Buildings — What's The Point?
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DEFINITION

set distance functioné: € X% — W
A buildingisa pairA= (%, 6) Coxeter group, say with generator set S

such that:

s-panel of d

(1) 6(c,d)=1we c=d

(2+3) if 6(e,d) = w and 6(d,c) = s then 6(e,c) e {w, ws}
there is a unique chamber in Ps(d) closest to e Ps(d) ={dju{ce % :4(c,d) =sj

and at least one further away “panels are gated”

(w.r.t. length function on (W,S))

(4) thickness: each s-panel contains >3 chambers. consequences of (2+3):

If instead each s-panel 2 chambers: “apartment” > each s-panel contains >2 chambers

ﬁ—ﬁ > The rank of A is |S]. > if ¢, ¢’ in Ps(d) then 5(c,c’) = s if c=C’
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UNIVERSITY A is called spherical if W is finite. 5(c,d) = s 50 5(c,c’) < {s , s2=1}, ok by (1)




1. BUILDINGS, A DEFINITION

SPHERICAL BUILDINGS

A building isa pairA= (%, 6 ) where € isaset and 6: € X € — W is a distance function,

with gated s-panels, rank n = |S|, spherical if W finite.

The thick irreducible spherical buildings of rank at least 3 have the following Coxeter diagrams:

An o—XO0—10—10O-0—0 F4 oO—C=0—-30
1 2 3 4 n-1 n
Bn o—O0—0-0O0—0C==0 Es
1 2 3 4 n1 n T3 45 6
2
Cn O—O0—0O-0—0<C 7 1 3 4 5 6 7
1 2 3 4 np1 n 2
D O—O—O- . s
12 3 4 n2\", - s 5 2 5 3
— 2
I
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1. BUILDINGS, A DEFINITION

EXAMPLE OF ATHIN BUILDING OF TYPE Az

Take W =S4, the symmetric group on {1,2,3,4}

and S = {s1, S2, s3} with s1=(12), s2=(23) and s3=(34)

3 3
A3 @O
S1 S2 S3

€ .= {permutations of {1,2,3,4}}

with 6(c,d) =w & c=w(d) (so (1) is ok)

expression in W is reduced |e.g. 53515251

path in graph of this type is
a shortest path

lengths correspond

e.g. fromAtoB

e.g. 4

s-panel = edge with color s = s-residue
{s1,s2}-residue : red-purple hexagons

T {s2,s3}-residue : purple-orange hexagons
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{s1,s3}-residue : red-orange squares
all residues are gated

2341

4321

i

3412

4312

3241 4132

2431 3142

3214 1432

1342

1423

G)1324

1243
2134

1234
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EXAMPLE

Take W = S4, the symmetric group on {1,2,3,4}

4321

and S = {s1, s2, s3} with s1=(12) s2=(23) and s3=(34)

A @00

S1 S2 S3

Define the following point-line geometry

2341

/ lines: s1-panels, so red edges .
23

point and line are incident if they share a chamber

O points: {s2, s3}-residues, so purple-orange hex.

two lines incident with the same point set are equal

=>» we can also take {s1,s3}-residue as lines

LTI
o = O
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EXAMPLE

Take W = S4, the symmetric group on {1,2,3,4}

and S = {s1, s2, s3} with s1=(12) s2=(23) and s3=(34)

A @00

S1 S2 S3

Define the following point-line geometry

O points: {s2, s3}-residues, so purple-orange hex.

/ lines: s1-panels, so red edges

point and line are incident if they share a chamber

two lines incident with the same point set are equal

=>» we can also take {s1,s3}-residue as lines

GHENT
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From this back to the chamber system:

a chamber is a maximal 432t {point, line, plane}

4132

2341

This is a (thin)g
21 |
- each two points determinz3a unique line

- two intersecting lines determine a projective plane
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EXAMPLE

Take W =S4, the symmetric group on {1,2,3,4}

and S = {s1, s2, s3} with s1=(12) s2=(23) and s3=(34)

3 /2N 3
A3 ’@’

S1 S2 S3

Define the following point-line geometry

points: {s1, s3}-residues, so red-orange squares

/ lines: s2-panels, so purple edges

point and line are incident if they share a chamber

ab iff |{a,b,c,d}|=3

GHENT
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2431 3142 @
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EXAMPLE

Take W = S4, the symmetric group on {1,2,3,4}

and S = {s1, s2, s3} with s1=(12) s2=(23) and s3=(34)

3 /2N 3
A3 ’@’

S1 S2 S3

Define the following point-line geometry

points: {s1, s3}-residues, so red-orange squares

/ lines: s2-panels, so purple edges

point and line are incident if they share a chamber

ab iff |{a,b,c,d}|=3
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From this back to chamber system:

a chamber is a maximal flag: {point, line}

with point inc line 4321

1234
This is a (thin) polar space of rank 3: 1-or-all axiom
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GRASSMANNIANS OF SPHERICAL BUILDINGS

Take any thick irreducible spherical building A of rank n>3 of type Xi, let k be any type (k ¢ S).

Definition

The k-Grassmannian Xk of A is the following point-line geometry :

=» the points are the residues of cotype k

=» the lines are the k-panels

=» a point and a line are incident if they share a chamber

Projective spaces

A, @—o—o—o—o—o
2 3 4 n-1 n

A O—O—0—0--0+0)
1 2 3 4 n-1 n
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Polar spaces

/\n,k

1<k<n

|3n,k
k>1

(:n,k
k>1

[)n,k
k>1

Fak

Ee k

E7 k

Es k

Parapolar spaces

o—XO0—0—10O-0-—90
1 2 3 4 n-1 n

:: :: :: n-1
1 2 3 4 n-2 .
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Definition
A polar space is a point-line geometry such that

e 1-or-all axiom V V

e 3 non-degeneracy axioms
(each line > 3 points, empty radical, finite rank)

The rank is r if r-1 = dim (maximal singular subspace)

Examples:
isotropic vectors of a quadratic/hermitian form

Definition
A parapolar space is a connected point-line geometry
such that

(i) if p,q are points at distance 2:
- convex closure of {p,q} is a polar space (a symp)
or
- there is a unique path between them

(i) each line is contained in a symp

(111) no symp contains all points (not a polar space itself)

~

Thin “examples”: 2 points per line
yet they have most characteristic features

>

thin polar space of rank 3
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Parapolar space:

Prominent examples: k-Grassmannian of spherical buildings connected point-line geometry
e points at dist. 2: symp
e read off the symps: maximal polar subdiagram with points
e each line c symp or
special
( ) 4 )
@ e (O—OCO10 @O O1@ » not polar N
Eo1(K) : 3 4g 5 6 1 3 4 5 6
6,1 -
. 2 ODs(K) EoK) | 2(@)Dar(K) Ank O—0—0—0--0—0

Bhk O—0O—0O-0O0—0C=>0

e remark: in general, symps can be of different kinds and ranks
Chk O—O—0O-0O0—"0$=0

Some other examples: direct products t 2 3 4 nt 0
. o Dok O—O—O- "
Example: direct product of two projective spaces 12 3 4 n2N\H,
abstractly: An 1(*) X Am,1(%) @Xo_ —0—0O Fax  O—O=0—"0
if embeddable in projective space: Segre variety Sm,n(K) Ee O_O_i_o_o
1 3 4 5 6
2
E
S1,2(F2) nk 13 4 5 6 7
I Iz
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IV. Partial classification results of parapolar spaces
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No classification of parapolar spaces in general, despite
- so many building-related examples

- projective spaces and polar spaces of rank >3 being classified

Aim: find additional properties such that there are
" many parapolar spaces associated to (exceptional) spherical buildings satisfying them

- not too many other parapolar spaces satisfy them

Several such results by a.o. Buekenhout, Cohen, Cooperstein, Kasikova, Shult — 20 years time nothing —
ADS, Van Maldeghem, Victoor, Schillewaert

Example of such a property:

“The intersection of two symps is never empty.”

Theorem (ADS, HVM, MV, JS; 2020+):

A parapolar space in which each two symps have a non-empty intersection, and in which

there are IF there is a symp of rank 2, is one of the following:
GHENT
UNIVERSITY

A1,1(*) X A2,1(*) Az,1(*) X A2,1(%) A42(L) As 2(L) Es,1(K)
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Theorem (ADS, HVM, MV, JS; 2020+):
A parapolar space in which each two symps have a non-empty intersection, and in which

there are no special pairs if there is a symp of rank 2, is one of the following:
|f| ° @:g o-@-0—o o-@®-0—0-0 @—o—g—o—o
Remark: the intersection of two symps is always a (projective) singular subspace (possibly empty)

(i) if p,q are points at distance 2:
- convex closure of {p,q} is a polar space (a symp)

or
| : : o |
=» the intersection of two symps has a well-defined dimension (which is -1 if it is empty)
ﬂ more general such property: \
“The intersection of two symps never has dimension k.”
there k is an integer with k>-1 and such that each symp contains k-spaces as singular subspaces. J
=
I}
GHENT
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Theorem (ADS, HVM, MV, JS; 2020): The parapolar spaces such that

> two symps never intersect in exactly a k-space

> each symp contains k-spaces

> there are no special pairs IE there is a symp of rank 2 (only needed when k < 2)

are classified. If each symp contains (k+2)-spaces, and if locally connected, then:

Surprisingly, a large part of the

Freudenthal-Tits magic square turns up!
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Thanks!



