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I. Buildings: a definition



 
A building is a pair Δ = ( 𝒞 , 𝛿 ) 

1. BUILDINGS, A DEFINITION

DEFINITION
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(1)    𝛿(c,d) = 1W ⇔ c = d

Ps(d) = {d} ∪ {c ∊ 𝒞 : 𝛿(c,d) = s}

s-panel of d

(2+3) if 𝛿(e,d) = w and 𝛿(d,c) = s then 𝛿(e,c) ∊ {w , ws}

there is a unique chamber in Ps(d) closest to e 

and at least one further away “panels are gated”

(4)    thickness: each s-panel contains ≥3 chambers.  

If instead each s-panel 2 chambers: “apartment"

‣ The rank of Δ is |S|. 

‣ Δ is called spherical if W is finite.

set distance function 𝛿 : 𝒞 ⨉ 𝒞  → W
Coxeter group, say with generator set S

(w.r.t. length function on (W,S))

such that:

consequences of (2+3): 

‣ each s-panel contains ≥2 chambers 

‣ if c, c’ in Ps(d) then 𝛿(c,c’) = s if c≠c’ 

𝛿(c,d) = s so 𝛿(c,c’) ∊ {s , s2=1}, ok by (1)

w / ws c
se

w 
d



 
A building is a pair Δ = ( 𝒞 , 𝛿 ) where 𝒞 is a set and 𝛿: 𝒞 ⨉ 𝒞  → W is a distance function, 

with gated s-panels, rank n = |S|, spherical if W finite.

SPHERICAL BUILDINGS
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The thick irreducible spherical buildings of rank at least 3 have the following Coxeter diagrams:

F4An
1 2 3 4 n-1 n

Bn

Cn

1 2 3 4 n-1 n

1 2 3 4 n-1 n

1 2 3 4 n-2 n

n-1
Dn

E6

2

1 3 4 5 6

E7

2

1 3 4 5 6 7

E8

2

1 3 4 5 6 7 8
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EXAMPLE OF A THIN BUILDING OF TYPE A3
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𝒞 := {permutations of {1,2,3,4}}

with 𝛿(c,d) = w ⇔ c = w(d)

s-panel =  edge with color s 

all residues are gated

B

A

G

Take W = S4, the symmetric group on {1,2,3,4} 

and S = {s1, s2, s3} with s1=(12), s2=(23) and s3=(34)

A3

s1 s2 s3

3 3

expression in W is reduced e.g. s3s1s2s1

path in graph of this type is 
a shortest path

e.g. from A to B

lengths correspond e.g. 4

(so (1) is ok)

{s1,s2}-residue : red-purple hexagons

{s2,s3}-residue : purple-orange hexagons

{s1,s3}-residue : red-orange squares

= s-residue

1. BUILDINGS, A DEFINITION



II. Point-line geometries associated to buildings
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82. POINT-LINE GEOMETRIES ASSOCIATED TO BUILDINGS

Take W = S4, the symmetric group on {1,2,3,4} 

and S = {s1, s2, s3} with s1=(12) s2=(23) and s3=(34)

Define the following point-line geometry

points: {s2, s3}-residues, so purple-orange hex.

3

1
2

4

lines: s1-panels, so red edges
23

12

24

34

14

point and line are incident if they share a chamber

aba b

13

A3

s1 s2 s3

3 3

two lines incident with the same point set are equal

➜ we can also take {s1,s3}-residue as lines
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EXAMPLE
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3

1
2

4

This is a (thin) projective space of dimension 3: 

- each two points determine a unique line 
- two intersecting lines determine a projective plane

2. POINT-LINE GEOMETRIES ASSOCIATED TO BUILDINGS

From this back to the chamber system: 

a chamber is a maximal flag: {point, line, plane} 
with point inc line inc plane

Take W = S4, the symmetric group on {1,2,3,4} 

and S = {s1, s2, s3} with s1=(12) s2=(23) and s3=(34)

Define the following point-line geometry

points: {s2, s3}-residues, so purple-orange hex.

lines: s1-panels, so red edges

point and line are incident if they share a chamber

aba b

A3

s1 s2 s3

3 3

two lines incident with the same point set are equal

➜ we can also take {s1,s3}-residue as lines
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2. POINT-LINE GEOMETRIES ASSOCIATED TO BUILDINGS

ab cd iff |{a,b,c,d}|=3

Take W = S4, the symmetric group on {1,2,3,4} 

and S = {s1, s2, s3} with s1=(12) s2=(23) and s3=(34)

A3

s1 s2 s3

3 3

Define the following point-line geometry

point and line are incident if they share a chamber 

points: {s1, s3}-residues, so red-orange squares

lines: s2-panels, so purple edges



EXAMPLE
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23 13
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This is a (thin) polar space of rank 3: 1-or-all axiom

2. POINT-LINE GEOMETRIES ASSOCIATED TO BUILDINGS

From this back to chamber system: 

a chamber is a maximal flag: {point, line} 
with point inc line 

ab cd iff |{a,b,c,d}|=3

Take W = S4, the symmetric group on {1,2,3,4} 

and S = {s1, s2, s3} with s1=(12) s2=(23) and s3=(34)

A3

s1 s2 s3

3 3

Define the following point-line geometry

point and line are incident if they share a chamber 

points: {s1, s3}-residues, so red-orange squares

lines: s2-panels, so purple edges
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GRASSMANNIANS OF SPHERICAL BUILDINGS 

122. POINT-LINE GEOMETRIES ASSOCIATED TO BUILDINGS

Take any thick irreducible spherical building Δ of rank n≥3 of type Xn, let k be any type (k ∊ S).

 Projective spaces

An,n
1 2 3 4 n-1 n

An,1
1 2 3 4 n-1 n

Definition 
The k-Grassmannian Xn,k of Δ is the following point-line geometry :  

➜ the points are the residues of cotype k 

➜ the lines are the k-panels 

➜ a point and a line are incident if they share a chamber

 Polar spaces

Bn,1

Cn,1

1 2 3 4 n-1 n

1 2 3 4 n-1 n

1 2 3 4 n-2 n

n-1
Dn,1

A3,2=D3,1
1 2 3 1

2

3

F4,k

E6,k

2

1 3 4 5 6

E7,k

2

1 3 4 5 6 7

E8,k

2

1 3 4 5 6 7 8

Bn,k

Cn,k

1 2 3 4 n-1 n

1 2 3 4 n-1 n

1 2 3 4 n-2 n

n-1
Dn,k

An,k
1 2 3 4 n-1 n

 Parapolar spaces

1<k<n

k>1

k>1

k>1



III. Parapolar spaces
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Definition 
A polar space is a point-line geometry such that 

 • 1-or-all axiom 

• 3 non-degeneracy axioms 
(each line ≥ 3 points, empty radical, finite rank) 

The rank is r if r-1 = dim (maximal singular subspace)

Examples:  
isotropic vectors of a quadratic/hermitian form

Definition 
A parapolar space is a connected point-line geometry 
such that 

 (i) if p,q are points at distance 2:  
- convex closure of {p,q} is a polar space (a symp) 
 or 
- there is a unique path between them

type F4,1

Thin “examples”: 2 points per line 
yet they have most characteristic features

symp

special 
pair

distance 3

thin polar space of rank 3

(ii) each line is contained in a symp

(iii) no symp contains all points (not a polar space itself)



D4,1(K)D5,1(K)

PARAPOLAR SPACES 15

Parapolar space:  
connected point-line geometry 

 

• points at dist. 2:  

• each line ⊂ symp 

• not polar

symp

special
or

Prominent examples: k-Grassmannian of spherical buildings

• read off the symps: maximal polar subdiagram with points

E6,2(K)
1 3 4 5 6

2

F4,k

E6,k

2

1 3 4 5 6

E7,k

2

1 3 4 5 6 7

E8,k

2

1 3 4 5 6 7 8

Bn,k

Cn,k

1 2 3 4 n-1 n

1 2 3 4 n-1 n

1 2 3 4 n-2 n

n-1
Dn,k

An,k
1 2 3 4 n-1 n

Example: direct product of two projective spaces  

abstractly: An,1(*) ⨉ Am,1(*) 

if embeddable in projective space: Segre variety Sm,n(K)

Some other examples: direct products 

S1,2(F2)
symp: D2,1

• remark: in general, symps can be of different kinds and ranks

1 3 4 5 6

2
E6,1(K)



IV. Partial classification results of parapolar spaces
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No classification of parapolar spaces in general, despite 

- so many building-related examples 

- projective spaces and polar spaces of rank ≥3 being classified

Aim: find additional properties such that there are 

- many parapolar spaces associated to (exceptional) spherical buildings satisfying them 

- not too many other parapolar spaces satisfy them

Several such results by a.o. Buekenhout, Cohen, Cooperstein, Kasikova, Shult — 20 years time nothing — 
ADS, Van Maldeghem, Victoor, Schillewaert

Example of such a property: 

“The intersection of two symps is never empty.” 

Theorem (ADS, HVM, MV, JS; 2020+): 

A parapolar space in which each two symps have a non-empty intersection, and in which 

there are no special pairs IF there is a symp of rank 2, is one of the following:

A1,1(*) ⨉ A2,1(*) A2,1(*) ⨉ A2,1(*) A4,2(L) A5,2(L) E6,1(K) 
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A more general such property: 

“The intersection of two symps never has dimension k.” 

where k is an integer with k≥-1 and such that each symp contains k-spaces as singular subspaces.

Remark: the intersection of two symps is always a (projective) singular subspace (possibly empty)

(i) if p,q are points at distance 2:  
- convex closure of {p,q} is a polar space (a symp) 
 or 
- there is a unique path between them

Theorem (ADS, HVM, MV, JS; 2020+): 

A parapolar space in which each two symps have a non-empty intersection, and in which 

there are no special pairs if there is a symp of rank 2, is one of the following:

➜ the intersection of two symps has a well-defined dimension (which is -1 if it is empty)
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Theorem (ADS, HVM, MV, JS; 2020): The parapolar spaces such that 

‣ two symps never intersect in exactly a k-space 

‣  each symp contains k-spaces 

‣ there are no special pairs IF there is a symp of rank 2 (only needed when k < 2) 

are classified. If each symp contains (k+2)-spaces, and if locally connected, then:

k=-1 k=0 k=1 k=2 k=3 k=4

E8,8(K) E6,1(K) 

E7,7(K) 

E7,7(K) 

E8,8(K) 

A1,1(*) ⨉ A2,1(*)

A2,1(*) ⨉ A2,1(*)

A5,2(L)

A4,2(L) 

E6,1(K) 

A4,2(L) 

A5,3(L) 

D6,6(K) 

D5,5(K) 

E7,7(K) 

D5,5(K) 

E6,2(K) 

E7,1(K) 

E6,1(K) 

E8,8(K) 
Surprisingly, a large part of the 

Freudenthal-Tits magic square turns up! 
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Thanks!


