a single point for p not collinear
to g. We say that Q has minimum symplectic rank r if there is a symp of rank » but not
less. We say that Q has at least symplectic rank r if there is no symp of rank smaller than
r. We say that Q has uniform symplectic rank r if each symplecton has rank r.



Note that, contrary to what happens in polar spaces, the singular subspaces of a
parapolar space need not (all) be projective spaces. However, we will prove a sufficient
condition for that (see Lemma 4.1), which implies that all subspaces are projective in case
the symplectic rank is at least 3; and if there are symps of rank 2, this fact will follow by
our assumptions (see Lemma 5.2).

2.3 Examples of polar and parapolar spaces

Many interesting examples of parapolar spaces emerge from buildings as follows. Since
a building is a numbered simplicial complex, one can take all simplices of a certain type
T as point set, and then there is a well-defined mechanism that deduces a set of lines. The
resulting point-line geometry is the so-called T-Grassmannian of the building. Now, for
a certain choice of T, projective spaces and polar spaces emerge from buildings of types
A, and B, respectively. Other choices of T for these and for other types of buildings
in general lead to parapolar spaces, and these are the ones we refer to as Lie incidence
geometries. We call them exceptional if the corresponding building is of exceptional type.

Below, we provide specific examples of polar and parapolar spaces, whilst giving
the notation used in our main theorem below. We leave the proofs that these are actual
polar and parapolar spaces to the interested reader as illuminating exercises.

Example 2.7 (Hyperbolic Polar Spaces). Every hyperbolic polar space of rank r at
least 4 is the point-line geometry naturally arising from a hyperbolic quadric in projective
(2n — 1)-space over some field (such a hyperbolic quadric has standard equation XoX; +
XoXz+- -+ X, 1X, =0).

Every hyperbolic polar space (X,.#) of rank 3 arises from a 4-dimensional vector
space V over some skew field k by taking for point set X the set of 2-spaces of V, and as
set of lines . the set of pencils of 2-spaces. A pencil of 2-spaces is the set of 2-spaces
containing a fixed 1-space V; and contained in a fixed 3-space V3, with V| C V3. In the
projective language, X is the set of lines of a projective space of dimension 3 and .Z is
the set of planar line pencils.

Finally every hyperbolic polar space of rank 2 is an (¢ x ¢ )-grid, i.e., the Cartesian
product of two projective lines, see the next example.

Example 2.8 (Product spaces). Probably the easiest examples of parapolar spaces are the
Cartesian products of two linear spaces. Let A; = (X;,.%;), i = 1,2, be a nonempty linear
space with the property that every line has size at least 3. Assume that both A; and A;
contain at least one line. Define the Cartesian product Aj X A; as the point-line geometry
with point set X; x X, and line set {L; x {p2} | L1 € LA,p2 € XL} U{{p1} X Lo | p1 €
X1,Ly € £ }. The symps here are the rank 2 hyperbolic polar spaces Ly X Ly, L; € %,
i =1,2. The diameter of Aj X A; is 2 and the parapolar space is strong.

Note that in case A; and A are two projective lines. we obtain the aforementioned
hyperbolic polar spaces of rank 2.

Example 2.9 (Line Grassmannians). Line Grassmannians are defined in exactly the
same way as hyperbolic polar spaces of rank 3, using a vector space V of dimension at



least 4, or a projective space of dimension at least 3. If the projective space has dimension
at least 4, then we obtain strong parapolar spaces of diameter 2 with uniform symplectic
rank 3, and all symps are isomorphic to a fixed hyperbolic polar space of rank 3. We
denote the line Grassmannian of a projective n-space over k by A, »(k), using standard
notation.

Example 2.10 (Hjelmslev-Moufang Planes—Parapolar spaces of type Eg ;). The line
Grassmannians are examples of Lie incidence geometries, for each projective space can
be given the structure of a spherical Tits-building (which are the natural geometries of
Lie groups and groups of Lie type). The buildings related to the groups of exceptional
type have no short elementary description and we shall therefore not define these. We
just content ourselves with mentioning that to every building of exceptional type Eg (say
over the field k) corresponds a Lie incidence geometry denoted Eg (k) which can be
obtained by a standard procedure applied to the building. The point-line geometry Eg 1 (k)
can be defined via a trilinear form in a 27-dimensional vector space over k, or via the
Zariski closure of the image of an affine Veronesean map involving a split Cayley algebra
over k, or using the algebraic group of exceptional type Eg over k. We shall not do this
here since this does not yield interesting insight in the objects we defined, and it does
not provide useful information for our proofs. If we denote by E the family of symps of
the Lie incidence geometry Eg 1 (k) = (X,.%Z), then the point-line geometry (X,E) is the
aforementioned Hjelmslev-Moufang plane over k.

3 Main results

3.1 The statements

We can now formulate our main results precisely. The description of the geometries oc-
curring here can be found in Subsection 2.3 preceding this section.

Theorem 3.1. Let Q= (X,.¥) be a parapolar space, assumed to be strong if the minimum
symplectic rank is 2 containing no pair of disjoint symplecta and such that there is a line
contained in at least two symplecta. Then Q is one of the following point-line geometries.
— The Cartesian product of a projective line and an arbitrary projective plane;

— The Cartesian product of two arbitrary not necessarily isomorphic projective planes;
— The line Grassmannian A4 (k) for any skew field k;

— The line Grassmannian As »(k) for any skew field k;

— The Lie incidence geometry Eg 1 (k) for any field k.

In particular, Q is strong and, if the symplectic rank is at least 3, it is also locally con-
nected.

Our result below describes what happens if each line is contained in a unique sym-
plecton, i.e., if each pair of symplecta intersects each other in exactly a point, showing
that the classification in this case is hopeless.



Theorem 3.2. Let Q= (X,.Z) be a parapolar space, assumed to be strong if the minimum
symplectic rank is 2, in which every two symplecta intersect in exactly a point. Then, all
members of the family E of symps have rank at least 3, and the point-line geometry (X, E)
is a non-trivial dual linear space with the following property: If po € X belongs to two
distinct members &,,& of E, and p; € &, i = 1,2, and p3 € X is contained in a common
member & of B together with p;, i = 1,2, where po & {p1,p2,p3}, then

O, (Po, p1) + 8, (p1,p3) + O, (P2, p3) + 8, (po, p2) > 5,

where 55 is the distance in the collinearity graph of £ € %, i.e., 0 if the arguments are
equal, 1 if they are collinear in &, and 2 otherwise.

Conversely, let Y = (X,E) be a given a nontrivial dual linear space such that every
line (i.e., every member of E) has the structure of a polar space of rank at least 3, and
satisfying the above inequality for the given restrictions on the points and symps. Let £
be the set of lines of all these polar spaces. Then the geometry Q = (X,.¥) is a parapolar
space of symplectic rank at least 3 in which all symps intersect each other in exactly a
point.

Remark: Theorem 1.1 follows immediately from Theorems 3.1 and 3.2: A parap-
olar space satisfying the conditions of Theorem 1.1 by definition has diameter 2, and as
such the inequality of Theorem 3.2 cannot be satisfied.

3.2 Structure of the proof

In Section 4 we start by collecting some auxiliary results which we will need in our
proofs. Most of these are very minor generalizations of existing results, introducing local
hypotheses instead of global, but we provide proofs for completeness’ sake.

From then on, we assume that every pair of symps meets nontrivilly. In Section 5,
we show that if some symp rank 2, then all symps have rank 2. We then classify the strong
parapolar space with only symplecta of rank 2 in Section 6. In Section 7, we treat the most
generic case, being the one in which the parapolar spaces have symplectic rank at least 3,
under the additional assumption that there is a line contained in at least two symps.

Finally, in Section 8, we consider the case in which every pair of symps has exactly
one point in common, and prove Theorem 3.2. Note that this situation does not occur when
there are symps of rank 2, for then we assume that Q is strong, if E; and Z, intersect in
a unique point p, then taking lines L; and L, through p in E;, E;, respectively, yields a
symp through L; and L, meeting E; and Z, in more than one point.

We want to emphasise that our proof is elementary in the sense that it only uses
projective and incidence geometry. The identification of the line Grassmannians and the
Hjelmslev-Moufang plane is done using a theorem of Cohen and Cooperstein [3] after
having deduced the necessary conditions for using this theorem. However, we can avoid
this and instead continue in an elementary way until the very end, only using the charac-
terization of Veblen and Young of projective spaces (for the cases of the line Grassmanni-
ans) and the local characterization of buildings of type Eg by Tits [16] for the Hjelmslev-
Moufang plane. This will be explained at the end of Section 7, see Remark 7.15.



4 Some auxiliary results

Compare the next lemma with Theorem 13.4.1(2) of [10].

Lemma 4.1. Ler Q be a parapolar space. If all points of a line L contained in a symp & of
rank at least 3 are collinear to a point p, then p and L are contained in a symp and hence
generate a projective singular plane. Consequently, if the symplectic rank is at least 3,
each singular subspace is projective.

Proof. If p € &, we are done. If not, take a point g € & collinear to all points of L and
not contained in the subspace pN&. Then p and g are at distance 2 and L C p-Ngq™,
so there is a symp &’ through p and g, which clearly contains L and p. Since &’ is a polar
space, it follows that the singular subspace generated by L and p is a projective plane. [

Lemma 4.2. Let Q be a parapolar space of minimum symplectic rank d. Then every
singular subspace of dimension at most d — 1 is contained in some symp.

Proof. By Axiom (PPS3) each line is contained in a symp and by connectivity each point
is contained in a line. Hence if d = 2 we are done. So suppose d > 3. Then Lemma 4.1
confirms that the (projective) dimension is well-defined. So let W be a singular subspace
of Q of dimension d* with 2 < d* < d — 1. Let d’ < d* be the maximum number such
that there exists a symp & with dim(€ N"W) = d’ (well defined by the first line of this
proof, which also shows that &’ > 1). Suppose for a contradiction that d’ < d*. Then we
can pick p € W\ & and g € &\ p* with ¢ collinear to all points of W N &. However, the
symp &’ containing p and g (well defined by the fact d’ > 1) intersects W in a subspace
of dimension d’ + 1, contradicting the maximality of d’. We conclude that W is contained
in some symp. O

We have the following corollary.

Corollary 4.3. Let Q = (X,.%) be a parapolar space of symplectic rank at least 3. Let
x € X be arbitrary. Then the point residual Q is connected if and only if the graph T’
with vertex set £, and two vertices adjacent if they are contained in a common symp, is
connected. Consequently, a locally connected parapolar space of symplectic rank at least
3 contains at least one line which is contained in at least two symps.

Proof. Since all symps contain planes and since every plane belongs to a symp by Lemma 4.2,
we only need to show the last assertion. So suppose £ is locally connected. Since it is not
a polar space, there are at least two symps, and by connectivity some point x € X is con-
tained in at least two symps. Hence €, contains two symps and by connectivity of Q, and
the first assertion, there is a line through x contained in at least two symps. O

Finally we need the following two elementary results for polar spaces.

Lemma 4.4. Let A be a hyperbolic polar space. Given two generators, we can find a
submaximal singular subspace disjoint from both generators.
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Proof. Let U and V be two generators. We proceed by induction on the rank r of A. If
r =2, it is clear that we can find a point disjoint from the lines U and V. For r > 3,
consider non-collinear points py and py in U and V, respectively. In pj N pir, U and V
correspond to maximal singular subspaces, so by induction there is a singular subspace Z
in pji N py of dimension n — 3 disjoint from U and V. As the residual at Z (recursively
defined as the point residual at the point corresponding to Z of the residual at a hyperplane
of Z) is arank 2 hyperbolic polar space, in which U and V correspond to lines, it contains
a point disjoint from them, yielding a submaximal singular subspace of A disjoint from
both U and V. O

We already noted that in a polar space, the points equal or collinear to a certain point
form a geometric hyperplane, but we can be more precise.

Lemma 4.5. Let A = (X,.%) be a polar space and let p € X be arbitrary. Then p*
is a geometric hyperplane of A which is not properly contained in another geometric
hyperplane.

Proof. Let ¢ € X not be collinear to p and consider the subspace H = (p*,g). Note that
by (PS4) ¢ C H. Now let x € X be arbitrary. If x | ¥’ € g*\ p*, then we can interchange
the roles of x’ and ¢’ and obtain x € '~ C H. If no such x’ exists, then we consider
y € x5\ ({x}Ug") and observe that the previous argument now does lead to y € H.
Hence, if y/ = (x,y) Ng™", then x € (y,y') C H. O

Standing Hypotheses. We now embark on the proof of the Main Result. In the next
three sections, we let Q = (X,.%) be a parapolar space of minimum symplectic rank d
such that every two symplecta have at least one point in common. We distinguish between
the cases d =2 and d > 3. In the former case, we also assume that Q is strong; in the latter
case we assume that at least one line of € is contained in at least two symps. Such a line
will be called sympthick.

We will also use the following notation. The family of symps of Q is denoted by
&, and if two noncollinear points x,y € X are contained in a symp & € E, then we write
é = 5()6,)7) = Cl({x>y})'

The case d = 2 is also divided into two parts: we first show in the next section that
Q has uniform symplectic rank 2.

5 Minimum symplectic rank 2 implies uniform symplec-
tic rank 2

In this section we assume that (X,.%) has minimum symplectic rank 2. The Standing
Hypotheses imply that Q is strong. The aim of this subsection is to show that all symps
have rank 2.

We begin with the only two lemmas that will also be useful for the case of uni-
form symplectic rank 2. For convenience, we will call a symp of rank 2 a quad (from
“quadrangle”).
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Lemma 5.1. Let (X,.%) have minimum symplectic rank 2. If L| and L; are disjoint lines
of any quad &, then either at least one of Ly,L; is properly contained in a singular sub-
space, or some line of & intersecting both Ly, L, is properly contained in a singular sub-
space.

Proof. Let & be aquad and let L1, L, be two nonintersecting lines in . We claim that there
exist lines M1, M5 not contained in & and meeting L;,L; in points gq1,q2, respectively.
Indeed, let i € {1,2}. By Axiom (PPS1), X does not consist of only the points of &, so
there is a point p € X \ £. Connectivity of (X,.%) yields a shortest path (p, p1, ..., Pn,qi)
from p to L; (so g; € L;). Now if p,q; does not belong to &, then we can put M; = p,q;.
If p, € &, then p,_; ¢ & (as otherwise we could shorten the path) and so, by strongness,
Pu—1 and g; determine a symp &; and then there is a line M; in &; through ¢; not contained
in €. The claim is proved.

Again, let i € {1,2}. We may assume that L; is not properly contained in a singular
subspace. Consequently, since (X,.%) is strong, L; and M; are contained in a unique symp
&; and the singular subspace & N¢§; equals L;. Hence & N&;, nonempty by assumption, is
not contained in &. For any point g € & N&,, ¢ is collinear to a point | € L; and to a point
ry € Ly. Necessarily, r; L rp since ¢ ¢ &. So ry,r,q are contained in a singular subspace
properly containing the line r{7;. O

If there are quads we cannot invoke Lemma 4.1 to conclude that all singular sub-
spaces are projective spaces. However, under our assumptions, we nevertheless can.

Lemma 5.2. Let (X,.¥) have minimum symplectic rank 2 and S any of its singular sub-
spaces. Then S is projective and contains no pair of skew lines that are both contained in
a quad.

Proof. Let S be a singular subspace properly containing a line. If S does not contain
two nonintersecting lines then S is a projective plane. So we may assume that two lines
Ly,L, in S are disjoint. Suppose for a contradiction that both are contained in a quad; say
LiC&e&,i=1,2.Then§NS=L; and & NE&, contains a point ¢ ¢ S. Now ¢ is collinear
to unique points py, p> on Ly, L,, respectively. Let ¥ € L; \ {p1 }. Then &) is determined by
r and g, but since p, € {r,q}*, we see that p, € £, a contradiction. This already shows
the second part of the assertion.

Now we show Veblen’s axiom. Suppose L; and L, both intersect two intersecting
lines K1, K5 in two distinct points, and let p be the intersection of K; and K,. Assume
for a contradiction that L and L, are disjoint. Then the previous paragraph implies that
some symp § of rank at least 3 contains, say, L;. Since p is collinear to all points of L;,
Lemma 4.1 implies that p and L; are contained in a projective plane, which then also
contains K1, K> and hence L,. Consequently L; and L, intersect after all. Hence, by [15],
S is projective.

The lemma is completely proved. O

Lemma 5.3. Let (X,.%) have minimum symplectic rank 2. Let & be a quad and let L C &
be a line contained in a singular plane 7. Let { be any symp such that { N\L = 0. Then {
has rank 2.
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Proof. We divide the proof into two parts, based on whether or not there is a point in §
collinear to a point x € 7\ L. Before heading off, note that { N7 is empty. Indeed, suppose
{ Nris a point p (off L, by assumption). By the Standing Hypotheses, { N & contains a
point p’ (also off L). Then p’ is not collinear to p, as otherwise p € &(r,p’) = & for some
point r € L not collinear to p’, a contradiction. However, if p and p’ are not collinear,
¢ =&(p,p') contains a point on L after all, violating our assumption.

Case I: There is a point q of § collinear to some point x of \ L.

Claim. Each point of  is collinear to at least one point of T.
Denote by Z the subset of points of { which are collinear to at least one point of 7. We
(subsequently) show that Z is a subspace containing g N { and at least one point of ¢ not
belonging to g N ¢, as then Lemma 4.5 implies that Z = ¢, proving the claim.

e Zis a subspace of {:
Let g1, g2 be collinear points of Z. Then either they are collinear to a common point
of &, in which case every point of gg> is collinear to that point, or else they are
collinear to distinct points xj,x;, respectively, with §(q1,x2) = 8(q2,x1) = 2. But
then, in the symp &(g;,x2) = &(g2,x1), every point of g1, is collinear to a unique
point of the line xjx; C 7.

e Z contains g-N¢E:
Let r € £ be a point collinear to g. We show that r € Z. If r | x, then there is nothing
to prove, so suppose x ¢ . Then the symp & (1, x) intersects & in at least one point
p*. If p* ¢ L, its distance to x is 2 (like above this follows from x ¢ &) and hence
by convexity, LN & (r,x) contains a point. Either way, & (r,x) N7 contains a line, at
least one of which points is collinear to r.

e At least one point r of £ not belonging to g~ belongs to Z:

If some point p of £ N is not collinear to g, then we can take r = p. Hence suppose
p L g for all points p € EN{. It suffices to find a point r L g, g # r € £, collinear to
a point of 7\ L (because interchanging the roles of ¢ and r will then imply r* C Z).
Assume for a contradiction that every point of { Ng™ is collinear to some point of L.
Then also g is; say p* € g N L. By assumption, p* ¢ {. If some point p of £ N{ is
not collinear to p*, then & = & (p, p*) contains g (recall p | q) a contradiction. This
arguments shows that £ N { is just a point, say p, which is collinear to p*. It also
shows g NLis exactly p*. Consider r € { with r € g*\ p*. Then, since { = & (p,r)
does not contain p*, r is collinear to a unique point p’ € L with p’ # p*. Whence
&(r,x) contains p’ and ¢, and hence also p* € p'* N¢q*, implying 7 C & (r,x). But
then, inside & (r,x), r is collinear to the points of a line M # L of & as p* ¢ r*. This
shows that r is collinear to some point of 7 \ L.

As mentioned above, this shows the claim. We now show that { is a quad indeed.
Suppose for a contradiction that  has rank at least 3. Let p be a point of £ N § and
let p’ be the unique point on L collinear to p. Then consider a plane « in { intersecting
both &N ¢ and p'* in exactly the point p. If a point z € &,z # p were collinear with a point
p* of L, then our choice of o implies p’ # p*, but then z € p- N p*t C E(p,p*) =&, a
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contradiction. The above claim implies that each point of & \ {p} is collinear to a unique
point of 7\ L. A standard argument now shows that the perp correspondence restricted
from @ to 7 preserves collinearity and hence is an isomorphism of planes. Consequently
some points of o different from p are collinear to points of L after all, a contradiction.
This proves the lemma in Case L.

Case II: No point of { is collinear to a point of w\ L.

Claim. No line of T is contained in a symp of rank at least 3.
Suppose for a contradiction that some line of & were contained in a symp of rank at least
3. Lemma 4.1 then yields a symp &* containing 7. Let ¢ € £* N {. By assumption, no
point of 7\ L is collinear to g. Hence all points of L are collinear to g. Let p € £ N
be arbitrary and set p’ = p~ N L. Then p’ L ¢ and, consequently, g L p (as otherwise p’
would belong to § = &(p,q), a contradiction). Hence &, which is defined by L and p, also
contains g, a contradiction. The claim follows.

We now show that § is a quad, distinguishing between the following two cases.

e Case lla: { NE is a single point p.

Let p’ be the unique point on L collinear with p. Pick an arbitrary pointy € 7\ L
and an arbitrary point z € £ \ L such that z is collinear to a point 7 € L\ {p’}. Then
y and z are not collinear as otherwise & = & (p’,z) contains y. Set £* = & (y,z). Then
&* contains a line M of 7, namely M = y7'. By the above claim, £* is a quad and
hence £* Nt = M. Noting that p € { is collinear to p’ € &\ M, we can interchange
the roles of (§,L) and (£*,M) and then Assumption I applies again, showing that
 is a quad.

e CaseIlb: {NE isaline K.
Select p € K arbitrarily and set p’ = p N L. Select a line M # K of { through p
not contained in p'* and consider the symp &; defined by p’ and M. If £ has a
line in common with 7, then the points of M \ {p} are collinear to points of 7\ L,
contradicting our hypothesis. Hence there is a line N # pp’ of &; through p’ not
contained in 7.

Now either N and L are contained in a singular plane 7’ or they determine a symp
&', which is in fact a quad by the above claim, since it shares the line L with 7. In
the first case, we replace 7 by 7’ and observe that the points of M\ { p} are collinear
to points of '\ L; in the second case we replace & by &’ and observe that the points
of K\ {p} are collinear to the points of 7\ L. In both cases, these replacements
imply that Case I applies again, yielding that { has rank 2.

This completes the proof of the lemma. O

Lemma 5.4. Let (X, %) have minimum symplectic rank 2. Then every symp that inter-
sects a quad in a line is itself a quad.

Proof. Suppose for a contradiction that a quad & and a symp { of rank at least 3 intersect
in a line L. Pick x € & arbitrarily but not on L. As in the proof of Lemma 5.1, there is a
line M through x not contained in . Let M’ be a line of £ through x disjoint from L. Then
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Lemma 5.3 implies that M and M’ are not contained in a plane. Hence there is a symp &’
containing M and M’. Since L is contained in some plane of £, Lemma 5.3 again implies
that £’ is a quad.

Claim I: The intersection { N &' is a point q.

Note that our main assumption yields § N &’ # 0. Assume for a contradiction that { N &’
is a line K. Since £ N &’ = M’, the lines K and L are disjoint. For every point z € K, the
unique point in z- N M’ and every point in z- N L (recall LUK C {) are collinear as z ¢ £
(implying that also z*- N L is unique). It follows that each point z € K is contained in a
unique plane o, intersecting M’ and L in collinear points. Since o, contains a line of {,
and § has rank at least 3, Lemma 4.1 implies the existence of a symp of rank at least 3
containing o, and hence intersecting &’ in the line o; N &’. Now, for z # 7’ € K, the plane
o, intersects &’ in a line disjoint from o, N E’. This contradicts once again Lemma 5.3.
The claim is proved.

Similarly as in the previous paragraph, g* NL = p and ¢ NM = ¢'. Let & be any
plane of { containing L. Then there is a point x € 7\ L collinear to ¢ and a point r € £’ Ng*
such that rg does not intersect M'.

Claim 2: r is collinear to some point of @\ L.

If r L x, then this is trivial. If not there is a symp & (r,x), which intersects & and hence,
by convexity (as in the previous proof), it has a line R in common with 7. Let ' € RN r+
and suppose for a contradiction that x’ € L. Then the unique point x” on M’ collinear with
X' is collinear to r too (since ¥’ ¢ &’) and hence X" # ¢'. This also implies that p # x’ and
hence x' ¢ ¢*. But then & (r,x) = &(q,x’) = {, a contradiction. Claim 2 is proved.

Now we replace 7 by another plane 7* of { containing L and such that 7 and 7* are
not contained in a common 4-space. Then r is also collinear to a point x* of 7* \ L. This
implies that x" and x* are collinear, contradicting our choice of *.

The lemma is proved. O

The main goal of this section is now within reach.

Proposition 5.5. Let (X,.¥) have minimum symplectic rank 2. Then (X,.£) has uniform
symplectic rank 2.

Proof. Assume for a contradiction that there is a symp { of rank at least 3. Since the
minimum rank is 2, there is also a quad £ and by the Standing Hypotheses, & N { # 0.
Moreover, by Lemma 5.4, £ N { is a point p. Pick lines L C & and M C { both through
p. If L and M are contained in a plane, then by Lemma 4.1, this plane is contained in
a symp of rank at least 3 intersecting & in the line L, contradicting Lemma 5.4. Hence,
by strongness, L and M define a symp, which has a line in common with both & and
¢ and hence, again by Lemma 5.4, it can neither have rank at least 3 nor rank 2. This
impossibility completes the proof. O

6 The case of uniform symplectic rank 2

We continue with our assumption that Q contains at least one quad. By Proposition 5.5,
Q has uniform symplectic rank 2.
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By Lemma 5.2 implies that all singular subspaces are projective. We can now easily
even say more.

Lemma 6.1. Let (X,.Z) have uniform symplectic rank 2. Then every singular subspace
properly containing a line is a projective plane. Moreover any two projective planes in-
tersect in at most one point.

Proof. By Lemma 5.2, a singular subspace does not contain disjoint lines (as there are no
symps of rank at least 3). Hence as soon as it contains two lines, it is a projective plane.
The second part of the Lemma follows from the first part and uniform symplectic rank
2. O

The previous lemma allows us to speak about (singular) planes instead of “singular
subspaces properly containing a line”. Note also that Lemma 5.1 implies the existence of
many singular planes.

Lemma 6.2. Let (X,.¥) have uniform symplectic rank 2. Then every symp and every
singular plane that share a point, share a line.

Proof. Let & be a symp and 7 a singular plane an suppose for a contradiction that E Nz =
p, with p € X. Let L be a line in 7 not containing p (and hence disjoint from &) and let
&1, be a symp containing L. Since &;, does not contain planes, p ¢ & N&;. Let ¢ be a point
of £N &L and denote by r the unique point of L collinear to g. Then p L r L ¢. If p and
q are not collinear, then r € &, contradicting LN & = 0. So suppose p and ¢ are collinear.
Then p,q, r are contained in a singular plane 7’ which intersects 7 in the line pr. Let ¢ be
apoint in 7\ pr. By Lemma 6.1, 7 is not collinear to g¢; but then ¢ and ¢ determine a symp,
which contains the planes 7 and 7', a contradiction to the symplectic rank being 2. [

Lemma 6.3. Let (X, )have uniform symplectic rank 2. Then every point p not contained
in a singular plane 7 is collinear to a unique point of 7.

Proof. Let ¢ be the distance of p to 7 (connectivity implies that /¢ is finite). If £ = 1, then
it follows by an argument similar to the one used at the end of the proof of Lemma 6.2
that the point in 7 collinear to p is unique. Next, if £ = 2, strongness implies that p is
contained in a symp, which, by Lemma 6.2, shares a line L with 7. But then L contains a
point collinear to p, contradicting ¢ = 2. Since by (PPS1) parapolar spaces are connected,
it follows that ¢ always equals 1. Uniqueness of the point collinear with p follows from
Lemma 6.1. O

In case there is a singular plane intersecting every symp non-trivially, we can show
that the parapolar space is a product geometry of a projective line and a projective plane.
We first show, under this assumption, that each symp is non-thick.

Lemma 6.4. Let (X,.£) have uniform symplectic rank 2. If there is a singular plane T
intersecting every symp non-trivially, then each symp of (X,.£) is non-thick.
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Proof. By Lemma 6.2, 7 intersects each symp in a line. Let & be an arbitrary symp. Set
L=nnN¢& and let g be a point in & \ L. Let p be the unique point on L collinear to ¢ and
take a line K in 7 intersecting L in p. Let L' be a line in & through ¢ disjoint from L. By
Lemma 6.3, p is the unique point of K collinear to g and hence, as (X,.¢) is strong, there
is a unique symp &g , through K and g. Let K’ be a line in &k , through ¢ disjoint from K
(hence K’ ¢ &). We claim that L’ and K’ are contained in a singular plane 7’. If not, then
by strongness, L' and K’ are contained in a unique symp &’. Since 7 shares a line with &,
the latter contains a point of L. Hence &’, containing L’ and a point of L, coincides with
&, violating K" ¢ &. This shows the claim. If there would be another line ¢r in & disjoint
from L, then repeating the above argument implies r | K’, contradicting the fact that r is
collinear to a unique point (namely g) of 7’. We conclude that £ is non-thick. O

Proposition 6.5. Let (X,.£) have uniform symplectic rank 2. If there is a singular plane ©
intersecting every symp non-trivially, then (X,.%) is isomorphic to the Cartesian product
of a projective line with a projective plane.

Proof. Again, Lemma 6.2 implies that 7 intersects each symp in a line, and by Lemma 6.4,
each symp is non-thick. Let L be an arbitrary line intersecting 7 in a point ¢ (which exists
since there is a symp through ¢).

Claim. The line L is the unique line through t not contained in T.

Indeed, suppose for a contradiction that there is a point x ¢ UL with x L 7. If x and
L would belong to a singular plane 7/, we take a symp &’ through a line L' of 7’ not
containing ¢. Then &' N7 is a line L” by assumption, and since ¢, if not already on L”,
is collinear to two non-collinear points of L' and L”, respectively, we obtain ¢t € . This
however means that 7’ C £/, a contradiction. So x is not collinear to L, and then strongness
implies a symp containing x and L. By assumption this symp intersects 7 in a line, which
contains ¢, implying that the symp has three lines through #, contradicting that it is non-
thick. The claim is proved.

We now complete the lemma by showing that (X,.%) is isomorphic to the direct
product space 7 x L. Let x € X be arbitrary. If x € £ UL, then x can be uniquely written in
L x {t}U{t} x m. So suppose x ¢ LU . By Lemma 6.3, x is collinear to a unique point
xz of 7, which does not coincide with ¢ by the above claim. Hence, by strongness, there
is a unique symp & through x and  and, again by the above claim, & contains L as one of
its two lines through ¢. So there is a unique point x; € L collinear to x, and xz # ¢. Just
like L was the unique line through # not in 7, the line xx; is the unique line through x; not
contained in 7. Therefore, since xz, is collinear with a unique point of xx; (as xz and xz
are not collinear), x; and x; determine x uniquely. Lastly, it follows from the argument in
the previous proof that the lines distinct from L through any point x’ € L\ {x} belong to a
singular plane.

The proposition is proved. O

If no plane intersects every symp, then we need to show that Q is the Cartesian
product of two projective planes. The following lemma is the crux of that proof.
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Lemma 6.6. Let (X,.£) have uniform symplectic rank 2. If some plane 7 is disjoint from
some symp &, then & is non-thick and there exists a bijection from the point set of some
line in T to one system of generators of & such that elements corresponding under this
bijection are contained in a common singular plane.

Proof. Let Lbe aline in &. Pick py, p, € L distinct. Let ¢; be the unique respective points
in 7 collinear to p;, i = 1,2. If g; = ¢, then L is contained in a singular plane intersecting
7 in a point; if g1 # g, then &(py,q2) contains L and g;q> and hence collinearity is a
bijection between L and q;q>. In the first case we say that L is m-triangular (with centre
q1 = q2), in the second case m-quadrangular (with axis q1q>). We show three properties.

(1) Each pencil of lines in & contains at most one T-triangular line.
Let Ly, L, be two intersecting lines of £. If both are 7-triangular, the planes meet in
a line, contradiction Lemma 6.3 and showing the claim.

Now let M| and M, be two disjoint w-quadrangular lines of &.

(2) One or all lines meeting both M1 and M are rw-triangular, according to whether
the axes of My, M, are distinct or not.
Indeed, the axes of M| and M>, being contained in a projective plane, have at least
one point  in common. Then r is collinear to some points 51,52 on My, M;, respec-
tively. If s; were not collinear to s, then r € &, a contradiction. Hence r,s1, s, are
contained in a singular plane and the line 5155 of & is m-triangular with centre r. If
the axes intersect in a unique point, there is a unique 7-triangular line meeting both
M and M5; if they coincide, each line meeting both M| and M, is w-triangular. The
claim is proved.

It is now easy to see that the previous claim yields at least two (necessarily disjoint, by the
first claim) z-triangular lines (even if £ is non-thick), say 71,75, with respective centres
t1,t. Let Uy, U, Us be three lines each intersecting both 77 and 7> non-trivially.

(3) The lines Ty and T define a (full) grid G in &, one of which reguli consisting of
n-triangular lines and the other of m-quadrangular lines.
For j € {1,2,3}, the axis B; of U; is a line containing #; and , and it follows that
11 # 1,50 Bj =t11p. Let t be an arbitrary point on #1,. Then the points on Uy, Us, Uz
collinear to ¢ are pairwise collinear, as above. This implies that, varying ¢ € t1;,
each line intersecting U; and U, non-trivially also intersects U3 non-trivially, and,
on top, is 7-triangular. This shows the cliam.

By (3), it suffices to show that & is hyperbolic to finish the proof.

Suppose for a contradiction that & is thick. Let i € {1,2}. Put p; = U; NT; and
take a line L; through p; distinct from U; and T;. By (1), L; is w-quadrangular with axis
A; O t;. By (2) and the fact that U is m-quadrangular, exactly one line intersecting both
Ly and L, is m-triangular. Consequently, there is 7-quadrangular line U/ distinct from U}
intersecting both L; and L. Again, (2) implies a 7-triangular line 7’ intersecting both Uy
and U;. However, the grid G determined by 7 and 7 already possessed a m-triangular
line through the point T’ N U, contradicting (1). O
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We can now show in general that every symp is hyperbolic.
Lemma 6.7. Let (X,.£) have uniform symplectic rank 2. Then every symp is hyperbolic.

Proof. Suppose for a contradiction that there is thick symp £. By Lemmas 5.1 and 6.1,
there exists some singular plane 7. By Lemmas 6.6 and 6.2, 7N & is a line L. Let M be
a line in & disjoint from L and pick a point p € M. Considering a symp through a point
x of \ & and p (which exists since the unique point of & collinear to p is contained in
L and (X,.%) is strong) we see that there exists some line K 3 p not contained in & (and
some point of K is collinear to x). Replacing M by another line through p disjoint from L
(which is possible by the thickness of &) if necessary, we may assume that M and K are
contained in a unique symp &’. If &’ N 7 contained a point g, then g, being collinear to all
points of L and a unique point of M, would belong to &, and hence to L, a contradiction,
as that point and M define & # &’. So &' N7 is empty and Lemma 6.6 implies that £’ is
non-thick.

We use the terminology of the proof of Lemma 6.6, applied to the pair (7,&’).
Clearly, M is m-quadrangular with axis L, hence by Lemma 6.6, the line K, belonging to
the other regulus, is contained in a singular plane with a unique point on L. But some
point on K was collinear to x, contradicting the uniqueness assertion in Lemma 6.3. This
absurdity proves the lemma. O

Theorem 6.8. Let (X,.Z) have uniform symplectic rank 2. Then (X,.Z) is isomorphic
to the Cartesian product of a projective plane with either another projective plane, or a
projective line.

Proof. By Proposition 6.5, we may assume that there is a singular plane disjoint from
some symp. The existence of two singular planes 7; and 7, intersecting each other in a
point p then is an easy consequence of Lemma 6.6.

Let x € X \ (m; Um,) be arbitrary. Then x is not collinear to p as otherwise a symp
through xp has a line through x in common with both 7; and m, by Lemma 6.2, contra-
dicting hyperbolicity (cf. Lemma 6.7). Hence, using Lemma 6.3, x is collinear to unique
distinct points x; € 71 \ {p} and x, € m \ {p}. Conversely, given points x| € m; and x; € M
distinct from p, there is a unique symp through x1,x; (again using strongness and the fact
that x1,x, are not collinear), which is non-thick by Lemma 6.7 and therefore contains a
unique point collinear to both x; and x; and not contained in 7; U m,. Consequently we
already have that X can be written as | X 7, in a set-theoretic way. It remains to show
that two points x,x’ € X collinear to the same point x| € 7; are collinear themselves. But
if x and x’ were not collinear, then the symp through them (note that x | x; L x’) contains,
by Lemma 6.2, a line in 7y, hence a third line through x/, a contradiction. Similarly for
Xy € M.

The theorem is proved. O
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7 The case of symplectic rank at least 3

From now on we may assume that Q = (X,.%) is a parapolar space of minimum symplec-
tic rank d with d > 3. The Standing Hypotheses imply that we have at least one sympthick
line (recall that this is a line contained in at least two symps). A symp not containing a
sympthick line will be called isolated; in the other case non-isolated. Recall that every
pair of symps meets non-trivially.

We aim to prove the assumptions needed in the Cooperstein-Cohen theory from [3]
as updated by Shult in [10]. Hence we need to show that
(LC) Qs locally connected,
(BD) the singular subspaces have bounded dimension,
(BR) the symps have bounded rank, and

(H) Q satisfies the so-called Haircut Axiom (see Lemma 7.12).

Lemma 7.1. Let Q = (X,.%) have minimum symplectic rank d > 3. Let & be a non-
isolated symp with rank dy. Then, for every singular subspace S of & of dimension d — 2,
there is a symp E* # & such that S C € NE*. Furthermore, one of the following holds.

(i) The symp E* is hyperbolic, has rank d and dim(ENE*) =d — 1.

(ii) For each singular subspace M of & of dimension d — 1 through S, there is a symp
Ev with M C E N &y (equality if di = d).

Proof. By assumption, & contains a line L which is contained in a second symp. We first
deal with singular subspaces through L; afterwards we show that this is not a restriction, by
showing that each line of £ is sympthick. So consider a singular subspace S of dimension
d—2withLCSCE.

Claim 1: There is a symp E* # & such that S C ENE*.

Let U be a subspace of S through L, maximal with respect to the property that there exists
asymp &* € E with U C ENE* (U is well defined since L satisfies this requirement).
Suppose for a contradiction that U C S, so there is a point p € S\ U. The set p- NE* is
a singular subspace of £*, clearly containing U. Also & N&* is a singular subspace of £*
containing U. Since &* is a symp of rank at least d and dim(U) < d — 2, there is a point
g € E*\ & collinear to U with g ¢ p*. Then ¢ and p are non-collinear and U C p* Ng™ .
Hence there is a symp &’ through p and ¢, which is distinct from & since g ¢ &. But now
ENE' contains (p,U), contradicting the maximality of U. We conclude that there is a
symp &* #£ & with § C £ N E*, showing the claim.

Now suppose that the above found symp &* is either thick, or has rank at least d + 1
or is such that £ N &* = S. Let M be any singular subspace of & through S of dimension
d—1.

Claim 2: Under the above assumptions on £, there is a symp Ey with M C ENEy.
Take a point p € M\ S. We may assume that M ¢ & N&*. Our assumptions on &* imply the
existence of a subspace M’ of dimension d — 1 through S in £* which is not contained in
ptNE* (which is a singular subspace of £* through S) nor in £ N E* (the latter coincides
with S if £* is non-thick and has rank d). Similarly as above, we take a point ¢ € M\ S,
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which is then symplectic to p. The unique symp &y, through p and ¢ contains M. This
shows the claim.

If £* does not satisfy those assumptions, then &* is non-thick, has rank d and S C
ENE*. Since £* has rank d and dim(S) = d — 2, the latter implies that dim(E NE*) =d — 1.
We now complete the lemma by showing that each line in & is sympthick.

Claim 3: Each line in & is sympthick.

Without loss of generality, we may consider a line K in & generating a plane 7 together
with L. If d; > 3, 7 is contained in a (d —2)-space of &, so by Claim 1 we may assume that
d, = 3. Likewise, by Claim 2, we may assume that a symp &* # &£ through L is non-thick,
has rank 3 (since 3 =d; > d > 3) and is such that £ N E* is a plane 7* through L distinct
from 7. Let 7’ be the unique plane through L in £* distinct from z*. If 7 Ux’ contains
a pair of non-collinear points, these determine a symp containing 7 U 7/, proving that K
is sympthick. So suppose & and «’ are collinear. Let ¢ be a point of 7’ \ L and note that
gt Né& = m since d = 3. Hence a point p € ENK™*\ 7 is not collinear to ¢. The points
p and ¢ determine a unique symp, containing K, proving again that K is sympthick, as
required. O

Remark 7.2. The proof of the previous lemma did not use the assumption that every pair
of symps meets nontrivially. Hence the statements are true without that assumption.

We can show that no symp is isolated, and hence the previous lemma holds for all
symps of Q.

Lemma 7.3. Let Q = (X,.%) have minimum symplectic rank d > 3. Then no symp is
isolated.

Proof. Suppose for a contradiction that some symp €& is isolated, i.e., none of its lines is
sympthick. Since Q contains at least one sympthick line, there is a non-isolated symp &'.
Then, since every two symps always intersect nontrivially, £ N &’ is just a point p. Take a
subspace S in &’ of dimension d — 2 which is not contained in p. By one of the two cases
occurring in Lemma 7.1, there is a symp &” # £’ through S such thatdim(§'NE") >d —1.
Again, our assumption on & implies that £ NE” is just a point p”. Then p” # p,as E'NE”
is a singular subspace of £’ and p is not collinear with S. Since the rank of £’ is at least
3, the intersection £’ N &” contains at least a point ¢ collinear to both p and p”. The point
q does not belong to & but is collinear to the distinct points p, p”, implying p and p” are
collinear. Hence, since p” is collinear to all points of the line pg in &', Lemma 4.1 says
p" and pq are contained in a symp, in particular, there is a second symp containing pp”
after all, a contradiction. O

Lemma 7.4, Let Q = (X,.%) have minimum symplectic rank d > 3. Let & be any symp
of rank d. Then we have

(i) for each symp &' with dim(ENE') > d — 2, the rank of &' is d and dim(ENE') =
d—1,

(it) & is hyperbolic of odd rank.
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Proof. (i) Consider opposite subspaces S| and S, of & of dimension d —2 (note that
d—2>1). By Lemmas 7.1 and 7.3, there are symps &;" and &; intersecting & in maximal
singular subspaces M and M; of & through S| and S, respectively. If M; N M, = 0, then
& N&;, which contains at least a point p by the Standing Hypotheses, is disjoint from
£. But then p is collinear to the non-collinear subspaces S| and S, of &, a contradiction.
Hence M| N M, is a point (it cannot be more since S; and S, are opposite).

Observe that this implies that Possibility (ii) of Lemma 7.1 cannot occur, so any
symp &* with dim(& N&*) > d — 2 is hyperbolic, has rank d and dim({ NE*) =d — 1.
This shows the first assertion, so we continue with the second one.

(i) Firstly, suppose for a contradiction that & is thick. Let M3 be a (d — 1)-space
in & through S, distinct from M,. Then M; is collinear to at most one of the maximal
singular subspaces of & through S, and, as there are at least three such subspaces, M;
is contained in a symp with a maximal singular subspace M} of & through S, which is
disjoint from M, contradicting the first paragraph. We conclude that & is hyperbolic.
Secondly, suppose & is hyperbolic of even rank d. Then M| and M,, intersecting each
other in a point, belong to different natural types of generators. By Lemma 4.4, there
exists a subspace S3 of & of dimension d — 2 disjoint from M; and M. By Lemma 7.1,
there is a symp &5 # & with S3 C £ N &5, By the above observation, & N &5 is a maximal
singular subspace M3 of & through S3. The first paragraph implies that both M; N M3 and
M> N M3 is a point, but then the types of M, M, and M3 should all be distinct, which is
clearly impossible. O

For convenience we record a consequence of the proof of the previous lemma.

Corollary 7.5. Let Q = (X,.%) have minimum symplectic rank d > 3. If My and M, are
opposite maximal singular subspaces in a symp & of rank d, then at most one of them is
contained in a second symp.

Proof. This follows directly from the first paragraph of the proof of Lemma 7.4. O

Lemma 7.6. Ler Q = (X,.%) have minimum symplectic rank d > 3. Let & be any symp
of rank d. Then the set ® of maximal singular subspaces of & that are the intersection of
& with another symp is precisely the set of generators belonging to one natural type.

Proof. Suppose two generators M| and M, of £ belong to @, and assume for a contra-
diction that they have distinct natural type. By Lemma 4.4, we can find a submaximal
subspace S in & disjoint from M; and M,. By Lemma 7.1 and 7.3, there is a symp &*
through S. In view of Lemma 7.4, £* N & is a maximal singular subspace M. By Corol-
lary 7.5 and our choice of S, M intersects both M| and M, in exactly a point. Since M
and M> have distinct natural type, this is impossible.

We deduced that all members of ® belong to the same natural type of generators.
Conversely, to see that each generator of this type belongs to ®, we consider any submax-
imal singular subspace S of &. As above, there is a symp &* such that £ N E* is a maximal
singular subspace M of £ containing S. The lemma follows. O
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The following two lemmas are the basis to prove local connectivity and uniform
rank.

Lemma 7.7. Let (X,.%) have minimum symplectic rank d > 3. Then a generator of some
symp of rank d which is not contained in a second symp is contained in a singular d-space.

Proof. Let & be an arbitrary symp of rank d and M an arbitrary generator of & not con-
tained in another symp (cf. Lemma 7.6). Let M’ be any generator of & intersecting M in a
(d —2)-space W. Then M’ = E NE/, for some &' € E. By Lemma 7.4(i), £’ is (just as &)
hyperbolic of odd rank d. In &', we consider the generator M” containing W and distinct
from M’, and some point p € M” \ M'. If p were not collinear to all points of M, then
{p,q} is contained in a symp, for every ¢ € M \ M”, and that symp contains M and is
different from &, contradicting our assumption on M. Hence p and M generate a singular
subspace of dimension d. O

Lemma 7.8. Let Q = (X,.%) have minimum symplectic rank d > 3. Let & be a symp of
rank d and let & be any symp intersecting & in exactly a point p. Then there is a singular
plane through p intersecting both symps in a line.

Proof. Consider a generator M; in &; through p not contained in a second symp of Q
(cf. Lemma 7.6). Then, by Lemma 7.7, there is a singular d-space W containing M;. If W
would intersect & in more than p, the lemma follows immediately, so assume W N &, = p.
We select a hyperplane H of W not containing p. Then, by Lemma 4.2, H is contained in
a symp &. By our main hypothesis, we obtain a point x, contained in & N&. Then x; # p
since otherwise & would contain the d-space W, whereas dim(& N &) > d — 2 implies,
by Lemma 7.4(i), that & has rank d. Let x; € H N M| be collinear to x; (x; exists since
dim(H NM;) > 1). Since x; 1 x; L p and both x, and p belong to & we deduce that
xz L p,and by Lemma 4.1, {p,x1,x,) is a singular plane intersecting both &; and &, in the
lines px; and px», respectively. O

Finally we can show that the symplectic rank is uniform.

Lemma 7.9. Let Q = (X,.¥) have minimum symplectic rank d > 3. Then it has uniform
symplectic rank d and therefore each symp is hyperbolic of odd rank d.

Proof. Let & be any symp of rank d. By Lemma 7.4, any symp &’ with dim(ENE’) >d —2
has rank d as well. Now let £* be an arbitrary symp. We claim that we can find a (finite)
sequence of symps between £* and & such that successive symps in the sequence intersect
each other in a subspace of dimension at least d — 2, from which then follows that each
symp in this sequence has rank d. By the Standing Hypotheses, & N &* is non-empty. If
ENE&* is a point, Lemma 7.8 implies the existence of a plane 7 intersecting both & and
£* in a line, and since d > 3, Fact 4.2 guarantees a symp through 7 which then shares at
least a line with both & and £*. Hence, if d = 3, we are done. If d > 3, we may already
assume that 1 < dim(€ N&*) < d — 3. Under this assumption we can take points p and p*
in & and &*, respectively, collinear to & NE* and not collinear to each other. The symp
determined by p and p* intersects both & and &* in a subspace strictly bigger than £ N E*.
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Recursively, the claim follows and hence each symp has rank d. Lemma 7.4 now implies
that each symp is hyperbolic of odd rank d. O

Henceforth we could therefore drop the word “minimum” from our assumptions
on Q, but we prefer to keep it in order to remind the reader of the full context. Local
connectivity now follows as a consequence of Lemma 7.8.

Lemma 7.10. Let Q = (X,.%) have minimum symplectic rank d > 3. Then Q is locally
connected.

Proof. Consider two lines Ly and L, through p. Let & and &, be symps through L; and
Ly, respectively. If dim(&; N&;) > 1, itis clear that L; and L, are connected via a sequence
of singular planes intersecting each other in lines. If dim(&; N &;) = 0, then, as all symps
have rank d now by Lemma 7.9, a link between &; and &, is provided by Lemma 7.8 (and
inside the symps we are fine, as just mentioned before). [

We proceed by showing boundedness of the singular rank.

Lemma 7.11. Ler Q = (X,.£) have minimum symplectic rank d > 3. Then the dimension
of a singular subspace is at most 2(d — 1).

Proof. Suppose there is a singular (2d — 1)-space W in Q. Let M} and M, be two disjoint
(d —1)-subspaces in W. By Fact 4.2, there are symps &; and &, containing M| and M5,
respectively. This yields a point p € & N&,. Since M; is a maximal singular subspace in
&, i=1,2, we know p ¢ W. In particular p ¢ M; UM, and so we can find points g; € M;
and g2 € M, with g1 ¢ p* and g2 € pt. Then ¢» € p Mg C &, a contradiction. O

Finally we prove the Haircut Axiom (H) [11].

Lemma 7.12. Let Q = (X,.%) have minimum symplectic rank d > 3. Then
(H) for any symp & and any point p ¢ &, the set p- N & can never be a submaximal
singular subspace of &.

Proof. Assume for a contradiction that p*~ N & = H, with H a submaximal singular sub-
space of &. Since € is hyperbolic, there are exactly two generators M1, M, containing H.
Pick p; € M;\ H, i = 1,2. By assumption, p; ¢ p*, i = 1,2. Then the symps &(p, p1) and
E(p, p2) contain M and M,, respectively, contradicting Lemma 7.6 and the fact that M,
and M> have distinct natural type. O

In order to show that the uniform symplectic rank of Q is either 3 or 5, we first show
that two symps which intersect in a plane, intersect in a generator.

Lemma 7.13. Let (X,.£) have minimum symplectic rank d > 3. Then two symps that
have no generator in common intersect in either a point or a line.

Proof. Recall that we know from Lemma 7.9 that each symp has rank d. The result is
trivial if d = 3, so let d > 4. Suppose two generators £ and &’ intersect in a singular
subspace U of dimension j, 0 < j < d — 2. Select a generator M in & disjoint from U
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such that M = £ N E*, for some £* € E, which is possible by Lemma 7.6. The Standing
Hypotheses yield a point p € £’ NE*. Then p ¢ & since M is disjoint from &’. However, p
is collinear to all points of a (d —2)-space in M (since p € £*) and dim(p-NU) > j—1
(since p € £’). Since p NE is a singular subspace, its dimension £ satisfies (d —2) + (j —
1)+1<¢<d-—1,implying j < 1. The lemma is proved. O

Lemma 7.14. Let Q = (X,.%) have minimum symplectic rank d > 3. Then Q has uniform
symplectic rank d € {3,5}. So the symps are either hyperbolic polar spaces of rank 3, or
hyperbolic polar spaces of rank 5.

Proof. Suppose d > 5, we show that d = 5. Let £ be a symp and choose two generators
M, M’ of & not contained in second symps and intersecting in a plane 7. Let W and W’ be
d-spaces through M, M’, respectively (these exist by Lemma 7.7). If all points of W \ M
were collinear to all points of W'\ M’, then all points of M would be collinear to all points
of M’, a contradiction. So there are points p € W\ M and p’ € W'\ M’ which are not
collinear. Since 7 belongs to p N p'*, p and p’ determine a symp &* intersecting £ in
at least the plane 7, so by Lemma 7.13, £ N E* is a generator M*. Since p NE = M, we
have p- NM* C M, likewise p'- NM* C M’. Both subspaces have dimension d — 2 and
are contained in M*, and hence intersect in a d — 3-space. On the other hand, they intersect
in wonly, sod —3 <2, implyingd < 5. O

End of the proof of the Main Result—Case of the existence of at least one
sympthick line. Lemmas 7.10, 7.11, 7.14 and 7.12 show that conditions (LC), (BD), (BR)
and (H) are satisfied. Therefore we may invoke Theorems 15.3.7 and 15.4.3 from [10],
which are updates of the Main Theorem of [2] and Theorem 1 of [3]. Knowing that
d € {3,5} (cf. Lemma 7.14), we conclude that the parapolar spaces with minimum sym-
plectic rank d > 3, containing at least one sympthick line, and such that every two symps
intersect nontrivially are precisely A4 2 (k), As (k) (and in these cases d = 3; k is an arbi-
trary skew field) and E¢ ; (k) (and then d = 5; k is an arbitrary field).

Remark 7.15 (Avoiding Cohen-Cooperstein theory). With some limited additional ef-
fort, one can strengthen Lemmas 7.11 and 7.13 using direct arguments as follows. Two
symps either intersect in a point, or in a generator. Also, the maximum dimension of a
singular subspace is either 3 or 4 (in the case d = 3), or 5 (in the case of d = 5). This
leaves us with three cases. The first two cases are dealt with in a completely elementary
way identifying the elements of the projective spaces of dimension 4 and 5, respectively,
from which Q arises as line Grassmannian, as certain subspaces of Q. A similar technique
can be used for the remaining case, d = 5, now using a characterization of buildings of
type Eg¢ by Jacques Tits [16]. This approach is carried out in detail in the first author’s
thesis [5].

8 The case of symplectic rank at least 3 where no line is
sympthick

We finish the proof of the Main Result.
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Let Q = (X,.%) be a parapolar space of symplectic rank at least 3 such that every
two symps intersect nontrivally, and such that every line is contained in a unique symp.
Then clearly symps intersect each other in points and the point-line geometry ¥ = (X, E)
is a dual linear space.

Lemma 8.1. Suppose pg € X belongs to two distinct members £1,&, of E. Let p1 € &1\
{po} and p> € &\ {po} be arbitrary and take any E;3 € E through p;, i = 1,2, and let
p3 € E13N &, Then, if po # p3, we have

01(po,p1) +613(p1,p3) + 823(p2,p3) + &2(po,p2) > 5, (1)

where 8, is the distance in the collinearity graph of &, € &, i.e., 0 if the arguments are
equal, 1 if they are collinear in &, and 2 otherwise.

Proof. We distinguish three cases.

(i) Suppose Ej3 = &;. Then &3 # &, for otherwise pg = p3. Hence &), &3, &, are three
distinct members of E, i.e., { po, p2, p3} is atriangle in Y. If pg L p» L p3 L ppin Q,
then Lemma 4.1 implies that pg, p», p3 are contained in a common singular plane,
which is, by Lemma 4.2, contained in some symp &. Since £ shares a line with
both &; and &, our assumption implies that & = & = &, a contradiction. Without
loss of generality, we may assume p, ¢ py, in particular, &3(p2,p3) = 2. Since
symps are convex, we then have pj‘ N pﬁ- C &3, and so po ¢ pj‘ N pﬁ-, implying
013(po, p3) + 62(po, p2) > 3. Inside the (discrete) metric space &3 = &, the triangle
inequality now yields &; (po, p1) + 613 (p1,p3) > 61(po, p3), from which (1) follows.

By symmetry we may now suppose that &3 # & and &3 # &;.

(if) Inthis case, we assume that &;3 = &3 ¢ {£1, & }. Then we can interchange the roles
of p; and p3 in Case (i) and conclude that (1) holds again.

(iii) Finally we assume that £;,&,, &3 and &3 are four distinct symps. The only way
in which (1) can be violated is when py | p1 L p3 L p» L po (in Q). But then,
according to (PPS2), all four points are contained in common symp, which shares
lines with the distinct symps &;,&,, &3, &3, contradicting the fact that lines are

contained in unique symps.
O

We now show the converse. Suppose we have a nontrivial dual linear space ¥ =
(X, E) such that every line (i.e., every member of ) has the structure of a polar space of
rank at least 3, and satisfying the inequality (1) for the given restrictions on the points and
symps (we shall refer to this inequality as Condition (1)). Let . be the set of all lines of
all these polar spaces (to avoid confusion with the lines of . and the symps of parapolar
spaces, we now refer to them as blocks).

Lemma 8.2. The geometry Q = (X,.%) is a parapolar space of symplectic rank at least
3, whose set of symps coincides with £ and in which every line is contained in a unique
symp, and such that every two symps intersect each other in a unique point.
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Proof. Recall that in a dual linear space, each point is contained in a block and each two
blocks intersect each other in a unique point. We now verify the axioms of a parapolar
space and show that the symps of Q are the blocks of Y. Note that the two last assertions
are satisfied if we replace “symp” by “block” (and we will show in (PPS2) that we may

do s0).
(PPS1)

(PPS2)

(PPS3)

The connectivity of Q follows from the connectivity of T as a geometry of points
and symps, and the fact that every block is connected (being a polar space).
Now let pg, p1, p2 € X be three mutually collinear points (collinearity with respect
to Q) with pp not on the line L joining p1, p>. If po,p1,p2 are contained in a
common block of Y, then pg is collinear to all points of L. Suppose now that the
blocks &; ; of T containing p; and p;, 0 <i < j <2, are mutually distinct. Then
Condition (1) implies (&;; is the distance in the collinearity graph of &;;)

3 = &1(po, p1) +012(p1, p2) + 812(p2, p2) + S02(po, P2) > 5,

a contradiction. Note that |Z| > 1 by assumption, so we can find a point p € X
and a line L € £ such that no line of £ contains p and meets L.

We claim that each block of Y is the convex closure of any pair of noncollinear
points it contains (clearly, the convex closure of two such points contains the
block). So suppose for a contradiction that py, p, are noncollinear points of a
block ;5 such that &1» \ cl({p1, p2}) contains a point pg. By definition of closure
and by the fact that lines between two points of £;, are contained in &, (since two
blocks intersect in a unique point and each line belongs to a block), we have that
po is collinear to two non-collinear points of cl({py, p2}), so without loss, p; L
po L pa. Hence, the symps &y; and &gy containing pop1, and pop, respectively,
are well defined and distinct. Then Condition (1) implies

4 = 801(po, 1) + 612(p1, p2) + 012(p2, p2) + 802(po, p2) > 5,

a contradiction. This shows the claim.

Suppose now that py, p, are points of X not contained in any block and suppose
for a contradiction that pg, p3 € pi N py, with pg # p3. Then there are distinct
blocks &y and &y, containing po, p1 and po, p2, respectively, and likewise £13 and
&»3 containing py, p3 and p;, p3, respectively. With similar notation as before,
Condition (1) yields

4= 8&1(po,p1) +613(p1,p3) + &3(p2, p3) + &02(po, p2) >3,

the sought contradiction.

In particular, we showed that the blocks of T are precisely the symps of Q

Since each line is contained in a block by definition, this follows from the above.
O

This completes the proof of the Main Result. Some remarks to conclude:
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Remark 8.3 (The existence of locally disconnected parapolar spaces.). We start with a
very general class of examples. Let Y = (¥,.%) be any dual linear space having at least two
lines. For each B € %, we can select a polar space g of rank at least 3 and an injective
mapping B — &g such that any two elements in the image of B are non-collinear in &g
(this can always be achieved by choosing £p “large enough™). We then identify B with its
image and set & = {&p | B € #}. We also define X as the union of ¥ with the disjoint
union of all &g \ B, were B ranges over 4. Finally, let .Z be the set of all lines in all the
polar spaces &g, B € . Then Q = (X,.Z) is a locally disconnected parapolar space of
symplectic rank at least 3 such that every two symps meet in exactly one point (it is an
easy exercise to verify that Condition (1) holds).

In the previous example there are many points x € X which are contained in a unique
symp. We were not able to find examples such that every point is contained in at least two
symps. Particularly in the finite case this seems rather hard. In fact we conjecture that
such a finite parapolar space does not exist.

Remark 8.4 (On the requirement that Q is strong when there are symps of rank 2).
One can construct several examples of non-strong parapolar spaces € in which each pair
of symps has a non-trivial intersection, which are not accounted for in our main theorem
(so necessarily, Q contains symps of rank 2). Indeed, consider for instance the Cartesian
product of a projective plane and a pencil of projective lines {L; | i € .#}, for some index
set .#, such that no other relations between the lines L; exist apart from the fact that they
share a certain fixed point p. This gives us an example of a non-strong parapolar space
in which every pair of symps intersects non-trivially (as they all have a line in common
with 1), demonstrating that one should not expect a “nice” classification of such parapolar
spaces.

Nonetheless, it is hard to come up with such examples having diameter 2, or in
which all lines are sympthick. We conjecture that one could obtain a neat classification of
diameter 2 parapolar spaces in which all symps intersect each other non-trivially (in need
adding that each line is sympthick), and we would not be surprised if all these parapolar
spaces turn out to be strong.
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