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Abstract

The synchronization property emerged from finite state automata and
transformation semigroup theory. Synchronizing permutation groups were
introduced by Arnold and Steinberg to study the Černý Conjecture. In this
thesis we study the synchronization property in affine permutation groups
of low-dimensions. J.E. Pin proved that one-dimensional affine groups are
synchronizing. Hence our main results concern affine groups in dimension 2.

We used the characterization given by Neumann of synchronization using
graph theory, which relies on the study of the equality between the clique
number and the chromatic number of certain graphs invariant under the
actions of a group, called the suitability property. It turned out that some of
such graphs for two-dimensional affine groups have an interesting geometry
and are part of a widely studied class of graphs, the generalized Paley graphs.

Further, we used the properties of the theta-function defined by Lovász
connected to eigenvalues of a graph to obtain a necessary condition for the
suitability in edge-transitive and vertex-transitive graphs. In this thesis we
stated a criterion to decide if a generalized Paley graph is suitable. Then
we used the tools referred to above and we presented conditions for two-
dimensional affine groups to be synchronizing.
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Resumo

A propriedade de sincronização surgiu no contexto da teoria de autómatos
e semigrupos de transformação. Arnold and Steinberg definiram os grupos de
permutação sincronizantes com o objectivo de estudar a Conjectura de Černý
por outra perspectiva. Nesta tese estudamos a propriedade de sincronização
em grupos afins de pequenas dimensões. Dado que J.E. Pin provou que os
grupos afins de dimensão 1 são sempre sincronizantes, os resultados principais
desta tese aplicam-se a grupos afins bidimensionais.

Peter Neumann estudou os grupos sincronizantes usando teoria de grafos.
Esta caracterização consiste no estudo de grafos invariantes sobre a acção
de um grupo e em determinar se os seus números cromático e de clique
coincidem. Descobrimos que alguns grafos invariantes sobre a acção de grupos
afins bidimensionais tinham uma geometria simétrica e que faziam parte de
uma classe amplamente estudada de grafos, conhecidos como grafos de Paley
generalizados.

Como ferramenta extra, estudámos a função-teta, um número invariante
num grafo, que foi definida por Lovász. Esta função possui uma caracteri-
zação que utiliza os valores próprios da matriz de adjacência do grafo e que
nos permitiu concluir uma condição suficiente para a igualdade no número
cromático e de clique em grafos cujo grupo de automorfismos é transitivo nas
arestas e nos vértices.

Nesta tese estabelecemos um critério para a igualdade no número cromático
e de clique nos grafos de Paley generalizados e usámos esse resultado, bem
como as ferramentas anteriormente referidas, para obter uma caracterização
dos grupos afins bidimensionais sincronizantes.
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their help on the history of the synchronization property. I was very surprised
by their willingness to answer my emails and explain to me the origin and
motivation for the study of the synchronization property on group theory.
Their contribution was fundamental to position synchronization across this
area of Algebra.

I would like to thank my professors from the mathematics department of
Faculdade de Ciências, in particular, professor Owen Brisson and professor
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Notation

∂̄(Γ) Average degree of the vertices of the graph Γ

Ωk k-th Cartesian power of Ω

Sym(Ω) Symmetric group on a set Ω

Dn Dihedral group of order n

[G : H] Set of right cosets of H in G

αG Orbit of α under G

α(Γ) Independence number of the graph Γ

Alt(n) Alternating group on the set {1, . . . , n}

Aut(Γ) Automorphism group of the graph Γ

χ (Γ) Chromatic number of the graph Γ

F∗ Mutiplicative group of the field F

Fq Field with q elements

Γ′ Complement graph of the graph Γ

Γ(α) Neighborhood of the element α on the graph Γ

Γ∆ Undirected orbital graph associated with the undirected orbital ∆

Γq,m Generalized Paley graph of the field Fq with index m

GL(n, p) General linear group of dimension n over Fp
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Ω{k} k-pairwise distinct subsets from Ω

∂max(Γ) Maximum degree of a vertex in the graph Γ

ρ1 Right regular action

ρH Right coset action

Sym(n) Symmetric group on the set {1, . . . , n}

ϕ Frobenius automorphism

ϑ(Γ) Theta-function of the graph Γ

AΓ Adjacency matrix of the graph Γ

Gα Stabilizer of α under the elements of G

G∆ Setwise stabilizer of ∆ under G

G(∆) Pointwise stabilizer of ∆ under G
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Sq,m Set of m-powers of the non-zero elements of Fq
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Chapter 1

Introduction

Synchronization is a concept which involves several areas of mathematics,
such as automata theory, semigroup theory and group theory. This concept
was implicitly present in some work of mathematicians in the beginning of
the study of automata and semigroups. For instance in 1956 Ashby [Ash56]
presented a puzzle involving two ghostly noises, Singing and Laughter, in
a haunted mansion. Each of the noises can be either on or off and their
behavior depends on combinations of two possible actions, playing the piano
or burning the incense. The objective of the puzzle is to find a combination
of the actions which puts the haunted mansion into silence. The mansion
has 4 different states since there are 4 possible combinations of the ghostly
noises. Further, combining the actions of playing the piano and burning the
incense, we get 4 different combinations of the actions, which have different
effects on the haunted mansion.

A mathematical model of the enigma is displayed in Figure 1.1. States of
the mansion are encoded by the strings 00, 01, 10, 11 and the combinations
of the actions are encoded by the letters a, b, c, d. The string 00 encodes the
complete silence; that is, when both noises are off. The string 01 represents
the case when Laughter is on and Singing is off. The other two strings
correspond to similar situations. Analogously, the letters encode the possible
combinations of the actions. For instance the letter b stands for the action
that the piano is played but the incense is not burned.

The challenge of this puzzle, which is related to the synchronization con-
cept, is to find a combination of the actions of playing the piano and burning
the incense which puts the haunted mansion into silence, no matter what
ghostly noises are on. In Figure 1.1, the enigma is translated into the prob-
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Figure 1.1: The haunted mansion

lem of finding a sequence of letters that, when applied to every state of the
diagram, takes it to state 00. At that time Ashby solved this problem under
the assumption that both noises were on; that is, the haunted mansion was
in state 11. He realized that if he applied the sequence acb, then the diagram
switched from state 11 to state 00, where the haunted mansion was in silence.
However, it is easy to check that the sequence acb always puts the haunted
mansion in silence, no matter what ghostly noises are on. Thus the sequence
acb solves our enigma.

This puzzle posed by Ashby illustrates the synchronization concept in
a less mathematical context and shows also how it appeared in automata
theory.

1.1 Synchronization and Automata and Semi-

group Theory

Despite of the occurrence of synchronization in some mathematical problems,
this property was only defined in 1964 by Černý in his paper [Čer64] about
synchronizing automata.

A finite and deterministic automaton A is a triple (Q,A, δ), where Q is
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a finite set of states and A is a finite set of symbols, called letters, which
form the alphabet of the automaton. The third component is the transition
function δ : Q × A → Q, which applies the letters of the alphabet and
switches the states of the automaton. A word in an automaton is a sequence
of concatenated letters of its alphabet. The length of a word w is the number
of concatenated letters used to form it and the image of w is the subset of
states resulting from applying w to every state of the automaton. The size
of the image of a word is called the rank of the word. Given a state x and
a word w, the image of x under w is denoted by xw. Given an alphabet A,
the set of words built from the letters of A is denoted by A∗.

A word in an automaton is called a reset-word if when applied to every
state of the automaton it results in the same state. In other words, the rank
of a reset-word is one. An automaton is said to be synchronizing if it has a
reset-word. The example of the haunted mansion describes a synchronizing
automaton with a reset-word acb. However, let us consider a simpler example.

Figure 1.2: A synchronizing automata

In Figure 1.2, we consider the automaton A = (Q,A, δ), where we have
that Q = {0, 1, 2, 3}, A = {a, b} and the transition function acts on the states
as in the diagram. It is easy to verify that the word ba3ba3b is a reset-word
for A , since it switches every state of Q to the state 0.

Characterizing synchronizing automata and estimating the length of their
reset-words has been a challenge in automata theory. In 1964, Černý [Čer64]
conjectured that every synchronizing automaton with n states has a reset-
word with length smaller or equal to (n− 1)2. This conjecture remains open
after almost 50 years.
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Several approaches to the Černý Conjecture were made in the last decades.
In particular, for circular automata, this conjecture was solved. An automa-
ton A = (Q,A, δ), where Q has n states, is said to be circular if there exists
a word w ∈ A∗ such that {x0w

i : 1 ≤ i ≤ n} = Q, for all x0 ∈ Q. This
means that the word w acts as a permutation of the states of Q. In 1978,
J. E. Pin [Pin78] proved the Černý Conjecture for circular automata with a
prime number of states and about 20 years later, L. Dubuc generalized the
result for every circular automata [Dub98].

The set of transitions of a finite state deterministic automaton is a semi-
group under the operation of concatenation, called the transition semigroup.
In this terminology, an automaton is synchronizing if its transition semi-
group contains a constant map. The Černý Conjecture is equivalent to the
assertion that in the transition semigroup of a synchronizing automaton a
constant map can be written as a word of length at most (n− 1)2. Therefore
the study of the synchronization property can be approached from semigroup
theory.

1.2 Synchronization and Permutation

Groups

In the middle of the last decade, João Araújo and Benjamin Steinberg,
mathematicians interested in the study of group theory and semigroup theory,
suggested that the synchronization property could be studied in the context of
permutation groups. This observation gave rise to the study of synchronizing
permutation groups, a new field within permutation group theory.

The study of permutation groups arose from polynomial equations in the
end of 18th century. The problem of finding the solutions of such equations
was the motivation for the study of these groups by mathematicians such as
Lagrange, Ruffini or Galois. In 1854, Arthur Cayley, a British mathemati-
cian, proved that every group is isomorphic to a permutation group. This
result is known as Cayley’s Theorem [Cay54] and shows the importance of
permutation groups within group theory.

One of the mathematicians who suggested the study of the synchroniza-
tion property was Benjamin Steinberg. His motivation for this approach
stems from a paper by Y. Zalcstein [Zal71] about the representation the-
ory of semigroups. In this paper of 1971, Zalcstein attributes a result to
John Rhodes which states that a 2-transitive group is synchronizing, though
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Rhodes did not use this name in 1966, since it was not yet defined. Steinberg
thought that the study of synchronizing groups, as such groups form a class
between 2-transitive and primitive groups, could be a step towards attacking
the Černý Conjecture. Besides, Steinberg realized that he could generalize
Rhodes’ and Pin’s results.

At the same time, another mathematician, namely João Araújo got in-
terested in the study of groups with the synchronization property. In [LM94]
Levi and McFadden proved that 〈a, Sym(n)〉 \ Sym(n) is idempotent gener-
ated and regular. Later Levi in [Lev96] proved that the same result holds
for the semigroup 〈a,Alt(n)〉 \ Alt(n). These papers were the most important
references in João Araújo’s PhD thesis, and at a certain point they prompted
him to try to classify the groups G ≤ Sym(n) that satisfy the property
“for all a ∈ T (n)\Sym(n) we have that 〈a,G〉 \G is idempotent generated”;

or (1.1)

“for all a ∈ T (n) \ Sym(n) we have that 〈a,G〉 \G is regular”.

When James Mitchell told Araújo in September of 2003 that he was about
to leave for the US to work with Levi, Araújo stated the problems above and
claimed that he had a classification of the groups that satisfy these properties.
In addition he expressed his belief that classifying the groups that together
with any singular map generate a semigroup with given properties would be
the most important topic in the near future of semigroup theory.

While João Araújo was deeply involved in this line of research, The Center
of Algebra of The University of Lisbon organized a workshop in November
2002 where M. Volkov introduced synchronizing automata and Eppstein’s
results on them [Epp90]. This talk led João Araújo to think about the clas-
sification of groups that together with any singular map generate a constant
map.

Let G be a permutation group acting on a set Ω and let P be a partition
of Ω into a disjoint union of non-empty subsets. We define a section of P as
a subset S of Ω which contains precisely one element from each part of P.
If, given a partition P, there exists a section S such that

Sg is a section of P, for every g ∈ G, (1.2)

then P is called a G-regular partition or a section-regular partition. João
Araújo defined G ≤ Sym(Ω) to be a synchronizing permutation group if G is
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a non-trivial group and it does not admit G-regular partitions beyond the
trivial ones {Ω} and {{α} : α ∈ Ω}.

However, unlike the classification referred to in Equation (1.1), this one
totally defeated Araújo. He was convinced that this problem was much more
difficult than the others based on McFadden’s and Levi’s work, and hence
the idea was left dormant.

The ICALP 2005 (International Colloquium on Automata, Languages and
Programming) Conference held in Lisbon in July of 2005 had a satellite work-
shop on Semigroups and Automata organized by Vitor Fernandes, Gracinda
Gomes, Jean-Eric Pin, and Mikhail Volkov. There Steinberg presented a talk
based on his joint work with one of his Master’s students, Fredrick Arnold, in
which he stated his definition of synchronizing groups. He called a group syn-
chronizing if the semigroup generated by the group and by any non-invertible
transformation contained a constant map. It is not hard to show that Stein-
berg’s definition of synchronizing groups is equivalent to Araújo’s definition
given above. In the talk he proved that synchronizing groups were primitive
and asked if the converse was true. Araújo did not attend workshop, for he
was on that day taking Laci Márki, who participated in another meeting held
in Lisbon, to a trip on a sailboat showing him the river Tejo. The extended
abstract of Steinberg’s talk focused on representation theory proving that
QI-groups (groups whose deleted modules are irreducible over the rationals)
were synchronizing without actually stating the definition of synchronizing
groups. Hence the two protagonists of our story did not realize at that time
how closely their works were related. The results of Arnold and Steinberg
were published in [AS06].

In 2006 Araújo went to the Fountainsfest, a conference in honour of his
supervisor John Fountain, and there he presented the classification discussed
in Equation (1.1). Benjamin Steinberg was in the first row and in the end
he asked Araújo if he could classify the groups that together with any map
generate a constant. Araújo said “I already thought about that, but it is a
very difficult problem”. He recalled later (totally unaware of the paper by
Arnold and Steinberg[AS06]) that he thought that that idea had just occurred
to Steinberg during the talk. Nevertheless, if Steinberg found the idea worth
a question, maybe the problem was worth a new look.

By accident, in the night of the conference’s banquet Araújo sat next to
S. Donkin. As soon as Donkin introduced himself, Araújo commented: “that
is funny because I have a number of problems in group theory that I would
like to discuss with a group theorist”. “Try me” was Donkin’s simple reply.
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Araújo picked the toughest of the questions: “I need the classification of
the primitive permutation groups that admit a partition and a section, such
that every element in the orbit of the section, is a section for the original
partition”. Donkin said: “This seems a very interesting question. Write to
Peter Neumann in Oxford. I am sure he is going to be interested”.

After returning to Lisbon, Araújo wrote to Neumann who replied in less
than two hours showing indeed strong interest in the problem and asking
for more information on its origins. Then Neumann made some impressive
progress very quickly, and gave some talks on the topic to group theorists,
attracting the attention of Peter Cameron, Jan Saxl, Cheryl Preager, John
Bamberg, Csaba Schneider, and many other. The solutions for the problems
in Equation (1.1) were finally published in [AMS11].

Although being formally different, the definitions of synchronizing groups
given by Steinberg and Araújo are equivalent. This equivalence is proved
in [Neu09, Appendix]. We note that in this dissertation we will use the
definition suggested by João Araújo.

As noted before, Fredrick Arnold and Benjamin Steiberg proved in [AS06]
that synchronizing groups are primitive. Then they combined this result
with Pin’s [Pin78, Théorème 2] and concluded that a permutation group
with prime degree has the synchronization property if and only if it is primi-
tive. The main result of [AS06] states that QI-groups (that is, groups whose
deleted modules are irreducible over Q) are synchronizing.

Peter Cameron defined basic groups, as the ones that do not preserve a
power structure of the underlying set [Cam99, Section 4.3]. Peter Neumann
in [Neu09, Example 3.4] constructs a section-regular partition from a power
structure to prove that a certain group is non-synchronizing. Cameron gen-
eralized this example and prove that non-basic groups are not synchronizing.

Neumann proved that a section-regular partition for a transitive group
is uniform [Neu09, Theorem 2.1]; that is, all the parts have the same size.
Further, he showed that a non-trivial section-regular partition for a primitive
group has at least 2 parts and that every part has at least 2 elements. It
follows from this last result that a primitive group of degree double of a
prime is synchronizing. In [Neu09] Peter Neumann presented a series of
examples of primitive non-synchronizing groups and he gave a graph theoretic
characterization of synchronizing groups. This characterization, which is one
of the main tools of this dissertation, has been widely used to verify that
certain groups are synchronizing.

Araújo, Bentz and Cameron in a recent paper [ABC12] investigated the
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conjecture that a primitive group and an arbitrary transformation with non-
uniform kernel generate a constant map. They verify this conjecture in some
special cases.

1.3 Main Results

The focus of this dissertation is the study of the synchronization property in
low-dimensional affine groups. The result of J. E. Pin, namely Théorème 2
of [Pin78], implies that 1-dimensional affine groups are always synchronizing.
Hence the next step in this direction is to study 2-dimensional affine groups.

These groups are semidirect products of the group of translations by the
elements of a 2-dimensional vector space over a prime field Fp and a subgroup
of GL(2, p) (see the definition of these groups on Section 6.1). The main
results of this dissertation are the following.

Theorem 1. Suppose that H is an irreducible subgroup of GL(2, p), let
T denote the group of translations of the vector space V = (Fp)2 and let
G = T oH be the corresponding subgroup of Sym(V ).

(1) If H is an imprimitive linear group then G is non-synchronizing.

(2) Suppose that H is a primitive linear group.

(2.1) If SL(2, p) ≤ H then G is 2-transitive and hence synchronizing.

(2.2) Suppose that H is either isomorphic to a cyclic group Cr or to a
group of the form CroC2. Set m = (p2 − 1)/r. Then the following
hold.

(a) If m = 1 then G is 2-transitive and hence synchronizing.

(b) If m > 1 and m | p+ 1 then G is non-synchronizing.

(c) If m = 3 then G is non-synchronizing if and only if 3 | p+ 1.

(2.3) Suppose that H contains a cyclic normal subgroup Cr of index 2
but H is not a semidirect product Cr o C2. Set m = (p2 − 1)/r.
Then the following are valid.

(a) If m = 2 then G is 2-homogeneous and hence synchronizing.

(b) If m > 2 and m | p+ 1 then G is non-synchronizing.
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(c) Set i ∈ N such that 2i | gcd(r, p − 1) but 2i+1 - gcd(r, p − 1).
Suppose that (p − 1)/2i ≡ m/2 (mod m). If m > 2 and
(m/2) | p+ 1 then G is non-synchronizing.

Theorem 1 can be found in this thesis as Theorem 6.5.1 and we remark
that in Chapter 6 we prove a stronger statement than Statement (2.2). In the
proof of this theorem we mostly use the characterization by Peter Neumann
[Neu09] of the synchronization property using graph theory. This charac-
terization is discussed in Section 4.2 and relies on the study of clique and
chromatic numbers of certain graphs associated with the group actions. In
particular we are interested in such graphs whose clique number and chro-
matic number coincide.

It turns out that some graphs associated with the affine groups described
in Statements (2.2) and (2.3) of Theorem 1 are isomorphic to graphs built
from finite fields and known as generalized Paley graphs (see Chapter 5).
We denote by Γp2,m the generalized Paley graph of the field with p2 elements
with index m (see Section 5.2). Using Neumann’s characterization, we are
interested in determining when a generalized Paley graph has the same clique
number and chromatic number. The next theorem gives a solution to this
problem.

Theorem 2. In a generalized Paley graph Γp2,m, the clique number and the
chromatic number coincide if and only if m | p+ 1.

This theorem is stated as Theorem 5.3.2 in the dissertation. If m | p+ 1
then we can find a nice clique and coloring for such generalized Paley graphs
(see Proposition 5.3.3). However, in the case when m - p+ 1, the situation is
harder and we follow a different approach to this problem. We use spectral
graph theory; that is, the theory of eigenvalues of graphs, in order to bound
the clique number and the chromatic number of a graph. One bound thus
obtained is the Lovász theta-function defined by László Lovász [Lov79] (see
Section 4.4). This function is the key for the proof of the next theorem, which
gives us a necessary condition for the equality of the clique and chromatic
numbers for an edge-transitive and vertex-transitive graph. In particular,
the case m - p+ 1 in Theorem 2 is proved using Theorem 3.

Theorem 3. Suppose that Γ is a vertex-transitive and edge-transitive graph
whose clique number is equal to the chromatic number. Assume that this
number is k. Then k − 1 divides the degree ∂̄(Γ) of Γ. Suppose further that
λ is the smallest eigenvalue of Γ. Then λ = −∂̄(Γ)/(k − 1).



10 1 Introduction

Theorem 3 can be found as Theorem 4.4.3 in this dissertation.

1.4 Methodology

The main results of this dissertation are proved using techniques of permu-
tation group theory and graph theory. In Chapter 2 we start with a review
of the basic concepts of permutation group theory. The subsequent chapters
consider different aspects of the synchronization property.

It is known that a synchronizing group must belong to one of just three
classes of the O’Nan-Scott Theorem. An interesting O’Nan-Scott class of
groups, since this class contains both synchronizing and non-synchronizing
groups, is formed by affine groups. Hence the objective of this dissertation
is to better understand when an affine group is synchronizing. As explained
before Theorem 1, our main results concern primitive affine groups in di-
mension 2. Such a group is built from a 2-dimensional vector space over Fp,
where p is a prime, and an irreducible subgroup of GL(2, p) (See Sections 6.1
and 6.2).

Therefore to study such affine groups we use a characterization of irre-
ducible subgroups of GL(2, p) given in Flannery and O’Brien [FO05]. Some of
these irreducible subgroups are monomial and their structures are described
in Short [Sho92]. The different classes of irreducible subgroups of GL(2, p)
are described in Theorem 6.3.4. This way we will classify primitive affine
permutation groups in dimension 2 into different classes according to their
irreducible matrix group components, as done in Theorem 1, in order to
obtain results about the synchronization property.

For the proof of Statement (1) of Theorem 1, we use the concept of Carte-
sian decompositions, defined in [PBS03]. These structures are very useful for
our goal, since we rephrase the result by Peter Cameron which states that a
non-basic group is non-synchronizing in terms of Cartesian decompositions.
Hence we prove that a group which preserves a Cartesian decomposition
is non-synchronizing (see Theorem 3.2.2). Furthermore, the affine groups
whose matrix group components are imprimitive preserve Cartesian decom-
positions (see Theorem 6.2.4) and hence we obtain that such affine groups
are not synchronizing. For more details on Cartesian decompositions we refer
to Section 3.2, while imprimitive matrix groups are defined in Section 6.2.

In the proof that some of the groups described in Theorem 1 are syn-
chronizing, we use the fact that 2-homogeneous and 2-transitive groups are
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synchronizing (see Theorem 3.1.1). These properties are discussed in Sec-
tion 2.3.

For proving the remaining statements of Theorem 1, which is the most
complex part, we used the characterization of synchronization given by Pe-
ter Neumann using graph theory [Neu09]. Neumann proved that a group
acting on a set Ω is non-synchronizing if and only if there exists a graph
with vertex-set Ω and G-invariant edge-set whose clique number is equal to
the chromatic number (see Theorem 4.2.4). In this case we call this graph
suitable. Therefore, using this characterization, the problem of verifying if
a group is synchronizing is reduced to analyzing the clique and chromatic
numbers of such graphs and checking if these numbers coincide.

It turns out that certain graphs for some affine permutation groups are
isomorphic to generalized Paley graphs. These graphs are natural general-
izations of Paley graphs defined by Paley in 1933 [Pal33] and we investigate
them in Chapter 5. Therefore we are interested in determining conditions
for generalized Paley graphs to be suitable. We reach a conclusion for these
graphs over fields with p2 elements, where p is a prime, as stated in The-
orem 2. In the case when m | p + 1, the assertion of Theorem 2 follows
from [BDR88], a paper which obtains bounds for the clique and chromatic
numbers of generalized Paley graphs of finite fields.

Finding the clique number and the chromatic number of a general graph
is an NP-hard problem. Therefore mathematicians interested in this subject
try to establish bounds for these numbers. One of these bounds was found
by László Lovász in 1979 [Lov79] and is called the theta-function. We discuss
this bound for the clique number and the chromatic number in Section 4.4.
The theta-function of an edge-transitive and vertex-transitive graph can be
determined by the eigenvalues of its adjacency matrix (see Statement 4 of
Proposition 4.4.2). This result implies Theorem 3 and, in turn, the case when
m - p+ 1 in Theorem 2 was obtained using Theorem 3.

Thus, from the characterization of suitable generalized Paley graphs of
Theorem 2, we obtain conclusions about the synchronization property in the
remaining 2-dimensional affine groups described in Theorem 1.

Unfortunately, a class of primitive irreducible subgroups of GL(2, p) is
not studied in this dissertation, namely the subgroups described in Proposi-
tion 4.4 of [FO05] which have central quotients isomorphic either to Sym(4),
Alt(4) or to Alt(5). We were not able to apply the techniques discussed in
this dissertation to this class of groups.





Chapter 2

Permutation Groups

In this thesis we are interested in the synchronization property in affine per-
mutation groups. In this chapter we give the elementary and necessary back-
ground on finite permutation groups. We start with the definition of a per-
mutation group, orbits and stabilizers. Then we define a transitive and a
multiple transitive permutation group and discuss the concept of primitivity.
The permutation group theory discussed in this chapter can be found in the
first chapters of [DM96] and [Cam99].

2.1 Basic Concepts

The symmetric group on a set Ω, denoted by Sym(Ω), is the set of all permu-
tations of Ω under the operation of composition. A permutation group is a
subgroup of Sym(Ω). We define the degree of a permutation group as the car-
dinality of the set Ω. The image of α ∈ Ω under a permutation π ∈ Sym(Ω)
is written as απ. If Ω = {1, . . . , n} then we write Sym(n) for Sym(Ω).

Any permutation can be written as a product of transpositions , which
are cycles of length 2. The number of transpositions that are in such a
product can be odd or even and the parity of this number does not depend
on the particular decomposition. We call a permutation odd if it can be
written as an odd number of transpositions and in a similar way we define
even permutations . The identity permutation is an even permutation. The
alternating group, denoted by Alt(n), is the group of all even permutations
of the set {1, . . . , n} and it is a normal subgroup of Sym(n).

An action of a group G on a set Ω is a homomorphism ψ from G to
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Sym(Ω). For α ∈ Ω and g ∈ G, the point αψ(g) is usually denoted by αg.
Let us consider the kernel

kerψ = {g ∈ G : αg = α for all α ∈ Ω}

of the homomorphism ψ. The kernel is a normal subgroup of G. If ψ is
injective, then kerψ = 1, and we say that the action is faithful.

Suppose that G and H are permutation groups acting on the sets Ω
and ∆, respectively. We say that G and H are permutationally isomorphic
if there exists a bijection ψ : Ω→ ∆ and an isomorphism φ : G→ H such
that (αg)ψ = (αψ)(gφ) for all α ∈ Ω and g ∈ G. The pair (ψ,φ) is called
a permutational isomorphism. In other words, permutationally isomorphic
groups only differ in the labeling of their elements and in the labeling of the
elements of the sets they act upon.

If G is a group and H is a subgroup of G, then for an element g ∈ G, the
set

Hg = {hg : h ∈ H}

is called a right coset of H in G. The set of right cosets of H in G is denoted
by [G : H]. A left coset is defined in an analogous way. All the left and right
cosets have the same cardinality, that is equal to the cardinality of H, which
is itself a coset considering g = 1. Furthermore, the number of left cosets is
equal to the number of right cosets and this number is known as the index
of H in G and is denoted by |G : H|. By Lagrange’s Theorem, we have that
|G| = |G : H||H|.

Let us define an action on cosets. If G is a group and H is a subgroup
of G then we can define the right coset action, denoted by ρH , of G on the
set of right cosets [G : H] by right multiplication as follows. If g ∈ G and
Hg′ ∈ [G : H] then (Hg′)(gρH) = Hg′g. The action ρ1 of G on itself is called
the right regular action of G. In a similar way we can define an action of G
on the set of left cosets.

2.2 Orbits and Stabilizers

When a group G acts on a set Ω, a typical point α of Ω is moved by the
elements of G to other points. The set of these images is called the orbit of α
under G, or the G-orbit of α, and we denote it by αG. Hence

αG := {αg : g ∈ G}.
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A partition of a set Ω is a set {P1, . . . , Pk} of subsets of Ω such that

1.
⋃k
i=1 Pi = Ω;

2. Pi ∩ Pj = ∅ if i 6= j.

The following lemma is well-known and it is a consequence of the definition
of a G-orbit.

Lemma 2.2.1 (Theorem 1.4A of [DM96]). Suppose that G is a group acting
on a set Ω. Then the G-orbits form a partition of Ω.

By Lemma 2.2.1, the orbits of a group can be considered as equivalence
classes as follows. Let G be a group acting on a set Ω and define a relation ∼
on Ω:

α ∼ β if and only if there exists g ∈ G such that αg = β. (2.1)

This is an equivalence relation and the equivalence classes are the orbits of G.
A group G is said to be transitive on Ω if it has only one orbit, that is

αG = Ω for all α ∈ Ω. In other words, we say that G is transitive if for every
pair of points α and β belonging to Ω there exists g ∈ G such that αg = β.
In the terminology of the equivalence relation ∼ in Equation (2.1), the group
G is transitive if and only if there is just one equivalence class.

Let us now consider the elements of G that fix the point α ∈ Ω under
their action on the set Ω. These elements form the stabilizer Gα of α:

Gα = {g ∈ G : αg = α}.

The stabilizer of a point is always a subgroup of the original group G and if
α, β ∈ Ω with β = αg for some g ∈ G, then Gβ = (Gα)g.

The definition of a stabilizer can also be extended to subsets of the under-
lying set Ω. Furthermore, we can define such stabilizers setwise or pointwise.
Let G be a group acting on a set Ω and let ∆ be a subset of Ω. Then the
setwise stabilizer of ∆ is the set

G∆ = {g ∈ G : δg ∈ ∆ for all δ ∈ ∆},

while the pointwise stabilizer of ∆ is defined as

G(∆) = {g ∈ G : δg = δ for all δ ∈ ∆}.
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A permutation group G is called semiregular if Gα = 1 for all α ∈ Ω and
it is regular if it is transitive and semiregular.

Proposition 2.2.2. A transitive abelian permutation group is regular.

Proof. Let G be a transitive abelian permutation group acting on a set Ω and
let α ∈ Ω. Let us consider the stabilizer Gα. Let β ∈ Ω. Since G is transitive,
there exists an element g ∈ G such that β = αg. Therefore, by a remark
above, we have that Gβ = (Gα)g. As G is abelian, each of its subgroups is
a normal subgroup. Hence we obtain that (Gα)g = Gα, for all g ∈ G. This
means that Gβ = (Gα)g = Gα and as β was taken arbitrarily, we obtain that
Gα stabilizes all points of Ω. Since G is a permutation group, this implies
that Gα = 1. Hence we conclude that G is semiregular and as G is transitive
by assumption, we obtain that G is a regular group.

The following theorem links the stabilizers and the orbits of a transitive
permutation group.

Theorem 2.2.3 (Corollary 1.4A of [DM96]). Suppose that G is transitive in
its action on a set Ω. Then the following hold.

1. The stabilizers Gα, for α ∈ Ω, form a single conjugacy class of sub-
groups of G.

2. The G-action on Ω is equivalent to the right coset action ρGα for each
α ∈ Ω. In particular, |G : Gα| = |Ω| for each α ∈ Ω.

3. The action of G is regular if and only if |G| = |Ω|.

Proof. Let us prove the first statement. Since the group G is transitive, for
all α, β ∈ Ω there exists g ∈ G such that αg = β. Hence we have, by an
observation above, that (Gα)g = Gβ which means that all stabilizers are
conjugate. Thus the stabilizers form a conjugacy class.

For the proof of the Statement 2, fix α ∈ Ω and consider the stabilizer Gα.
Let us define a map ψ : Ω→ [G : Gα] as follows. For all ω ∈ Ω, set ωψ = Gαg,
where g ∈ G is an element such that αg = ω. Such an element exists as G
is a transitive group. Let us first show that ψ is a well defined map from Ω
to [G : Gα]. If g1, g2 ∈ G such that αg1 = αg2 then g1g

−1
2 ∈ Gα which means

that Gαg1 = Gαg2. Thus ψ is well defined. Now we prove that it is injective.
Let ω1, ω2 ∈ Ω such that ω1ψ = ω2ψ. Let g1, g2 ∈ G, such that αg1 = ω1

and αg2 = ω2. Then Gαg1 = Gαg2. Hence g1g
−1
2 ∈ Gα and we have that
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ω1 = αg1 = αg1g
−1
2 g2 = αg2 = ω2. Thus ψ is injective. From the definition

of ψ, it follows that it is surjective. Hence ψ is a bijection, which gives that
|G : Gα| = |Ω|. Next we prove that (ψ, id) is a permutational isomorphism
from the G-action on Ω to the G-action on [G : Gα]. Let ω ∈ Ω and g ∈ G.
Then (ωψ)g = (Gαh)g where h ∈ G is an element such that αh = ω. Now
(Gαh)g = Gα(hg) = (ωg)ψ since from αh = ω it follows that αhg = ωg.
Thus (ψ, id) is a permutational isomorphism as claimed and the actions of G
on these two sets are equivalent.

Let us now prove the third statement. By Lagrange’s Theorem, given any
subgroup H of G, we have that |G| = |G : H||H|. In particular, the equal-
ity |G| = |G : Gα||Gα| holds for any α ∈ Ω. Hence the condition |G| = |Ω|
is equivalent to |Ω| = |G : Gα||Gα|. From Statement 2 we know that
|G : Gα| = |Ω|, for all α ∈ Ω. Therefore |G| = |Ω| if and only if |Ω| = |Ω||Gα|,
which means that |Gα| = 1 for all α ∈ Ω. Thus, as G is transitive, we con-
clude that |G| = |Ω| is equivalent to G being regular.

2.3 Multiple Transitivity

Suppose that G is a permutation group acting on a set Ω. The group G is
called k-homogeneous if G is transitive on the set

Ω{k} = {{α1, . . . , αk} : αi ∈ Ω, and αi 6= αj if i 6= j}.

Let G be a group acting on a set Ω and denote by Ωk the k-th Cartesian
power of Ω. The subset Ω(k) of Ωk consisting of k-tuples of pairwise distinct
ordered points is clearly G-invariant for every k. A group G is said to be
k-transitive if G is transitive on Ω(k). Note that if G is k-transitive for some
k ∈ N then G is n-transitive for all n ≤ k.

It is clear that a k-transitive group is k-homogeneous. However, these
two properties are not equivalent, as shown by the next example.

Example 2.3.1. Consider the cyclic group of order 3. Set C3 = 〈(123)〉,
acting on the set Ω = {1, 2, 3}. This group is clearly transitive on the set
{{1, 2}, {1, 3}, {2, 3}} of unordered pairs of Ω and hence the group C3 is
2-homogeneous. However, C3 is not a 2-transitive group. Consider, for in-
stance, the elements (1, 2), (2, 1) ∈ Ω(2). As C3 = {(123), (132), id}, there is
no element g ∈ C3 such that (1, 2)g = (2, 1).

Thus, the cyclic group C3 is an example of a 2-homogeneous but not a
2-transitive group.
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Lemma 2.3.2 (Section 1.8 of [Cam99]). Suppose that G is a transitive per-
mutation group acting on a set Ω. Then G is k-transitive if and only if Gα

is (k − 1)-transitive on Ω\{α}, for all α ∈ Ω.

Proof. Let us suppose that G is k-transitive on Ω and let α ∈ Ω. We want
to prove that the stabilizer Gα is (k − 1)-transitive on the set Ω\{α}. Let
(α1, . . . , αk−1), (β1, . . . , βk−1) ∈ (Ω\{α})(k−1). By definition, we have that
α 6= αi, βi, for i ∈ {1, . . . , k − 1}. Therefore the k-tuples (α1, . . . , αk−1, α),
(β1, . . . , βk−1, α) are elements of Ω(k). As G is a k-transitive group, there
exists an element g ∈ G such that

(α1, . . . , αk−1, α)g = (β1, . . . , βk−1, α).

Since αg = α, it follows that g ∈ Gα. Hence there exists g ∈ Gα such that
(α1, . . . , αk−1)g = (β1, . . . , βk−1), which means that Gα is (k − 1)-transitive
on Ω\{α}.

Conversely, let us now assume that Gα is (k− 1)-transitive on Ω\{α} for
all α ∈ Ω. Let (α1, . . . , αk), (β1, . . . , βk) ∈ Ω(k). Since G is a transitive group,
there exists g ∈ G such that α1g = β1. Set, for i ∈ {2, . . . , k}, γi = αig.
As g is a permutation, γ2, . . . , γk 6= β1. By assumption, the stabilizer Gβ1

is (k − 1)-transitive on Ω\{β1}. Therefore there exists h ∈ Gβ1 such that
(γ2, . . . , γk)h = (β2, . . . , βk) and in particular β1h = β1. Thus we have that
(α1, . . . , αk)gh = (β1, . . . , βk) and gh ∈ G. Hence G is k-transitive on Ω.

In the next chapter we will use these definitions in the particular case
when k = 2. A group G is called 2-homogeneous if G is transitive on the set

Ω{2} = {{α, β} : α, β ∈ Ω, α 6= β},

and G is said to be 2-transitive if G is transitive on

Ω(2) = {(α, β) : α, β ∈ Ω, α 6= β}.

2.4 Primitive Permutation Groups

The definition of a primitive permutation group comes from the concept of
blocks. Suppose that G is a group acting transitively on a set Ω. For a subset
B of Ω and g ∈ G, set

Bg = {γg : γ ∈ B}.
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A nonempty subset B of Ω is called a block for G if for each g ∈ G ei-
ther Bg = B or Bg ∩ B = ∅. We observe that the singletons {α}, with
α ∈ Ω, and Ω itself are always blocks, which are called trivial blocks . The
set {Bg : g ∈ G}, where B is a block for G, is called a block-system for the
group G.

With this notion it is possible to define a primitive group. A transitive
group G is said to be primitive if it has no non-trivial blocks. Otherwise G
is imprimitive. The definitions of primitive and imprimitive groups require
that the group in question is already transitive. Hence these notions are not
defined for intransitive groups.

If H is a transitive subgroup of an imprimitive group G acting on a set
Ω, then H is also imprimitive. This comes from the fact that if B is a non-
trivial block for G then it is clearly a non-trivial block for H. Therefore the
property of imprimitivity is inherited by transitive subgroups.

As was done before with the concept of orbits, it is possible to characterize
blocks in terms of equivalence relations. Let G act transitively on a set Ω.
A congruence on Ω is an equivalence relation u which is G-invariant. This
means that

for all α, β ∈ Ω and g ∈ G, if α u β then αg u βg.

The equivalence classes of a congruence are blocks for G. If |Ω| ≥ 2, then
there are two trivial congruences, the equality relation, whose blocks are sin-
gletons, and the universal relation, with a single block Ω. In this terminology,
G is said to be primitive if there is no non-trivial congruence of Ω preserved
by G.

To study further a primitive group, we will need another notion, namely
that of the G-invariant partitions. Suppose G ≤ Sym(Ω) is a transitive
permutation group. If {P1, . . . , Pk} is a partition of Ω such that

for all Pi and g ∈ G, Pig = Pj for some j,

then the partition {P1, . . . , Pk} is called a G-invariant partition of Ω. As
with blocks, the G-invariant partitions {{α} : α ∈ Ω} and {Ω} are said to
be trivial.

There is a straight relation between blocks and invariant partitions. Sup-
pose that G is a transitive group on a set Ω and B ⊆ Ω is a block for G.
Then {Bg : g ∈ G} is a G-invariant partition. Conversely, if {P1, . . . , Pk}
is a G-invariant partition of Ω then Pi is a block for G for all i ∈ {1, . . . , k}.
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It follows from this relation between partitions and blocks that the size of a
G-block divides |Ω|.

We can give a new characterization of primitive groups using G-invariant
partitions and their connection to block-systems.

Lemma 2.4.1. Let G be a transitive subgroup of Sym(Ω). Then G is prim-
itive if and only if there are only trivial G-invariant partitions of Ω.

As noted before, if B is a block for a transitive group G ≤ Sym(Ω), then
|B| | |Ω|. This implies the following corollary.

Corollary 2.4.2. A transitive group of prime degree is primitive.

Example 2.4.3. Let us analise an example of an imprimitive group.

Figure 2.1: The group D8 acting on the vertices of a square.

Consider the dihedral group D8 acting on the vertices of a square as in
Figure 2.1. In this example Ω = {1, 2, 3, 4} and D8 = 〈(12)(34), (1234)〉. It is
clear that D8 is a transitive group. The two pairs of opposite vertices of the
square form non-trivial blocks for the group. Hence P= {{1, 3}, {2, 4}} is a
non-trivial partition of Ω which is invariant under D8. Therefore the group
D8 is an imprimitive group.

After giving the definition of a primitive group, using congruence classes
and G-invariant partitions, we will present some important properties of such
groups to link primitivity to other concepts of group theory, for instance with
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maximal subgroups. Let G be a group. A subgroup H of G is said to be
a maximal subgroup of G if H is a proper subgroup of G and no proper
subgroup of G contains H properly.

Theorem 2.4.4 (Corollary 1.5A of [DM96]). Let G be a group acting tran-
sitively on a set Ω with at least two points. Then G is primitive if and only
if each point stabilizer Gα is a maximal subgroup of G.

Proof. Let us suppose first that G is primitive and let α ∈ Ω. Then Gα

is a proper subgroup of G since Ω contains at least two elements. Let
H ≤ Sym(Ω) such that Gα ≤ H ≤ G and set B = {αh : h ∈ H}. By
definition, B is an H-orbit. We claim that B is a block for G. Let g ∈ G and
β ∈ Ω such that β ∈ Bg ∩ B. Then β = αh1g = αh2 for some h1, h2 ∈ H.
This means that h1gh

−1
2 ∈ Gα. As Gα ≤ H, we obtain that g ∈ H. There-

fore Bg = B, and so B is a block for G. Since G is primitive, B = {α} or
B = Ω. Let us suppose first that B = {α} and let h ∈ H. Then αh = α
since αh ∈ B and so h ∈ Gα. Thus we obtain in this case that Gα = H. Let
us now assume that B = Ω and let g ∈ G. Then αg ∈ Ω = B so αg = αh
for some h ∈ H. It follows that gh−1 ∈ Gα ≤ H and so g ∈ H. Hence we
conclude that H = G. Therefore our argument implies that a subgroup H
such that Gα ≤ H ≤ G must be equal either to Gα or to G. Thus Gα is a
maximal subgroup of G.

Next, we prove the reverse direction of the statement. Let α ∈ Ω and
let us suppose that Gα is a maximal subgroup of G. Let B be a block for
G such that α ∈ B. We aim to prove that B = {α} or B = Ω. First we
observe that Gα ≤ GB. Indeed, if g ∈ G such that αg = α then Bg ∩B 6= ∅,
which means that Bg = B, and hence g ∈ GB. As we assumed that Gα is
a maximal subgroup of G, either GB = Gα or GB = G. Let us assume first
that GB = Gα and let β ∈ B. Since G is a transitive group, there exists
g ∈ G such that β = αg. Then Bg ∩ B 6= ∅ which implies that Bg = B.
Therefore g ∈ GB = Gα and so β = αg = α. Hence we obtain in this case
that B = {α}. Let us now suppose that GB = G and let β ∈ Ω. By the
transitivity of G, there exists g ∈ G such that β = αg. Then β ∈ Bg = B.
Since β was chosen arbitrarily, we conclude in this case that B = Ω. In both
cases we obtain that G has no non-trivial blocks. Hence G is primitive.

As we saw in Statement 1 of Theorem 2.2.3, if a group is transitive then
its point stabilizers are all conjugate. Therefore, if one of the point stabi-
lizers is maximal then all the point stabilizers are maximal. Thus in the
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previous result it is only necessary to verify the maximality of one of the
point stabilizers.

Theorem 2.4.5. Suppose that G is a 2-homogeneous group acting on a set
Ω. Then G is primitive.

Proof. First note that a 2-homogeneous group is transitive. We argue by
contradiction and assume that P= {P1, . . . , Pk} is a non-trivial G-invariant
partition of Ω. Then k ≥ 2 and |Pi| ≥ 2 for some i ∈ {1, . . . , k}. Without
loss of generality we can assume that |P1| ≥ 2. Pick α, β ∈ P1 such that
α 6= β and γ ∈ P2. As G is 2-homogeneous, there is g ∈ G such that
{α, β}g = {α, γ}. Hence P1g ∩ P1 6= ∅ but P1g 6= P1 since γ ∈ P1g and
γ 6∈ P1. Therefore P1 is not a block, which is a contradiction to the G-
invariant property of P. Thus G does not preserve non-trivial partitions of
Ω. Consequently, G is primitive.

The converse statement of Theorem 2.4.5 is not true. To support this
claim, let us present a simple example of a primitive group which is not
2-homogeneous.

Figure 2.2: The cyclic group of order 5.

Example 2.4.6. Let C5 be the cyclic group of order 5 acting on the set
Ω = {1, . . . , 5} as in Figure 2.2.

We have that C5 = 〈(12345)〉 and therefore, this group is transitive. Since
C5 has prime degree, by Proposition 2.4.2, it follows that it is a primitive
group.

On the other hand, the set Ω{2} has 10 elements, while C5 has only 5
elements. Hence it follows that C5 is not transitive on Ω{2}, which means
that this group in not 2-homogeneous. Thus C5 is an example of a primitive
but not 2-homogeneous group.
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The following diagram in Figure 2.3 shows the relationship among the
classes of permutation groups defined so far. The Examples 2.3.1, 2.4.3 and
2.4.6 discussed in this chapter show that these classes of permutation groups
are properly contained in each other.

Figure 2.3: The relation between some classes of permutation groups.





Chapter 3

Synchronization and Separation

Synchronization is a recently defined property for permutation groups mo-
tivated by a concept in automata and semigroup theory and is related to
the Černý Conjecture [Čer64]. João Araújo and Benjamin Steinberg sug-
gested an approach to Černý Conjecture using permutation groups. This
approach has not solved the problem, but it was the beginning of the study
of synchronizing permutation groups.

The aim of this chapter is to introduce the class of synchronizing groups
and to present their most elementary properties.

3.1 Synchronizing Groups

Let Ω be a finite set and let G ≤ Sym(Ω). Let P be a partition of Ω to
a disjoint union of non-empty subsets of Ω. We define a section of P as a
subset S of Ω that contains precisely one element from each part of P.

If given a partition P there is a section S which verifies

Sg is a section of P for all g ∈ G,

then P will be called a section-regular or a G-regular partition. A permuta-
tion group G acting on a set Ω is called synchronizing if G 6= 1 and there are
no non-trivial G-regular partitions of Ω. It follows from the definition that a
subgroup H of a non-synchronizing group G is non-synchronizing, since any
section-regular partition for G is clearly a section-regular partition for H.
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Theorem 3.1.1. 1. A synchronizing permutation group is transitive and
primitive.

2. A 2-homogeneous group is synchronizing.

Proof. Let G be a permutation group acting on a set Ω. To prove the first
statement, we only need to observe that if G is intransitive or imprimitive
then G preserves a non-trivial partition of the underlying set and it is clear
that this partition is section-regular.

Now let us prove Statement 2. Suppose G ≤ Sym(Ω) is a 2-homogeneous
permutation group. Let P = {P1, . . . , Pk} be a non-trivial partition of Ω
and let S be a section of P. Let α1, α2 ∈ S such that α1 6= α2. Assume,
without loss of generality, that α1 ∈ P1 with |P1| ≥ 2. Let β ∈ P1\{α1}.
Such elements exist since P is non-trivial. As G is 2-homogeneous, there
exists g ∈ G such that {α1, α2}g = {α1, β}. Then α1, β ∈ Sg which implies
that Sg is not a section. Therefore no non-trivial section-regular partition
exists for G, which means that the group is synchronizing.

Since a 2-transitive group is 2-homogeneous, it follows from Statement 2
of Theorem 3.1.1 that every 2-transitive group is synchronizing. We obtain
in particular that Sym(n) and the alternating group Alt(n) are always syn-
chronizing.

Next we will characterize the G-regular partitions for transitive and prim-
itive groups. In particular, we will prove that a G-regular partition is uni-
form, which means that every part of the partition has the same size. For
proving this, we will need a result by Peter Neumann known as Neumann’s
Separation Lemma, stated as follows.

Proposition 3.1.2 (Neumann’s Separation Lemma). Let G be a transitive
permutation group acting on a set Ω and let A and B be finite subsets of Ω
with |Ω| > |A||B|. Then there exists g ∈ G such that Ag ∩B = ∅.

Proposition 3.1.2 can be found as Lemma 2.3 of [Neu76]. Statement 1
of the following proposition can be found in [Neu09, Theorem 2.1] and the
proof we present follows Cameron [Cam10, Theorem 9 of Chapter 3].

Proposition 3.1.3. 1. A section-regular partition for a transitive permu-
tation group is uniform

2. A transitive group of prime degree is synchronizing.
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Proof. Let us prove the first statement. Let G be a transitive group and
P= {P1, . . . , Pk} be a section-regular partition for G with section S which
witnesses its regularity. We have that |S| = k. The partition P is uniform
if |Ω| = k|Pi| = |S||Pi| for all i ∈ {1, . . . , k}. If there exists Pi ∈ P such
that |Pi||S| < |Ω| then by Proposition 3.1.2, there exists g ∈ G such that
Pig ∩ S = ∅, which is a contradiction since S is a section that witnesses the
G-regularity of P. Using this argument we also conclude that cannot exist
Pi ∈ P such that |Pi||S| > |Ω| otherwise there would exist a part Pj ∈ P
such that |Pj||S| < |Ω|, which cannot happen. Therefore we conclude, for all
Pi ∈ P, that |Pi||S| = |Ω|. Hence P is a uniform section-regular partition
for G.

Next, we prove Statement 2. Let G be a transitive permutation group
acting on a set Ω with a prime number of elements. Let P be a G-regular
partition of Ω. By Statement 1, we have that P is uniform. As |Ω| is a
prime number, it follows that P is a trivial partition of Ω. Hence G is a
synchronizing group.

3.2 Synchronization and Cartesian Decompo-

sitions

There are primitive groups which preserve Cartesian decompositions of the
sets they act upon. The main result of this section is that a primitive group
which preserves a Cartesian decomposition is non-synchronizing. This fact
was observed by Peter Neumann. In Example 3.4 of [Neu09], in order to prove
that a group is non-synchronizing, Neumann constructs a G-regular partition
using a direct decomposition of the set on which the group acts upon. Below
we present the definition of a Cartesian decomposition and prove the result,
which allow us to conclude in Chapter 6 that certain primitive groups are
non-synchronizing.

A Cartesian decomposition of a set Ω is a set Σ = {P1, . . . ,P t} of
non-trivial partitions of Ω such that

|P1 ∩ · · · ∩ Pt| = 1 for all P1 ∈ P1, . . . , Pt ∈ P t.

Let Σ = {P1, . . . ,P t} be a Cartesian decomposition of a set Ω. Then
the map ω 7→ (P1, . . . , Pt), where for i ∈ {1, . . . , t} the part Pi ∈ P i is
chosen so that ω ∈ Pi, is a well defined bijection between the set Ω and
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P1 × · · ·×P t. Thus we can naturally identify the set Ω with the Cartesian
product P1 × · · ·×P t.

A Cartesian decomposition Σ of Ω is said to be homogeneous if we have
that |P i| = |Pj| for all P i, Pj ∈ Σ. Note that if Σ is homogeneous then
|Ω| can be identified with|P|t for all P ∈ Σ.

Example 3.2.1. Let us consider an example of a Cartesian decomposition.

Figure 3.1: The 3-dimensional cube.

Let Ω be the set of vertices the 3-dimensional cube as in Figure 3.1. Let
P1 be the partition

{(1, 0, 0), (1, 1, 0), (0, 1, 0), (0, 0, 0)}, {(1, 0, 1), (1, 1, 1), (0, 1, 1), (0, 0, 1)},

let P2 be the partition

{(0, 0, 0), (0, 0, 1), (1, 0, 1)(1, 0, 0)}, {(1, 1, 0), (0, 1, 0), (0, 1, 1), (1, 1, 1)},

and let P3 be the partition

{(0, 0, 0), (0, 1, 0), (0, 1, 1), (0, 0, 1)}, {(1, 0, 0), (1, 1, 0), (1, 1, 1), (1, 0, 1)}.

We have, for Pi ∈P i, that
∣∣∣⋂i∈{1,2,3} Pi

∣∣∣ = 1. Hence Σ = {P1,P2,P3} is

an example of a Cartesian decomposition.
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After the definition of Cartesian decompositions, we define basic groups.
Let G be a primitive permutation group acting on a set Ω. We say that G
is non-basic if G preserves a Cartesian decomposition of Ω. Otherwise G is
called a basic group. We remark that the definition of basic groups given by
Peter Cameron in [Cam99, Section 4.3] does not require the primitivity of
the group. However, we will only consider this notion for primitive groups.
In Example 6.2.5 we present a non-basic, primitive group.

Next we state the main theorem of this section, a result that gives a
necessary condition for the synchronization property in permutation groups.

Theorem 3.2.2. Let G be a primitive group acting on a finite set Ω. If G
is non-basic then G is a non-synchronizing group.

Proof. Let Σ = {P1, . . . ,P t} be a Cartesian decomposition of Ω which is
invariant under G. We start by showing that the group G must be transitive
on Σ. Assume by contradiction that G is intransitive on Σ. Then we may
assume without loss of generality that Σ1 = {P1, . . . ,Ps}, with s < t, is a
G-orbit.

Let, for i ∈ {1, . . . , s}, Pi ∈ Pi, and set B = P1 ∩ · · · ∩ Ps. We claim
that B is a non-trivial block for G. Since the partitions Pi are non-trivial
for all i ∈ {1, . . . , t}, we have that B 6= Ω. Next, we assert that |B| > 1.
Let Pr, P

′
r ∈ Pr with r > s and such that Pr 6= P ′r. Then, since Σ is a

Cartesian decomposition of Ω, it follows that B ∩Pr 6= ∅ and B ∩P ′r 6= ∅. As
Pr ∩ P ′r = ∅, we obtain that B ∩ Pr and B ∩ P ′r are disjoint sets, and so B
contains at least two elements, as was claimed. Now let g ∈ G. Then we have
that either Bg = B or Bg = P ′1 ∩ · · · ∩ P ′s, with P ′i ∈ P i for i ∈ {1, . . . , s}
and Pi0 6= P ′i0 for some i0 ∈ {1, . . . , s}. Therefore if α ∈ B ∩ (P ′1 ∩ · · · ∩ P ′s)
then in particular α ∈ Pi0 ∩ P ′i0 . As Pi0 6= P ′i0 , we obtain a contradiction to
the condition that P i0 is a partition. Thus B = P1 ∩ · · · ∩Ps is a non-trivial
block for G, which is a contradiction since we assume that G is primitive.
Hence G is transitive on Σ.

Next, we want to show that there exists a G-regular partition of Ω. We
will prove that P1 is a section-regular partition for G. By the first part of
the proof we may assume that G is transitive on Σ. Then |P i| = |Pj| for all
P i,Pj ∈ Σ. For all i ∈ {1, . . . , t}, fix a bijection αi :P1 →P i. We have, for
each part P of P1 and for j ∈ {2, . . . , t}, that Pαj is a part of Pj. Therefore
we can consider the tuple (P, Pα2, . . . , Pαt) ∈ P1× · · ·×P t and the element
ωP = P ∩Pα2 ∩ · · · ∩Pαt of Ω. Let us consider the set S = {ωP : P ∈ P1}.
Note that S is a section for P1 and that S is also a section for all P i ∈ Σ. We
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will show that S witnesses the G-regularity of P1. Let g ∈ G. We claim that
Sg is section for P1. Since G is transitive on the Cartesian decomposition
Σ, there exists i ∈ {1, . . . , t} such that P ig =P1. As S is a section for
P i, we obtain that Sg is a section for P ig =P1. Therefore S witnesses the
section-regular property for P1. Thus P1 is a non-trivial section-regular
partition. Hence G is a non-synchronizing group.

3.3 Synchronization and Separating Groups

The separation property stems from Neumann’s Separation Lemma stated
in Proposition 3.1.2. In this section we study separating groups and their
basic characteristics since the separation property is a sufficient condition for
synchronization (see Proposition 3.3.1).

Let G be a transitive permutation group acting on a set Ω with |Ω| = n.
We call G a non-separating group if there exist subsets A and B of Ω, with
|A|, |B| > 1 and |A||B| = n, such that for all g ∈ G we have that Ag∩B 6= ∅.
Otherwise G is said to be separating , which means that for any two subsets
of Ω satisfying the conditions above, there is an element g ∈ G such that
Ag ∩ B = ∅. For instance a group acting transitively on a set with prime
number of elements is always separating since it is not possible to find sets
A and B satisfying the desired conditions.

Next, we link the concept of separation with the properties of permutation
group theory studied before, in particular with the synchronization property.

Proposition 3.3.1 (Theorem 7 of [Cam10]). Let G be a transitive group
acting on a set Ω.

1. If G is separating then G is a synchronizing group.

2. If G is 2-homogeneous then G is separating.

Proof. Let us prove the first statement. Assume that G is non-synchronizing.
Then there exists a non-trivial section-regular partition P with section S
which witnesses the G-regularity of P. We have that P is uniform by the
first statement of Proposition 3.1.3. If we consider S and a part P of P then
|S||P | = |Ω| and |S|, |P | > 1. Therefore, as P is G-regular, for all g ∈ G,
Sg is also a section for P. Hence Sg ∩ P 6= ∅ for all g ∈ G. Thus G is a
non-separating group and hence Statement 1 is proved.
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The proof of the second statement is analogous to the proof of Statement 2
of Theorem 3.1.1 replacing S by A and P1 by B.

We know that a synchronizing group is primitive. Thus, by Statement 1
of Proposition 3.3.1, we obtain also that every separating group is primitive.
Next, we present an example of a group which shows that the converse of
Statement 1 of Proposition 3.3.1 is not true.

Example 3.3.2. The orthogonal classical group PΩ(5, 3) acting on 40 points
is an example of a synchronizing and non-separating group. For the details of
this example, we refer to Chapter 6 of [Cam10], Section ”Some conclusions”.

3.4 The Automorphism Group of the

Petersen Graph

In this section we discuss an example of a primitive separating but not
2-homogeneous group. This example connects the properties studied in this
and in the previous chapters and justifies that the converses of Statement 2
of Theorem 3.1.1 and Statement 2 of Proposition 3.3.1 are not true. In order
to study this group we introduce two graphs. One can find this example in
Chapter 3 of the lecture notes of Peter Cameron [Cam10].

Let us consider the set Ω of all 2-element subsets of {1, . . . , 5}; that
is, Ω = {{1, 2}, {1, 3}, . . . , {3, 5}, {4, 5}} and |Ω| = 10. Consider the sets
EP = {{A,B} ∈ Ω{2} : A ∩ B = ∅} and EJ = Ω{2}\EP . Then ΓP = (Ω, EP )
and ΓJ = (Ω, EJ) are undirected graphs with vertex-set Ω. These graphs are
usually referred to as the Petersen graph and the (5,2)-Johnson graph and
are displayed in Figure 3.2. Note that |EP | = 15 and |EJ | = 30.

We define a clique in a graph Γ as a complete subgraph of Γ; that is, a
set of vertices, such that any two of them are joined by an edge. We say that
Γ has clique number n, denoted by ω (Γ), if the maximal clique size in Γ is
n. A set of vertices not involving any edges is called an independence set
in the graph. Analogously to the clique number, the size of a largest subset
of vertices of Γ involving no edges is called the independence number of Γ
and is denoted by α(Γ). From the definition of the Petersen graph and the
(5,2)-Johnson graph we obtain that a clique in ΓP is an independence set in
ΓJ and the converse is also true.
Lemma 3.4.1. 1. The group Sym(5) acts transitively on the set Ω, on

EP and on EJ .
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Figure 3.2: The Petersen graph and the (5,2)-Johnson graph.

2. We have that ω(ΓP ) = 2 and ω(ΓJ) = 4.

Proof. To prove that Sym(5) is transitive on Ω, we remark that Sym(5) is
2-homogeneous on the set {1, . . . , 5} therefore for every pair of elements
{a, b}, {c, d} in Ω there is an element g ∈ Sym(5) such that {a, b}g = {c, d}.
Hence Sym(5) is transitive on the set Ω.

Let us now show that the group Sym(5) is transitive on the sets EP and
EJ . Let e1 = {{a, b}, {c, d}} and e2 = {{e, f}, {g, h}} be elements of EP . By
the definition of EP , we have that |{a, b, c, d}| = 4 and that |{e, f, g, h}| = 4.
Since Sym(5) is 5-transitive on {1, . . . , 5}, it is 4-transitive on that set. Hence
there is g ∈ Sym(5) such that (a, b, c, d)g = (e, f, g, h) and so e1g = e2. Thus
Sym(5) is transitive on EP . A similar argument shows that this group is also
transitive on the set EJ .

Next, we prove Statement 2. We first have to show that a maximal
complete subgraph of ΓP has only 2 vertices. Indeed, in Ω the maximum
number of pairwise disjoint 2-sets is 2 since the elements of Ω are built from
the set {1, . . . , 5}. Hence the clique number of ΓP is 2. Now let us consider
the graph ΓJ . By definition of Ω, there exist at most 4 pairs which pairwise
intersect each other non-trivially. Hence a clique in ΓJ has size at most 4. On
the other hand the set of vertices {{1, 2}, {1, 3}, {1, 4}, {1, 5}} is a complete
subgraph of ΓJ . Therefore the clique number of ΓJ is 4.

Using Lemma 3.4.1, we are ready to show that the group Sym(5) acting
on the set Ω is a primitive separating but not 2-homogeneous group.

Proposition 3.4.2. Let Ω be defined as above. Then the following hold.
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1. Sym(5) is primitive on Ω;

2. Sym(5) is separating on Ω;

3. Sym(5) is not 2-homogeneous on Ω.

Proof. Let us prove that Sym(5) is primitive on Ω. Let B be a block for
Sym(5). Without loss of generality, we can assume that B contains the
element {1, 2} from Ω. Suppose first that B contains an element disjoint
from {1, 2}, for instance {4, 5}. Since {1, 2}(345) = {1, 2} and B is a
block for Sym(5), we have that B(345) = B. Hence {3, 5} = {4, 5}(345),
{3, 4} = {3, 5}(345) ∈ B. Similarly, as {3, 5}(124) = {3, 5}, we obtain that
{2, 4} = {1, 2}(124), {1, 3} = {3, 4}(124) ∈ B. Thus |B| ≥ 6 and since |B|
divides |Ω| (see the observation made before Lemma 2.4.1 about G-invariant
partitions and blocks), we conclude that |B| = 10. Hence B is a triv-
ial block. Let us now assume that B contains an element that intersect
{1, 2} non-trivially, for instance {1, 3}. As {1, 2}(345) = {1, 2} we obtain
that {1, 4}, {1, 5} ∈ B. Furthermore, since {1, 4}(134) = {1, 3} which is
an element of B, we obtain that B = B(134). Using a similar argument,
we have that {3, 4} = {1, 3}(134), {3, 5} = {1, 5}(134) ∈ B. Thus |B| ≥ 6,
which gives that B = Ω. Therefore Sym(5) does not admit non-trivial blocks
on Ω which implies that Sym(5) is primitive on that set.

Next, we prove that Sym(5) is a separating group on Ω. Let A and B
be subsets of Ω such that |A|, |B| > 1 and |A||B| = |Ω|. We want to show
that there exists g ∈ Sym(5) such that Ag ∩ B = ∅. Since |Ω| = 10, we
have that {|A|, |B|} = {2, 5}. Without loss of generality, we can assume
that |A| = 2 and |B| = 5. If A ∩ B = ∅ then we can choose g = 1 and
the claim is proved. Therefore we may assume that A ∩ B 6= ∅. First
we suppose that the two elements of A form an edge in ΓP . Then we have
that A = {{a, b}, {c, d}} with |{a, b, c, d}| = 4. On the other hand, by second
statement of Lemma 3.4.1, the clique number of the (5,2)-Johnson graph ΓJ
is 4. As |Ω\B| = 5, there exist two pairs {c1, c2}, {c3, c4} in Ω\B that
are not connected in ΓJ , which means that they form an edge in ΓP . By
Statement 1 of Lemma 3.4.1, the group Sym(5) is transitive on EP , and
so there exists g ∈ Sym(5) such that {{a, b}, {c, d}}g = {{c1, c2}, {c3, c4}}.
Therefore there is g ∈ G such that Ag ∩ B = ∅. Next, we want to consider
the case when the elements of A are not connected in ΓP . Then, without loss
of generality, we have that A = {{a, b}, {a, c}}. By the second statement of
Lemma 3.4.1, the clique number of ΓP is 2. Hence, as |Ω\B| = 5, there exist
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{c1, c2}, {c3, c4} ∈ Ω\B that form an edge in ΓJ . By the first statement of
Lemma 3.4.1, we have that Sym(5) is transitive on EJ . Thus we conclude
that there exists g ∈ G such that {{a, b}, {a, c}}g = {{c1, c2}, {c3, c4}}. This
means that there is g ∈ G such that Ag ∩ B = ∅. In each case we proved
the existence of an element g ∈ Sym(5) which separates the sets A and B.
Therefore Sym(5) is a separating group on Ω.

By Statement 1 of Lemma 3.4.1, Sym(5) has 2 orbits on Ω{2}, namely EP
and EJ which means that Sym(5) is not 2-homogeneous in Ω.

Example 3.4.3. Inspired by the example of Section 3.4, we give an example
that shows that the converse Statement of Theorem 3.2.2 is not true; that is,
there exists a basic non-synchronizing group.

Let Ω be the set of all 2-element subsets of {1, . . . , 6}. Then |Ω| = 15
and Ω = {{1, 2}, {1, 3}, . . . , {4, 5}, {5, 6}}. Consider the group Sym(6) act-
ing on Ω. We claim that, acting on Ω, the group Sym(6) is basic and
non-synchronizing. Using an analogous argument to the last section, we
can easily show that this group is primitive.

Next, we prove that Sym(6) is basic. Let Σ = {P1, . . .Pn} be a non-
trivial Cartesian decomposition preserved by Sym(6). Since we can identify
Ω with P1 × · · · ×Pn, we have that |Ω| = |P1| × · · · × |Pn|. This implies
that n = 2 and {|P1|, |P2|} = {3, 5}. Therefore, since |P1| 6= |P2|, we
obtain that Sym(6) preserves these two partitions. This is a contradiction to
the primitivity of Sym(6). Thus this group is basic.

Let us prove that Sym(6) is non-synchronizing. The complete graph K6

is edge-colored with 5 colors; that is, there exists a coloring of the edges of
K6 with the rule that two edges with common vertices get different colors
which uses 5 colors. Therefore, considering a partition P of Ω by that edge-
coloring, we obtain that P has 5 parts of size 3, with the property that any
two pairs in the same part are disjoint. Now consider the set S of all pairs of
Ω containing the element 1. By the way P was defined, we have that S is a
section for P and also by the action of Sym(6) on Ω, we obtain that Sg is a
section for P for all g ∈ Sym(6). Therefore this group preserves a non-trivial
section-regular partition. Thus Sym(6) acting on Ω is non-synchronizing.

To finish this chapter on the synchronization property, we can now extend
the diagram of permutation groups displayed on Figure 2.3. The diagram
of Figure 3.3 shows us a picture of how these diverse properties fit into
each other. Furthermore, we can also read off which of these properties are
sufficient for synchronization and which of them are necessary.
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We observe that the examples described in this and in the previous chap-
ters support the fact that these classes of groups are properly contained in
each other.

Figure 3.3: The synchronization property among the classes of permutation
groups.





Chapter 4

Synchronization, Separation
and Graphs

The synchronization property in permutation groups has a close relation-
ship with some properties of certain graphs that arise from the group action.
In this chapter we will be concerned with this relationship. We will start
with the necessary background on graph theory, in particular with the con-
struction and properties of undirected orbital graphs. Then we will state
Theorem 4.2.4, which gives necessary and sufficient conditions for the sepa-
ration and the synchronization properties. Next, we generalize the results for
vertex-transitive graphs and in Section 4.4 we discuss a graph invariant, the
Lovász theta-function, which turns out to be useful in our characterization
of synchronizing groups.

4.1 Undirected Orbital Graphs

In this section we study undirected graphs built from the action of a group on
a certain set. This construction is analogous to the orbital graph construction
(see Section 3.2 of [DM96]). Let G be a permutation group acting on a set Ω.
An undirected orbital of G is an orbit of G on the set

Ω{2} = {{α, β} : α, β ∈ Ω and α 6= β}.

Given an undirected orbital ∆ of G, the undirected orbital graph associated
with ∆, denoted by Γ∆ = (Ω,∆), is the undirected graph with vertex-set Ω
and edge-set ∆; that is, there exists an edge from α to β in Γ∆ if and only if
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{α, β} ∈ ∆. For any graph Γ, we denote the neighborhood of a vertex α in
Γ by Γ(α).

Example 4.1.1. We showed in Section 3.4 that Sym(5) has two undirected
orbitals with respect to its action on a set with 10 points. The correspond-
ing undirected orbital graphs are the Petersen graph and the (5,2)-Johnson
graph, displayed in Figure 3.2.

An automorphism of a graph Γ is a permutation g of the vertex-set of Γ
such that for any two vertices v1, v2, we have that v1g and v2g form an edge
in Γ if and only if v1 and v2 form an edge in Γ. Hence the edges are preserved
by a graph automorphism. The set of all automorphisms of a graph Γ, with
the operation of composition, is a group which is the automorphism group
of Γ and is denoted by Aut(Γ). A graph Γ is said to be vertex-transitive if
given two vertices v1 and v2 of Γ there is a graph automorphism that maps
v1 to v2. In a similar way we can define edge-transitive graph. We say that
a graph Γ is regular if every vertex of Γ has the same number of neighbors.
In particular a vertex-transitive graph is always regular.

A graph is said to be connected if there is a path between any two vertices,
otherwise the graph is called disconnected. Let us define a relation ∼ in the
set of vertices Ω of a graph Γ as follows.

Given α, β ∈ Ω, α ∼ β if and only if there exists a path in Γ from α to β.

The relation ∼ is an equivalence relation and the equivalence classes of ∼
are called the connected components of the graph Γ. If a graph is connected
then it has just one connected component.

This concept of connectivity in a graph leads us to a result to test if a
transitive permutation group is primitive.

Theorem 4.1.2 (Higman’s Theorem). Let G be a transitive permutation
group acting on a set Ω. Then G is primitive if and only if the graph
Γ∆ = (Ω,∆) is connected for all undirected G-orbitals ∆ in Ω{2}.

Proof. Let us assume that all graphs associated with undirected orbitals for
G are connected. Let B be a block for G with at least two elements. We
want to show that B = Ω. Let α, β ∈ B such that α 6= β and consider
the undirected orbital ∆ for G that contains {α, β}. Let γ ∈ Ω. Since the
graph associated with ∆ is connected, there is a path α = α0, . . . , αk = γ
from α to γ. We show by induction that, for all i ∈ {0, . . . , k}, we have



4.1 Undirected Orbital Graphs 39

αi ∈ B. The claim is true for i = 0. Thus let us assume by inductive
hypothesis that αi−1 ∈ B. Since {αi−1, αi} ∈ ∆ there exists g ∈ G such
that {αg, βg} = {αi−1, αi}. As we assume that αi−1 ∈ B either αg ∈ B or
βg ∈ B. Therefore, since B is a block, we have that B = Bg which implies
that αi ∈ B. Thus we obtain that αi ∈ B for all i ∈ {1, . . . , k}. In particular
γ ∈ B. Hence for all γ ∈ Ω we conclude that γ ∈ B which means that
B = Ω. Therefore G has no non-trivial blocks and so it is a primitive group.

Conversely let us suppose that there exists an undirected orbital ∆ for G
such that the graph Γ∆ associated with ∆ is not connected. The connected
components of Γ∆ form a G-invariant partition of Ω, which is non-trivial
since Γ∆ is non-trivial and Γ∆ is not connected. This fact implies that G is
an imprimitive group by Lemma 2.4.1.

A bipartite graph Γ is a graph whose vertices can be divided into disjoint
sets U1, U2 such that every edge of Γ connects a vertex in U1 to a vertex in U2.
The subsets U1 and U2 are called the bi-parts of Γ. An example of a bipartite
graph is shown in Figure 4.1. Since the automorphisms of graphs preserve
distance (the length of a shortest path between two connected points), it
follows that an automorphism of a connected bipartite graph either preserves
the bi-parts or swaps them.

Figure 4.1: A bipartite graph with 9 vertices

As an application of Higman’s Theorem, we can characterize the section
regular partitions for primitive permutation groups.
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Proposition 4.1.3 (Lemma 2.4 of [Neu09]). Suppose that G is a primitive
group acting on a set Ω and let P be a non-trivial section-regular partition
for G. Then we have that |P| > 2 and for every part P of P, |P | > 2.

Proof. Since P is a non-trivial section-regular partition of Ω, we have that
|P | > 1 and |P| > 1. Therefore, we assume by contradiction that |P | = 2 or
|P| = 2.

Let us suppose first that |P| = 2. Let S be a section for P which wit-
nesses its G-regularity. Then S is a unordered pair {α, β} and we can consider
the undirected orbital {α, β}G containing S and denote it by ∆. Since the
group G is primitive, we have, by Theorem 4.1.2, that the undirected orbital
graph Γ∆ associated with ∆ is connected. Let P1, P2 be the two parts of
P. Since for all g ∈ G, Sg is a section for P, every edge in Γ∆ connects
an element from P1 to an element from P2. This fact means that Γ∆ is a
bipartite graph with bi-parts P1 and P2. As Γ∆ is connected, we have that
any graph automorphism of Γ∆ either fixes P1 and P2 setwise or interchanges
them (see the remark before Proposition 4.1.3). By definition, G is a group
of automorphisms of Γ∆. This means that P is a non-trivial G-invariant
partition, which contradicts the primitivity of the group G. Hence the case
|P| = 2 cannot occur. Thus |P| > 2.

Now let us assume that every part P of P has size 2. Let S be a section
for P which witnesses its G-regularity. Let S ′ = Ω\S and Q= {S, S ′}. Then
Q is a partition of Ω. Since S is a section for P we have that any part of P
is a section for Q. Let P = {α, β} be a part of P and g be an element of G.
We want to show that Pg is a section for Q. Let us assume that Pg ⊂ S.
As {α, β}g ⊆ S, we have that α, β ∈ Sg−1 which is a contradiction to the
fact that S witnesses section-regularity of P and so Sg−1 is a section for P.
Next we assume that Pg ⊂ S ′. Since g is a permutation, Sg−1 ∩ S ′g−1 = ∅.
On the other hand, we have that α, β are in S ′g−1. This fact means that
P ∩ Sg−1 = ∅, which is again a contradiction since Sg−1 must be a section
for P. Hence we obtain that |Pg ∩ S| = 1 and |Pg ∩ S ′| = 1. Therefore Pg
is a section for Q which implies that Q is a G-regular partition. Hence by
the previous paragraph, this case cannot happen since Q has only two parts.
Therefore |P | > 2, for every part P of P and the proof is complete.

The next corollary, concerned about the synchronization property, is a
direct consequence of Proposition 4.1.3.

Corollary 4.1.4. A primitive group of degree 2p, where p is a prime, is
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synchronizing.

Proof. Let G ≤ Sym(Ω) be a primitive group with |Ω| = 2p, where p is a
prime. By Proposition 4.1.3, a non-trivial G-regular partition of Ω has more
than 2 parts and each part has more than 2 elements. By Statement 1 of
Proposition 3.1.3 we know that a G-regular partition is uniform. By assump-
tion, we have that |Ω| = 2p, and as the only proper divisors of 2p are 2 and
p, we obtain that there cannot exist a non-trivial section-regular partition of
G. Hence G is a synchronizing group.

4.2 Synchronization, Cliques and Colors

In this section, we prove a necessary and sufficient condition for the syn-
chronization and separation properties using the clique and the chromatic
numbers of the graphs discussed above. We start by defining some concepts
of graph theory before stating the results about these properties.

Given a graph Γ = (Ω, E), we denote by Γ′ = (Ω, E ′) the complement
graph of Γ; that is, the graph with the same vertex-set Ω and edge-set
E ′ = Ω{2}\E. It follows from the definition of the complement graph that a
clique in Γ′ is an independence set in Γ and that the converse is also true.
Given a graph Γ, ω(Γ) is the clique number and α(Γ) is the independence
number of Γ. Recall the definitions of these numbers from Section 3.4.

Proposition 4.2.1. Let Γ = (Ω, E) be a vertex transitive graph and suppose
that C is a clique and I is an independence set in Γ such that |C||I| = |Ω|.
Then ω(Γ) = |C| and α(Γ) = |I|.

For the proof of this proposition we need an auxiliary Lemma that can
be found as Theorem 8 of [Cam10].

Lemma 4.2.2. Let G be a transitive permutation group acting on a set Ω
and let A,B be subsets of Ω satisfying |A||B| = λ|Ω| for some integer λ.
Then the following are equivalent:

1. for all g ∈ G, |Ag ∩B| = λ;

2. for all g ∈ G, |Ag ∩B| ≤ λ;

3. for all g ∈ G, |Ag ∩B| ≥ λ.
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Proof of Proposition 4.2.1. Let Γ = (Ω, E) be a vertex-transitive graph and
set G = Aut(Γ). Assume that C is a clique and I is an independence set for Γ
such that |C||I| = |Ω|. We claim that ω(Γ) = |C|. Let us suppose by contra-
diction that there exists a clique A ∈ Ω such that |A| > |C|. Without loss of
generality, we can assume that |A| = |C|+ 1. Let β ∈ A and let us consider
A1 = A\{β}. Then |A1| = |C| and we have, for all g ∈ G, that |A1g ∩ I| ≤ 1.
Hence, by Lemma 4.2.2, we obtain, for all g ∈ G, that |A1g ∩ I| = 1. Let
γ ∈ I. Since G is a transitive group in Ω, there exists g ∈ G such that
βg = γ. On the other hand, we have that |A1g ∩ I| = 1 and as β 6∈ A1,
it follows that γ = βg 6∈ A1g. Therefore |Ag ∩ I| = | ({βg} ∪ A1g) ∩ I| = 2.
This is a contradiction since A is a clique and I is an independence set. Thus
there is no clique with size greater than C and so ω (Γ) = |C|. Exchanging
Γ with its complement graph Γ′, we obtain that |I| = ω(Γ′) = α(Γ).

The chromatic number of a graph Γ, denoted by χ (Γ) is the smallest
number of colors needed to color the vertices of Γ so that no two adjacent
vertices share the same color. It is a trivial observation that ω(Γ) ≤ χ(Γ)
holds in any graph Γ.

Let Γ be a vertex-transitive graph with vertex-set Ω. Then Γ is called a
pseudo-suitable graph if ω(Γ)ω(Γ′) = |Ω|. If we have that ω(Γ) = χ(Γ), then
Γ will be called a suitable graph.

Proposition 4.2.3. Let Γ be a vertex-transitive graph. Then the following
are valid.

1. Γ is pseudo-suitable if and only if Γ′ is pseudo-suitable.

2. If Γ is suitable then Γ is pseudo-suitable.

Proof. The first statement is a consequence of the definition of pseudo-
suitable graphs.

Let us prove Statement 2. Let Γ = (Ω, E) be a vertex-transitive graph
and set G = Aut(Γ). Assume that Γ is suitable, such that ω(Γ) = χ(Γ) = k.
Let P be a partition of Ω according to a colouring with k colors and let C
be a clique for Γ with size k. Since the edge-set of Γ is G-invariant, we have,
for all g ∈ G, that the image Cg is a clique for Γ with k vertices. Thus, for
all g ∈ G, the set Cg contains precisely one vertex of each color. Thus Cg is
a section for P for each g ∈ G, which shows that P is a G-regular partition.
By the first statement of Proposition 3.1.3, we obtain that P is uniform,
which means that every part of P has |Ω|/k vertices. Let P be a part
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of P. We observe that by the way P was defined with the colors, P is an
independence set for Γ and by the last argument it has size |Ω|/k. Therefore,
applying Proposition 4.2.1 to C and P , we conclude that α(Γ) = |Ω|/k and
hence |ω(Γ)||α(Γ)| = |Ω|. As observed before, an independence set in a graph
is a clique in its complement graph. Thus we obtain that |ω(Γ)||ω(Γ′)| = |Ω|.
Therefore Γ is a pseudo-suitable graph.

Now we present the main result of this chapter, that gives necessary
and sufficient conditions for the separation and synchronization properties in
terms of graphs whose edge-sets are invariant under the action of a group.

Theorem 4.2.4. Let G be a transitive permutation group acting on a set Ω.
Then the following hold.

1. G is non-separating if and only if there is a G-invariant subset E of Ω{2}

such that Γ = (Ω, E) is pseudo-suitable.

2. If G is primitive then G is non-synchronizing if and only if there is
a proper non-empty G-invariant subset E ⊆ Ω{2} such that the graph
ΓE = (Ω, E) is suitable.

Proof. Let us prove the first statement. Assume that G is non-separating and
let A and B be subsets of Ω which witness its non-separability. Consider the
graph Γ with vertex-set Ω and set of edges {{ag, bg} : a, b ∈ A and a 6= b}.
It is clear that A is a clique in Γ. If any pair of elements of B was an image
of a pair of points of A by an element g ∈ G, we had that |Ag∩B| ≥ 2 which
contradicts the Lemma 4.2.2 since we assume that |A||B| = 1|Ω|. Hence
B is an independence set of Γ. Hence by Proposition 4.2.1 we have that
ω (Γ)α (Γ) = |A||B| = |Ω|. This equation is equivalent to ω (Γ)ω (Γ′) = |Ω|
and hence Γ is a pseudo-suitable graph.

Conversely, assume that there exists a pseudo-suitable graph Γ for G.
Let us observe that a clique and an independence set in Γ can intersect in at
most one point. Indeed, if the intersection contains two points, they must be
connected and unconnected at the same time. Then, in particular, any clique
C of size ω (Γ) and independence set I with size ω (Γ′) must meet in at most
one point. Thus, by Lemma 4.2.2, they meet at exactly one point. Therefore
for all g ∈ G we obtain that Cg ∩ I 6= ∅. Hence G is a non-separating group.

Next we prove Statement 2. Let us suppose first that G is a primitive non-
synchronizing group. Let P = {P1, . . . , Pk} be a non-trivial section-regular
partition of Ω for G, witnessed by a section S and consider the following set:
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E = {{αg, βg} : g ∈ G,α, β ∈ S, α 6= β}.

Since E ⊆ Ω{2}, the graph ΓE = (Ω, E) is undirected. Further, the set E
is G-invariant. Therefore using Theorem 4.1.2, we conclude that the graph
ΓE is connected. We have that every pair of elements of the section S is
connected in ΓE since this graph has edge-set E. Therefore the clique num-
ber of ΓE is bigger or equal to |S|. On the other hand, if P is a part of the
partition P and α, β ∈ P , then α and β are not connected in ΓE. Indeed,
if they were connected, there would exist g ∈ G and α1, β1 ∈ S such that
α = α1g and β = β1g. Since α1, β1 ∈ S, these elements belong to different
parts of the partition P and as P is G-regular, so do α and β. This con-
tradicts the fact that α, β ∈ P . Hence ΓE is colorable with k colors, where
k = |S| = |P|. Therefore we conclude that χ(ΓE) ≤ k ≤ ω(ΓE). Since
the clique number is smaller or equal that the chromatic number, we obtain
that χ(ΓE) = ω(ΓE) = k. This means that ΓE satisfies the conditions of the
theorem.

Conversely, assume that ΓE = (Ω, E) is a graph with the same clique
and chromatic number k, where E ⊆ Ω{2} is a G-invariant set. Let g ∈ G,
and C be a clique of size k in ΓE. Consider a partition P of Ω according
to a coloring with k colors. Since the graph ΓE is G-invariant, Cg is also a
clique for the graph. Then |Cg| = |P| and for all part P of P we have that
|Cg ∩ P | = 1. Indeed, this intersection must be non-empty since Cg must
contain one vertex of each color. Further, if α, β ∈ Cg ∩ P , with α 6= β,
then they must be connected and unconnected at the same time. Hence Cg
is a section for P. Thus C witnesses the G-regularity of P. Therefore
P is a non-trivial section-regular partition of Ω which means that G is a
non-synchronizing group.

Theorem 4.2.4 shows us a shortcut on the road of determining if a per-
mutation group is synchronizing. Since a separating group is synchronizing,
we should start our search of synchronization by investigating the separation
property. Therefore, by Statement 1 of Theorem 4.2.4, this is reduced to the
problem of determining the clique number of a graph. Thus, if we do not
find a pseudo-suitable graph for the group, then we can conclude that the
group is separating and hence synchronizing.

In the other hand, if we find a pseudo-suitable graph for the group then
that graph and its complement graph are good candidates for being suitable,
meaning that the group in study can be non-synchronizing. This fact is
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justified by Statement 2 of Proposition 4.2.3, which states that a suitable
graph is pseudo-suitable.

4.3 Vertex-Transitive Automorphisms of a

Graph

Combining the results in the previous sections, we can obtain interesting
properties of graphs with vertex-transitive automorphism groups.
Theorem 4.3.1. Let Γ = (V,E) be a vertex-transitive graph such that
ω(Γ) = χ(Γ) = k. Then the following hold.

1. The number k divides the number of vertices of Γ.

2. Every colour of a colouring with size k, colours the same number of
vertices.

Proof. For the proof of the first statement, we just observe that the graph
Γ is suitable by hypothesis. Hence, from Statement 2 of Proposition 4.2.3 it
follows that Γ is a pseudo-suitable graph, which means that ω(Γ)ω(Γ′) = |V |.
As ω(Γ) = k, it implies that k divides the number of vertices.

Next we prove the second statement. Let P be a colouring for Γ with k
colours and C be a clique of Γ with size k. As the graph Γ is invariant under
Aut(Γ), we obtain, for all g ∈ Aut(Γ), that Cg is also a clique for Γ. Then
|Cg| = |P| and for all part P of P we have that |Cg∩P | = 1. This argument
implies that Cg is a section for the partition P. Hence this partition is a
section-regular partition. Thus, by the first statement of Proposition 3.1.3,
we conclude that P is a uniform partition. Therefore in a colouring of Γ
with k colours, each colour is applied to the same number of vertices.

4.4 The Lovász Theta-function

The problem of determining the clique and the chromatic number of certain
graphs is a hard task and it is not always possible to solve efficiently. In the
aim of solving this problem, there were developments in order to establish
bounds for the clique and chromatic number of graphs. One of these bounds
was defined by László Lovász [Lov79]. In his article about the Shannon
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capacity of a graph, Lovász defined a function, called theta-function, which
gives some bounds for these numbers.

In this section we will define this function and present a summary of its
properties, in order to get more tools for analyzing the synchronization prop-
erty using graphs. For the theory of the theta-function we refer to Chapter 3
of [GM12]. To simplify notation, we will assume that a graph with n vertices
has vertex-set {1, . . . , n}.

An orthogonal representation of a graph Γ = (V,E) with n vertices, is a
sequence U = (u1, . . . , un) of unit vectors in a Euclidean space Rm for some
m, such that

uTi uj = 0 if {i, j} 6∈ E.

It follows from the definition that every graph has an orthogonal representa-
tion, since we can consider an orthogonal basis of R|V |. We define the value
of an orthogonal representation U of a graph Γ as

ϑ(U) = min
‖c‖=1

max
1≤i≤n

1

(cTui)2
.

The minimum value over all orthogonal representations of a graph Γ is called
the theta-function of Γ and is denoted by ϑ(Γ).

After the definition of the theta-function, we are interested in its prop-
erties; in particular the ones that connect this function to the clique and
the chromatic number of a graph. For these results we refer to the paper of
Lovász [Lov79].

Proposition 4.4.1. Let Γ = (V,E) be an undirected graph with edge-set E
and vertex-set V of size n. Then the following hold.

1. ω(Γ) ≤ ϑ(Γ′) ≤ χ(Γ).

2. If Γ is vertex-transitive then ϑ(Γ)ϑ(Γ′) = n.

From this proposition we conclude that for suitable graphs, Statement 1
implies that ω(Γ) = ϑ(Γ′) = χ(Γ).

Given a graph Γ with n vertices, we define the adjacency matrix of the
graph Γ, denoted by AΓ, as the n × n matrix with entries 0 and 1, where
the entry aij is 1 if the vertices i and j are connected by an edge and it is 0
otherwise. As we consider in our study finite undirected simple graphs, the
adjacency matrix has zero-diagonal and is symmetric. From the symmetric
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property of these matrices we conclude that their eigenvalues are real. On
the other hand, as AΓ has integer entries, its characteristic polynomial has
integer coefficients and is monic. Since every eigenvalue is a root of the char-
acteristic polynomial, we obtain from the rational root test (Proposition 5.1
of [Mor96]), that any rational eigenvalue of AΓ must be an integer.

Let Γ be an undirected simple graph with n vertices and AΓ be the ad-
jacency matrix for Γ. Let us denote the eigenvalues of the matrix AΓ by
λΓ

1 ≥ λΓ
2 ≥ . . . ≥ λΓ

n. These eigenvalues are independent of the ordering of
the vertices of the graph and therefore we refer to the eigenvalues of the
adjacency matrix as the eigenvalues of the graph Γ. The smallest and the
largest eigenvalues of a graph Γ, respectively denoted by λΓ

n and λΓ
1 , are par-

ticularly interesting since they exhibit some special properties and represent
some characteristics of the graph.

We define the degree of a vertex v as the number of edges incident to v.
Let ∂max(Γ) denote the maximum degree of a vertex in a graph Γ and ∂̄(Γ)
denote the average degree of the vertices of Γ. If Γ is regular, since every
vertex has the same degree, then ∂̄(Γ) denotes the degree of the graph.

Next we present a summary of the properties of the theta-function con-
nected to the eigenvalues of a graph and with its clique and chromatic num-
ber. We observe that in the following chapters we will study graphs with
the property of regularity. Therefore the last two statements of the next
proposition have results that apply for those graphs.

Proposition 4.4.2. Let Γ be a graph with vertex-set of size n. Then we have
that:

1. 1− (λΓ
1/λ

Γ
n) ≤ χ(Γ);

2. max{∂̄(Γ),
√
∂max(Γ)} ≤ λΓ

1 ≤ ∂max(Γ);

3. If Γ is regular then λΓ
1 = ∂̄(Γ);

4. If Γ is regular and edge-transitive then ϑ(Γ) = −nλΓ
n/(λ

Γ
1 − λΓ

n).

For the proof of Proposition 4.4.2 we refer to the paper of Lovász [Lov79].
Statement 1 can be found as Corollary 3 and Statement 2 as Proposition 2.1.
The third statement is a consequence of Statement 2. The last statement
can be found as Theorem 9 in the same paper.

Since every vertex-transitive graph is regular, applying the formula for the
Lovász theta-function given by Statement 4 of Proposition 4.4.2, we obtain
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a necessary condition for the suitability in vertex-transitive graphs which are
edge-transitive.

Theorem 4.4.3. Let Γ be a vertex-transitive and edge-transitive suitable
graph with n vertices such that ω(Γ) = χ(Γ) = k. Then we have that k − 1
divides ∂̄(Γ). Further λΓ

n = −∂̄Γ/(k − 1).

Proof. Let Γ be a graph in the conditions of the theorem. From the first
statement of Proposition 4.4.1, we know that ω(Γ) ≤ ϑ(Γ′) ≤ χ(Γ). Since
Γ is a suitable graph, it implies that ω(Γ) = ϑ(Γ′) = χ(Γ) and therefore
ϑ(Γ′) = k. As Γ is vertex-transitive, from Statement 2 of Proposition 4.4.1
we know that ϑ(Γ′)ϑ(Γ) = n. Hence we obtain that ϑ(Γ) = n/k. Also from
the vertex-transitive property of Γ, we have that Γ is regular and therefore
we can apply Statement 3 of Proposition 4.4.2 which states that λΓ

1 coincides
with to the degree of Γ. Now by Statement 4 of Proposition 4.4.2 we know
that ϑ(Γ) = (−nλΓ

n)/(λΓ
1 − λΓ

n). Using the observations made above, we
obtain that

ϑ(Γ) =
n

k
=

−nλΓ
n

∂̄(Γ)− λΓ
n

and after some calculations we get

λΓ
n(1− k) = ∂̄(Γ). (4.1)

Hence λΓ
n is a rational number. However, since λΓ

n is an eigenvalue from the
adjacency matrix of Γ, it follows, using the rational root test, that λΓ

n is an
integer. Thus (k − 1) divides ∂̄(Γ).

Further from Equation (4.1) we conclude that λΓ
n = −∂̄(Γ)/(k − 1).



Chapter 5

Synchronization and
Generalized Paley Graphs

In this chapter we will present an interesting class of graphs, the Paley graphs,
constructed from finite fields. These graphs are named after Raymond Paley,
a mathematician who died young in 1933 in an avalanche in Canada. After
the definition made by Paley [Pal33], a generalization of these graphs was
developed. See for instance [LP09].

Paley graphs are very important for our study of synchronization in affine
groups since some undirected orbital graphs in Chapter 4 associated with
these groups are generalized Paley graphs. Hence we will study these graphs,
in particular their clique and chromatic numbers, which are the properties
involved in the characterization in Theorem 4.2.4 of synchronizing groups
using graphs.

Since generalized Paley graphs are built using finite fields, we start this
chapter by summarizing the general theory of finite fields necessary for the
construction of these graphs and further, in Chapter 6, to describe some
subgroups of GL(2, p).

5.1 Finite Fields

For any field F, we denote by F∗ the set F\{0} viewed as an abelian mul-
tiplicative group. We present a proposition which states the properties of
finite fields that will be used in this dissertation. These properties can be
found in Chapter 5.5 of [Hun80].
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Proposition 5.1.1. 1. The order of a finite field is a power of a prime.

2. For every prime-power q there exists a field with q elements.

3. If F and K are finite fields with q elements then F ∼= K.

4. A field F of pk elements, where p is a prime and k ∈ N, contains a
subfield K of pd elements if and only if d is a divisor of k. In this case
K is unique and F can be considered as a (k/d)-dimensional vector
space over K.

5. A finite subgroup of the multiplicative group of every field is cyclic.

For a prime power q, we let Fq denote the field of q elements, which, by the
third statement of Proposition 5.1.1, is uniquely determined up to isomor-
phism. If p is a prime then Fp is usually identified with the set {0, . . . , p−1},
in which the addition and the multiplication are performed modulo p.

To set up notation, we proceed to the construction of finite fields with pk

elements. Let Fp be the finite field with p elements and consider an irreducible
polynomial f(x) = xk + αk−1x

k−1 + · · ·+ α0 over Fp. Then the quotient ring
Fp[x]/ (f), where (f) is the ideal generated by f , is a field with pk elements.
By the third property of Proposition 5.1.1, the isomorphism type of this
field is independent of f . Hence we identify Fpk with the ring Fp[x]/ (f). The
elements of Fpk are cosets of the form g+(f) and let us denote such a coset by
[g]f . Every coset [g]f contains a unique element g1 with degree at most k− 1
and so [g]f = [g1]f . Hence Fpk = {[αk−1x

k−1 + . . .+α0]f : αk−1, · · · , α0 ∈ Fp}.

Example 5.1.2. Let us present the construction of the field F9. Since 9 = 32,
we consider the field F3 and an irreducible polynomial of degree two over F3.
For instance, consider f(x) = x2 + 1. Then F9 = F3[x]/ (x2 + 1) is a field
with 9 elements. Denoting by i, as in C, a root in F9 of x2 + 1 we write the
elements of F9 in the form α + βi, with α, β ∈ F3.

By Statement 5 of Proposition 5.1.1, we have that F∗9 is cyclic. Since
i2 = −1 it follows that i4 = 1 which means that i generates a proper subgroup
of order 4 in F∗9 . Since F∗9 has only one maximal subgroup, namely 〈i〉, and
1 + i 6∈ 〈i〉, we obtain that F∗9 = 〈1 + i〉.

Multiplication of elements of the form α+ βi is performed using the fact
that i2 = −1. For instance 2i(1 + 2i) = 2i+ 4i2 = 2i− 4 = 2i+ 2.
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Continuing with the notation introduced before Example 5.1.2 we have
that the elements of the form [0xk−1+. . .+0x+β]f form a subfield of Fpk with
p elements and by Statement 4 of Proposition 5.1.1, Fpk is a k-dimensional
vector space over Fp. The set {[1]f , [x]f , [x

2]f , . . . , [x
k−1]f} is an Fp-basis for

Fpk . In the case where k = 2, if γ ∈ Fp2\Fp the set {1, γ} is an Fp-basis
for Fp2 .

If Fq is the field with q elements, where q = pn and p is a prime, then we
have that βq = β for all β ∈ Fq. Furthermore the map

ϕ : Fq → Fq defined by β 7→ βp

is an automorphism of the field Fq. This automorphism is called the Frobenius
automorphism after Ferdinand Frobenius. We have that ϕ is a Fp-linear map;
that is, a map that satisfies the following properties:

1. (β1 + β2)ϕ = β1ϕ+ β2ϕ, for all β1, β2 ∈ Fq.

2. (αβ)ϕ = α(βϕ), for all β ∈ Fq and α ∈ Fp.

We have, by Statement 4 of Proposition 5.1.1, that Fq can be regarded as a
n-dimensional vector space over the prime field Fp. Hence, if we fix a basis
for Fq over Fp, as the Frobenius automorphism is an Fp-linear map, then
we can consider ϕ as an element of GL(n, p), the group of n × n invertible
matrices over Fp. We will use the Frobenius automorphism in our further
study of irreducible subgroups of the general linear group in Chapter 6.

5.2 Generalized Paley Graphs

Let q be a prime-power number such that q ≡ 1 (mod 4). Let Fq be the
field with q elements and set S = {α2 : α ∈ F∗q}, the set of non-zero square

elements of Fq. Let V = Fq and E = {{α, β} ∈ F{2}q : α−β ∈ S}. We observe
that since q ≡ 1 (mod 4), we have that −1 ∈ S. Therefore the set S is well
defined because α − β = −1(β − α), which means, as −1 is a square in Fq,
that α− β is a square in Fq if and only if β − α is a square in Fq. The Paley
graph of the finite field Fq, denoted by Γq,2, is the graph with vertex-set V
and edge-set E. Some examples of Paley graphs are displayed in Figure 5.1.
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Figure 5.1: The Paley graphs of the fields with small number of elements.
Source: Weisstein, Eric W. ”Paley Graph.” From MathWorld–A Wolfram
Web Resource. http://mathworld.wolfram.com/PaleyGraph.html

Let q be a prime-power and m ≥ 2 be a divisor of q − 1 such that 2m|q − 1.
Set Sq,m = {αm : α ∈ F∗q}. Then Sq,m ≤ F∗q and |Sq,m| = (q − 1)/m.
Since 2m divides q − 1, we have that −1 ∈ Sq,m. Consider the graph Γq,m
with vertex-set Fq and edge-set E defined by {α, β} ∈ E if and only if
α− β ∈ Sq,m. As before, this set is well defined because −1 ∈ Sq,m. We call
Γq,m the generalized Paley graph of the field Fq with index m. We remark
that the two definitions of Γq,2 given in this section are identical.

In the next proposition we present some properties of generalized Paley
graphs. As observed before, these graphs will turn out to be undirected or-
bital graphs for some affine permutation groups. Therefore we must verify
that these graphs are symmetric for applying the theory of Chapter 4. In par-
ticular, in this proposition, we prove that these graphs are vertex-transitive
and edge-transitive (see Section 4.1, after Example 4.1.1, for the definitions).
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Proposition 5.2.1. Let q be a prime-power and m ∈ N such that the gen-
eralized Paley graph Γq,m is defined. Then

1. Γq,m is isomorphic to a subgraph of its complement graph Γ′q,m.

2. If α ∈ Fq and β ∈ Sq,m then the map ψα,β defined by δ 7→ βδ + α is an
automorphism of Γq,m.

3. Γq,m is vertex-transitive and edge-transitive.

4. Γq,m is a regular graph and ∂̄(Γq,m) = (q − 1)/m.

Proof. Let q and m be parameters such that the generalized Paley graph
Γq,m is defined and let γ be a generator of F∗p2 .

We prove Statement 1. Define the map ς : Fq → Fq as α 7→ αγ for every
element α ∈ Fq. It is easy to see that ς is a bijection. Now we observe that
if δ1, δ2 are connected vertices in Γq,m then δ1 − δ2 ∈ Sq,m. Therefore we
have that δ1ς − δ2ς = (δ1 − δ2)γ ∈ Sq,mγ. Since γ 6∈ Sq,m, we obtain that
Sq,mγ is a non-trivial coset of Sq,m in F∗q. Thus Sq,m∩Sq,mγ = ∅. This means
that δ1ς and δ2ς are not connected in Γq,m. Hence they are connected in its
complement graph Γ′q,m. Therefore ς is a injective homomorphism from Γq,m
to Γ′q,m. Thus the generalized Paley graph Γq,m is isomorphic to a subgraph
of Γ′q,m.

Next, we prove the second statement. Let us fix α, β ∈ Fq such that
β ∈ Sq,m and define the map ψα,β : Fq → Fq by δ 7→ βδ + α. We will prove
that ψα,β is a graph automorphism. We claim that ψα,β is injective. Let
δ1, δ2 ∈ Fq such that δ1ψα,β = δ2ψα,β. Then

0 = δ1ψα,β − δ2ψα,β = (βδ1 + α)− (βδ2 + α) = β(δ1 − δ2).

Since β 6= 0 we find that δ1 = δ2. On the other hand, for every δ ∈ Fq, we
have that β−1δ − β−1α ∈ Fq and (β−1δ − β−1α)ψα,β = δ. Therefore ψα,β is
onto. To conclude that ψα,β is a graph automorphism, it remains to show
that it is a graph homomorphism. Let δ1, δ2 ∈ Fq. We have that

δ1ψα,β − δ2ψα,β = (βδ1 + α)− (βδ2 + α) = β(δ1 − δ2) + α− α = β(δ1 − δ2).

As β ∈ Sq,m, we have that δ1ψα,β− δ2ψα,β ∈ Sq,m if and only if δ1− δ2 ∈ Sq,m.
Hence δ1ψα,β and δ2ψα,β are connected in Γq,m if and only if δ1 and δ2 are
connected in Γq,m. Thus ψα,β ∈Aut(Γq,m).

Let us prove Statement 3. We begin by proving that the graph Γq,m is
vertex-transitive. Let δ1, δ2 ∈ Fq. Then ψδ2−δ1,1 defined in Statement 2,
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is an automorphism of the graph Γq,m such that δ1ψδ2−δ1,1 = δ2. There-
fore the graph Γq,m is vertex-transitive. Next, we prove that this graph is
edge-transitive. Let {α1, δ1}, {α2, δ2} be edges of the graph Γq,m. We already
proved that this graph is vertex-transitive, therefore we can assume without
loss of generality that α1 = α2 = 0. Hence it is suffice to prove that given two
edges e1 = {0, δ1} and e2 = {0, δ2} there exists an element g ∈Aut(Γq,m) such
that e1g = e2. By the definition of Γq,m, there exists i and j ∈ N such that
δ1 = γmi and δ2 = γmj. Then the map ψ0,γm(j−i) defined in Statement 2 is
an automorphism of Γq,m such that e1ψα,β = {0, δ1}ψα,β = {0, δ2} = e2. Thus
the graph Γq,m is edge-transitive.

Now we prove the last statement. Since Γq,m is vertex-transitive, we
obtain that this is a regular graph. We claim that ∂̄(Γq,m) = (q − 1)/m. By
definition of Γq,m we have that α is a neighbor of 0 if and only if α ∈ Sq,m.
Hence the vertex 0 has |Sq,m| = (q − 1)/m neighbors. Since this graph is
regular, every vertex has the same number of neighbors as the vertex 0.
Thus ∂̄(Γq,m) = (q − 1)/m.

The study of graphs developed in Chapter 4 in terms of the synchroniza-
tion property was about the clique and chromatic numbers. Thus we present
the next results which give us some properties of this numbers in generalized
Paley graphs.

Theorem 5.2.2 (Theorem 1 of [BDR88]). Let p be an odd prime and n ∈ N.
Let m 6= 1 such that m | (pn − 1)/(p− 1). Then

pd ≤ ω(Γpn,m)) ≤ χ(Γpn,m)) ≤ χ(Γ′pn,m) ≤ pn−d,

where d is any divisor of n such that m | (pn − 1)/(pd − 1).

Proof. Let γ be a generator of F∗pn . Since d divides n, by Statement 4 of
Proposition 5.1.1, there exists a subfield K of Fpn such that K has pd ele-
ments. Further, we have that K∗ is a multiplicative subgroup of F∗pn with
index (pn − 1)/(pd − 1). As F∗pn is cyclic and generated by γ, it follows that

K∗ =
〈
γ(pn−1)/(pd−1)

〉
.

We have thatm | (pn−1)/(pd−1) by assumption, therefore the elements of
K∗ lie in the set Spn,m. In particular, since −1 ∈ K it follows that −1 ∈ Spn,m
and so the graph Γpn,m is defined. As K is additively closed, the elements
of K form a clique on Γpn,m. Thus pd ≤ ω(Γpn,m). By the first statement of
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Proposition 5.2.1, Γpn,m is isomorphic to a subgraph of Γ′pn,m and therefore
χ(Γpn,m) ≤ χ(Γ′pn,m).

To complete the proof of the theorem we want to get an upper bound for
the chromatic number of Γ′pn,m. As observed before, K is a clique in Γpn,m.
Hence K is an independence set in Γ′pn,m. Similarly, every additive coset
K + γi of K in Fpn is an independence set of vertices in Γ′pn,m. Therefore
the pn−d cosets of K in Fpn form a colouring on Γ′pn,m, which implies that
χ(Γ′pn,m) ≤ pn−d. Since we have that ω(Γpn,m) ≤ χ(Γpn,m), it follows that
pd ≤ ω(Γpn,m) ≤ χ(Γpn,m) ≤ χ(Γ′pn,m) ≤ pn−d.

5.3 Synchronization and Generalized Paley

Graphs

In Chapter 6 we will mainly be interested in the study of synchronization
in 2-dimensional affine groups, which are groups that act on a set with p2

elements, where p is a prime. Therefore in this section we will consider
generalized Paley graphs constructed from fields with p2 elements.

In Section 4.2 we established a criterion which connects the synchroniza-
tion property to the suitability in graphs. Thus we present a result about
the suitability in generalized Paley graphs.

Proposition 5.3.1. Let p be an odd prime and m ∈ N such that the general-
ized Paley graph Γp2,m is defined. If Γp2,m is non-suitable then its complement
graph Γ′p2,m is non-suitable.

Proof. Let us assume that the generalized Paley graph Γp2,m is non-suitable.
Then either ω(Γp2,m) 6= p or χ(Γp2,m) 6= p. If ω(Γp2,m) 6= p then since p is the
only proper divisor of p2, we have that ω(Γp2,m)ω(Γ′p2,m) 6= p2 . Hence the
graph Γp2,m is not pseudo-suitable and by Statement 1 of Proposition 4.2.3,
we obtain that Γ′p2,m is not pseudo-suitable. It follows from Statement 2 of
the same proposition that Γ′p2,m is a non-suitable graph since a suitable graph
is pseudo-suitable.

Now let us suppose that ω(Γp2,m) = p and χ(Γp2,m) 6= p. As the chromatic
number of a graph is greater or equal to its clique number, we obtain that
χ(Γp2,m) > p. From Statement 1 of Proposition 5.2.1, we have that Γp2,m
is isomorphic to a subgraph of Γ′p2,m. Hence there is a subgraph of Γ′p2,m
with chromatic number bigger than p. Thus χ(Γ′p2,m) > p which implies that
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graph Γ′p2,m is non-suitable. In both cases we concluded the non-suitability
of Γ′p2,m.

Next, we present a necessary and sufficient condition for suitability in
generalized Paley graphs of fields with p2 elements.

Theorem 5.3.2. Let p be an odd prime and m ∈ N such that the generalized
Paley graph Γp2,m is defined. We have that Γp2,m is suitable if and only if
m | p+ 1.

Proof. If m | p + 1 then it follows from Theorem 5.2.2, considering n = 2
and d = 1, that Γp2,m is a suitable graph. Let us now prove the other
direction. Let us assume that Γp2,m is a suitable graph. Since the graph
Γp2,m is not complete and p is the only proper divisor of p2, from Statement
1 of Theorem 4.3.1 we obtain that ω(Γp2,m) = p. Since Γp2,m is suitable, we
also conclude that χ(Γp2,m) = p. By Statement 3 of Proposition 5.2.1, the
graph Γp2,m is vertex-transitive and edge-transitive. Therefore we can apply
Theorem 4.4.3, which states that p−1 divides ∂̄(Γp2,m), where ∂̄(Γp2,m) is the
number of neighbors of a vertex in Γp2,m. By the last statement of Proposition
5.2.1, we know that ∂̄(Γp2,m) = (p2 − 1)/m. Therefore we obtain that p − 1
divides (p2−1)/m, which means that (p−1)a = (p2−1)/m = (p−1)(p+1)/m
for some a ∈ Z. Thus we conclude that ma = p+1 for some a ∈ Z and hence
m divides p+ 1.

After an arithmetic condition for suitability in generalized Paley graphs,
we will describe a maximal clique and a minimal coloring for these suitable
graphs.

Proposition 5.3.3. Let p be an odd prime and consider the generalized Paley
graph Γp2,m such that m | p+ 1. Let γ be a generator of F∗p2. Then

1. The subfield Fp is a clique in Γp2,m.

2. The partition {{α + βγ : β ∈ Fp} : α ∈ Fp} of Fp2 is a coloring for the
graph Γp2,m.

Proof. We first observe that if m | p + 1 then the generalized Paley graph
Γp2,m is defined. Indeed, as p is odd, p − 1 is even and hence 2 | p − 1.
Therefore 2m | p2 − 1 which is the condition for the graph to be defined.
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As p2− 1 = (p− 1)(p+ 1), we have that F∗p = Sp2,p+1. Since m | p+ 1, we
obtain that F∗p ≤ Sp2,m. The argument in the proof of Theorem 5.2.2 with
n = 2 and d = 1 implies that the subfield Fp is a clique in Γp2,m.

Next, we prove that the partition

{{α + βγ : β ∈ Fp} : α ∈ Fp}

of Fp2 is a coloring for the graph Γp2,m. We must show that for every element
α ∈ Fp the elements of the set {α + βγ : β ∈ Fp} are not connected in Γp2,m.
Let us fix α ∈ Fp and consider the set A = {α + βγ : β ∈ Fp}. Let δ1, δ2 ∈ A.
We claim that {δ1, δ2} is not an edge of Γp2,m. We have that δ1 = α+β1γ and
δ2 = α+ β2γ with β1, β2 ∈ Fp such that β1 6= β2. Then δ2 − δ1 = (β2 − β1)γ.
Since β2 − β1 ∈ F∗p, by the argument above, we obtain that β2 − β1 ∈ Sp2,m.
Hence δ2− δ1 ∈ Sp2,mγ. Since γ 6∈ Sp2,m, we have that Sp2,mγ is a non-trivial
coset of Sp2,m in F∗p2 . Thus Sp2,mγ ∩ Sp2,m = ∅. Therefore {δ1, δ2} is not
an edge in the graph Γp2,m. Then for all α ∈ Fp the elements of the set
{α + βγ : β ∈ Fp} form a color for the graph Γp2,m. Hence the partition
{{α + βγ : β ∈ Fp} : α ∈ Fp} is a coloring for this graph.

In this dissertation we are interested in generalized Paley graphs asso-
ciated with maximal subgroups of the multiplicative group of a field. This
particular interest is justified by the fact that the absence of synchroniza-
tion is preserved by the subgroups of a given group. We now present the
lattice diagrams of the subgroups of the multiplicative groups of the fields
with p2 elements, with p under 25. For each maximal subgroup, we consider
the corresponding generalized Paley graph. The green arrows mean that the
corresponding generalized Paley graph is suitable while the red crosses mean
that this graph is non-suitable.

Figure 5.2: The lattice of the divisors of 8 and 24.



58 5 Synchronization and Generalized Paley Graphs

Figure 5.3: The lattice of the divisors of 48, 120, 168, 288, 360 and 528.



Chapter 6

Low-Dimensional Affine
Synchronizing Groups

In this chapter we will study low-dimensional permutation groups of affine
type. The affine permutation groups constitute an infinite family which arise
naturally from affine geometries and are built using a vector space and a
matrix group component.

We will construct these groups and present some of their elementary
properties. Since we are concerned with the synchronization property in
these groups, we must consider primitive affine groups. Therefore we state
Theorem 6.2.1, that connects the primitivity property of these groups to the
irreducibility of their matrix group components. Then we briefly describe the
irreducible subgroups of GL(2, p) in order to characterize the affine groups in
dimension 2.

From a result of Pin stated as [Pin78, Théorème 2], we obtain that the
one-dimensional affine groups are always synchronizing. Therefore, the next
task in the the study of this class of groups is the study of two-dimensional
affine groups, which will be carried out in Section 6.5.

6.1 Construction of an Affine Group

Let V be an n-dimensional vector space over the field Fq, where q is a prime-
power. LetH be a subgroup of GL(V ), the group of invertible transformations
of the vector space V , which can be considered as a subgroup of Sym(V ). For
any element v ∈ V , define σv ∈ Sym(V ) as follows: uσv = u+v for all u ∈ V .
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The set T = {σv : v ∈ V } is a subset of Sym(V ) and since we have, for all
v1, v2 ∈ V , that

σv1σv2 = σv1+v2 , (6.1)

the set T is closed under composition and therefore T ≤ Sym(V ). Then the
affine group corresponding to V and H is

G = 〈T,H〉.

Thus G is a subgroup of Sym(V ). An affine permutation group is a group
that is constructed this way.

We will prove in the next lemma that the affine groups are internal
semidirect products. If H and K are subgroups of a group G then G is
a semidirect product of K by H, denoted by G = K oH, if K is normal in
G, H ∩K = 1 and G = KH.

Example 6.1.1. Let us consider the group D6 = 〈(12), (123)〉 and its sub-
groups K = 〈(123)〉 and H = 〈(12)〉. We have that K is normal in D6,
H ∩K = 1 and D6 = KH. Hence D6 = K oH.

Lemma 6.1.2. Let T,H ≤ Sym(V ) defined as above and let G be the corre-
sponding affine group. Then the following hold:

1. T is an abelian regular normal subgroup of G, which is isomorphic to
V , regarded as an abelian group;

2. H normalizes T ;

3. T ∩H = 1;

4. G = TH = HT and |G| = |T ||H| = |V ||H|. Further G = T oH;

5. The stabilizer of the zero vector, G0, is equal to H.

Proof. Let us prove the first statement. The map v 7→ σv is a homomorphism
by Equation (6.1) and it is easy to see that this map is a bijection. Hence V
is isomorphic to T . Therefore, as V is abelian, we conclude that the group
T is also abelian. On the other hand, the group T is transitive since for all
u, v ∈ V, we have that uσv−u = v. As T is a transitive and abelian group, by
Proposition 2.2.2 we conclude that T is a regular group.

Next, we prove Statement 2. Let σv ∈ T and h ∈ H. For any u ∈ V , we
have that
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u(h−1σvh) = (uh−1 + v)h = u+ vh = uσvh.

Thus h−1σvh = σvh and T is normalized by H.
Let us now prove Statement 3. Since the elements of H fix the zero

vector, T ∩ H must stabilize 0. By Statement 1, T is a regular group and
hence T0 = 1. Thus, we obtain that H ∩ T ≤ T0 = 1. Hence H ∩ T = 1.
Statement 4 is a consequence of Statements 2 and 3 and the definition of the
semidirect product.

To prove that G0 = H we observe that H ≤ G0. Conversely let g ∈ G0.
By Statement 4 we have that g = σvh for some σv ∈ T and h ∈ H. Then
0 = 0g = 0(σvh) = (0 + v)h = vh. If v 6= 0 then vh 6= 0. Hence g ∈ H and
we conclude that G0 = H.

From Statement 2 of Lemma 6.1.2, if we consider T,H ≤ Sym(V ) defined
as above, then the corresponding affine group G can be written simply by

G = HT = {x 7→ xh+ v : h ∈ H, v ∈ V }.

Since T is a transitive group, the affine permutation groupG is also transitive.
Further, if V is an n-dimensional vector space over Fp then fixing a basis for
V over Fp, we have that GL(V ) ∼= GL(n, p). Therefore, in the construction of
an affine group, we can consider H as a subgroup of GL(n, p).

Since a vector space over the field Fpk can be regarded as a vector space
over Fp, where p is a prime, we will usually consider the underlying vector
space of an affine group over Fp.

6.2 Primitive and Synchronizing Affine

Groups

From Statement 1 of Theorem 3.1.1, we know that a synchronizing per-
mutation group is primitive. Therefore, to study synchronization, we are
interested in primitive affine groups. Hence we must start by a criterion for
deciding if an affine group is primitive.

Let V be an n-dimensional vector space over Fp, with a prime p. As ob-
served before, if we choose a basis for V over Fp then GL(V ) ∼= GL(n, p).
Hence, in this dissertation, we will consider subgroups of GL(n, p). Let
H ≤ GL(n, p) be a linear group and W be a subspace of V . We say that
W is an H-invariant subspace of V if for all h ∈ H and w ∈ W we have that
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wh ∈ W . For instance W = 0 and W = V are always invariant subspaces for
every subgroup of the general linear group which are called the trivial sub-
spaces of V . A matrix group H ≤ GL(2, p) is said to be reducible if there is a
non-trivial H-invariant subspace W of V . Otherwise, H is called irreducible.

The next theorem states a criterion for an affine group to be primitive.
Theorem 6.2.1. Let V be an n-dimensional vector space over the field Fp,
with a prime p. Let H ≤ GL(n, p) and consider the corresponding affine
group G = T oH. Then G is primitive if and only if H is irreducible.

Proof. First let us suppose that G is a primitive group and let W ≤ V be an
invariant subspace under H. It is required to prove that W = 0 or W = V .
We claim that W is a block for G. Since W is H-invariant, we have that if
w ∈ W then wh ∈ W for all h ∈ H. This implies that Wh = W . If g ∈ G
such that g = hσv, with v ∈ V and h ∈ H, then

Wg = {wh+ v : w ∈ W} = W + v.

Since W + v is a coset of W in V , we know that either W + v = W , in the
case that v ∈ W , or (W + v) ∩ W = ∅, when v 6∈ W . This implies that
W is a block for G. Since we assume that G is primitive, either W = 0 or
W = V . Hence there are only trivial H-invariant subspaces of V . Thus H is
irreducible.

Now let us prove the reverse direction. Assume that H is irreducible and
let B ⊆ V be a block for G. Without loss of generality, we can assume that
0 ∈ B. We claim that B is a subspace of V . To prove that, as 0 ∈ B by
assumption, it is necessary to show that B is closed under sum of vectors
and multiplication by scalars. Let u, v ∈ B. We have that 0σv = v. Hence
B ∩Bσv 6= ∅. As B is a block and σv ∈ G, we obtain that B = Bσv. On the
other hand, the vector u+ v = uσv, therefore u+ v ∈ Bσv, which means that
u+v ∈ B. Now suppose that u ∈ B and let α ∈ Fp. Then αu = u+u+. . .+u,
a sum of α terms. Since B is closed under addition of vectors, we have that
αu ∈ B. Therefore B is a subspace of V which is H-invariant since 0h = 0
for all h ∈ H. Hence Bh = B for all h ∈ H. Thus, as H is irreducible, it
follows that B = 0 or B = V . Therefore G is a primitive group.

By Theorem 6.2.1 the characterization of the affine primitive permutation
groups is reduced to the study of irreducible subgroups of GL(n, p), with a
prime p. The discussion of these irreducible subgroups of GL(2, p) will briefly
be presented in the next section.
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Next we state two results about the synchronization property in affine
permutation groups.

Theorem 6.2.2 (Théorème 2 of [Pin78]). An affine group acting on the ele-
ments of a one-dimensional vector space over a prime field is synchronizing.

Proof. Let G be a group in the conditions of the theorem. Then the degree of
G is equal to p, where p is a prime. Hence by Statement 1 of Proposition 3.1.3
a section-regular partition for G must be trivial. Therefore G is synchroniz-
ing.

Theorem 6.2.2 was first proved in Pin’s paper [Pin78] that was published
long before Neumann’s paper [Neu09] that contains the result that a section-
regular partition is uniform. Thus the original proof given by Pin is signifi-
cantly more complex.

Let V be an n-dimensional vector space over a field Fp and H ≤ GL(n, p)
be an irreducible matrix group. If the vector space V can be written as a
direct sum V = W1 ⊕ · · · ⊕Wn of non-trivial subspaces Wi of V , with n ≥ 2,
such that for any Wi and h ∈ H there exists Wj such that Wih ⊂ Wj,
then H is called an imprimitive matrix group. Otherwise H is said to be a
primitive matrix group. Hence the imprimitive matrix groups are the ones
which preserve a direct sum decomposition of the underlying vector space.

Example 6.2.3. Let Fp be the field with p elements, where p is a prime. Let
V be a two-dimensional vector space over the field Fp and {e, f} be a basis
of V over Fp. Let us consider the full monomial group of GL(2, p), which is
denoted by M(2, p) and is defined as follows:

M(2, p) =

{[
α 0
0 β

]
: α, β ∈ F∗p

}
∪
{[

0 α
β 0

]
: α, β ∈ F∗p

}
.

We claim that the group M(2, p) preserves a direct sum decomposition of
the vector space V . Indeed, we have, for g ∈ M(2, p), that eg = αe and
fg = βf or eg = αf and fg = βe, for α, β ∈ Fp. Hence we obtain that
M(2, p) preserves the direct sum decomposition V = 〈e〉 ⊕ 〈f〉. Thus, the
group M(2, p) is an imprimitive matrix group.

From this definition of primitivity in matrix groups, we can conclude that
in some cases the affine permutation groups are always non-synchronizing.
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Theorem 6.2.4. Let V be an n-dimensional vector space over the field Fp,
where p is a prime, and H be a subgroup of GL(n, p). Consider the group T of
translations by elements of V and the corresponding affine group G = 〈T,H〉.
If H is an imprimitive matrix group then G is non-basic and hence a non-
synchronizing group.

Proof. Let H be an imprimitive subgroup of GL(n, p). Let T be the group of
translations by elements of V and consider the affine group G = 〈T,H〉. Since
H is an imprimitive matrix group, we have that H preserves a decomposition
V = W1 ⊕ · · · ⊕Wn. Hence every element v ∈ V can be written uniquely as
v = w1 + · · ·+ wn, where wi ∈ Wi and i ∈ {1, . . . , n}.

Let i ∈ {1, . . . , n} and w ∈ Wi. Set

Pi,w = {w1 + · · ·+ wn ∈ V : wi = w}

and consider the partition Pi = {Pi,w : w ∈ Wi}. Then consider the set of
partitions Σ = {P1, . . . ,Pn}.

We claim that Σ is a Cartesian decomposition which is preserved by G.
By the uniqueness of the decomposition of the elements of the vector space V
as a sum of elements of the subspaces Wi, with i ∈ {1, . . . , n}, we have, for
Pi,wi ∈Pi, that ⋂

i∈{1,...,n}

Pi,wi = {w1 + · · ·+ wn},

which has size one. Hence Σ is a Cartesian decomposition.

Now let us prove that the group G preserves Σ. Let i ∈ {1, . . . , n} and
Pi,w ∈ Pi, with w ∈ Wi. Let v ∈ V and σv ∈ T . As observed before, v is
uniquely written as v = u1 + · · ·+un, with uj ∈ Wj, for j ∈ {1, . . . , n}. Then

Pi,wσv =
= {(w1 + · · ·+ w + · · ·+ wn) + (u1 + · · ·+ un) : wj ∈ Wj for all j 6= i}
= {w1 + · · ·+ (w + ui) + · · ·+ wn : wj ∈ Wj for all j 6= i}
= Pi,w+ui .

Therefore σv preserves the partition Pi, which means that the elements of
T preserve Σ.

Now let h ∈ H. We have that

(w1 + · · ·+ wi + · · ·+ wn)h = (w1h+ · · ·+ wih+ · · ·+ wnh).
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Let j ∈ {1, . . . , n} such that Wih = Wj. This subspace exists since H
preserves the direct sum decomposition W1⊕· · ·⊕Wn. Hence Pi,wh = Pj,wih,
which is a part of the partition Pj. Thus Pih = Pj and Σ is preserved by the
elements of H. Therefore G = 〈T,H〉 preserves the Cartesian decomposition
Σ and G is not basic. Thus, by Theorem 3.2.2, we conclude that G is a
non-synchronizing group.

Example 6.2.5. Let M(2, p) be the subgroup of GL(2, p) in Example 6.2.3
and let T be the group of translations of a 2-dimensional vector space over Fp.
Set G = T oM(2, p). Since M(2, p) is irreducible, the group G is primitive
by Theorem 6.2.1. However, as M(2, p) is imprimitive, we have that G is
non-basic by Theorem 6.2.4.

6.3 Irreducible Subgroups of GL(2, p)

By Theorem 6.2.2, a one-dimensional affine group is synchronizing. The
next step in our study is to consider 2-dimensional affine groups. From
Theorem 6.2.1, we know that the 2-dimensional primitive affine groups are
constructed from irreducible subgroups of GL(2, p). Flannery and O’Brien
classified the irreducible subgroups of GL(n, q) for n = 2, 3 [FO05] and sepa-
rated them in different types, based on Short’s contribution to this subject
[Sho92]. In this thesis we are interested in the case when q = p and n = 2
in order to use their results for GL(2, p). We will follow the characterization
of [FO05] as well as some properties given in Short [Sho92], and we will sep-
arate the irreducible subgroups of GL(2, p) into the classes of primitive and
imprimitive matrix groups.

Let Fp be the field with p elements. We observe that from Statement 4 of
Proposition 5.1.1 the field Fp2 can be regarded as a two-dimensional vector
space over the prime field Fp. Therefore, from now on, instead of considering
a general two-dimensional vector space over Fp, we will consider the vector
space Fp2 .

Let δ be an element of F∗p2 , the multiplicative group of the field Fp2 ,
which is cyclic by the last statement of Proposition 5.1.1. Consider the
transformation µδ : Fp2 → Fp2 defined by β 7→ βδ for all β ∈ Fp2 . Then µδ
is an invertible Fp-linear map on Fp2 and so, fixing a basis for Fp2 over Fp,
it can be considered as an element of GL(2, p). The subgroup {µδ : δ ∈ F∗p2}
of GL(2, p), denoted by Zp2 is called a Singer cycle in GL(2, p) and has order
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p2− 1. The group Zp2 is isomorphic to F∗p2 via the isomorphism δ 7→ µδ, and
hence it is cyclic (see Statement 5 of Proposition 5.1.1).

Example 6.3.1. Let us show how to build a Singer cycle for the field F9.
From Example 5.1.2 we know that F∗9 = 〈1 + i〉, where i2 = −1. Therefore we
consider the map µ1+i : F9 → F9 defined by βµ1+i = β(1 + i) for all β ∈ F9.
It is clear that µ1+i is an invertible F3-linear map.

Then as {1, i} is a basis for F9 regarded as a 2-dimensional vector space
over F3, if we consider the images of 1 and i under µ1+i, we obtain a 2 by 2 ma-
trix that generates Z9 as a subgroup of GL(2, 3). We have that 1µ1+i = 1 + i
and that iµ1+i = i+ i2 = i+ (−1) = 2 + i. Therefore the matrix correspond-

ing to µ1+i is

[
1 1
2 1

]
, which has order 8. The group Z9 =

〈[
1 1
2 1

]〉
is a

Singer cycle in GL(2, 3).

For each divisor m of p2 − 1, we can define Zp2,m as (Zp2)
m and we set

r = (p2 − 1)/m so that |Zp2,m| = r. Further, we have that Zp2,m is an irre-
ducible subgroup of GL(2, p) if and only if r - p−1 [Sho92, Proposition 4.4.2]
and it is primitive if and only if r - 2(p− 1) [Sho92, Proposition 4.2.1].

Let us now consider another class of subgroups of GL(2, p). Let ϕ be the
Frobenius automorphism β 7→ βp. As observed in Section 5.1, since ϕ is an
Fp-linear map, if we fix a basis for Fp2 over Fp, then we can regard ϕ as an
element of order 2 of GL(2, p). Let r be a divisor of p2−1. Set m = (p2−1)/r
and consider Zp2,m as above. Further, define Zp2,m = 〈Zp2,m, ϕ〉.

Lemma 6.3.2. Let p be a prime and r be a divisor of p2−1. Consider Zp2,m
as above. Then the following hold:

1. ϕ normalizes Zp2,m;

2. 〈ϕ〉 ∩ Zp2,m = 1;

3. Zp2,m = Zp2,m 〈ϕ〉 = Zp2,m o 〈ϕ〉;

4. |Zp2,m| = 2r;

5. Zp2,m is irreducible if and only if r - p−1 and it is primitive if and only
if r - 2(p− 1).
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Proof. We start by proving that ϕ normalizes the full Singer cycle Zp2 . Let
β ∈ Fp2 and δ ∈ F∗p2 . Since ϕ−1 = ϕ, we have that

β(µδ)
ϕ = β(ϕ−1µδϕ) = β(ϕµδϕ) = βp(µδϕ) = (βpδ)ϕ = βp

2

δp = βµδp .

Therefore we obtain, for all δ ∈ F∗p2 , that (µδ)
ϕ = µδp ∈ Zp2 . Hence ϕ

normalizes the Zp2 . Since Zp2 is a cyclic group and for all m such that
m | p2 − 1, the subgroup Zp2,m is the unique subgroup of Zp2 with index m,
we obtain that ϕ must normalize Zp2,m for all such m.

Let us now prove that 〈ϕ〉 ∩ Zp2,m = 1. We claim that 〈ϕ〉 6≤ Zp2,m.
Indeed, since Zp2,m is a cyclic group it has at most one subgroup of order 2.
If |Zp2,m| is odd then there is no such subgroup. If |Zp2,m| is even then it has
a unique subgroup of order 2, namely 〈µ−1〉 and it is clear that 〈µ−1〉 6= 〈ϕ〉
since ϕ leaves the elements of Fp invariant and µ−1 does not. Therefore
〈ϕ〉 ∩ Zp2 = 1. Statement 3 is a consequence from Statements 1 and 2.

For proving the statement about the order of Zp2,m, we observe that

|Zp2,m| = | 〈ϕ〉 ||Zp2,m|/| 〈ϕ〉 ∩ Zp2 | = 2(p2 − 1)/m = 2r.

Statement 5 is a consequence of Propositions 4.2.1 and 4.2.4 of [Sho92].

We note that if Sp2,m is the subgroup of F∗p2 with index m, as defined in
Section 5.2, then the Frobenius automorphism ϕ stabilizes Sp2,m.

Next, we study another class of irreducible subgroups of GL(2, p). Let
r be a divisor of p2 − 1 such that r is even, m = (p2 − 1)/r is even and
r - p − 1. Let i be the natural number such that gcd(r, p − 1) is divisible
by 2i but not by 2i+1. Since r is even, we obtain that i ≥ 1. Let γ be a
fixed generator of F∗p2 and set dp2,m = ϕµγ(p−1)/2i . Then define the subgroup

Z̃p2,m = 〈Zp2,m, dp2,m〉 of GL(2, p).
As observed before, we will separate the irreducible subgroups of GL(2, p)

into the classes of primitive and imprimitive groups. Therefore, in this discus-
sion of subgroups of GL(2, p), we want to consider different classes of primitive
irreducible subgroups of the general linear group. Hence the conditions re-

quired for the definition of Z̃p2,m guarantee that this type of subgroups of
GL(2, p) is distinct from the previous ones. Indeed, r - p − 1 assures that
these groups are primitive ([Sho92, Proposition 4.2.4]) and the parity of m
and r guarantees that this class of subgroups is distinct from the previous
ones ([Sho92, Lemmas 4.1.5 and 4.1.8]).
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Lemma 6.3.3. Let p be a prime. Let r be an even divisor of p2 − 1 such

that m = (p2 − 1)/r is even and r - p− 1. Consider the group Z̃p2,m and the
element dp2,m as above. Then the following hold:

1. dp2,m normalizes Zp2,m;

2. Z̃p2,m = Zp2,m 〈dp2,m〉;

3. (dp2,m)2 ∈ Zp2,m;

4. |Z̃p2,m| = 2|Zp2,m| = 2r.

Proof. Let us prove that dp2,m normalizes Zp2,m. By the first statement of
Lemma 6.3.2, we know that ϕ normalizes Zp2,m. Since Zp2 is an abelian
group, Zp2,m ≤ Zp2 , and µγ(p−1)/2i ∈ Zp2 , we obtain that µγ(p−1)/2i normal-
izes Zp2,m, and so does the product dp2,m = ϕµγ(p−1)/2i . Statement 2 is a
consequence of the first statement.

Now we prove that (dp2,m)2 ∈ Zp2,m in Statement 3. We have that

(dp2,m)2 = ϕµγ(p−1)/2iϕµγ(p−1)/2i = ϕ−1µγ(p−1)/2iϕµγ(p−1)/2i

= (µγ(p−1)/2i )ϕµγ(p−1)/2i .

Using the same argument of the proof of Statement 1 of Lemma 6.3.2, we
have that

(µγ(p−1)/2i )ϕ = µ(γ(p−1)/2i))ϕ = µγp(p−1)/2i .

Hence (dp2,m)2 = µγp(p−1)/2iµγ(p−1)/2i . Since δ 7→ µδ is a homomorphism, we
obtain that

(dp2,m)2 = µγp(p−1)/2iµγ(p−1)/2i = µγp(p−1)/2i+(p−1)/2i = µγ(p2−1)/2i .

Therefore µγ(p2−1)/2i is an element of order 2i. By definition of i, we have that

2i divides r, which is the order of Zp2,m. Thus we obtain that (dp2,m)2 ∈ Zp2,m.
Next, we prove Statement 4. We know that

|Z̃p2,m| =
|Zp2,m|| 〈dp2,m〉 |
|Zp2,m ∩ 〈dp2,m〉 |

.

On the other hand, by Statement 3 we know that d2
p2,m ∈ Zp2,m. Therefore

we have that |Zp2,m ∩ 〈dp2,m〉 | = | 〈dp2,m〉 |/2. Thus
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|Z̃p2,m| =
|Zp2,m|| 〈dp2,m〉 |
| 〈dp2,m〉 |/2

= 2|Zp2,m| = 2r.

We remark that, as with the Frobenius automorphism, if Sp2,m is the
subgroup of F∗p2 with index m defined in Section 5.2 then the element dp2,m
in its action on Fp2 stabilizes Sp2,m.

After describing some primitive irreducible subgroups of GL(2, p), we can
state the next theorem, which, up to conjugacy, classifies all irreducible sub-
groups of GL(2, p). This theorem is a summary of the results from Chapter 4
of [FO05]

Theorem 6.3.4. Let p be an odd prime and H be an irreducible subgroup of
GL(2, p). Then precisely one of the following hold:

1. SL(2, p) ≤ H.

2. H is an imprimitive linear group.

3. H is conjugate to a subgroup of the form Zp2,m, Zp2,m, where (p2 − 1)/m

does not divide 2(p−1), or to a subgroup of the form Z̃p2,m, where both
m and r = (p2 − 1)/m are even and r - p− 1.

4. H/Z(H) is isomorphic to one of the groups Alt(4), Sym(4) or Alt(5).

6.4 Undirected Orbital Graphs of Affine

Groups

From Statement 2 of Theorem 4.2.4, a primitive group on Ω is synchro-
nizing if and only if there is no suitable undirected generalized orbital graph
for the group; that is, a graph with vertex-set Ω and edge-set invariant under
the group, whose clique number is equal to the chromatic number. Thus
we must start our study of the synchronization property by describing the
undirected orbitals of primitive affine groups built using different types of
irreducible subgroups of GL(2, p).

Let p be an odd prime and consider the field Fp2 . Let γ be a fixed
generator of F∗p2 . Let Zp2,m be the subgroup of a Singer cycle Zp2 with index

m and set r = |Zp2,m| = (p2 − 1)/m. Let T be the group of translations by
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elements of Fp2 and consider the corresponding affine group G = T o Zp2,m,
acting on the elements of Fp2 .

We define r1,m1 as follows.

If r is even, then r1 = r and m1 = m.
If r is odd, then r1 = 2r and m1 = m/2.

(6.2)

Note that Sp2,m ≤ Sp2,m1
, where Sp2,m and Sp2,m1

are the subgroups of F∗p2
with indexes m and m1, respectively, whose definitions we recall from Sec-
tion 5.2. For i ∈ {0, . . . ,m1 − 1} let

∆i = {{α, β} ∈ (Fp2){2} : β − α ∈ Sp2,mγi} (6.3)

The sets ∆i are well defined. Indeed, if β − α ∈ Sp2,m1
γi then we have that

α− β = −(β − α) ∈ (−1)Sp2,m1
γi. Since Sp2,m1

has always even order, we
obtain that −1 ∈ Sp2,m1

and hence α− β ∈ Sp2,m1
γi.

In the next lemma we will present some properties of the undirected or-
bital graphs of affine groups. In Section 4.1 we defined Γ∆ as the graph
(Ω,∆), where ∆ ⊆ Ω{2}, and in Section 5.2 we denoted by Γp2,m the general-
ized Paley graph of the field Fp2 with index m.
Lemma 6.4.1. Let p be an odd prime. Let m be a divisor of p2 − 1 and
let Zp2,m be as above. Consider the affine group G = T o Zp2,m. Then the
following hold:

1. ∆0, · · · ,∆m1−1 are precisely the G-orbits on (Fp2){2};

2. Γ∆i
∼= Γ∆j

for all i, j ∈ {0, . . . ,m1 − 1};

3. Γ∆0 = Γp2,m1
.

Proof. Let us prove Statement 1. Let γ be the generator of F∗p2 fixed above.

For i ∈ {0, . . .m1 − 1}, consider the G-orbit ∆i = {0, γi}G. We claim that
∆i = ∆i. Let us start by proving that ∆0 = ∆0. First we show that ∆0 ⊆ ∆0.
Let g ∈ G, such that g = σβµδm , with β ∈ Fp2 and δ ∈ F∗p2 . Then

{0, 1}g = {0, 1}σβµδm = {β, 1 + β}µδm = {βδm, δm + βδm}.

We have that (δm + βδm) − βδm = δm ∈ Sp2,m. Thus we obtain that
(δm + βδm)− βδm ∈ Sp2,m1

. Hence ∆0 ⊆ ∆0. Conversely, let {α, β} ∈ ∆0.
Then {α, β}σ−α = {0, β − α}. Since Sp2,m is a subgroup of Sp2,m1

with index
1 or 2, either β − α ∈ Sp2,m or α− β ∈ Sp2,m (or both, in the case when the
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index is 1). Without loss of generality, we can assume that β − α ∈ Sp2,m.
Then {α, β}σ−αµ(β−α)−1 = {0, 1}. This means that {α, β} ∈ ∆0. Therefore

∆0 ⊆ ∆0.
Now let i ∈ {1, . . . ,m1 − 1}. We want to prove that ∆i = ∆i. We have

that β−α ∈ Sp2,m1
is equivalent to (β−α)γi ∈ Sp2,m1

γi. Therefore ∆i = ∆0γ
i.

Thus we conclude that ∆i = ∆0γ
i = ∆0γ

i. Hence we have to prove that
∆0γ

i = ∆i. This is equivalent to showing that ∆0γ
i = ∆0γ

i is a G-orbit. Let
{α, β} ∈ ∆0 and g ∈ G. We want to conclude that {α, β}γig ∈ ∆0γ

i. Indeed,
we have that {α, β}γig = {α, β}gγ−iγi and that gγ

−i ∈ G. Since ∆0 = ∆0

is a G-orbit in (Fp2){2} we obtain that {α, β}gγ−iγi ∈ ∆0γ
i. Hence ∆0γ

i is
G-invariant. It remains to show that if {α, β}γi ∈ ∆0γ

i then there exists
g ∈ G such that {α, β}γig = {0, γi}. As {α, β} ∈ ∆0 there exists h ∈ G such
that {α, β}h = {0, 1}.Therefore

{α, β}γihµγi = {α, β}hγi = {0, 1}γi = {0, γi}.

Since h ∈ G and µγi ∈ Zp2 , we obtain that hµγi ∈ G. Thus we have that
{α, β}γi ∈ {0, γi}G = ∆i. Hence ∆0γ

i is a G-orbit. Further, {0, 1} ∈ ∆0

and so {0, γi} ∈ ∆0γ
i. By definition, it means that ∆i = ∆0γ

i = ∆0γ
i. Thus

∆i = ∆i. On the other hand, we have that
⋃
i∈{0,...,m1−1}∆i = (Fp2){2} and

these undirected orbitals are distinct since if {α, β} ∈ ∆i ∩ ∆j then β −
α ∈ Sp2,m1

γi ∩ Sp2,m1
γj. This is a contradiction as Sp2,m1

γi and Sp2,m1
γj are

distinct cosets of Sp2,m1
on F∗p2 . Therefore ∆0, . . . ,∆m1−1 are precisely the

G-orbits on (Fp2){2}.
Next, we prove Statement 2. From the argument in the last paragraph,

we have that ∆0γ
i = ∆i. Hence µγi is an isomorphism between the graphs

Γ∆0 and Γ∆i
for all i ∈ {0, . . . ,m1 − 1}.

Now we prove the last statement. We first remark that the vertex-sets
of Γ∆0 and Γp2,m1

coincide. On the other hand, both Γ∆0 and Γp2,m1
are

vertex-transitive graphs (see Proposition 5.2.1). Therefore it is enough to
show that the neighborhoods Γ∆0(0) and Γp2,m1

(0) of zero in Γ∆0 and Γp2,m1
,

respectively, are the same. By the way these graphs are built, we have that

Γ∆0(0) = {α ∈ Fp2 : {0, α} ∈ ∆0} = {α ∈ Fp2 : α− 0 ∈ Sp2,m1
} = Γp2,m1

(0).

Hence we conclude that Γ∆0 = Γp2,m1
.

The next step is to describe the undirected orbitals for the affine groups
constructed from the other types of irreducible subgroups of GL(2, p) de-

scribed in Statement 3 of Theorem 6.3.4, namely Zp2,m and Z̃p2,m. From the
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fact that ϕ2 = 1 and from Statement 3 of Lemma 6.3.3, we know that ϕ2

and (dp2,m)2 are elements of the the group Zp2,m for all divisor m of p2 − 1.
Therefore the undirected orbitals of the corresponding affine groups are either
undirected orbitals as in Equation (6.3) or are unions of two such undirected
orbitals. Thus, to describe the orbits of the groups G = T o Zp2,m and

G̃ = T o Z̃p2,m on the set (Fp2){2}, we just have to see what is the action of
the elements ϕ and dp2,m on the set of orbits in Equation (6.3).

Lemma 6.4.2. Let ∆0, . . . ,∆m1−1 be the undirected orbitals displayed in
Equation (6.3) and let j, k ∈ {0, . . . ,m1 − 1}. Then

1. ∆jϕ = ∆k if and only if m1 | jp− k.

2. ∆jdp2,m = ∆k if and only if jp + (p− 1)/2i ≡ k (mod m1), where i is
as in the definition of the element dp2,m.

Proof. Let {α, β} ∈ ∆j. By Equation (6.3), we know that β − α ∈ Sp2,m1
γj.

Let us prove Statement 1. We have that (β − α)ϕ ∈ (Sp2,m1
γj)ϕ. By

an observation after Lemma 6.3.2, we know that ϕ normalizes Sp2,m1
. Thus

(Sp2,m1
)ϕ = Sp2,m1

and hence (β − α)ϕ ∈ Sp2,m1
γjp. Therefore, we conclude

that ∆jϕ = ∆k if and only if Sp2,m1
γjp is the same coset of Sp2,m1

in F∗p2 as

Sp2,m1
γk. This is equivalent to

Sp2,m1
γjp−k = Sp2,m1

,

which is the same as γjp−k ∈ Sp2,m1
; that is, it is equivalent to m1 | jp− k.

Next, we regard the action of the element dp2,m on the undirected or-
bital ∆j. We have that (β − α)dp2,m ∈ (Sp2,m1

γj)dp2,m and recall that
dp2,m = ϕµγ(p−1)/2i . Using a remark after Lemma 6.3.3, we obtain that dp2,m

normalizes Sp2,m1
. Hence (β − α)dp2,m ∈ Sp2,m1

γjp+(p−1)/2i . Using an anal-
ogous argument to the one in the previous statement, we conclude that
∆jdp2,m = ∆k if and only if m1 | jp + (p − 1)/2i − k. This statement is
equivalent to jp+ (p− 1)/2i ≡ k (mod m1).

We remark that by the definition of the action of the elements ϕ and dp2,m
on the set of undirected orbitals of Equation (6.3), we have that ∆iϕ = ∆j

is equivalent to ∆jϕ = ∆i and the same happens with the element dp2,m.
Using Statement 1 of Lemma 6.4.2 we obtain that the undirected orbital

∆0 described in Equation (6.3) is always an undirected orbital for the group
G = T o Zp2,m. Hence from Statement 3 of Lemma 6.4.1 we conclude that
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the generalized Paley graph Γp2,m1
is an undirected orbital graph for both

G = T o Zp2,m and G.
From Statement 2 of Lemma 6.4.2, we can obtain further properties of

the undirected orbitals of the groups of the form G̃ = T o Z̃p2,m as well as of

their undirected orbital graphs. We remark that in the definition of Z̃p2,m,
the order of Zp2,m is always even. Therefore, in Equation (6.2), we have that
m1 = m and r1 = r.

Let us introduce an equivalence relation on the set {0, . . . ,m1−1} defined
as follows:

i ≈ j if and only if i = j or ∆idp2,m = ∆j. (6.4)

A numerical expression to verify if i ≈ j is given in the second statement of
Lemma 6.4.2. Then the equivalence classes of ≈ have size at most 2 and it
is proved in the next lemma that these classes have size precisely 2. Let C
denote the set of equivalence classes of ≈. For α ∈ C such that α = {j, k},
we define ∆̃α = ∆j ∪∆k. We set α0 to be the element of C that contains 0.

Proposition 6.4.3. Let p be an odd prime and m be a divisor of p2−1 such

that Z̃p2,m is a primitive irreducible subgroup of GL(2, p). Consider the affine

group G̃ = T o Z̃p2,m. Then the following hold.

1. Every class of C has size 2 and hence G̃ has m/2 orbitals.

2. If (m/2) ∈ ∆̃α0 then Γ∆̃α0
= Γp2,m/2.

Proof. Let us prove the first Statement. As observed before, each equiv-
alence class of ≈ has at most 2 elements. Therefore we need to prove
that no class has just one element. This is equivalent to showing, for ev-
ery j ∈ {0, . . . ,m− 1}, that jp + (p − 1)/2i 6≡ j (mod m) holds. Hence we
will prove, for every j ∈ {0, . . . ,m− 1}, that

m - j(p− 1) + (p− 1)/2i. (6.5)

For an integer x, let [x]2 denote the largest 2-power that divides x. Note
that, given x, y ∈ Z such that [x]2 6= [y]2, we have that

[x+ y]2 = min{[x]2, [y]2}. (6.6)

Let j ∈ {0, . . . ,m − 1}. As we want to prove Equation (6.5) it suffices
to show that [m]2 > [j(p − 1) + (p − 1)/2i]2. Using the notation above, the
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definition of i can be rephrased as 2i = [gcd(p− 1, r)]2. Hence precisely one
of the following holds:

a) [p− 1]2 = 2i b) [p− 1]2 > 2i and [r]2 = 2i.

Suppose that case a) holds. Then (p− 1)/2i is odd. Since p− 1 is even, we
have that j(p− 1) + (p− 1)/2i is odd. By definition, m is even and therefore
m - j(p− 1) + (p− 1)/2i as desired.

Now assume case b). Set 2k = [p2 − 1]2. We have that mr = p2 − 1 and
hence we conclude that [m]2 = 2k−i. On the other hand, it is clear that
[j(p− 1)]2 > [(p− 1)/2i]2. Therefore, using Equation (6.6), we obtain that

[j(p− 1) + (p− 1)/2i]2 = [(p− 1)/2i]2.

As p+ 1 is even it follows that [(p− 1)(p+ 1)/2i]2 > [(p− 1)/2i]2. Hence we
conclude that

[m]2 = 2k−i = [(p2 − 1)/2i]2 = [(p− 1)(p+ 1)/2i]2
> [(p− 1)/2i]2 = [j(p− 1) + (p− 1)/2i]2.

This implies that in case b) m - j(p−1)+(p−1)/2i. In both cases we proved
the claim of Equation (6.5). Thus, for every j ∈ {0, . . . ,m−1}, we have that
jp+ (p− 1)/2i 6≡ j (mod m). This means that every equivalence class of ≈
has precisely two elements.

Next, we prove Statement 2. Assume that α0 = {0,m/2}. Then we have

that ∆̃α0 = ∆0 ∪∆m/2 is an undirected orbital for G̃ and

∆̃α0 = {{α, β} ∈ (Fp2){2} : β − α ∈ Sp2,m ∪ Sp2,mγm/2},

where γ is a generator of F∗p2 . We claim that Sp2,m∪Sp2,mγm/2 = Sp2,m/2. It is

clear that Sp2,m ∪ Sp2,mγm/2 ⊆ Sp2,m/2. Since |Sp2,m ∪ Sp2,mγm/2| = |Sp2,m/2|,
we obtain that Sp2,m/2 = Sp2,m∪Sp2,mγm/2. Thus we can write the undirected

orbital ∆̃α0 as

∆0 ∪∆m/2 =
{
{α, β} : β − α ∈ Sp2,m/2

}
,

which is the edge-set of the generalized Paley graph Γp2,m/2. Hence the
undirected orbital graph Γ∆̃α0

is the generalized Paley graph Γp2,m/2.
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6.5 Synchronization of Two-Dimensional

Affine Groups

In this section we will be concerned with the synchronization property
in 2-dimensional affine groups. We will consider the different classes of irre-
ducible subgroups of GL(2, p), having Theorem 6.3.4 as a reference, and then
we will construct the respective affine groups in order to find out if they are
synchronizing.
Theorem 6.5.1. Let p be and odd prime. Let T be the group of translations
by elements of Fp2 and H be an irreducible subgroup of GL(2, p). Consider
the affine group G = T oH.

(1). If H is imprimitive then G is non-synchronizing.

(2). Suppose that H is primitive.

(2.1). If SL(2, p) ≤ H then G is 2-transitive and hence synchronizing.

(2.2). If H is is a conjugate to Zp2,m or Zp2,m, for some divisor m of
p2 − 1, then the following are valid:

(a). If m = 1 then G is 2-transitive and hence synchronizing.

(b). Set m1 as in Equation (6.2). If m1 > 1 and m1 | p + 1 then
the group G is non-synchronizing. In particular, if m = 2
then G is non-synchronizing.

(c). If m = 3 then G is synchronizing if and only if 3 - p+ 1.

(2.3). If H is conjugate to Z̃p2,m for some m such that Z̃p2,m is a primitive
subgroup of GL(2, p) then the following are valid:

(a). If m = 2 then G is 2-homogeneous and hence synchronizing.

(b). If m > 2 and m | p+ 1 then G is non-synchronizing.

(c). Suppose that (p − 1)/2i ≡ m/2 (mod m). If m > 2 and
(m/2) | p+ 1 then G is non-synchronizing.

Proof. (1). See Theorem 6.2.4.
(2.1). By Statement 5 of Lemma 6.1.2, we have that G0 = H and by

assumption SL(2, p) ≤ H. Since SL(2, p) is transitive on Fp2\{0}, it follows
that G is 2-transitive by Lemma 2.3.2. From Statement 2 of Theorem 3.1.1
we conclude that G is a synchronizing group.
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(2.2). Let ∆0 be as in Equation (6.3). Then by Statement 3 of Lemma
6.4.1 we have that Γ∆0 = Γp2,m1

and that Γ∆0 is an undirected orbital graph
for G (see the remark after Lemma 6.4.2). Further Γp2,m1

is suitable if and
only m1 | p+ 1 by Theorem 5.3.2

(2.2)(a). If m = 1 then G contains Zp2,1 which is transitive on Fp2\{0}.
Hence we obtain as in the proof of Statement 1 that G is 2-transitive and
hence synchronizing.

(2.2)(b). Suppose that m1 > 2. If m1 | p+1 then Γp2,m1
is a suitable graph

by Theorem 5.3.2. Therefore, using the characterization of Statement 2 of
Theorem 4.2.4, we obtain that G is non-synchronizing. In the particular case
when m = 2 then m1 = 2 and Γp2,2 is a suitable graph since 2 | p + 1. Thus
if m = 2 then G is non-synchronizing.

(2.2)(c). If 3 | p + 1 then m = m1 = 3 and G is non-synchronizing
by Statement (2.2)(b). Suppose that 3 - p + 1. Let ∆ ⊆ (Fp2){2} be a G-
invariant set. It suffices to prove that Γ∆ = (Fp2 ,∆) is a non-suitable graph.
We have that either ∆ is one of ∆0,∆1,∆2 in Equation (6.3) or ∆ is the
union of two such sets (see Statement 1 of Lemma 6.4.1 and the remark
before Lemma 6.4.2). If ∆ = ∆i for some i ∈ {0, 1, 2} then by Statement 2
of Lemma 6.4.1 we obtain that Γ∆

∼= Γp2,3 and this graph is non-suitable by
Theorem 5.3.2. Assume now that ∆ = ∆i∪∆j with i, j ∈ {0, 1, 2} and i 6= j.
Then Γ∆ is the complement graph Γ′∆k

of Γ∆k
, where {k} = {0, 1, 2}\{i, j}.

Since Γ∆k
is isomorphic to Γp2,3, we obtain that Γ∆ is isomorphic to Γ′p2,3.

However, by Proposition 5.3.1, Γ′p2,3 is non-suitable and neither is Γ∆. In
both cases we concluded the non-suitability of Γ∆. Thus if 3 - p + 1 then G
is a synchronizing group.

(2.3)(a). If m = 2 then from Statement 1 of Proposition 6.4.3 we obtain
that G has only 1 orbit on the set (Fp2){2} and hence it is 2-homogeneous.
Thus by the second statement of Theorem 3.1.1, we conclude that G is a
synchronizing group.

(2.3)(b). Suppose that m | p + 1. Let α0 = {0, t} as in the equivalence
relation of Equation (6.4). By definition, Γ∆̃α0

= (Fp2 ,∆) where

∆ = ∆0 ∪∆t = {{α, β} : β − α ∈ Sp2,m ∪ Sp2,mγt},

where γ is a fixed generator of F∗p2 . Let s ∈ {0, . . .m− 1}\{0, t}. Such an
element exist since m > 2. Then we have

Sp2,mγ
s ∩ (Sp2,m ∪ Sp2,mγt) = ∅ (6.7)
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We claim that Fp is a clique and C = {{δ1 + δ2γ
s : δ2 ∈ Fp} : δ1 ∈ Fp} is a

coloring of Γ∆̃α0
. Since m | p + 1, using an analogous argument to the one

in the proof of Statement 1 of Proposition 5.3.3, we obtain that F∗p ≤ Sp2,m.
Therefore if ν1, ν2 ∈ Fp and ν1 6= ν2 then ν2− ν1 ∈ Sp2,m. Thus Fp is a clique
in Γ∆̃α0

. Next, we prove that C is a coloring. It is clear that C is a partition

of Fp2 . Hence we only need to show that each part of C is an independence
set on Γ∆̃α0

. If α, β are distinct elements of the same part then β − α is of

the form νγs, with ν ∈ F∗p. Since F∗p ≤ Sp2,m, we have that β − α ∈ Sp2,mγs.
Therefore, by Equation (6.7), α is not connected to β in the graph Γ∆̃α0

and

thus C is a coloring for that graph. Hence we proved that Γ∆̃α0
has a clique

with p elements and a coloring with p colors, which mean that it is a suitable
graph. Thus, using Statement 2 of Theorem 4.2.4, we conclude that G is
non-synchronizing.

(2.3)(c). Now assume that (p−1)/2i ≡ m/2 (mod m). Then we have that
α0 = {0,m/2}. Hence by Statement 2 of Proposition 6.4.3, we obtain that
Γ∆̃α0

= Γp2,m/2. Assume that m > 2. If m/2 | p + 1 then by Theorem 5.3.2

the graph Γp2,m/2 is suitable and so is the undirected orbital graph Γ∆̃α0
for

G. Thus G is non-synchronizing.
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