Buildings — What's The Point?

- I. Buildings: a definition
- II. Point-line geometries related to buildings
- III. Parapolar spaces
- IV. Partial classification results

I. Buildings: a definition

DEFINITION

set distance function $\delta: \mathscr{C} \times \mathscr{C} \to W$

A building is a pair $\Delta = (\mathscr{C}, \delta)$

Coxeter group, say with generator set S

such that:

- (1) $\delta(c,d) = 1_W \Leftrightarrow c = d$
- (2+3) if $\delta(e,d) = w$ and $\delta(d,c) = s$ then $\delta(e,c) \in \{w, ws\}$ there is a **unique** chamber in $P_s(d)$ closest to e and at least one further away

(w.r.t. length function on (W,S))

- The rank of Δ is |S|.
- $ightharpoonup \Delta$ is called **spherical** if W is finite.

$$P_s(d) = \{d\} \cup \{c \in \mathscr{C} : \delta(c,d) = s\}$$
"panels are gated"

consequences of (2+3):

- each s-panel contains ≥2 chambers
- if c, c' in $P_s(d)$ then $\delta(c,c') = s$ if $c \neq c'$

$$\delta(c,d) = s \text{ so } \delta(c,c') \in \{s, s^2=1\}, \text{ ok by } (1)$$

SPHERICAL BUILDINGS

A <u>building</u> is a pair $\Delta = (\mathscr{C}, \delta)$ where \mathscr{C} is a **set** and $\delta: \mathscr{C} \times \mathscr{C} \to W$ is a **distance function**,

with gated s-panels, rank n = |S|, spherical if W finite.

The thick irreducible spherical buildings of rank at least 3 have the following Coxeter diagrams:

$$F_4$$
 O O O

$$B_n \qquad O \longrightarrow O \longrightarrow O \longrightarrow O$$
1 2 3 4 n-1 n

EXAMPLE OF A THIN BUILDING OF TYPE A₃

Take W = S_4 , the symmetric group on $\{1,2,3,4\}$

and $S = \{s_1, s_2, s_3\}$ with $s_1=(12), s_2=(23)$ and $s_3=(34)$

 $\mathscr{C} := \{ permutations of \{1,2,3,4\} \}$

with $\delta(c,d) = w \Leftrightarrow c = w(d)$ (so (1) is ok)

expression in W is reduced	e.g. S ₃ S ₁ S ₂ S ₁
path in graph of this type is a shortest path	e.g. from A to B
lengths correspond	e.g. 4

s-panel = edge with color s = s-residue

{s₁,s₂}-residue : red-purple hexagons

{s₂,s₃}-residue: purple-orange hexagons

{s₁,s₃}-residue : red-orange squares

all residues are gated

I. Point-line geometries associated to buildings

Take W = S_4 , the symmetric group on $\{1,2,3,4\}$

and $S = \{s_1, s_2, s_3\}$ with $s_1=(12)$ $s_2=(23)$ and $s_3=(34)$

Define the following point-line geometry

point and line are <u>incident</u> if they share a chamber two lines incident with the same point set are equal

→ we can also take {s₁,s₃}-residue as lines

а

ab

Take W = S_4 , the symmetric group on $\{1,2,3,4\}$

and $S = \{s_1, s_2, s_3\}$ with $s_1=(12)$ $s_2=(23)$ and $s_3=(34)$

Define the following point-line geometry

points: {s₂, s₃}-residues, so purple-orange hex.

point and line are incident if they share a chamber two lines incident with the same point set are equal

→ we can also take {s₁,s₃}-residue as lines

From this back to the chamber system:

a **chamber** is a maximal flag: {point, line, plane} with point inc line inc 4312 3421 3412 4231 4132 3241 3142 4 24 4213 2431 2341 14₁₂₃ 3214 1432 31 23 2413 3124 1342 2314 1423 1324 This is a (thin) projective 12 ce of dimension 3: 2134

- each two points determines a unique line
- two intersecting lines determine a projective plane

Take W = S_4 , the symmetric group on $\{1,2,3,4\}$

and $S = \{s_1, s_2, s_3\}$ with $s_1=(12)$ $s_2=(23)$ and $s_3=(34)$

Define the following point-line geometry

points: {s₁, s₃}-residues, so red-orange squares

<u>lines</u>: s₂-panels, so purple edges

point and line are incident if they share a chamber

Take W = S_4 , the symmetric group on $\{1,2,3,4\}$

and $S = \{s_1, s_2, s_3\}$ with $s_1=(12)$ $s_2=(23)$ and $s_3=(34)$

Define the following point-line geometry

points: {s₁, s₃}-residues, so red-orange squares

<u>lines</u>: s₂-panels, so purple edges

point and line are incident if they share a chamber

From this back to chamber system:

This is a **(thin) polar space** of rank **3:** 1-or-all axiom

GRASSMANNIANS OF SPHERICAL BUILDINGS

Take any thick irreducible spherical building Δ of rank $n \ge 3$ of type X_n , let k be any type $(k \in S)$.

Definition

The **k-Grassmannian** $X_{n,k}$ of Δ is the following point-line geometry:

- → the points are the residues of cotype k
- → the lines are the k-panels
- → a point and a line are **incident** if they share a chamber

Projective spaces

IIIIIII GHENT UNIVERSITY

Polar spaces B_{n,1} 1 2 3 4 n-1 n C_{n,1} 1 2 3 4 n-1 n D_{n,1} D_{n,1} 1 2 3 1 3

Parapolar spaces A_{n,k} 1<k<n 1 2 3 4 n-1

III. Parapolar spaces

Definition

A polar space is a point-line geometry such that

• 1-or-all axiom

3 non-degeneracy axioms
 (each line ≥ 3 points, empty radical, finite <u>rank</u>)

The \underline{rank} is r if $r-1 = \dim (\underline{maximal singular subspace})$

Examples:

isotropic vectors of a quadratic/hermitian form

Definition

A <u>parapolar space</u> is a **connected point-line geometry** such that

- (i) if p,q are points at distance 2:
 - convex closure of {p,q} is a <u>polar space</u> (a *symp*)
 or
 - there is a unique path between them
- (ii) each line is contained in a symp
- (iii) no symp contains all points (not a polar space itself)

<u>Thin</u> "examples": 2 points per line yet they have most characteristic features

thin polar space of rank 3

Prominent examples: k-Grassmannian of spherical buildings

• read off the symps: maximal polar subdiagram with points

• remark: in general, symps can be of different kinds and ranks

Some other examples: direct products

Example: direct product of two projective spaces

abstractly: $A_{n,1}(*) \times A_{m,1}(*)$

if embeddable in projective space: Segre variety $S_{m,n}(K)$

Parapolar space: connected point-line geometry

• points at dist. 2:

or special

• each line \subset symp

not polar

IV. Partial classification results of parapolar spaces

No classification of parapolar spaces in general, despite

- so many building-related examples
- projective spaces and polar spaces of rank ≥3 being classified

Aim: find additional properties such that there are

- many parapolar spaces associated to (exceptional) spherical buildings satisfying them
- not too many other parapolar spaces satisfy them

Several such results by a.o. Buekenhout, Cohen, Cooperstein, Kasikova, Shult — 20 years time nothing — ADS, Van Maldeghem, Victoor, Schillewaert

Example of such a property:

"The intersection of two symps is never empty."

Theorem (ADS, HVM, MV, JS; 2020+):

A parapolar space in which each two symps have a non-empty intersection, and in which there are no special pairs <u>IF</u> there is a symp of rank 2, is one of the following:

$$A_{1,1}(^*) \times A_{2,1}(^*) A_{2,1}(^*) \times A_{2,1}(^*)$$

 $A_{4,2}(L)$

 $A_{5,2}(L)$

 $E_{6,1}(K)$

Theorem (ADS, HVM, MV, JS; 2020+):

A parapolar space in which each two symps have a non-empty intersection, and in which there are no special pairs <u>if</u> there is a symp of rank 2, is one of the following:

Remark: the intersection of two symps is always a (projective) singular subspace (possibly empty)

- (i) if p,q are points at distance 2:- convex closure of {p,q} is a polar space (a symp)
 - <u>or</u>
 - there is a unique path between them

→ the intersection of two symps has a well-defined dimension (which is -1 if it is empty)

A more general such property:

"The intersection of two symps never has dimension k."

where k is an integer with $k \ge -1$ and such that each symp contains k-spaces as singular subspaces.

Theorem (ADS, HVM, MV, JS; 2020): The parapolar spaces such that

- two symps never intersect in exactly a k-space
- each symp contains k-spaces
- there are no special pairs <u>IF</u> there is a symp of rank 2 (only needed when k < 2)

are classified. If each symp contains (k+2)-spaces, and if locally connected, then:

Thanks!

