

Degenerate Cayley-Dickson algebras

Anneleen De Schepper DMV 2015

If we apply the CD-process on a field, then we obtain

- (split) quadratic extension
- (split) quaternions
- (split) octonions

If we apply the CD-process on a field, then we obtain

- (split) quadratic extension
- (split) quaternions
- (split) octonions

Related are the Veronese varieties and the Severi varieties.

If we apply the CD-process on a field, then we obtain

- (split) quadratic extension
- (split) quaternions
- (split) octonions

Related are the Veronese varieties and the Severi varieties.

Goal

- 1 extend CD-process by allowing **degenerate versions**
 - \rightarrow 9 extra alternative CD-algebras

If we apply the CD-process on a field, then we obtain

- (split) quadratic extension
- (split) quaternions
- (split) octonions

Related are the Veronese varieties and the Severi varieties.

Goal

- 1 extend CD-process by allowing **degenerate versions**
 - → 9 extra alternative CD-algebras
- 2 define generalized Veronese varieties associated to them
 - → projective remoteness planes

PART I

Extending the Cayley-Dickson process

- a (commutative) field K
- a (trival) involution $j_K : K \to K : a \mapsto \bar{a} = a$
- an element ζ in K_0

- a (commutative) field K
- a (trival) involution $j_K : K \to K : a \mapsto \bar{a} = a$
- an element ζ in K_0
- → algebra over K:

$$\mathsf{L} = \mathsf{CD}(\mathsf{K},\zeta) = \mathsf{K} \times \mathsf{K}$$

- a (commutative) field K
- a (trival) involution $j_K : K \to K : a \mapsto \bar{a} = a$
- an element ζ in K_0
- → algebra over K:

$$\mathsf{L} = \mathsf{CD}(\mathsf{K},\zeta) = \mathsf{K} \times \mathsf{K}$$

$$+_{L} (a, b) +_{L} (c, d) = (a + b, c + d)$$

- a (commutative) field K
- a (trival) involution $j_K : K \to K : a \mapsto \bar{a} = a$
- an element ζ in K_0
- → algebra over K:

$$\mathsf{L} = \mathsf{CD}(\mathsf{K},\zeta) = \mathsf{K} \times \mathsf{K}$$

$$+_{\mathsf{L}} (a,b) +_{\mathsf{L}} (c,d) = (a+b,c+d)$$

$$\cdot_{\mathsf{L}} (a,b) \cdot_{\mathsf{L}} (c,d) = (ac + \zeta d\bar{b}, \bar{a}d + cb)$$

- a (commutative) field K
- a (trival) involution $j_K : K \to K : a \mapsto \bar{a} = a$
- an element ζ in K_0
- → algebra over K:

$$\mathsf{L} = \mathsf{CD}(\mathsf{K}, \zeta) = \mathsf{K} \times \mathsf{K}$$

$$+_{\mathsf{L}} (a,b) +_{\mathsf{L}} (c,d) = (a+b,c+d)$$

$$\cdot_{\mathsf{L}} (a,b) \cdot_{\mathsf{L}} (c,d) = (ac + \zeta d\bar{b}, \bar{a}d + cb)$$

$$i_{\mathsf{L}} : \mathsf{L} \to \mathsf{L} : (a,b) \mapsto (\bar{a},-b)$$

- a (commutative) field K
- a (trival) involution $j_K : K \to K : a \mapsto \bar{a} = a$
- an element ζ in K_0

→ algebra over K:

$$\mathsf{L} = \mathsf{CD}(\mathsf{K},\zeta) = \mathsf{K} \times \mathsf{K}$$

$$+_{\mathsf{L}} (a,b) +_{\mathsf{L}} (c,d) = (a+b,c+d)$$

$$\cdot_{\mathsf{L}} (a,b) \cdot_{\mathsf{L}} (c,d) = (ac + \zeta d\bar{b}, \bar{a}d + cb)$$

$$i_{\mathsf{L}} : \mathsf{L} \to \mathsf{L} : (a,b) \mapsto (\bar{a},-b)$$

Successive applications yield alternative algebras

$$L = CD(K, \zeta), \zeta \in K \qquad \text{(involution non-trivial)}$$

$$H = CD(L, \zeta'), \zeta' \in L \qquad \text{(no longer commutative)}$$

$$O = CD(H, \zeta''), \zeta'' \in H \qquad \text{(no longer associative)}$$

Primitive element

$$\mathsf{L} = \mathsf{CD}(\mathsf{K},\zeta) = \mathsf{K} \oplus s\mathsf{K} \text{ with } s = (0,1),\ s^2 = \zeta$$

Primitive element

$$\mathsf{L} = \mathsf{CD}(\mathsf{K},\zeta) = \mathsf{K} \oplus s\mathsf{K} \text{ with } s = (0,1),\ s^2 = \zeta$$

$$n_{\mathsf{K}}: \mathsf{K} \to \mathsf{K}: a \mapsto aj_{\mathsf{K}}(a) = a\bar{a}$$

$$n_{\mathsf{L}}\,:\,\mathsf{L} o \mathsf{K}:(a,b) \mapsto n_{\mathsf{K}}(a) - \zeta n_{\mathsf{K}}(b)$$

Primitive element

$$\mathsf{L} = \mathsf{CD}(\mathsf{K},\zeta) = \mathsf{K} \oplus s\mathsf{K} \text{ with } s = (0,1),\ s^2 = \zeta$$

$$n_{\mathsf{K}}: \mathsf{K} \to \mathsf{K}: a \mapsto aj_{\mathsf{K}}(a) = a\bar{a}$$

 $n_{\mathsf{K}}: \mathsf{L} \to \mathsf{K}: (a, b) \mapsto n_{\mathsf{K}}(a) - \zeta n_{\mathsf{K}}(b)$

•
$$n(ab) = n(a)n(b), n(1) = 1$$

Primitive element

$$\mathsf{L} = \mathsf{CD}(\mathsf{K},\zeta) = \mathsf{K} \oplus s\mathsf{K} \text{ with } s = (0,1),\ s^2 = \zeta$$

$$n_{\mathsf{K}}: \mathsf{K} \to \mathsf{K}: a \mapsto aj_{\mathsf{K}}(a) = a\bar{a}$$

 $n_{\mathsf{L}}: \mathsf{L} \to \mathsf{K}: (a, b) \mapsto n_{\mathsf{K}}(a) - \zeta n_{\mathsf{K}}(b)$

- n(ab) = n(a)n(b), n(1) = 1
- a invertible $\Leftrightarrow n(a) \neq 0$

Primitive element

$$\mathsf{L} = \mathsf{CD}(\mathsf{K},\zeta) = \mathsf{K} \oplus s\mathsf{K} \text{ with } s = (0,1),\ s^2 = \zeta$$

$$n_{\mathsf{K}} : \mathsf{K} \to \mathsf{K} : a \mapsto aj_{\mathsf{K}}(a) = a\bar{a}$$

 $n_{\mathsf{L}} : \mathsf{L} \to \mathsf{K} : (a, b) \mapsto n_{\mathsf{K}}(a) - \zeta n_{\mathsf{K}}(b)$

- n(ab) = n(a)n(b), n(1) = 1
- a invertible $\Leftrightarrow n(a) \neq 0$
- n is a quadratic form
 - $n(ka) = k^2 n(a), k \in K$
 - n(a,b) := n(a+b) n(a) n(b) is a bilinear form

Primitive element

$$\mathsf{L} = \mathsf{CD}(\mathsf{K},\zeta) = \mathsf{K} \oplus s\mathsf{K}$$
 with $s = (0,1)$, $s^2 = \zeta$

$$n_{\mathsf{K}} : \mathsf{K} \to \mathsf{K} : a \mapsto aj_{\mathsf{K}}(a) = a\bar{a}$$

 $n_{\mathsf{L}} : \mathsf{L} \to \mathsf{K} : (a, b) \mapsto n_{\mathsf{K}}(a) - \zeta n_{\mathsf{K}}(b)$

- n(ab) = n(a)n(b), n(1) = 1
- a invertible $\Leftrightarrow n(a) \neq 0$
- n is a quadratic form
 - $n(ka) = k^2 n(a), k \in K$
 - n(a,b) := n(a+b) n(a) n(b) is a bilinear form
- trace: $t(a) = n(1, a) = a + \bar{a}$

Primitive element

$$\mathsf{L} = \mathsf{CD}(\mathsf{K},\zeta) = \mathsf{K} \oplus s\mathsf{K} \text{ with } s = (0,1),\ s^2 = \zeta$$

Norm form

$$n_{\mathsf{K}}: \mathsf{K} \to \mathsf{K}: a \mapsto aj_{\mathsf{K}}(a) = a\bar{a}$$

 $n_{\mathsf{K}}: \mathsf{L} \to \mathsf{K}: (a, b) \mapsto n_{\mathsf{K}}(a) - \zeta n_{\mathsf{K}}(b)$

- n(ab) = n(a)n(b), n(1) = 1
- a invertible $\Leftrightarrow n(a) \neq 0$
- n is a quadratic form
 - $n(ka) = k^2 n(a), k \in K$
 - n(a,b) := n(a+b) n(a) n(b) is a bilinear form
- trace: $t(a) = n(1, a) = a + \bar{a}$

Quadratic algebra

$$\forall \mathbf{x} \in \mathsf{CD}(\mathsf{K},\zeta) : \mathbf{x}^2 + t(x)\mathbf{x} + n(x) = 0$$

Recall $n((a,b)) = n(a) - \zeta n(b)$.

Recall
$$n((a,b)) = n(a) - \zeta n(b)$$
. If $(a,b) \neq (0,0)$ then
$$n((a,b)) = 0 \Leftrightarrow \zeta = n(ab^{-1}) \text{ or } a = 0 \text{ and } \zeta = 0$$

Recall
$$n((a,b)) = n(a) - \zeta n(b)$$
. If $(a,b) \neq (0,0)$ then
$$n((a,b)) = 0 \Leftrightarrow \zeta = n(ab^{-1}) \text{ or } a = 0 \text{ and } \zeta = 0$$

• $\zeta \notin n_{\mathsf{K}}(\mathsf{K}) \longrightarrow \mathsf{L}$ is a division CD-algebra

Recall
$$n((a,b)) = n(a) - \zeta n(b)$$
. If $(a,b) \neq (0,0)$ then
$$n((a,b)) = 0 \iff \zeta = n(ab^{-1}) \text{ or } a = 0 \text{ and } \zeta = 0$$

- $\zeta \notin n_{\mathsf{K}}(\mathsf{K}) \longrightarrow \mathsf{L}$ is a division CD-algebra
- $\zeta \in n_{\mathsf{K}}(\mathsf{K})_0 \longrightarrow \mathsf{L}$ is a split CD-algebra

Recall
$$n((a,b)) = n(a) - \zeta n(b)$$
. If $(a,b) \neq (0,0)$ then
$$n((a,b)) = 0 \iff \zeta = n(ab^{-1}) \text{ or } a = 0 \text{ and } \zeta = 0$$

- $\zeta \notin n_{\mathsf{K}}(\mathsf{K}) \longrightarrow \mathsf{L}$ is a division CD-algebra
- $\zeta \in n_{\mathsf{K}}(\mathsf{K})_0 \longrightarrow \mathsf{L}$ is a split CD-algebra
- ullet $\zeta=0$ \longrightarrow L is a degenerate CD-algebra

Recall
$$n((a,b)) = n(a) - \zeta n(b)$$
. If $(a,b) \neq (0,0)$ then
$$n((a,b)) = 0 \iff \zeta = n(ab^{-1}) \text{ or } a = 0 \text{ and } \zeta = 0$$

- $\zeta \notin n_{\mathsf{K}}(\mathsf{K}) \longrightarrow \mathsf{L}$ is a division CD-algebra
- $\zeta \in n_{\mathsf{K}}(\mathsf{K})_0 \longrightarrow \mathsf{L}$ is a split CD-algebra
- ullet $\zeta=0$ \longrightarrow L is a degenerate CD-algebra

Example $CD(\mathbb{R},\zeta)$

ζ	elements	CD-algebra	n(a, b)
-1	$a + ib$ with $i^2 = -1$	\mathbb{C}	$a^{2} + b^{2}$
1	$a+jb$ with $j^2=1$	\mathbb{C}'	$a^{2}-b^{2}$
0	$a + tb$ with $t^2 = 0$	$DN(\mathbb{R}) := \mathbb{R}[t]/(t^2)$	a^2

Recall
$$n((a,b)) = n(a) - \zeta n(b)$$
. If $(a,b) \neq (0,0)$ then
$$n((a,b)) = 0 \iff \zeta = n(ab^{-1}) \text{ or } a = 0 \text{ and } \zeta = 0$$

- $\zeta \notin n_{\mathsf{K}}(\mathsf{K}) \longrightarrow \mathsf{L}$ is a division CD-algebra
- $\zeta \in n_{\mathsf{K}}(\mathsf{K})_0 \longrightarrow \mathsf{L}$ is a split CD-algebra
- $\zeta = 0 \longrightarrow L$ is a degenerate CD-algebra

In general CD(K, ζ), m a non-square, karK $\neq 2$

$$\begin{array}{lll} \zeta & \text{elements} & \text{CD-algebra} & \text{n(a,b)} \\ m & a+ib \text{ with } i^2=m & \mathbb{L}=\mathbb{K}[x]/(x^2+1) & a^2+mb^2 \\ 1 & a+jb \text{ with } j^2=1 & \mathbb{L}'=\mathbb{K}[x]/(x^2-1) & (a+b)(a-b) \\ 0 & a+tb \text{ with } t^2=0 & \text{DN}(\mathbb{K}):=\mathbb{K}[t]/(t^2) & a^2 \\ \end{array}$$

degenerate

$$\mathsf{CD}(\mathsf{K},\mathbf{1})\cong\mathsf{K}\times\mathsf{K}\quad (\mathsf{if}\;\mathsf{kar}\,\mathsf{K}
eq 2)$$
 $(a,b)\mapsto (a+b,a-b)$

CD(K, 1)

$$CD(K, 1) \cong K \times K$$
 (if kar $K \neq 2$)

$$(a,b)\mapsto (a+b,a-b)$$

$$j'(x,y) = (y,x)$$
 since $j(a,b) = (a,-b) \mapsto (a-b,a+b)$

CD(K, 1)

$$CD(K, 1) \cong K \times K$$
 (if kar $K \neq 2$)

$$(a,b)\mapsto (a+b,a-b)$$

$$j'(x,y) = (y,x)$$
 since $j(a,b) = (a,-b) \mapsto (a-b,a+b)$
 $n'(x,y) = xy$ since $n(a,b) = n'(a+b,a-b) = a^2 - b^2$

$$CD(K, 1) \cong K \times K$$
 (if kar $K \neq 2$)

$$(a,b)\mapsto (a+b,a-b)$$

$$j'(x,y) = (y,x)$$
 since $j(a,b) = (a,-b) \mapsto (a-b,a+b)$
 $n'(x,y) = xy$ since $n(a,b) = n'(a+b,a-b) = a^2 - b^2$

 \rightarrow easier representation for CD(K, 1)

$$CD(K,1) \cong K \times K$$
 (if kar $K \neq 2$)

$$(a,b)\mapsto (a+b,a-b)$$

$$j'(x,y) = (y,x)$$
 since $j(a,b) = (a,-b) \mapsto (a-b,a+b)$
 $n'(x,y) = xy$ since $n(a,b) = n'(a+b,a-b) = a^2 - b^2$

- \rightarrow easier representation for CD(K, 1)
- \rightarrow each element in K is a norm

$$CD(K,1) \cong K \times K$$
 (if kar $K \neq 2$)

$$(a,b)\mapsto (a+b,a-b)$$

$$j'(x,y) = (y,x)$$
 since $j(a,b) = (a,-b) \mapsto (a-b,a+b)$
 $n'(x,y) = xy$ since $n(a,b) = n'(a+b,a-b) = a^2 - b^2$

- \rightarrow easier representation for CD(K, 1)
- \rightarrow each element in K is a norm

$$CD(K,1) \cong DN(K)$$
 (if kar $K=2$)

$$(a,b)\mapsto (a+b,b)$$

$$(a,b) \cdot (c,d) = (ac + db, ad + cb)$$

 $(a+b,b) \cdot '(c+d,d) = (ac + ad + bc + bd, ad + cb)$

$$CD(K,1) \cong K \times K$$
 (if kar $K \neq 2$)

$$(a,b)\mapsto (a+b,a-b)$$

$$j'(x,y) = (y,x)$$
 since $j(a,b) = (a,-b) \mapsto (a-b,a+b)$
 $n'(x,y) = xy$ since $n(a,b) = n'(a+b,a-b) = a^2 - b^2$

- \rightarrow easier representation for CD(K, 1)
- \rightarrow each element in K is a norm

$$CD(K,1) \cong DN(K)$$
 (if kar $K=2$)

$$(a,b)\mapsto (a+b,b)$$

$$(a,b) \cdot (c,d) = (ac+db, ad+cb)$$

 $(a+b,b) \cdot '(c+d,d) = (ac+ad+bc+bd, ad+cb)$

→ the CD-process yields no split extension

Normal procedure

- $\zeta \notin \square \to \text{inseparable extension with a trivial involution}$
- $\zeta \in \square \to$ the dual numbers with a trivial involution

Normal procedure

- $\zeta \notin \square \to \text{inseparable extension with a trivial involution}$
- $\zeta \in \square \to$ the dual numbers with a trivial involution

Alternative procedure

$$\mathsf{K}[s] = \mathsf{K}[x]/(x^2 + x + \zeta)$$
 with $\zeta \in \mathsf{K}$. Then $s^2 = s + \zeta$, so
$$(a,b) \cdot (c,d) = (ac + \zeta db, ad + cb + bd)$$

$$j(a,b) = (a+b,b) \ (s \mapsto s+1)$$

$$n(a,b) = a^2 + ab + \zeta b^2$$

Normal procedure

- $\zeta \notin \square \to \text{inseparable extension with a trivial involution}$
- $\zeta \in \square \to \mathsf{the} \mathsf{ dual} \mathsf{ numbers} \mathsf{ with} \mathsf{ a trivial} \mathsf{ involution}$

Alternative procedure

$$\mathsf{K}[s] = \mathsf{K}[x]/(x^2 + x + \zeta)$$
 with $\zeta \in \mathsf{K}$. Then $s^2 = s + \zeta$, so
$$(a,b) \cdot (c,d) = (ac + \zeta db, ad + cb + bd)$$

$$j(a,b) = (a+b,b) \ (s \mapsto s+1)$$

$$n(a,b) = a^2 + ab + \zeta b^2$$

without loss: $x^2 + x + \zeta$ is irreducible or $\zeta = 0$

Normal procedure

- $\zeta \notin \square \to \text{inseparable extension with a trivial involution}$
- $\zeta \in \square \to \mathsf{the} \mathsf{ dual} \mathsf{ numbers} \mathsf{ with} \mathsf{ a} \mathsf{ trivial} \mathsf{ involution}$

Alternative procedure

$$\mathsf{K}[s] = \mathsf{K}[x]/(x^2 + x + \zeta)$$
 with $\zeta \in \mathsf{K}$. Then $s^2 = s + \zeta$, so
$$(a,b) \cdot (c,d) = (ac + \zeta db, ad + cb + bd)$$

$$j(a,b) = (a+b,b) \ (s \mapsto s+1)$$

$$n(a,b) = a^2 + ab + \zeta b^2$$

without loss: $x^2+x+\zeta$ is irreducible or $\zeta=0$ \to non-split and split extension with a **non-trivial involution**

Normal procedure

- $\zeta \notin \square \to \text{inseparable extension with a trivial involution}$
- $\zeta \in \square \to \mathsf{the} \mathsf{ dual} \mathsf{ numbers} \mathsf{ with} \mathsf{ a} \mathsf{ trivial} \mathsf{ involution}$

Alternative procedure

$$\mathsf{K}[s] = \mathsf{K}[x]/(x^2 + x + \zeta)$$
 with $\zeta \in \mathsf{K}$. Then $s^2 = s + \zeta$, so
$$(a,b) \cdot (c,d) = (ac + \zeta db, ad + cb + bd)$$

$$j(a,b) = (a+b,b) \ (s \mapsto s+1)$$

$$n(a,b) = a^2 + ab + \zeta b^2$$

without loss: $x^2+x+\zeta$ is irreducible or $\zeta=0$ \to non-split and split extension with a **non-trivial involution**

Normal procedure

- $\zeta \notin \square \to \text{inseparable extension with a trivial involution}$
- $\zeta \in \square \to \mathsf{the} \mathsf{ dual} \mathsf{ numbers} \mathsf{ with} \mathsf{ a} \mathsf{ trivial} \mathsf{ involution}$

Alternative procedure

$$\mathsf{K}[s] = \mathsf{K}[x]/(x^2 + x + \zeta)$$
 with $\zeta \in \mathsf{K}$. Then $s^2 = s + \zeta$, so
$$(a,b) \cdot (c,d) = (ac + \zeta db, ad + cb + bd)$$

$$j(a,b) = (a+b,b) \ (s \mapsto s+1)$$

$$n(a,b) = a^2 + ab + \zeta b^2$$

without loss: $x^2+x+\zeta$ is irreducible or $\zeta=0$ \to non-split and split extension with a **non-trivial involution**

Remarks

• The split one is isomorphic to $K \times K : (a, b) \mapsto (a + b, a)$

Normal procedure

- $\zeta \notin \square \to \text{inseparable extension with a trivial involution}$
- $\zeta \in \square \to \mathsf{the} \mathsf{ dual} \mathsf{ numbers} \mathsf{ with} \mathsf{ a} \mathsf{ trivial} \mathsf{ involution}$

Alternative procedure

$$\mathsf{K}[s] = \mathsf{K}[x]/(x^2 + x + \zeta)$$
 with $\zeta \in \mathsf{K}$. Then $s^2 = s + \zeta$, so
$$(a,b) \cdot (c,d) = (ac + \zeta db, ad + cb + bd)$$

$$j(a,b) = (a+b,b) \ (s \mapsto s+1)$$

$$n(a,b) = a^2 + ab + \zeta b^2$$

without loss: $x^2 + x + \zeta$ is irreducible or $\zeta = 0$ \rightarrow non-split and split extension with a **non-trivial involution**

Remarks

- The split one is isomorphic to $K \times K : (a, b) \mapsto (a + b, a)$
- If kar $K \neq 2$ then $K[x]/(x^2 + ax + b) \cong CD(K, v)$ with $v = u^2 - b$ and $u = \frac{a}{2}$.

(Degenerate) Cayley-Dickson algebras in characteristic 2

200

(Degenerate) Cayley-Dickson algebras in characteristic 2

PART II

(Generalized) Veronese Varieties after JS and HVM

Representation of ${\sf PG(2,L)}$, ${\it L}$ a non-split quadratic extension of K

points
$$(x, y, z) \mapsto \begin{pmatrix} x \\ y \\ z \end{pmatrix} (\bar{x} \quad \bar{y} \quad \bar{z}) = \begin{pmatrix} x\bar{x} & x\bar{y} & x\bar{z} \\ y\bar{x} & y\bar{y} & y\bar{z} \\ z\bar{x} & z\bar{y} & z\bar{z} \end{pmatrix}$$

Representation of $\mathbf{PG(2,L)}$, L a non-split quadratic extension of K

points $(x, y, z) \mapsto (x\bar{x}, y\bar{y}, z\bar{z}; y\bar{z}, z\bar{x}, x\bar{y})$, points of PG(8, K)

Representation of $\mathbf{PG(2,L)}$, L a non-split quadratic extension of K

```
points (x, y, z) \mapsto (x\bar{x}, y\bar{y}, z\bar{z}; y\bar{z}, z\bar{x}, x\bar{y}), points of PG(8, K) lines induced by the points: \mathbf{Q}^-(3, \mathbf{K})
```

Representation of $\mathbf{PG(2,L)}$, L a non-split quadratic extension of K

points
$$(x, y, z) \mapsto (x\bar{x}, y\bar{y}, z\bar{z}; y\bar{z}, z\bar{x}, x\bar{y})$$
, points of PG(8, K) lines induced by the points: $\mathbf{Q}^{-}(\mathbf{3}, \mathbf{K})$ e. g. : $(0, y, z) \mapsto (0, y\bar{y}, z\bar{z}; y\bar{z}, 0, 0)$, put $Z_3 = X_3 + sX_4$: $X_1X_2 = Z_3\bar{Z}_3 = X_3^2 + \zeta X_4^2$

Representation of $\mathbf{PG(2,L)}$, L a non-split quadratic extension of K

```
points (x, y, z) \mapsto (x\bar{x}, y\bar{y}, z\bar{z}; y\bar{z}, z\bar{x}, x\bar{y}), points of PG(8, K) lines induced by the points: \mathbf{Q}^-(3, \mathbf{K})
```

This is the **Hermitian Veronesean** HV(K) over K.

Representation of $\mathbf{PG(2,L)}$, L a non-split quadratic extension of K

```
points (x, y, z) \mapsto (x\bar{x}, y\bar{y}, z\bar{z}; y\bar{z}, z\bar{x}, x\bar{y}), points of PG(8, K) lines induced by the points: \mathbf{Q}^-(3, \mathbf{K})
```

This is the Hermitian Veronesean HV(K) over K.

Representation of $\mathbf{PG(2,L)}$, L a non-split quadratic extension of K

```
points (x, y, z) \mapsto (x\bar{x}, y\bar{y}, z\bar{z}; y\bar{z}, z\bar{x}, x\bar{y}), points of PG(8, K) lines induced by the points: \mathbf{Q}^-(3, \mathbf{K})
```

This is the Hermitian Veronesean HV(K) over K.

(MM1)
$$\forall x \neq y \in X : \exists ! \xi \in \Xi : x, y \in \xi$$

Representation of PG(2, L), L a non-split quadratic extension of K

```
points (x, y, z) \mapsto (x\bar{x}, y\bar{y}, z\bar{z}; y\bar{z}, z\bar{x}, x\bar{y}), points of PG(8, K) lines induced by the points: \mathbf{Q}^-(3, \mathbf{K})
```

This is the **Hermitian Veronesean** HV(K) over K.

(MM1)
$$\forall x \neq y \in X : \exists ! \xi \in \Xi : x, y \in \xi$$

(MM2) $\forall \xi_1 \neq \xi_2 \in \Xi : \xi_1 \cap \xi_2 \subset X$

Representation of PG(2, L), L a non-split quadratic extension of K

```
points (x, y, z) \mapsto (x\bar{x}, y\bar{y}, z\bar{z}; y\bar{z}, z\bar{x}, x\bar{y}), points of PG(8, K) lines induced by the points: \mathbf{Q}^-(3, \mathbf{K})
```

This is the **Hermitian Veronesean** HV(K) over K.

$$\begin{split} &(\mathsf{MM1}) \ \, \forall x \neq y \in X : \exists ! \xi \in \Xi : x,y \in \xi \\ &(\mathsf{MM2}) \ \, \forall \xi_1 \neq \xi_2 \in \Xi : \xi_1 \cap \xi_2 \subset X \\ &(\mathsf{MM3}) \ \, T(x) = \langle \, T_x(\xi_1), \, T_x(\xi_2) \rangle \text{ with } x \in \xi_1 \cap \xi_2 \end{split}$$

Representation of PG(2, L), L a non-split quadratic extension of K

points
$$(x, y, z) \mapsto (x\bar{x}, y\bar{y}, z\bar{z}; y\bar{z}, z\bar{x}, x\bar{y})$$
, points of PG(8, K) lines induced by the points: $\mathbf{Q}^-(3, \mathbf{K})$

This is the **Hermitian Veronesean** HV(K) over K.

Conversely, if X is a spanning point set of PG(8, K) and Ξ contains 3-spaces ξ in PG(8, K) s. th. $\xi \cap X$ is a $Q^-(3, K)$ and (X, Ξ) satisfies the Mazzocca-Melone axioms

(MM1)
$$\forall x \neq y \in X : \exists ! \xi \in \Xi : x, y \in \xi$$

(MM2) $\forall \xi_1 \neq \xi_2 \in \Xi : \xi_1 \cap \xi_2 \subset X$
(MM3) $T(x) = \langle T_x(\xi_1), T_x(\xi_2) \rangle$ with $x \in \xi_1 \cap \xi_2$

then it is isomorphic to PG(2, L) and proj. equivalent to HV(K).

Now let L be $K \times K$ or DN(K)

Now let L be $K \times K$ or DN(K)We have a **ring geometry** $(P, \mathcal{L}, \mathcal{I})$

Now let L be K × K or DN(K)We have a **ring geometry** $(P, \mathcal{L}, \mathcal{I})$ $P = \{(x, y, z) | (x, y, z)\ell = 0 \Rightarrow \ell = 0\}$

Now let L be K × K or DN(K)We have a **ring geometry** $(P, \mathcal{L}, \mathcal{I})$ $P = \{(x, y, z) | (x, y, z)\ell = 0 \Rightarrow \ell = 0\}$ with $(x, y, z) = (x, y, z)\ell$ if $n(\ell) = 0$

Now let L be K × K or DN(K)We have a **ring geometry** $(\mathcal{P}, \mathcal{L}, \mathcal{I})$ $\mathcal{P} = \{(x, y, z) | (x, y, z)\ell = 0 \Rightarrow \ell = 0\}$ with $(x, y, z) = (x, y, z)\ell$ if $n(\ell) = 0$ $\mathcal{L} = \{[a, b, c] | \ell[a, b, c] = 0 \Rightarrow \ell = 0\}$

Now let L be K × K or DN(K)We have a **ring geometry** $(\mathcal{P}, \mathcal{L}, \mathcal{I})$ $\mathcal{P} = \{(x, y, z) | (x, y, z)\ell = 0 \Rightarrow \ell = 0\}$ with $(x, y, z) = (x, y, z)\ell$ if $n(\ell) = 0$ $\mathcal{L} = \{[a, b, c] | \ell[a, b, c] = 0 \Rightarrow \ell = 0\}$ with $[a, b, c] = \ell[a, b, c]$ if $n(\ell) = 0$

Now let L be K × K or DN(K)We have a **ring geometry** $(P, \mathcal{L}, \mathcal{I})$ $P = \{(x, y, z) | (x, y, z)\ell = 0 \Rightarrow \ell = 0\}$ with $(x, y, z) = (x, y, z)\ell$ if $n(\ell) = 0$

$$\mathcal{L} = \{ [a, b, c] | \ell[a, b, c] = 0 \Rightarrow \ell = 0 \}$$
with $[a, b, c] = \ell[a, b, c]$ if $n(\ell) = 0$

$$\mathcal{I}$$
 $ax + by + cz = 0$

Now let L be $K \times K$ or DN(K)We have a **ring geometry** $(P, \mathcal{L}, \mathcal{I})$

Define σ as follows

Now let L be $K \times K$ or DN(K)We have a **ring geometry** $(P, \mathcal{L}, \mathcal{I})$

Define σ as follows

$$\mathcal{P}(x,y,z)\mapsto (x\bar{x},y\bar{y},z\bar{z};y\bar{z},z\bar{x},x\bar{y})$$
, a **point** of PG(8,K)

```
Now let L be K \times K or DN(K)
We have a ring geometry (P, \mathcal{L}, \mathcal{I})
```

Define σ as follows

$$\mathcal{P}$$
 $(x, y, z) \mapsto (x\bar{x}, y\bar{y}, z\bar{z}; y\bar{z}, z\bar{x}, x\bar{y})$, a **point** of PG(8, K)

 \mathcal{L} induced by the points on it: $Q^+(3, K)$ or $pQ(2, K) \setminus \{p\}$

Now let L be $K \times K$ or DN(K)We have a **ring geometry** $(P, \mathcal{L}, \mathcal{I})$

Define σ as follows

$$\mathcal{P}(x,y,z)\mapsto (x\bar{x},y\bar{y},z\bar{z};y\bar{z},z\bar{x},x\bar{y})$$
, a **point** of PG(8,K)

 \mathcal{L} induced by the points on it: $Q^+(3, K)$ or $pQ(2, K) \setminus \{p\}$

e. g. :
$$x = 0 \mapsto (0, y\bar{y}, z\bar{z}; y\bar{z}, 0, 0)$$
, put $Z_3 = X_3 + sX_4$:

$$X_1 X_2 = Z_3 \bar{Z}_3 = \begin{cases} X_3^2 - X_4^2 & (\zeta = 1) \to Q^+(3, K) \\ X_3^2 & (\zeta = 0) \to pQ(2, K) \end{cases}$$

All points given by these equations are contained in $\sigma(\mathcal{P})$, except for p, which is called the **radical** Q^R of the quadric Q.

```
Now let L be K \times K or DN(K)
We have a ring geometry (P, \mathcal{L}, \mathcal{I})
```

Define σ as follows

$$\mathcal{P}$$
 $(x, y, z) \mapsto (x\bar{x}, y\bar{y}, z\bar{z}; y\bar{z}, z\bar{x}, x\bar{y})$, a **point** of PG(8, K)

 \mathcal{L} induced by the points on it: $Q^+(3, K)$ or $pQ(2, K) \setminus \{p\}$

Put
$$X = \sigma(P)$$
, $\Xi = \{ \langle \sigma(L) \rangle \mid L \in \mathcal{L} \}$.

Now let L be $K \times K$ or DN(K)We have a **ring geometry** $(P, \mathcal{L}, \mathcal{I})$

Define σ as follows

$$\mathcal{P}(x,y,z)\mapsto (x\bar{x},y\bar{y},z\bar{z};y\bar{z},z\bar{x},x\bar{y})$$
, a **point** of PG(8,K)

 \mathcal{L} induced by the points on it: $Q^+(3, K)$ or $pQ(2, K) \setminus \{p\}$

Put
$$X = \sigma(\mathcal{P}), \quad \Xi = \{\langle \sigma(L) \rangle \mid L \in \mathcal{L}\}.$$

For $L \in \mathcal{L}$, the radical $\sigma(L)^R \notin X \Rightarrow \bar{X} := X \cup \{\sigma(L)^R \mid L \in \mathcal{L}\}.$

```
Now let L be K \times K or DN(K)
We have a ring geometry (P, \mathcal{L}, \mathcal{I})
```

Define σ as follows

$$\mathcal{P}(x,y,z)\mapsto (x\bar{x},y\bar{y},z\bar{z};y\bar{z},z\bar{x},x\bar{y})$$
, a **point** of PG(8,K)

 \mathcal{L} induced by the points on it: $Q^+(3, K)$ or $pQ(2, K) \setminus \{p\}$

Put
$$X = \sigma(\mathcal{P}), \quad \Xi = \{\langle \sigma(L) \rangle \mid L \in \mathcal{L}\}.$$

For $L \in \mathcal{L}$, the radical $\sigma(L)^R \notin X \Rightarrow \bar{X} := X \cup \{\sigma(L)^R \mid L \in \mathcal{L}\}.$

$$(\mathsf{MM'1}) \ \forall x \neq y \in X : \exists \xi \in \Xi : x, y \in \xi$$

```
Now let L be K \times K or DN(K)
      We have a ring geometry (\mathcal{P}, \mathcal{L}, \mathcal{I})
      Define \sigma as follows
        \mathcal{P}(x,y,z)\mapsto (x\bar{x},y\bar{y},z\bar{z};y\bar{z},z\bar{x},x\bar{y}), a point of PG(8,K)
         \mathcal{L} induced by the points on it: Q^+(3, K) or pQ(2, K) \setminus \{p\}
      Put X = \sigma(\mathcal{P}), \quad \Xi = \{\langle \sigma(L) \rangle \mid L \in \mathcal{L}\}.
      For L \in \mathcal{L}, the radical \sigma(L)^R \notin X \Rightarrow \bar{X} := X \cup \{\sigma(L)^R \mid L \in \mathcal{L}\}.
(MM'1) \ \forall x \neq y \in X : \exists \xi \in \Xi : x, y \in \xi
   (DN) The lines [1,0,0] and [0,1,0] intersect in (0,0,1)
             The lines [1,0,0] and [1,t,0] intersect in (0,at,1) with a \in K
```

Generalized Veronesean varieties

Now let L be $K \times K$ or DN(K)We have a **ring geometry** $(P, \mathcal{L}, \mathcal{I})$

Define σ as follows

$$\mathcal{P}(x,y,z)\mapsto (x\bar{x},y\bar{y},z\bar{z};y\bar{z},z\bar{x},x\bar{y})$$
, a **point** of PG(8,K)

 \mathcal{L} induced by the points on it: $Q^+(3, K)$ or $pQ(2, K) \setminus \{p\}$

Put
$$X = \sigma(\mathcal{P}), \quad \Xi = \{\langle \sigma(L) \rangle \mid L \in \mathcal{L}\}.$$

For $L \in \mathcal{L}$, the radical $\sigma(L)^R \notin X \Rightarrow \bar{X} := X \cup \{\sigma(L)^R \mid L \in \mathcal{L}\}.$

Generalized Veronesean varieties

```
Now let L be K \times K or DN(K)
We have a ring geometry (P, \mathcal{L}, \mathcal{I})
```

Define σ as follows

$$\mathcal{P}(x,y,z)\mapsto (x\bar{x},y\bar{y},z\bar{z};y\bar{z},z\bar{x},x\bar{y})$$
, a **point** of PG(8,K)

 \mathcal{L} induced by the points on it: $Q^+(3, K)$ or $pQ(2, K) \setminus \{p\}$

Put
$$X = \sigma(\mathcal{P}), \quad \Xi = \{\langle \sigma(L) \rangle \mid L \in \mathcal{L}\}.$$

For $L \in \mathcal{L}$, the radical $\sigma(L)^R \notin X \Rightarrow \bar{X} := X \cup \{\sigma(L)^R \mid L \in \mathcal{L}\}.$

$$(MM'1) \ \forall x \neq y \in X : \exists \xi \in \Xi : x, y \in \xi$$

$$(\mathsf{MM}'2) \ \forall \xi_1 \neq \xi_2 \in \Xi : \xi_1 \cap \xi_2 \subset \bar{X} \text{ and } \xi_1 \cap \xi_2 \neq \phi \Rightarrow \xi_1 \cap \xi_2 \cap X \neq \phi$$

(MM'3)
$$T(x) = \langle T_x(\xi_1), T_x(\xi_2) \rangle$$
 with $x = \xi_1 \cap \xi_2$

Generalized Veronesean varieties

```
Now let L be K \times K or DN(K)
We have a ring geometry (P, \mathcal{L}, \mathcal{I})
```

Define σ as follows

$$\mathcal{P}(x,y,z)\mapsto (x\bar{x},y\bar{y},z\bar{z};y\bar{z},z\bar{x},x\bar{y})$$
, a **point** of PG(8,K)

 \mathcal{L} induced by the points on it: $Q^+(3, K)$ or $pQ(2, K) \setminus \{p\}$

Put
$$X = \sigma(\mathcal{P}), \quad \Xi = \{\langle \sigma(L) \rangle \mid L \in \mathcal{L}\}.$$

For $L \in \mathcal{L}$, the radical $\sigma(L)^R \notin X \Rightarrow \bar{X} := X \cup \{\sigma(L)^R \mid L \in \mathcal{L}\}.$

$$(MM'1) \ \forall x \neq y \in X : \exists \xi \in \Xi : x, y \in \xi$$

$$(\mathsf{MM}'2) \ \forall \xi_1 \neq \xi_2 \in \Xi : \xi_1 \cap \xi_2 \subset \bar{X} \text{ and } \xi_1 \cap \xi_2 \neq \phi \Rightarrow \xi_1 \cap \xi_2 \cap X \neq \phi$$

(MM'3)
$$T(x) = \langle T_x(\xi_1), T_x(\xi_2) \rangle$$
 with $x = \xi_1 \cap \xi_2$

Conversely

If X is a spanning point set of PG(8, K) and Ξ contains 3-spaces ξ in PG(8, K) s. th. $\xi \cap X$ is a $Q^+(3, K)$ and (X, Ξ) satisfies the **generalized MM axioms** then it is isomorphic to the **Segre Variety** over K and, moreover, it is projectively equivalent to $\sigma((\mathcal{P}, \mathcal{L}, \mathcal{I}))$.

Conversely

If X is a spanning point set of PG(8, K) and Ξ contains 3-spaces ξ in PG(8, K) s. th. $\xi \cap X$ is a $Q^+(3, K)$ and (X, Ξ) satisfies the **generalized MM axioms** then it is isomorphic to the **Segre Variety** over K and, moreover, it is projectively equivalent to $\sigma((\mathcal{P}, \mathcal{L}, \mathcal{I}))$.

If X is a spanning point set of PG(8,K) and Ξ contains 3-spaces ξ in PG(8,K) s. th. $\xi \cap X$ is a $pQ(2,K) \setminus \{p\}$ and (X,Ξ) satisfies the **generalized MM axioms** then it is isomorphic to the projective **Hjelmslev plane** of level 2 over DN(K) and moreover it is projectively equivalent to $\sigma((\mathcal{P},\mathcal{L},\mathcal{I}))$.

Conversely

If X is a spanning point set of PG(8, K) and Ξ contains 3-spaces ξ in PG(8, K) s. th. $\xi \cap X$ is a $Q^+(3, K)$ and (X, Ξ) satisfies the **generalized MM axioms** then it is isomorphic to the **Segre Variety** over K and, moreover, it is projectively equivalent to $\sigma((\mathcal{P}, \mathcal{L}, \mathcal{I}))$.

If X is a spanning point set of PG(8,K) and Ξ contains 3-spaces ξ in PG(8,K) s. th. $\xi \cap X$ is a $pQ(2,K) \setminus \{p\}$ and (X,Ξ) satisfies the **generalized MM axioms** then it is isomorphic to the projective **Hjelmslev plane** of level 2 over DN(K) and moreover it is projectively equivalent to $\sigma((\mathcal{P},\mathcal{L},\mathcal{I}))$.

This time, the corresponding geometries are no projective planes, but **projective remoteness planes**.

An incidence geometry $(\mathcal{P}, \mathcal{L}, I)$ together with a symmetric relation R on $\mathcal{P} \cup \mathcal{L}$ is called a **remoteness plane** if

An incidence geometry $(\mathcal{P}, \mathcal{L}, I)$ together with a symmetric relation R on $\mathcal{P} \cup \mathcal{L}$ is called a **remoteness plane** if

(R1)
$$p \leftrightarrow L \land L I q \Rightarrow p \leftrightarrow q$$

An incidence geometry $(\mathcal{P}, \mathcal{L}, I)$ together with a symmetric relation R on $\mathcal{P} \cup \mathcal{L}$ is called a **remoteness plane** if

(R1)
$$p \leftrightarrow L \land L I q \Rightarrow p \leftrightarrow q$$

(R2)
$$p \leftrightarrow q \Rightarrow p \neq q$$

and their duals hold.

An incidence geometry $(\mathcal{P}, \mathcal{L}, I)$ together with a symmetric relation R on $\mathcal{P} \cup \mathcal{L}$ is called a **remoteness plane** if

$$(R1) p \leftrightarrow L \land L I q \Rightarrow p \leftrightarrow q$$

(R2)
$$p \leftrightarrow q \Rightarrow p \neq q$$

and their duals hold.

Trivial example

projective planes: $p \leftrightarrow q \Leftrightarrow p \neq q$, $p \leftrightarrow L \Leftrightarrow p \notin L$.

An incidence geometry $(\mathcal{P}, \mathcal{L}, I)$ together with a symmetric relation R on $\mathcal{P} \cup \mathcal{L}$ is called a **remoteness plane** if

$$(R1) p \leftrightarrow L \land L I q \Rightarrow p \leftrightarrow q$$

(R2)
$$p \leftrightarrow q \Rightarrow p \neq q$$
 and their duals hold.

Trivial example

projective planes:
$$p \leftrightarrow q \Leftrightarrow p \neq q$$
, $p \leftrightarrow L \Leftrightarrow p \notin L$.

(PR1)
$$p \leftrightarrow q \Rightarrow \exists ! L \in \mathcal{L} : p, q \in L$$

An incidence geometry $(\mathcal{P}, \mathcal{L}, I)$ together with a symmetric relation R on $\mathcal{P} \cup \mathcal{L}$ is called a **remoteness plane** if

$$(R1) p \leftrightarrow L \land L I q \Rightarrow p \leftrightarrow q$$

(R2)
$$p \leftrightarrow q \Rightarrow p \neq q$$
 and their duals hold.

Trivial example

projective planes: $p \leftrightarrow q \Leftrightarrow p \neq q$, $p \leftrightarrow L \Leftrightarrow p \notin L$.

$$(\mathsf{PR1}) \ p \leftrightarrow q \Rightarrow \exists ! L \in \mathcal{L} : p, q \in L$$

 $S \subset \mathcal{P}$ is **regular** if $p \leftrightarrow q$ and $p \leftrightarrow qr \ \forall p, q, r \in S$ distinct

An incidence geometry $(\mathcal{P}, \mathcal{L}, I)$ together with a symmetric relation R on $\mathcal{P} \cup \mathcal{L}$ is called a **remoteness plane** if

$$(R1) p \leftrightarrow L \land L I q \Rightarrow p \leftrightarrow q$$

(R2)
$$p \leftrightarrow q \Rightarrow p \neq q$$
 and their duals hold.

Trivial example

projective planes: $p \leftrightarrow q \Leftrightarrow p \neq q$, $p \leftrightarrow L \Leftrightarrow p \notin L$.

$$(\mathsf{PR1}) \ \ p \leftrightarrow q \Rightarrow \exists ! L \in \mathcal{L} : p, q \in L$$

$$S \subset \mathcal{P}$$
 is **regular** if $p \leftrightarrow q$ and $p \leftrightarrow qr \ \forall p, q, r \in S$ distinct

(PR2)
$$p \leftrightarrow q$$
, $r \leftrightarrow pq \Rightarrow$ regular 3-set

An incidence geometry $(\mathcal{P}, \mathcal{L}, I)$ together with a symmetric relation R on $\mathcal{P} \cup \mathcal{L}$ is called a **remoteness plane** if

$$(R1) p \leftrightarrow L \land L I q \Rightarrow p \leftrightarrow q$$

(R2)
$$p \leftrightarrow q \Rightarrow p \neq q$$
 and their duals hold.

Trivial example

projective planes: $p \leftrightarrow q \Leftrightarrow p \neq q$, $p \leftrightarrow L \Leftrightarrow p \notin L$.

$$(\mathsf{PR1}) \ \ p \leftrightarrow q \Rightarrow \exists ! L \in \mathcal{L} : p, q \in L$$

$$S \subset \mathcal{P}$$
 is **regular** if $p \leftrightarrow q$ and $p \leftrightarrow qr \ \forall p, q, r \in S$ distinct

(PR2)
$$p \leftrightarrow q$$
, $r \leftrightarrow pq \Rightarrow$ regular 3-set

(PR3) S with
$$|S| \le 3$$
 contained in regular 4-set

An incidence geometry $(\mathcal{P}, \mathcal{L}, I)$ together with a symmetric relation R on $\mathcal{P} \cup \mathcal{L}$ is called a **remoteness plane** if

(R1)
$$p \leftrightarrow L \land L I q \Rightarrow p \leftrightarrow q$$

(R2)
$$p \leftrightarrow q \Rightarrow p \neq q$$
 and their duals hold.

Trivial example

projective planes: $p \leftrightarrow q \Leftrightarrow p \neq q$, $p \leftrightarrow L \Leftrightarrow p \notin L$.

$$(\mathsf{PR1}) \ p \leftrightarrow q \Rightarrow \exists ! L \in \mathcal{L} : p, q \in L$$

$$S \subset \mathcal{P}$$
 is **regular** if $p \leftrightarrow q$ and $p \leftrightarrow qr \ \forall p, q, r \in S$ distinct

(PR2)
$$p \leftrightarrow q$$
, $r \leftrightarrow pq \Rightarrow$ regular 3-set

(PR3) S with
$$|S| \le 3$$
 contained in regular 4-set

If these axioms and their duals holds, then we have a **projective** remoteness plane.

 $PG(2,K) \times PG(2,K)$ is a **projective remoteness plane** $(p_1,p_2) \leftrightarrow (q_1,q_2)$ if $p_1 \neq q_1$ and $p_2 \neq q_2$ (R2), (PR1)

 $PG(2,K) \times PG(2,K)$ is a projective remoteness plane

$$(p_1,p_2)\leftrightarrow (q_1,q_2)$$
 if $p_1\neq q_1$ and $p_2\neq q_2$ (R2), (PR1) $(p_1,p_2)\leftrightarrow (L_1,L_2)$ if $p_1\notin L_1$ and $p_2\notin L_2$ (R1), (PR3)

 $PG(2,K) \times PG(2,K)$ is a projective remoteness plane

$$(p_1,p_2)\leftrightarrow (q_1,q_2)$$
 if $p_1\neq q_1$ and $p_2\neq q_2$ (R2), (PR1) $(p_1,p_2)\leftrightarrow (L_1,L_2)$ if $p_1\notin L_1$ and $p_2\notin L_2$ (R1), (PR3)

Moreover, it is the **generalized Veronesean** for $K \times K$

$$PG(2,K)\times PG(2,K)$$
 is a projective remoteness plane

$$(p_1, p_2) \leftrightarrow (q_1, q_2)$$
 if $p_1 \neq q_1$ and $p_2 \neq q_2$ (R2), (PR1) $(p_1, p_2) \leftrightarrow (L_1, L_2)$ if $p_1 \notin L_1$ and $p_2 \notin L_2$ (R1), (PR2), (PR3)

Moreover, it is the **generalized Veronesean** for $K \times K$

points
$$((u, v, w), (x, y, z)) \mapsto (ux, uy, uz, vx, vy, vz, wx, wy, wz),$$

a point of PG(8, K)

$$PG(2,K)\times PG(2,K)$$
 is a projective remoteness plane

$$(p_1, p_2) \leftrightarrow (q_1, q_2)$$
 if $p_1 \neq q_1$ and $p_2 \neq q_2$ (R2), (PR1) $(p_1, p_2) \leftrightarrow (L_1, L_2)$ if $p_1 \notin L_1$ and $p_2 \notin L_2$ (R1), (PR3)

Moreover, it is the **generalized Veronesean** for $K \times K$

points
$$((u, v, w), (x, y, z)) \mapsto (ux, uy, uz, vx, vy, vz, wx, wy, wz),$$

a point of PG(8, K)

lines induced by the points

 $PG(2, K) \times PG(2, K)$ is a projective remoteness plane

$$(p_1, p_2) \leftrightarrow (q_1, q_2)$$
 if $p_1 \neq q_1$ and $p_2 \neq q_2$ (R2), (PR1) $(p_1, p_2) \leftrightarrow (L_1, L_2)$ if $p_1 \notin L_1$ and $p_2 \notin L_2$ (R1), (PR3)

Moreover, it is the **generalized Veronesean** for $K \times K$

points
$$((u, v, w), (x, y, z)) \mapsto (ux, uy, uz, vx, vy, vz, wx, wy, wz),$$

a point of PG(8, K)

lines induced by the points

e. g. : $((0, v, w), (0, y, z)) \mapsto (0, 0, 0, 0, vy, vz, 0, wy, wz),$ a quadric in PG(3, \mathbb{R}):

$$X_4X_8 = X_5X_7 \rightarrow Q^+(3, K)$$

An incidence geometry $(\mathcal{P}, \mathcal{L}, I)$ is a projective Hjelmslev plane of level 2 $(\mathbf{PH_2})$ if it satisfies

An incidence geometry $(\mathcal{P}, \mathcal{L}, I)$ is a projective Hjelmslev plane of level 2 $(\mathbf{PH_2})$ if it satisfies

H1 $I_x \cap I_y$ is non-empty

An incidence geometry $(\mathcal{P}, \mathcal{L}, I)$ is a projective Hjelmslev plane of level 2 $(\mathbf{PH_2})$ if it satisfies

- H1 $I_x \cap I_y$ is non-empty
- H2 \exists canonical epimorphism $\phi: PH_2 \to \pi$, where π is a projective plane, such that
 - $\phi(x) = \phi(y) \Leftrightarrow |I_x \cap I_y| > 1$
 - $\phi^{-1}(p)$, endowed with induced lines, is an affine plane

An incidence geometry $(\mathcal{P}, \mathcal{L}, I)$ is a projective Hjelmslev plane of level 2 $(\mathbf{PH_2})$ if it satisfies

- H1 $I_x \cap I_y$ is non-empty
- H2 \exists canonical epimorphism $\phi: PH_2 \to \pi$, where π is a projective plane, such that
 - $\phi(x) = \phi(y) \Leftrightarrow |I_x \cap I_y| > 1$
 - $\phi^{-1}(p)$, endowed with induced lines, is an affine plane

PH₂ is a projective remoteness plane:

$$p \leftrightarrow q \Leftrightarrow \phi(p) \neq \phi(q) \Leftrightarrow |I_p \cap I_q| = 1 \text{ (R2), (PR1)}$$

An incidence geometry $(\mathcal{P}, \mathcal{L}, I)$ is a projective Hjelmslev plane of level 2 $(\mathbf{PH_2})$ if it satisfies

- H1 $I_x \cap I_y$ is non-empty
- H2 \exists canonical epimorphism $\phi: PH_2 \to \pi$, where π is a projective plane, such that
 - $\phi(x) = \phi(y) \Leftrightarrow |I_x \cap I_y| > 1$
 - $\phi^{-1}(p)$, endowed with induced lines, is an affine plane

PH₂ is a projective remoteness plane:

$$p \leftrightarrow q \Leftrightarrow \phi(p) \neq \phi(q) \Leftrightarrow |I_p \cap I_q| = 1 \text{ (R2), (PR1)}$$
$$p \leftrightarrow L \Leftrightarrow \phi(p) \notin \phi(L) \text{ (R1), (PR2), (PR3)}$$

Recall

points
$$(x, y, z) \mapsto (x\bar{x}, y\bar{y}, z\bar{z}; y\bar{z}, z\bar{x}, x\bar{y}) \in PG(8, K)$$

a line $(0, y, z) \mapsto (0, y\bar{y}, z\bar{z}; y\bar{z}, 0, 0)$, a cone over
$$X_1X_2 = Z_3\bar{Z}_3 = X_3^2$$

Recall

points
$$(x, y, z) \mapsto (x\bar{x}, y\bar{y}, z\bar{z}; y\bar{z}, z\bar{x}, x\bar{y}) \in PG(8, K)$$

a line $(0, y, z) \mapsto (0, y\bar{y}, z\bar{z}; y\bar{z}, 0, 0)$, a cone over

$$X_1 X_2 = Z_3 \bar{Z}_3 = X_3^2$$

Put
$$x = x_0 + x_1t$$
, $y = y_0 + y_1t$ and $z = z_0 + z_1t$ with $t^2 = 0$.

Recall

points
$$(x, y, z) \mapsto (x\bar{x}, y\bar{y}, z\bar{z}; y\bar{z}, z\bar{x}, x\bar{y}) \in PG(8, K)$$

a line $(0, y, z) \mapsto (0, y\bar{y}, z\bar{z}; y\bar{z}, 0, 0)$, a cone over

$$X_1 X_2 = Z_3 \bar{Z}_3 = X_3^2$$

Put $x = x_0 + x_1t$, $y = y_0 + y_1t$ and $z = z_0 + z_1t$ with $t^2 = 0$. Consider the mapping $\rho: a + bt \rightarrow a$.

Recall

points
$$(x, y, z) \mapsto (x\bar{x}, y\bar{y}, z\bar{z}; y\bar{z}, z\bar{x}, x\bar{y}) \in PG(8, K)$$

a line $(0, y, z) \mapsto (0, y\bar{y}, z\bar{z}; y\bar{z}, 0, 0)$, a cone over

$$X_1 X_2 = Z_3 \bar{Z}_3 = X_3^2$$

Put $x = x_0 + x_1t$, $y = y_0 + y_1t$ and $z = z_0 + z_1t$ with $t^2 = 0$. Consider the mapping $\rho: a + bt \rightarrow a$. We obtain

points
$$(x, y, z) \mapsto (x_0^2, y_0^2, z_0^2; y_0 z_0, z_0 x_0, x_0 y_0) \in PG(5, K)$$

a line $(0, y, z) \mapsto (0, y_0^2, z_0^2; y_0 z_0, 0, 0)$, a quadric in $PG(2, K)$:

$$X_1X_2=X_3^2$$

Recall

points
$$(x, y, z) \mapsto (x\bar{x}, y\bar{y}, z\bar{z}; y\bar{z}, z\bar{x}, x\bar{y}) \in PG(8, K)$$

a line $(0, y, z) \mapsto (0, y\bar{y}, z\bar{z}; y\bar{z}, 0, 0)$, a cone over

$$X_1 X_2 = Z_3 \bar{Z}_3 = X_3^2$$

Put $x = x_0 + x_1t$, $y = y_0 + y_1t$ and $z = z_0 + z_1t$ with $t^2 = 0$. Consider the mapping $\rho: a + bt \rightarrow a$. We obtain

points
$$(x, y, z) \mapsto (x_0^2, y_0^2, z_0^2; y_0 z_0, z_0 x_0, x_0 y_0) \in PG(5, K)$$

a line $(0, y, z) \mapsto (0, y_0^2, z_0^2; y_0 z_0, 0, 0)$, a quadric in PG(2, K):

$$X_1X_2=X_3^2$$

This is the quadratic Veronesean, isomorphic to PG(2, K).

 $Q^{[1]}(2,K)$

 $\mathsf{X}_0\mathsf{X}_1\!=\!\,\mathbf{n}(\mathsf{X}_2)$

Witt index 1 ...

... maximal Witt index

lf

X is a spanning point set of PG(3N + 2, K) (N \in {1, 2, 4, 8, 2 $^{\ell}$ })

lf

- X is a spanning point set of PG(3N + 2, K) (N \in {1,2,4,8,2 $^{\ell}$ })
- \equiv is a family of (N+1)-spaces ξ such that $\xi \cap \bar{X}$ is a possibly degenerate quadric occurring at the N^{th} level.

lf

- X is a spanning point set of PG(3N + 2, K) ($N \in \{1, 2, 4, 8, 2^{\ell}\}$)
- \equiv is a family of (N+1)-spaces ξ such that $\xi \cap \bar{X}$ is a possibly degenerate quadric occurring at the N^{th} level.

and (X, Ξ) satisfies the generalized MM axioms then (X, Ξ) is called a **generalized MM-set**.

lf

- X is a spanning point set of PG(3N + 2, K) (N \in {1,2,4,8,2 $^{\ell}$ })
- \equiv is a family of (N+1)-spaces ξ such that $\xi \cap \bar{X}$ is a possibly degenerate quadric occurring at the N^{th} level.

and (X, Ξ) satisfies the generalized MM axioms then (X, Ξ) is called a **generalized MM-set**.

Conjecture

These are *all* projective remoteness planes over quadratic alternative algebras.

lf

- X is a spanning point set of PG(3N + 2, K) (N \in {1, 2, 4, 8, 2 $^{\ell}$ })
- \equiv is a family of (N+1)-spaces ξ such that $\xi \cap \bar{X}$ is a possibly degenerate quadric occurring at the N^{th} level.

and (X, Ξ) satisfies the generalized MM axioms then (X, Ξ) is called a **generalized MM-set**.

Conjecture

These are *all* projective remoteness planes over quadratic alternative algebras.

The corresponding (generalized) Veronesean varieties are the *only* (generalized) MM-sets.

Thank you!