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What is Synchronization?

w = ba3ba3b is a synchronizing
word for the automaton at the right.

Cerny Conjecture (1964)
A synchronizing automaton
with n states admits a synchronizing
word of length at most (n − 1)2.
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Synchronizing Permutation Groups

Let G ≤ Sym(Ω) be a non-trivial group.

Definition (Ben Steinberg)
G is synchronizing if 〈G, t〉 contains a constant map for all
t ∈ T (Ω)\Sym(Ω).

Definition (João Araújo - CAUL)
G is synchronizing if there is no non-trivial partition P and
subset S of Ω such that

Sg is a section of P, ∀g ∈ G.

Such a partition is said to be section-regular.
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Synchronization Tools
Group theory

Proposition (Neumann, 2009)
A section-regular partition
for a transitive group is uniform.

Proposition
A primitive group acting on p or
on 2p points is synchronizing,
where p is a prime.
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Theorem
Let H ≤ GL(2,p) irreducible. Let G = (Fp)2 o H ≤ Sym((Fp)2).

(1) If H preserves (Fp)2 = V1 ⊕ · · · ⊕ Vs ⇒ G is non-synchronizing.

Assume that (1) does not hold.
(2) If SL(2,p) ≤ H then G is synchronizing.

(3) If H ∼= Cr or H ∼= Cr o C2 then set m = (p2 − 1)/r .
(a) If m = 1⇒ G is synchronizing.
(b) If m > 1 and m | p + 1⇒ G is non-synchronizing.
(c) If m = 3 then G is non-synchronizing⇔ 3 | p + 1.

(4) If H ∼= Cr · C2 then set m = (p2 − 1)/r .
(a) If m = 2⇒ G is synchronizing.
(b) If m > 2 and m | p + 1⇒ G is non-synchronizing.
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Why Is This Interesting?

1. Synchronizing groups are primitive.

2. Which primitive groups are synchronizing?

3. The O’Nan-Scott Theorem divides the primitive
permutation groups into several classes.

4. Some of these types of groups are non-synchronizing
groups.

5. Affine groups constitute an interesting class.

Theorem (J. E. Pin, 1979)
The affine groups acting on 1-dimensional vector-spaces are
synchronizing.

What Happens in Dimension 2?
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Theorem
Let H ≤ GL(2,p) irreducible. Let G = (Fp)2 o H ≤ Sym((Fp)2).

(1) If H preserves (Fp)2 = V1 ⊕ · · · ⊕ Vs ⇒ G is non-synchronizing.

Assume that (1) does not hold.
(2) If SL(2,p) ≤ H then G is synchronizing.

(3) If H ∼= Cr or H ∼= Cr o C2 then set m = (p2 − 1)/r .
(a) If m = 1⇒ G is synchronizing.
(b) If m > 1 and m | p + 1⇒ G is non-synchronizing.
(c) If m = 3 then G is non-synchronizing⇔ 3 | p + 1.

(4) If H ∼= Cr · C2 then set m = (p2 − 1)/r .
(a) If m = 2⇒ G is synchronizing.
(b) If m > 2 and (m/2) | p + 1⇒ G is non-synchronizing.
(c) If m = 6 then G is non-synchronizing⇔ 3 | p + 1.
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Tools for the Proof
Group Theory

(1) If H preserves (Fp)
2 = V1 ⊕ · · · ⊕ Vs then G is

non-synchronizing.

A Cartesian decomposition of a set Ω is a set Σ = {P1, . . . ,P t}
of non-trivial partitions of Ω such that

|P1 ∩ · · · ∩ Pt | = 1 for all P1 ∈P1, . . . ,Pt ∈P t .

Lemma
A group which preserves a Cartesian
decomposition is non-synchronizing.

(2) If SL(2,p) ≤ H then G is synchronizing.
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Tools for the Proof
Graph Theory

(3), (4) If H ∼= Cr or H ∼= Cr o C2 or H ∼= Cr ·C2 then set
m = (p2 − 1)/r .

Theorem (Neumann, 2009)
Let G ≤ Sym(Ω) be a primitive group. Then

G is non-synchronizing⇔ There exists a non-trivial G-invariant
graph Γ = (Ω,E) such that ω(Γ) = χ(Γ) (suitable graph).

• The edge-set of G-invariant graphs is a union of G-orbits
on Ω{2}.

• The (F2
p o Cr )-invariant graphs with one orbit are

isomorphic to the generalized Paley graph Γp2,m.
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Generalized Paley Graphs?

Definition (Generalized Paley graph)
Let m ∈ N such that 2m | p2 − 1
and let Sp2,m = {δm : δ ∈ F∗p2}.

The generalized Paley graph of the field Fp2

with index m is the graph Γp2,m = (Fp2 ,E),
where {α, β} ∈ E ⇔ β − α ∈ Sp2,m

Theorem
The generalized Paley graph Γp2,m is suitable⇔ m | p + 1.

Theorem
Let Γ be an edge-transitive and vertex-transitive graph
with n vertices. If ω(Γ) = χ(Γ) = k then k − 1 | n/∂(Γ).
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Back to the Main Result

(3) If H ∼= Cr or H ∼= Cr o C2 then set m = (p2 − 1)/r .
(a) If m = 1⇒ G is synchronizing.

Γp2,1 is the complete graph⇒ G is 2-homogeneous.

(b) If m > 1 and m | p + 1⇒ G is non-synchronizing.
If m | p + 1⇒ Γp2,m is suitable.

(c) If m = 3 then G is non-synchronizing⇔ 3 | p + 1.
If 3 | p + 1⇒ Γp2,3 is suitable.
If 3 - p + 1⇒ Γp2,3 is not suitable. ⇒ Γ′p2,3 is not suitable.

(4) If H ∼= Cr · C2 then set m = (p2 − 1)/r .
(a) If m = 2⇒ G is synchronizing.

(b) If m > 2 and m | p + 1⇒ G is non-synchronizing.
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