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Alternative Cayley-Dickson algebras

If we apply the CD-process on a field, then we obtain

e (split) quadratic extension
e (split) quaternions

e (split) octonions
Related are the Veronese varieties and the Severi varieties.

Goal

1 extend CD-process by allowing degenerate versions
— 9 extra alternative CD-algebras

2 define generalized Veronese varieties associated to them
— projective remoteness planes
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The Cayley-Dickson Doubling Process

e a (commutative) field K
e a (trival) involution jx :K - K:a—2=a
e an element ¢ in Ko

— algebra over K:
L=CD(K,{) =K xK

+1L (a,b) +L (¢c,d) = (a+ b,c+d)
L (a,b) - (¢,d) = (ac + (db,ad + cb)
Ju:L—=L:(a,b)— (3,—b)

Successive applications yield alternative algebras
L = CD(K,(),¢ €K (involution non-trivial)
H = CD(L,¢'),¢" €L (no longer commutative)
O = CD(H,¢"),¢" e H (no longer associative)
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Properties of CD(K, ()

Primitive element
L = CD(K,¢) = K@ sK with s = (0,1), s> = ¢

Norm form
nk + K—K:am ajk(a) = aa
n. : L—K:(a,b)— nk(a) — Cnk(b)

n(ab) = n(a)n(b), n(1) =1
a invertible < n(a) #0

e nis a quadratic form
e n(ka) = k?n(a), k € K
e n(a,b) :=n(a+ b) — n(a) — n(b) is a bilinear form

e trace: t(a)=n(l,a)=a+2a

Quadratic algebra
Vx € CD(K,¢) : x® + t(x)x + n(x) = 0
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Possibilities for ¢

Recall n((a, b)) = n(a) — ¢n(b). If (a, b) # (0,0) then

n((a,b)) =0 < ¢=n(ab ') or a=0and (=0

e ¢ ¢ nk(K) — L is a division CD-algebra
e ( € nk(K)o — L is a split CD-algebra
e ( =0 — L is a degenerate CD-algebra

Example CD(R, ()

¢ elements CD-algebra n(a, b)
—1 a+ibwithi2=-1 C a> + b?
1  a+jbwithj?=1 a’ — b°

a+tbwith 2 =0 DN(R):=R[t]/(t?) a°

\5)



Possibilities for ¢

Recall n((a, b)) = n(a) — ¢n(b). If (a, b) # (0,0) then

n((a,b)) =0 < ¢=n(ab ') or a=0and (=0

e ¢ ¢ nk(K) — L is a division CD-algebra
e ( € nk(K)o — L is a split CD-algebra
e ( =0 — L is a degenerate CD-algebra

In general CD(K, (), m a non-square, karK # 2

elements CD-algebra n(a, b)
a+ibwithi?=m L=K[x]/(x>+1) a>+ mb?
a+jbwithj2=1 L' =K[x]/(x>—-1) (a+b)(a—b)
a+tbwith 2 =0 DN(K) := K[t]/(t?)

Ol—\SJ\,

L
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(a,b) = (a+ b,a—b)

J(%,y) = (y,x) since j(a,b) = (a,—b) -+ (a— b, a+ b)
n'(x,y) = xy since n(a, b) = n’(a+ b,a — b) = a*> — b?

— easier representation for CD(K, 1)
— each element in K is a norm

CD(K,1) = DN(K) (if karK = 2)
(a,b) — (a+ b, b)

(a,b) - (c,d) = (ac + db, ad + cb)
(a+ b,b) ' (c+d,d) = (ac+ ad + bc + bd, ad + cb)

— the CD-process yields no split extension
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First step in CDDP in case karK = 2

Normal procedure
e ( ¢ O — inseparable extension with a trivial involution
e ( € O — the dual numbers with a trivial involution

Alternative procedure

K[s] = K[x]/(x?® + x + () with ¢ € K. Then s? = s+, so
(a,b) - (c,d) = (ac + (db, ad + cb + bd)
Jj(a,b)=(a+b,b) (s—s+1)
)

n(a, b) = a® + ab + (b?

without loss: x? 4+ x 4 ( is irreducible or { =0
— non-split and split extension with a non-trivial involution

Remarks
e The split one is isomorphic to K x K : (a, b) — (a+ b, a)
e If kar K # 2 then K[x]/(x?> + ax + b) = CD(K, v)
with v =u? — b and u = 3.
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X1Xo = 23725 = X2 + (X2
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Veronesean varieties

Representation of PG(2,L), L a non-split quadratic extension of
K

points (x,y,z) — (xx,yy,zz;yz,zx, xy), points of PG(8, K)
lines induced by the points: Q™ (3, K)

This is the Hermitian Veronesean HV(K) over K.

Conversely, if X is a spanning point set of PG(8,K) and =
contains 3-spaces £ in PG(8,K) s. th. N X is a Q~(3,K) and
(X, =) satisfies the Mazzocca-Melone axioms

Vx#AyeX:e=:x,yel

VG #H ez HN&LCX

T(x) = (Tx(&), Tx(&2)) with x € &N &

then it is isomorphic to PG(2,L) and proj. equivalent to HV(K).
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Generalized Veronesean varieties

Now let L be K x K or DN(K)
We have a ring geometry (P, L,7)

P ={(x,y,2)|(x,y,z)l =0 = ¢ =0}
with (x,y,z) = (x,y,z)¢if n(¢) =0

L ={la, b,c]|¢[a,b,c] =0= (=0}
with[a, b, c] = {[a, b, c] if n(¢) =0

7 ax+by+cz=0



Generalized Veronesean varieties

Now let L be K x K or DN(K)
We have a ring geometry (P, L,7)

Define o as follows



Generalized Veronesean varieties

Now let L be K x K or DN(K)
We have a ring geometry (P, L,7)

Define o as follows

P (x,y,z) — (xx,yy,zz;yZ,zX,xy), a point of PG(8, K)



Generalized Veronesean varieties

Now let L be K x K or DN(K)
We have a ring geometry (P, L,7)

Define o as follows
P (x,y,z) — (xx,yy,zz;yZ,zX,xy), a point of PG(8, K)
L induced by the points on it: Q" (3,K) or pQ(2,K) \{p}



Generalized Veronesean varieties

Now let L be K x K or DN(K)
We have a ring geometry (P, L,7)

Define o as follows
P (x,y,z) — (xx,yy,zz;yZ,zX,xy), a point of PG(8, K)
L induced by the points on it: Q" (3,K) or pQ(2,K) \{p}

e.g.: x=0~ (0,yy,2Z,y2,0,0), put Z3 = X3 + sXy:

XKy = 222, = B =X (€=1) = Q'(B.K)
X3 (€=0) = pQ(2,K)

All points given by these equations are contained in o(P),
except for p, which is called the radical QF of the quadric Q.
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Generalized Veronesean varieties

Now let L be K x K or DN(K)
We have a ring geometry (P, L,7)

Define o as follows
P (x,y,z) — (xx,yy,zz;yZ,zX,xy), a point of PG(8, K)
L induced by the points on it: Q" (3,K) or pQ(2,K) \{p}

Put X =o(P), =={(o(L))|LeL}.
For L € L, the radical o(L)R ¢ X = X := X U{a(L)R|L € L}.

Vx#yeX:dEe=:x,yel
The lines [1,0,0] and [0, 1, 0] intersect in (0,0, 1)
The lines [1,0,0] and [1, t, 0] intersect in (0, at,1) with a € K
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Now let L be K x K or DN(K)
We have a ring geometry (P, L,7)

Define o as follows
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Now let L be K x K or DN(K)
We have a ring geometry (P, L,7)

Define o as follows
P (x,y,z) — (xx,yy,zz;yZ,zX,xy), a point of PG(8, K)
L induced by the points on it: Q" (3,K) or pQ(2,K) \{p}

Put X =0(P), =={(o(l))|LeL}.
For L € L, the radical o(L)R ¢ X = X := X U{a(L)R|L € L}.

Vx#yeX:dEe=:x,yel

Va#£LeZ N CXand &N #¢=aNENX #¢
T(x) = (Tx(£1), Tx(&2)) with x =& N &



Conversely

If X is a spanning point set of PG(8,K) and = contains 3-spaces &
in PG(8,K) s. th. N X isa @7 (3,K) and (X, =) satisfies the
generalized MM axioms then it is isomorphic to the Segre
Variety over K and, moreover, it is projectively equivalent to

o((P,L,1)).
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Conversely

If X is a spanning point set of PG(8,K) and = contains 3-spaces &
in PG(8,K) s. th. N X isa @7 (3,K) and (X, =) satisfies the
generalized MM axioms then it is isomorphic to the Segre
Variety over K and, moreover, it is projectively equivalent to

o((P,L,1)).

If X is a spanning point set of PG(8,K) and = contains 3-spaces &
in PG(8,K) s. th. EN X is a pQ(2,K) \{p} and (X, =) satisfies the
generalized MM axioms then it is isomorphic to the projective
Hjelmslev plane of level 2 over DN(K) and moreover it is
projectively equivalent to o((P, £, T)).

This time, the corresponding geometries are no projective planes,
but projective remoteness planes.
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Projective remoteness planes

An incidence geometry (P, L, ]) together with a symmetric relation
R on P U L is called a remoteness plane if

(R1) peLALIg=p<+gq

(R2) perg=p#q

and their duals hold.

Trivial example

projective planes: p<>qg< p#q, p+< L pé L
(PR1) p+>g=3LeL:pgel

S CPisregular if p<+ gand p < gr Vp,q,r € S distinct
(PR2) p <« q, r > pg = regular 3-set
(PR3) S with |S| < 3 contained in regular 4-set

If these axioms and their duals holds, then we have a projective
remoteness plane.
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The Segre Variety

PG(2,K) x PG(2,K) is a projective remoteness plane

(p1,p2) <> (q1,q2) if p1 # q1 and p2 # 2
(p1,p2) <> (L1, L2) if p1 & Ly and p2 ¢ Lo

Moreover, it is the generalized Veronesean for K x K

points ((u, v, w),(x,y,z)) — (ux, uy, uz, vx, vy, vz, wx, wy, wz),
a point of PG(8, K)
lines induced by the points
e.g.: ((0,v,w),(0,y,2)) — (0,0,0,0, vy, vz,0, wy, wz),
a quadric in PG(3,R):

X4X8 = X5X7 — Q+(3, K)
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Projective Hjelmslev plane of level 2

An incidence geometry (P, L, 1) is a projective Hjelmslev plane of
level 2 (PHy) if it satisfies

H1 I, N1, is non-empty
H2 3 canonical epimorphism ¢ : PHy — 7, where 7 is a projective
plane, such that

o o(x)=o(y) & |k >1
e ¢~ 1(p), endowed with induced lines, is an affine plane

PH> is a projective remoteness plane:
prqeo(p)#9(q) & [lhbNlg =1
p < Lo o(p) ¢ o(L)
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Vero(CD(K, 0)) is a PHa(DN(K))

Recall
points (x,y,z) — (xXx,yy,zz;yz,zx,xy) € PG(8,K)
a line (0,y,z)— (0,yy,zz;yz,0,0), a cone over

X1 Xo = 2373 = X3

Put x = xo + x1t, ¥y = yo + y1t and z = zg + zi t with t? = 0.
Consider the mapping p : a+ bt — a. We obtain

points (x,y,2) — (55,5, 25 YoZ0, Z0X0, XoYo0) € PG(5,K)
aline (0,y,2) ~ (0,y2,23; ¥020,0,0), a quadric in PG(2, K):

X1 Xo = X3

This is the quadratic Veronesean, isomorphic to PG(2, K).
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I\

Q7(3,K)  K'xQM(2K) Q3K

VAR AN

Q(5,K)  K2xQP(3,K) K2xQW(2,K) KExQO(3K)  QO5,K)
‘ X0X1 = n(XZ,X3,X4, XS) ‘
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Q(2,K)

v

Q7(3,K)  K'xQ

v

QU(5,K)  K2xQP(3,K) KxQ

aavd

QPl9,K) K*xQ¥(5,K) K°xQ(3,K) K'xQ

\

M(2,K)  QP(E3,K)

NN

M(2,K) K2xQ(3,K)  Q5,K)

NN

[M(2,K) Ko x QI(3,K) K*xQI)5,K) Q9,K)

XOXI = n(X21X31X4: X51X6:X71 Xs;xg)

Wittindex 1 ...

... maximal Witt index



(Generalized) Mazzocca-Melone Sets

If
X is a spanning point set of PG(3N +2,K) (N € {1,2,4,8,2/})



X

(Generalized) Mazzocca-Melone Sets

is a spanning point set of PG(3N + 2,K) (N € {1,2,4,8,2})

is a family of (N 4 1)-spaces ¢ such that £ N X is a possibly
degenerate quadric occurring at the N level.



(Generalized) Mazzocca-Melone Sets

X is a spanning point set of PG(3N +2,K) (N € {1,2,4,8,2/})

is a family of (N 4 1)-spaces ¢ such that £ N X is a possibly
degenerate quadric occurring at the N level.

and (X, =) satisfies the generalized MM axioms then (X, Z) is
called a generalized MM-set.



(Generalized) Mazzocca-Melone Sets

X is a spanning point set of PG(3N +2,K) (N € {1,2,4,8,2/})

is a family of (N 4 1)-spaces ¢ such that £ N X is a possibly
degenerate quadric occurring at the N level.

and (X, =) satisfies the generalized MM axioms then (X, Z) is
called a generalized MM-set.

Conjecture
These are all projective remoteness planes over quadratic
alternative algebras.



(Generalized) Mazzocca-Melone Sets

X is a spanning point set of PG(3N +2,K) (N € {1,2,4,8,2/})

is a family of (N 4 1)-spaces ¢ such that £ N X is a possibly
degenerate quadric occurring at the N level.

and (X, =) satisfies the generalized MM axioms then (X, Z) is
called a generalized MM-set.

Conjecture
These are all projective remoteness planes over quadratic
alternative algebras.

The corresponding (generalized) Veronesean varieties are the only
(generalized) MM-sets.
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