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Abstract

We study the bifurcation of families of periodic orbits near a symmetric equilibrium
in a reversible system, when for a critical value of the parameters the linearization at
the equilibrium has a pair of purely imaginary eigenvalues of geometric multiplicity
one but algebraic multiplicity k — we call this a k-fold resonance. Combining the
general reduction results of [2] with a particular normal form result for linear reversible
operators we can reduce the problem to a scalar polynomial bifurcation equation.
The problem has codimension k − 1, and the resulting bifurcation set is a cuspoid of
order k. When crossing the codimension one strata of the bifurcation set families of
periodic orbits disappear or merge in a way which is similar to what happens at a
Krein instability in Hamiltonian systems.

1. Introduction

One of the main properties of reversible systems is the following version of the classical
Liapunov Center Theorem which holds in such systems (see e.g. [1]): under appropriate non-
resonance conditions there corresponds to each pair of simple purely imaginary eigenvalues
of the linearization at a symmetric equilibrium a one-parameter family of symmetric periodic
orbits; this family originates at the equilibrium and generates a two-dimensional invariant
manifold filled with periodic orbits surrounding the equilibrium (hence the name “center
theorem”). This picture is stable: under a sufficiently small (reversible) perturbation of the
system the simple purely imaginary eigenvalues remain simple and on the imaginary axis
(this is a consequence of the reversibility), and each of them still generates a one-parameter
family of symmetric periodic orbits. The only way one can destroy this local picture is by
creating resonances. In particular, under a change of parameters a number of such simple
purely imaginary eigenvalues can coalesce and move off the imaginary axis; in this paper we
want to study what happens to the associated families of periodic orbits in such a scenario.
To obtain the bifurcation picture we will combine the general reduction method explained
in our earlier paper [2] with a result on linear normal forms which we prove in Section 2.

To be more precise, we consider an autonomous system of the form

ẋ = f(x, λ), (1.1)

where f : R2n × Rm → R2n is a smooth vectorfield which is reversible, i.e.

(R) there exists a linear involution R0 ∈ L(R2n) (i.e. R2
0 = I) for which dim Fix(R0) =

dim {x ∈ R2n | R0x = x} = n and such that

f(R0x, λ) = −R0f(x, λ). (1.2)

Now suppose that for some parametervalue λ0 ∈ Rm the system (1.1) has a symmetric
equilibrium x0 ∈ Fix(R0); assume also that the linearization A0 := Dxf(x0, λ0) ∈ L(R2n)
has a pair of simple purely imaginary eigenvalues ±iω0 (ω0 > 0), and no other eigenvalues
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of the form ±ilω0 (l = 0, 2, 3, . . .). Then the Liapunov Center Theorem mentionned above
gives us, for λ = λ0, the existence of a one-parameter family of periodic solutions xρ(t)
(0 ≤ ρ < ρ0) such that R0xρ(−t) = xρ(t) and xρ=0(t) ≡ 0; clearly the corresponding periodic
orbits γρ := {xρ(t) | t ∈ R} are invariant under R0. This picture persists when we change the
parameter λ near λ0: A0 is non-singular by the non-resonance condition, and therefore the
system has for each λ near λ0 a symmetric equilibrium xλ near x0; moreover, the linearization
Aλ at this equilibrium anti-commutes with R0, and therefore Aλ will also have a pair of simple
purely imaginary eigenvalues (the relation AλR0 = −R0Aλ prevents simple eigenvalues to
move off the imaginary axis); finally, from xλ there originates a one-parameter family of
symmetric periodic orbits.

Here we want to consider the case where the eigenvalues ±iω0 of A0 are no longer simple, but
non-semisimple; more precisely, we will assume that the eigenvalues ±iω0 have geometric
multiplicity 1 but algebraic multiplicity k ≥ 2; we say that we have a k-fold resonance.
Unfolding the corresponding linear operator A0 (see Section 3 for details) shows that such
A0 arises when we move k pairs of simple purely imaginary eigenvalues together (we need
k − 1 parameters for that) and let them coalesce. The full unfolding contains surfaces
in parameter space along which we have p-fold resonances for any p between 2 and k; in
particular (taking p = 2) we have for any two adjacent pairs a codimension one surface
such that when crossing this surface the two pairs coalesce and split off the imaginary axis.
The problem we want to study is about what happens to the k one-parameter families of
periodic orbits (one associated to each of the simple pairs) under such change of parameters.
For the case k = 2 the situation is well known (see e.g. [5]) and similar to what happens
at a so-called Krein collision (also called a Hamiltonian Hopf bifurcation — see e.g. [6]) in
Hamiltonian systems: when crossing the codimension one surface just mentionned the two
families either connect to each other and detach from the equilibrium (the hyperbolic case),
or the two families are locally connected and shrink as a whole down to the equilibrium and
then disappear (the elliptic case). We will see that in the general case these elementary
elliptic and hyperbolic bifurcations form the building stones of the full bifurcation picture;
the bifurcation sets in parameter space are so-called cuspoids, well known from catastrophe
theory.

Before we give a precise formulation of our hypotheses we remark that by appropriate trans-
lations and by a time rescale we can without loss of generality assume that λ0 = 0, xλ = 0 and
ω0 = 1. Also, our assumptions will imply that A0 must be non-singular: observe that since
A0 anti-commutes with R0 this is only possible if dim {x | R0x = x} = dim {x | R0x = −x};
this motivates the dimension hypotheses made in (R). With the foregoing in mind we now
formulate our main hypothesis:

(H) (i) f(0, λ) = 0 for all λ ∈ Rm;
(ii) the operator A0 := Dxf(0, 0) ∈ L(R2n) has the eigenvalues ±i, and no other

eigenvalues of the form ±li, with l = 0, 2, 3, . . .;
(iii) the subspace ker (A2

0 + I) is irreducible under A0.

The hypothesis (H)(iii) means that the eigenvalues±i of A0 have geometric multiplicity equal
to 1; their algebraic multiplicity is given by the smallest integer k such that ker (A2

0+I)k+1 =
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ker (A2
0 + I)k. It also follows that A0 is reversible:

A0R0 = −R0A0. (1.3)

Under the hypotheses (R) and (H) we want to study the following problem:

(P) Describe, for all sufficiently small λ ∈ Rm, all small periodic solutions of (1.1) with
period T near 2π.

Our approach to this problem will be based on the general reduction method described in
[2]; we now give the main results of this paper as they apply to the particular situation
considered here.

Let A0 = S0+N0 be the (unique) semisimple-nilpotent decomposition of A0, i.e. S0 ∈ L(R2n)
is semisimple (that means complex diagonalizable), N0 ∈ L(R2n) is nilpotent and S0N0 =
N0S0. It follows from (1.3) (see also Lemma 1) that also S0 and N0 are reversible:

S0R0 = −R0S0 and N0R0 = −R0N0. (1.4)

Define the reduced phase space for the problem (P) as the subspace

U := ker (exp(2πS0)− I) ⊂ R2n; (1.5)

it follows from (H)(ii) that U coincides with the generalized eigenspace corresponding to the
eigenvalue pair ±i of A0, i.e. U = ker (A2

0+I)k = ker (S2
0 +I). Also, U is invariant under each

of the operators A0, S0, N0 and R0; we denote the restrictions of these operators to U by
respectively A, S, N and R ∈ L(U). Clearly A = S+N , U = ker (S2 + IU) = ker (A2 + IU)k,
SR = −RS, NR = −RN , R2 = IU , dim U = 2k and dim Fix(R) = k. Moreover, it follows
from the definition (1.5) that S generates on U an S1-action given by

ϕ ∈ S1 ∼= R/2πZ 7−→ exp(ϕS) ∈ L(U). (1.6)

The main result of [2] then states that for each (λ, T ) near (0, 2π) there exists a one-to-one
relation between the small T -periodic solutions of (1.1) and the small T -periodic solutions
of a reduced system

u̇ = g(u, λ), (1.7)

where g : U × Rm → U is smooth (see Remark 2 further on) and has the following proper-
ties:

(a) g(0, λ) = 0 for all λ ∈ Rm and Dug(0, 0) = A = S +N ;

(b) g(Ru, λ) = −Rg(u, λ), i.e. g is reversible;

(c) g is S1-equivariant:

g(exp(ϕS)u, λ) = exp(ϕS)g(u, λ), ∀ϕ ∈ S1. (1.8)

Moreover,

(d) for small λ all small periodic solutions of (1.7) have the form

ũ(t) = exp((1 + σ)S t)u (1.9)

for some small (σ, u) ∈ R × U ; these periodic solutions can therefore be obtained by
solving the equation

(1 + σ)Su = g(u, λ); (1.10)
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(e) if the original vectorfield is in normal form (with respect to S0) up to order q ≥ 1, i.e.
if

f(x, λ) = f
NF

(x, λ) + O(‖x‖q+1) as x→ 0,

with f
NF

reversible and such that

f
NF

(exp(S0t)x, λ) = exp(S0t)fNF
(x, λ), ∀t ∈ R, (1.11)

then
g(u, λ) = f

NF
(u, λ) + O(‖u‖q+1); (1.12)

(f) the relation between the periodic solutions of (1.1) and those of (1.7) respects the
reversibility properties of these solutions; that is, a periodic solution of (1.1) is sym-
metric if and only if the corresponding solution (1.9) of (1.7) is such that Ru = u.

Remark 1. The solutions of (1.10) come in S1-orbits; two solutions on the same orbit
correspond to two periodic solutions of (1.1) which are related to each other by a phase
shift. So solution orbits of (1.10) correspond in a one-to-one way to periodic orbits of (1.1);
such periodic orbit is symmetric if and only if the corresponding solution orbit of (1.10)
intersects Fix(R) (see the property (f) above).

Remark 2. If the original vectorfield f is C∞-smooth then the reduced vectorfield g is C∞-
smooth outside of the origin u = 0. As for the differentiability at u = 0 one can perform a
sequence of near-identity transformations to bring the original vectorfield f in normal form
up to any chosen order q ≥ 1; the only drawback for choosing higher values of q is that
the parameter range for which the normal form reduction is valid may shrink with q. The
transformations which bring f in normal form are C∞-smooth, and therefore the same holds
for the normal form f

NF
itself. Then (1.12) shows that the reduced vectorfield g is at least

of class Cq.

For our further analysis we will assume that g is sufficiently smooth (at least q ≥ 3), but
we will only calculate explicitly the normal form up to order q = 1 (we will call this the
linear normal form). Actually, we will show that one can not only impose the condition
(1.11) on this linear normal form, but also a further condition which involves the nilpotent
part N0 of A0. In the next section we prove a general result on such linear normal forms,
and in Section 3 we apply this result to the particular situation which we study here. This
will give us sufficient information on the reduced vectorfield g to complete the bifurcation
analysis in Section 4. In a forthcoming paper [4] we will give a similar analysis for the case
of a conservative system.

2. A general result on linear normal forms

Let Γ be a compact group acting linearly on a finite-dimensional vectorspace V , and let
χ : Γ → R be a real character over Γ, i.e. χ is continuous, χ(γ) 6= 0 for all γ ∈ Γ, and
χ(γ−1

1 γ2) = χ(γ1)
−1χ(γ2) for all γ1, γ2 ∈ Γ; the compactness of Γ then implies that for all
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γ ∈ Γ we have |χ(γ)| = 1, i.e. χ(γ) = ±1. We define the following spaces of linear operators
over V :

LΓ(V ) := {A ∈ L(V ) | Aγ = γA, ∀γ ∈ Γ} (2.1)

and
Lχ(V ) := {A ∈ L(V ) | Aγ = χ(γ)γA, ∀γ ∈ Γ} ; (2.2)

of course Lχ(V ) = LΓ(V ) if χ is trivial (χ(γ) = 1 for all γ ∈ Γ), but in all other cases the two
spaces Lχ(V ) and LΓ(V ) are linearly independent. In what follows we will assume that χ is
nontrivial, i.e. there exists some γ ∈ Γ such that χ(γ) = −1; then Γ0 := {γ ∈ Γ | χ(γ) = 1}
forms a normal subgroup of Γ, and we can identify Γ with the semidirect product Γ0 o Z2.
We leave it to the reader to verify that the results which follow remain valid in the (simpler)
case that χ is trivial. In Section 3 we will apply the results which follow to the case V = U ,
Γ = {IU , R} and χ(R) = −1.

For each Ψ ∈ L(V ) we define linear operators Ad (Ψ) ∈ L(L(V )) and ad (Ψ) ∈ L(L(V )) by

Ad (Ψ) · A := e−ΨAeΨ and ad (Ψ) · A := AΨ−ΨA, ∀A ∈ L(V ); (2.3)

using the fact that

d

dt
Ad (tΨ) · A = ad (Ψ) · (Ad (tΨ) · A), ∀t ∈ R,

one easily shows that

Ad (Ψ) = ead (Ψ), ∀Ψ ∈ L(V ). (2.4)

If Ψ ∈ LΓ(V ) then Ad (Ψ) and ad (Ψ) map Lχ(V ) into itself, and we can (and will) consider
Ad (Ψ) and ad (Ψ) as elements of L(Lχ(V )). Similarly, if Ψ ∈ Lχ(V ) then ad (Ψ) maps
LΓ(V ) into Lχ(V ) and Lχ(V ) into LΓ(V ). We start with a technical result.

Lemma 1. Let S0 ∈ Lχ(V ) be semisimple (when considered as an element of L(V )). Then
there exists a scalar product 〈·, ·〉 on V such that when we denote the transpose of a linear
operator A ∈ L(V ) with respect to this scalar product by AT then the following holds:

(i) the action of Γ on V is orthogonal, i.e. γTγ = IV for all γ ∈ Γ;

(ii) ker (ad (ST
0 )) = ker (ad (S0)).

As a consequence we have AT ∈ Lχ(V ) for each A ∈ Lχ(V ).

Proof . Fix some R0 ∈ Γ such that χ(R0) = −1; it follows then from S0R0 = −R0S0 that
if µ ∈ C is an eigenvalue of S0, then so is −µ. Let (αi, βi) (1 ≤ i ≤ `) be different elements
of R+× R+ such that the set of eigenvalues of S0 is given by {±αi ± iβi | 1 ≤ i ≤ `}. Since
S0 is semisimple we can then write

V =
∑̀
i=1

Vi, Vi := ker
(
((S0 − αiIV )2 + β2

i IV )((S0 + αiIV )2 + β2
i IV )

)
. (2.5)
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Each of the subspaces Vi (1 ≤ i ≤ `) is invariant under S0 and under the action of Γ;
moreover, if A ∈ ker (ad (S0)) then each Vi is also invariant under A. Let 〈·, ·〉 be a scalar
product on V such that the subspaces Vi (1 ≤ i ≤ `) are mutually orthogonal, i.e. such that

〈v1, v2〉 :=
∑̀
i=1

〈πiv1, πiv2〉i , ∀v1, v2 ∈ V, (2.6)

where πi ∈ L(V, Vi) is the projection from V onto Vi associated with the decomposition (2.5),
and where 〈·, ·〉i is some scalar product on Vi. Let A ∈ L(V ) be such that A(Vi) ⊂ Vi for
1 ≤ i ≤ `; it then follows that πiA = Aiπi for some Ai ∈ L(Vi), and that πiA

T = AT
i πi,

where AT
i ∈ L(Vi) is the transpose of Ai with respect to 〈·, ·〉i. This shows that it is sufficient

to prove the existence of a convenient scalar product 〈·, ·〉i within each of the subspaces Vi,
i.e. we are reduced to the case where

V = ker
(
((S0 − αIV )2 + β2IV )((S0 + αIV )2 + β2IV )

)
(2.7)

for some α, β ≥ 0. We consider now several cases.

Case (1): α > 0 and β > 0. We can then rewrite (2.7) as

V = V+ × V−, V± := ker
(
(S0 ∓ αIV )2 + β2IV )

)
. (2.8)

The subspaces V+ and V− are invariant under S0 and under the action of Γ0, while R0 maps
V+ isomorphically onto V− and V− isomorphically onto V+; we denote by R+ ∈ L(V+, V−)
(respectively R− ∈ L(V−, V+)) the restriction of R0 to V+ (respectively V−). By definition of
V+ we have that

S0v+ = αv+ + βJv+, ∀v+ ∈ V+, (2.9)

where J := 1
β
(S0 |V+ −αIV+) ∈ L(V+) is such that J2 = −IV+ . In combination with S0R0 =

−R0S0 it follows that

S0v− = −αv− − β(R−)−1JR−v−, ∀v− ∈ V−. (2.10)

The operator J generates on V+ an S1-action, given by

ϕ ∈ S1 ∼= R/2πZ 7−→ eJϕ ∈ L(V+).

Since this action commutes with the action of Γ0 we have in fact the compact group Γ0×S1

acting on V+.

Let 〈·, ·〉+ be any scalar product on V+ for which this Γ0×S1-action is orthogonal, and define
a scalar product 〈·, ·〉 on V = V+ × V− by setting〈

(v+, v−), (v ′+, v
′
−)

〉
:=

〈
v+, v

′
+

〉
+

+
〈
R−v−, R−v

′
−
〉
+
, ∀(v+, v−), (v ′+, v

′
−) ∈ V+ × V−. (2.11)

We have then for each γ ∈ Γ0 that〈
γ(v+, v−), γ(v ′+, v

′
−)

〉
=

〈
γv+, γv

′
+

〉
+

+
〈
R−γv−, R−γv

′
−
〉
+

=
〈
v+, v

′
+

〉
+

+
〈
R−v−, R−v

′
−
〉
+

=
〈
(v+, v−), (v ′+, v

′
−)

〉
, ∀(v+, v−), (v ′+, v

′
−) ∈ V+ × V−,
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where we have used the fact that R−γ(R−)−1 belongs to Γ0 (or more precisely: the restriction
of Γ0 to V+). Also〈

R0(v+, v−), R0(v
′

+, v
′
−)

〉
=

〈
(R−v−, R+v+), (R−v

′
−, R+v

′
+)

〉
=

〈
R−v−, R−v

′
−
〉
+

+
〈
R−R+v+, R−R+v

′
+

〉
+

=
〈
R−v−, R−v

′
−
〉
+

+
〈
v+, v

′
+

〉
+

=
〈
(v+, v−), (v ′+, v

′
−)

〉
, ∀(v+, v−), (v ′+, v

′
−) ∈ V+ × V−,

using this time the fact that R−R+ acts on V+ as an element of Γ0, since R2
0 ∈ Γ0. The

foregoing relations show that the action of Γ on V = V+ × V− is orthogonal with respect to
the scalar product (2.11).

Since J ∈ L(V+) generates an orthogonal S1-action on V+ it follows that J is anti-symmetric,
i.e.

〈
Jv+, v

′
+

〉
+

= −
〈
v+, Jv

′
+

〉
+

for all v+, v
′

+ ∈ V+. Using (2.9) and (2.10) we find then for all

(v+, v−), (v ′+, v
′
−) ∈ V+ × V− that〈

ST
0 (v+, v−), (v ′+, v

′
−)

〉
=

〈
(v+, v−), S0(v

′
+, v

′
−)

〉
=

〈
(v+, v−), (αv ′+ + βJv ′+,−αv ′− − β(R−)−1JR−v

′
−)

〉
= α

〈
v+, v

′
+

〉
+

+ β
〈
v+, Jv

′
+

〉
+
− α

〈
R−v−, R−v

′
−
〉
+
− β

〈
R−v−, JR−v

′
−
〉
+

= α
〈
v+, v

′
+

〉
+
− β

〈
Jv+, v

′
+

〉
+
− α

〈
R−v−, R−v

′
−
〉
+

+ β
〈
JR−v−, R−v

′
−
〉
+

=
〈
(αv+ − βJv+,−αv− + β(R−)−1JR−v−), (v ′+, v

′
−)

〉
.

Therefore

ST
0 (v+, v−) = (αv+ − βJv+,−αv− + β(R−)−1JR−v−), ∀(v+, v−) ∈ V+ × V−. (2.12)

Suppose now that A ∈ ker (ad (S0)); then A leaves the subspaces V+ and V− invariant, and
we can write

A(v+, v−) = (A+v+, A−v−), ∀(v+, v−) ∈ V+ × V−,

where A+ ∈ L(V+) commutes with the restriction of S0 to V+, and A− ∈ L(V−) commutes
with the restriction of S0 to V−. It follows then from (2.9) and (2.10) that A+ commutes
with J , while A− commutes with (R−)−1JR−; by (2.12) this implies that A commutes with
ST

0 , i.e. A ∈ ker (ad (ST
0 )) and ker (ad (S0)) ⊂ ker (ad (ST

0 )). To prove the opposite inclusion
we observe that (2.12) implies that

V± := ker
(
(ST

0 ∓ αIV )2 + β2IV )
)
.

Hence each A ∈ ker (ad (ST
0 )) leaves the subspaces V+ and V− invariant, and the same argu-

ment we just used shows that such A also belongs to ker (ad (S0)). This proves the property
(ii) for the case when α > 0 and β > 0.

Case (2): α > 0 and β = 0. This time we have V = V+ × V− with

V± := ker (S0 ∓ αIV ) ,
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and hence
S0(v+, v−) = (αv+,−αv−), ∀(v+, v−) ∈ V+ × V−.

It follows that ST
0 = S0 when the transpose is taken with respect to any scalar product on

V such that the subspaces V+ and V− are orthogonal. Therefore the conditions (i) and (ii)
of the lemma will be satisfied for this case when we define the scalar product 〈·, ·〉 on V by
(2.11), with 〈·, ·〉+ any scalar product on V+ for which the action of Γ0 on V+ is orthogonal:
the proof that the action of Γ on V is orthogonal is then the same as for case (1).

Case (3): α = 0 and β > 0. In this case we have S0 = βJ with J ∈ L(V ) such that
J2 = −IV ; it follows that J generates an S1-action on V , which combines with the action of
Γ into an action of the compact group ΓnS1 ∼= (Γ0×S1)oZ2 on V (the S1-action commutes
with the Γ0-action, and Γ0 × S1 forms a normal subgroup of this semi-direct product). If
〈·, ·〉 is any scalar product on V for which this ΓoS1 is orthogonal then J is anti-symmetric,
and hence ST

0 = −S0 and ker (ad (ST
0 )) = ker (ad (S0)).

Case (4): α = β = 0. Since then S0 = 0 this case is trivial: it is sufficient to take any scalar
product on V for which the Γ-action is orthogonal.

We conclude the proof with the observation that (i) implies that together with A also AT

belongs to Lχ(V ): this follows by taking the transpose of the relation Aγ = χ(γ)γA (γ ∈ Γ)
and using the fact that γT = γ−1. �

Corollary 2. Let A0 = S0 +N0 be the semisimple-nilpotent decomposition of A0 ∈ Lχ(V ).
Then S0 and N0 belong to Lχ(V ). Moreover, if 〈·, ·〉 is a scalar product on V associated to
S0 as in Lemma 1, then also AT

0 , ST
0 and NT

0 belong to Lχ(V ), and

ker (ad (AT
0 )) = ker (ad (S0)) ∩ ker (ad (NT

0 )). (2.13)

Proof . We have for each γ ∈ Γ that γ−1A0γ = γ−1S0γ+γ−1N0γ is the semisimple-nilpotent
decomposition of γ−1A0γ; the uniqueness of the decomposition combined with the relation
A0 = χ(γ)γ−1A0γ then shows that S0 = χ(γ)γ−1S0γ and N0 = χ(γ)γ−1N0γ, i.e. S0 and N0

belong to Lχ(V ).

Next let 〈·, ·〉 be a scalar product on V such that the conditions of Lemma 1 are satisfied. It
follows then immediately from Lemma 1 that AT

0 , ST
0 and NT

0 belong to Lχ(V ). Moreover,
if A = S +N is the semisimple-nilpotent decomposition of A ∈ L(V ) then

ker (ad (A)) = ker (ad (S)) ∩ ker (ad (N)); (2.14)

indeed, the inclusion ker (ad (S))∩ ker (ad (N)) ⊂ ker (ad (A)) is obvious, while the opposite
inclusion follows from the fact that S and N can be written as polynomial expressions in A.
Applying this result to A = AT

0 (with Jordan decomposition AT
0 = ST

0 +NT
0 ) shows that

ker (ad (AT
0 )) = ker (ad (ST

0 )) ∩ ker (ad (NT
0 )),

which in turn implies (2.13), since ker (ad (ST
0 )) = ker (ad (S0)) by the choice of the scalar

product. �
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Our main result is the following theorem on normal forms of linear operators A ∈ Lχ(V ).

Theorem 3. Let A0 = S0 +N0 be the semisimple-nilpotent decomposition of A0 ∈ Lχ(V ),
and let 〈·, ·〉 be a scalar product on V associated with S0 as in Lemma 1. Then there exists a

neighborhood Ω of A0 in Lχ(V ) and a C∞-smooth mapping Ψ̃ : Ω → LΓ(V ) with Ψ̃(A0) = 0
and such that for each A ∈ Ω we have

Ad (Ψ̃(A)) · A− A0 ∈ ker (ad (S0)) ∩ ker (ad (NT
0 )). (2.15)

Proof . Define F : LΓ(V )× Lχ(V ) → Lχ(V ) by

F (Ψ, A) := Ad (Ψ) · A, ∀(Ψ, A) ∈ LΓ(V )× Lχ(V ). (2.16)

The mapping F is C∞-smooth, with F (0, A0) = A0 and DΨF (0, A0) · Ψ = A0Ψ − ΨA0 =
ad (Ψ) · A0 = −ad (A0) ·Ψ, i.e.

DΨF (0, A0) = −ad (A0) ∈ L(LΓ(V ),Lχ(V )). (2.17)

We will show further on that

Lχ(V ) = Im (ad (A0))⊕ ker (ad (AT
0 )), (2.18)

where ad (A0) is considered as a linear operator from LΓ(V ) into Lχ(V ) (as in (2.17)), and
ad (AT

0 ) as a linear operator from Lχ(V ) into LΓ(V ). Let π ∈ L(Lχ(V )) be the projection in
Lχ(V ) onto Im (ad (A0)) and parallel to ker (ad (AT

0 )) (see (2.18)), and define a C∞-smooth
mapping G : LΓ(V )× Lχ(V ) → Im (ad (A0)) by

G(Ψ, A) := π(F (Ψ, A)− A0) = π(Ad (Ψ) · A− A0), ∀(Ψ, A) ∈ LΓ(V )× Lχ(V ). (2.19)

Then G(0, A0) = 0 and DΨG(0, A0) is (by (2.17)) a surjective linear operator from LΓ(V )
onto the subspace Im (ad (A0)) of Lχ(V ); therefore we can use the implicit function theorem
to conclude that there exists a neighborhood Ω of A0 in Lχ(V ) and a C∞-smooth mapping

Ψ̃ : Ω → LΓ(V ) with Ψ̃(A0) = 0 and such that

G(Ψ̃(A), A) = 0, ∀A ∈ Ω.

By the definition (2.19) of G this means that Ad (Ψ̃(A)) · A − A0 belongs to ker (ad (AT
0 ))

for all A ∈ Ω, which in combination with Corollary 2 proves the theorem. Observe that
the mapping Ψ̃ can be made uniquely defined by imposing the additional condition that this
mapping should take its values in a given complement of ker (adA0) in LΓ(V ) (where ad (A0)
is again considered as a linear operator from LΓ(V ) into Lχ(V )).

It remains to prove the decomposition (2.18) of Lχ(V ). To do so we define a scalar product
<< ·, ·>> on L(V ) by

<<A,B>> := trace (ATB), ∀A,B ∈ L(V ); (2.20)
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we will denote the induced scalar products on the subspaces LΓ(V ) and Lχ(V ) by respectively
<< ·, ·>>Γ and << ·, ·>>χ. Considering again ad (A0) as a linear operator from LΓ(V ) into
Lχ(V ) we have then by a classical algebra result that

Lχ(V ) = Im (ad (A0))⊕ ker ((ad (A0))
∗), (2.21)

where (ad (A0))
∗ ∈ L(Lχ(V ),LΓ(V )) is uniquely defined by the relation

<<ad (A0) · A ,B>>χ = <<A , (ad (A0))
∗ ·B>>Γ, ∀(A,B) ∈ LΓ(V )× Lχ(V ). (2.22)

A direct calculation shows that for all (A,B) ∈ LΓ(V )× Lχ(V ) we have

<<ad (A0) · A ,B >>χ = <<AA0 − A0A ,B >> = trace ((AA0 − A0A)TB)

= trace (AT
0A

TB − ATAT
0B) = trace (AT (BAT

0 − AT
0B))

= <<A , ad (AT
0 ) ·B >>Γ;

comparing with (2.22) we see that

(ad (A0))
∗ = ad (AT

0 ) ∈ L(Lχ(V ),LΓ(V )), (2.23)

which in combination with (2.21) proves (2.18). �

Remark 3. Under the conditions of Theorem 3 we have for each A ∈ Ω that

exp(−Ψ̃(A))A exp(Ψ̃(A)) ∈ ker (ad(S0)) ∩ Lχ(V ). (2.24)

This means that by a linear transformation which depends smoothly on A and which pre-
serves the symmetry properties of A we can make each A ∈ Ω commute with S0.

3. The linear normal form at a k-fold resonance

In this Section we apply the results of Section 2 to the linearizations of the reversible vector-
fields introduced in Section 1; in particular we will obtain an explicit form for the linearization
Dug(0, λ) ∈ L(U) of the reduced vectorfield g(u, λ).

Under the hypotheses of Section 1 let A0 := Dxf(0, 0) ∈ L(R2n) have the semisimple-
nilpotent decomposition A0 = S0 +N0. To apply the results of Section 2 we take for Γ the
group Z2 = {e, κ} with κ2 = e, and we define a character χ on Z2 by χ(κ) = −1. We also
define a group action of Z2 on both the phase space R2n and the reduced phase space U
by setting respectively κ · x := R0x for x ∈ R2n and κ · u := Ru for u ∈ U ; to indicate
these action we will write Z2(R) instead of just Z2. A linear operator A ∈ L(R2n) belongs
to Lχ(R2n) if and only if A is reversible, and similarly for operators in L(U). In particular,
each of the linearizations Dxf(0, λ) belongs to Lχ(R2n); it follows then from Remark 3 that
by a linear Γ-equivariant transformation depending smoothly on the parameter λ we may
assume that Dxf(0, λ) commutes with S0 for all sufficiently small λ ∈ Rm. This means that
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f is in normal form up to order 1, and hence (by property (e) of Section 1) the linearization
Aλ := Dug(0, λ) of the reduced vectorfield g(u, λ) is given by

Aλ = Dxf(0, λ)|U ∈ Lχ(U). (3.1)

An application of Theorem 3 to the family of linear operators {Aλ | λ ∈ Rm} ⊂ Lχ(U)
shows that by a further parameter-dependent linear transformation of the reduced equation
we may assume that

Aλ = S +N +Bλ, (3.2)

with Bλ=0 = 0 and

Bλ ∈ W := Lχ(U) ∩ ker (ad(S)) ∩ ker (ad(NT )); (3.3)

in (3.2) the transpose NT of N has to be taken with respect to a scalar product on U for
which the S1 oZ2(R) ∼= O(2)-action generated on U by S and R is orthogonal (see the proof
of Lemma 1, case (3)). It is the aim of the remainder of this Section to obtain an explicit
characterization of the subspace W of L(U) (see Corollary 8).

Let us start by repeating that U = ker (S2 + IU), while k is the smallest integer such that
U = ker ((A2 + IU)k); also, U1 := ker (A2 + IU) is S1 o Z2(R)-invariant, and we know from
(H)(iii) that U1 is irreducible under A. But A2 + IU = N(2S +N), with (2S +N) ∈ L(U)
non-singular; it follows that U1 = ker N , and that U1 is irreducible under S, and hence
also under the S1 o Z2(R)-action. Since span{u, Su} forms for each nonzero u ∈ U1 an
S-invariant subspace of U1 we conclude that dim U1 = 2. Also, k is the smallest integer such
that Nk = 0. The following lemma gives a more detailed structure of U .

Lemma 4. There exist S1 o Z2(R)-invariant and S-irreducible subspaces Uj (1 ≤ j ≤ k) of
U such that

(i) U = U1 ⊕ · · · ⊕ Uk;

(ii) U1 = ker N and N is an isomorphism of Uj onto Uj−1 for 2 ≤ j ≤ k.

Proof . The subspaces Vj := ker ((A2 + IU)j) = ker N j (0 ≤ j ≤ k) are S1 o Z2(R)-
invariant, since A2 + IU is S1 o Z2(R)-equivariant; they form a strictly increasing sequence
(Vj)0≤j≤k of subspaces of U , with V0 = {0}, V1 = U1 and Vk = U . The operator N j−1

maps each S1 o Z2(R)-invariant complement Ûj of Vj−1 in Vj injectively onto a S1 o Z2(R)-

invariant subspace of U1; since U1 is S-irreducible it follows that dim Ûj = dim U1 and that

Ûj must also be S-irreducible. The result then follows by choosing an S1 o Z2(R)-invariant
complement Uk of Vk−1 in Vk, and setting Uj := Nk−j(Uk) for 1 ≤ j < k. �

Next we construct a particular scalar product on U .

Lemma 5. There exists a scalar product on U for which the S1oZ2(R)-action is orthogonal
and such that Uk = ker NT and

NT (Uj) = Uj+1, NT
∣∣
Uj

=
(
N

∣∣
Uj+1

)−1

, 1 ≤ j ≤ k − 1. (3.4)
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Proof . Let 〈·, ·〉1 be a scalar product on U1 for which the S1 o Z2(R)-action on U1 is
orthogonal; then use Lemma 4 to define a scalar product 〈·, ·〉 on U by〈

k∑
j=1

uj,

k∑
j=1

u′j

〉
:=

k∑
j=1

〈
N j−1uj, N

j−1u′j
〉

1
, ∀uj, u

′
j ∈ Uj, 1 ≤ j ≤ k. (3.5)

One verifies then immediately that the S1 o Z2(R)-action on U is orthogonal with respect
to this scalar product (just use the fact that N commutes with S and anti-commutes with
R). Moreover, we have for each uj ∈ Uj (1 ≤ j ≤ k − 1) and for all u′i ∈ Ui (1 ≤ i ≤ k) that〈

NTuj,
k∑

i=1

u′i

〉
=

〈
uj,

k∑
i=1

Nu′i

〉
=

〈
N j−1uj, N

ju′j+1

〉
1

=

〈
ûj+1,

k∑
i=1

u′i

〉
,

where ûj+1 ∈ Uj+1 is such that Nûj+1 = uj. This proves the lemma. �

Observe that NT commutes with S and anti-commutes with R: this follows from the general
theory of Section 2, but can also be seen directly from (3.4) The following lemma will be
useful in the proof of Theorem 7; it is a special case of Lemma 2.3 in [5].

Lemma 6. Let 1 ≤ j ≤ k, Sj := S|Uj
and A ∈ L(Uj). Then A commutes with Sj if and

only if it has the form
A = αIj + βSj (Ij := IUj

) (3.6)

for some α, β ∈ R.

Proof . We will use the fact that Uj is Sj-irreducible (see Lemma 4). Clearly, if A ∈ L(Uj)
has the form (3.6) then A commutes with Sj. Conversely, suppose that A ∈ L(Uj) commutes
with Sj, and let α+ iβ be an eigenvalue of A. If β = 0 then ker (A−αIj) is a nontrivial and
Sj-invariant subspace of Uj; it follows that Uj = ker (A− αIj) and A = αIj. If β 6= 0 then

ker ((A− αIj)
2 + β2Ij) = ker ((A− αIj)

2 − βS2
j ) = ker ((A− αIj − βSj)(A− αIj + βSj))

is nontrivial; hence either ker (A−αIj − βSj) or ker (A−αIj + βSj) must be nontrivial and
Sj-invariant, and therefore equal to Uj. This proves (3.6) (replace β by −β in the second
case). �

The following theorem forms the main result of this section.

Theorem 7. A linear operator B ∈ L(U) belongs to ker (ad(S)) ∩ ker (ad(NT )) (i.e. com-
mutes with both S and NT ) if and only if it has the form

B =
k∑

j=1

(αjIU + βjS)(NT )j−1 (3.7)

for some αj, βj ∈ R.
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Proof . It is trivial to see that the condition is sufficient. So suppose that B ∈ L(U)
commutes with both S and NT . We claim that there exist numbers αj, βj ∈ R (1 ≤ j ≤ k)
such that if we set

Bi := B −
i∑

j=1

(αjIU + βjS)(NT )j−1 ∈ L(U) (3.8)

then
ker ((NT )i ) = Uk−i+1 ⊕ · · · ⊕ Uk ⊂ ker (Bi), (1 ≤ i ≤ k). (3.9)

For i = k this means that Bk = 0, such that (3.7) follows from (3.8).

We use induction to prove our claim. Since B commutes with NT it maps Uk = ker NT into
itself. Since B also commutes with S it follows from Lemma 6 that the restriction of B to Uk

must have the form α1Ik +β1Sk for some α1, β1 ∈ R. Then consider B1 := B−α1IU −β1S ∈
L(U). Clearly B1 commutes with both S and NT , and by the way it is defined we also have
that B1(Uk) = {0}; this proves (3.9) for i = 1.

Next let 1 ≤ i < k, and suppose that we have found numbers αj, βj ∈ R (1 ≤ j ≤ i)
such that (3.9) holds for this particular value of i. Then Bi commutes with S and NT , and
therefore

NT (Bi(Uk−i)) = Bi(N
T (Uk−i)) ⊂ Bi(ker ((NT )i )) = {0}.

This proves that Bi(Uk−i) is contained in ker (NT ) = Uk, which in combination with Lemma 4
implies that BiN

i maps Uk into itself. By Lemma 6 there exist numbers αi+1 and βi+1 such
that

BiN
i
∣∣
Uk

= αi+1Ik + βi+1Sk. (3.10)

Setting Bi+1 := Bi − (αi+1IU + βi+1S)(NT )i it is clear from the induction hypothesis that
Bi+1(ker ((NT )i )) = {0}; moreover, we can write each uk−i ∈ Uk−i as uk−i = N iuk for some
uk ∈ Uk, such that using Lemma 5 it follows that

Bi+1(uk−i) = Bi+1(N
iuk) = BiN

iuk − (αi+1Ik + βi+1Sk)(N
T )iN iuk = 0.

Since ker ((NT )i+1) = Uk−i ⊕ ker ((NT )i) this proves (3.9) for i+ 1. �

Remark 4. The foregoing proof also shows that the representation (3.7) of linear operators
B ∈ ker (ad(S)) ∩ ker (ad(NT )) is unique; indeed, if one starts with B = 0 then it is easily
seen that at each step in the induction one finds that αi = βi = 0. Using this uniqueness we
obtain the following characterization of the subspace W .

Corollary 8. The space W defined by (3.3) consists of those linear operators B ∈ L(U)
which have the form

B =
k∑

j=1

δjS
j(NT )j−1 (3.11)

for some δj ∈ R (1 ≤ j ≤ k).
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Proof . The space W consists of those operators B ∈ ker (ad(S))∩ker (ad(NT )) which also
belong to Lχ(U), i.e. which are R-reversible. So we have to consider operators B of the
form (3.7) and impose the additional condition BR = −RB, or equivalently B = −RBR.
Using the fact that both S and NT are R-reversible in combination with the uniqueness
of the representation (3.7) then gives αj = 0 if j is odd, and βj = 0 if j is even. The
resulting simplified expression for B then takes the form (3.11) by using S2 = −IU and
setting δ2`+1 := (−1)`β2`+1 and δ2` := (−1)`α2`. �

4. The bifurcation analysis

In this section we study the small periodic solutions of the reduced system (1.7), i.e. we
analyse the solution set of the bifurcation equation (1.10) near the origin (u, λ, σ) = (0, 0, 0).
But first we perform some further simplifications.

Using the results of Sections 2 and 3 we know that under the hypotheses (R) and (H) and
assuming k ≥ 2 the linearization Aλ = Dug(0, λ) of the reduced vectorfield g has the form

Aλ = S +N +
k∑

j=1

δj(λ)Sj(NT )j−1 = (1 + δ1(λ))S +N +
k∑

j=2

δj(λ)Sj(NT )j−1, (4.1)

for some Cq-functions δj : Rm → R (1 ≤ j ≤ k) satisfying δj(0) = 0 (and where q ≥ 3 can
be chosen arbitrarily). Without loss of generality one can assume that δ1(λ) ≡ 0 in (4.1).
Indeed, define Cλ ∈ L(U) by

Cλu = Cλ(u1, u2, . . . , uk) := ((1 + δ1(λ))u1, (1 + δ1(λ))2u2, . . . , (1 + δ1(λ))kuk),

and replace u(t) in the equation (1.7) by Cλu((1+δ1(λ))t). This results in a similar equation
which is still S1-equivariant and R-reversible (because Cλ commutes with S and R), but with
Aλ replaced by Ãλ := (1 + δ1(λ))−1C−1

λ AλCλ. Using Lemma 4 and Lemma 5 one verifies
easily that

C−1
λ NCλ = (1 + δ1(λ))N and C−1

λ NTCλ = (1 + δ1(λ))−1NT ;

therefore the linearization Ãλ of the new reduced vectorfield takes the form

Ãλ = S +N +
k∑

j=2

δj(λ)

(1 + δ1(λ))j
Sj(NT )j−1.

Redefining the δj(λ) (2 ≤ j ≤ k) appropriately returns us to the original expression (4.1) for
Aλ, but with δ1(λ) ≡ 0, as claimed. The resulting form of Aλ then motivates the following
transversality condition which we impose now:

(T) The mapping ∆ : Rm −→ Rk−1, λ 7−→ (δ2(λ), . . . , δk(λ)) is transversal to the origin
at λ = 0, i.e. D∆(0) ∈ L(Rm,Rk−1) is surjective.
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This implies that m ≥ k − 1, and without loss of generality we can assume that

∂(δ2, . . . , δk)

∂(λ1, . . . , λk−1)
(0) 6= 0.

By a change of parameters we can then put the functions δj in the explicit form δj(λ) = λj−1

(2 ≤ j ≤ k), which gives us our final form for Aλ:

Aλ = S +N +
k−1∑
j=1

λjS
j+1(NT )j. (4.2)

The bifurcation equation (1.10) then takes the form

σSu = Nu+
k−1∑
j=1

λjS
j+1(NT )ju+ ĝ(u, λ), (4.3)

where the Cq-mapping ĝ : U×Rm → U has the following properties: ĝ(0, λ) = 0, Duĝ(0, λ) =
0, ĝ(exp(ϕS)u, λ) = exp(ϕS)ĝ(u, λ) for all ϕ ∈ S1, and ĝ(Ru, λ) = −Rĝ(u, λ). In particular
we have ĝ(u, λ) = O(‖u‖3) as u→ 0, since ĝ(−u, λ) = −ĝ(u, λ).

We have to determine all solutions (u, λ, σ) ∈ U × Rm × R of (4.3) near (0, 0, 0). Denote
by πj ∈ L(U) (1 ≤ j ≤ k) the projections in U onto Uj associated with the splitting
U = U1 ⊕ . . .⊕ Uk; these projections commute with S and R. It follows from Lemma 4 and
Lemma 5 that πjN = Nπj+1 (1 ≤ j ≤ k − 1), πkN = 0, π1N

T = 0 and πjN
T = NTπj−1

(2 ≤ j ≤ k); also NTN = IU − π1. We can write u ∈ U as u = u1 + û, with u1 := π1u ∈ U1

and û := (IU − π1)u ∈ ker π1 = U2 ⊕ . . .⊕ Uk. Finally, the equation (4.3) is equivalent to a
system of two equations which one obtains by applying respectively NT and S−kNk−1 to (4.3)
(we use the fact that for u ∈ U we have u = 0 if and only if NTu = 0 and S−kNk−1u = 0; the
reason for this somewhat complicated scheme should be clear from what follows). Working
this out in detail gives the equations

û = σSNT (u1 + û)−
k−1∑
j=1

λjS
j+1(NT )j+1(u1 + û)−NT ĝ(u1 + û, λ) (4.4)

and

σS−k+1Nk−1πku−
k−1∑
j=1

λjS
−k+j+1Nk−j−1πk−ju− S−kNk−1ĝ(u, λ) = 0 (4.5)

which have to be solved simultaneously. The equation (4.4) forms an S1 oZ2(R)-equivariant
fixed point equation for û ∈ ker π1, depending on the parameters (u1, λ, σ). For small values
of these parameters it can be solved by the implicit function theorem, giving û = û∗(u1, λ, σ).
The solution mapping û∗ : U1 × Rm × R → ker π1 is of class Cq, with û∗(0, λ, σ) = 0 and
D1û

∗(0, 0, 0) = 0; also, û∗ is S1 o Z2(R)-equivariant:

û∗(exp(ϕS)u1, λ, σ) = exp(ϕS) û∗(u1, λ, σ), ∀ϕ ∈ S1, (4.6)

and
û∗(Ru1, λ, σ) = Rû∗(u1, λ, σ). (4.7)
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Replacing u by u1 + û∗(u1, λ, σ) in (4.5) gives us the final bifurcation equation

H(u1, λ, σ) = 0 (4.8)

whose solution set lifts (via all the foregoing reduction steps) to the solution set for our
original problem (P). The Cq-mapping H : U1 × Rm × R → U1 is S1 o Z2(R)-equivariant,
with H(0, λ, σ) = 0 and D1H(0, 0, 0) = 0. Before we calculate the linear part of H(u1, λ, σ)
we first prove the following.

Theorem 9. Under the hypotheses (R) and (H) all solutions x̃(t) of the problem (P) are
symmetric, i.e. they satisfy

R0 {x̃(t) | t ∈ R} = {x̃(t) | t ∈ R}. (4.9)

Proof . By Remark 1 and the equivariance of û∗ it is sufficient to show that each S1-orbit
of solutions of (4.8) intersects Fix(R); however, this is not only true for solution orbits, but
for any S1-orbit in U1. Indeed, let ū1 ∈ U1 be an eigenvector of the restriction of R to U1,
corresponding to the eigenvalue ε = ±1; then Sū1 is also an eigenvector, with eigenvalue
−ε. So the restriction of R to U1 has both +1 and −1 as an eigenvalue, and since U1 is
S-irreducible we conclude that U1 has a basis {u0

1, Su
0
1} such that Ru0

1 = u0
1. Then we can

write any u1 ∈ U1 in the form u1 = (ρ cosϕ)u0
1 + (ρ sinϕ)Su0

1 = exp(ϕS)(ρu0
1) for some

ρ ≥ 0 and some ϕ ∈ S1; it follows that exp(−ϕS)u1 = ρu0
1, i.e. the S1-orbit through u1

intersects Fix(R). �

The foregoing proof also shows that it is sufficient to find the solutions of (4.8) in Fix(R),
i.e. we can put u1 = ρu0

1. The equivariance of H implies that H(ρu0
1, λ, σ) = β(ρ, λ, σ)u0

1

for some Cq-function β : R × Rm × R → R; we have β(0, λ, σ) = 0, D1β(0, 0, 0) = 0 and
β(−ρ, λ, σ) = −β(ρ, λ, σ). This means that in the end we have to solve the scalar equation

β(ρ, λ, σ) = 0. (4.10)

Solutions of (4.10) come in pairs (±ρ, λ, σ), with both elements of the pair generating the
same periodic orbit of (1.1).

We now return to the mapping H, in order to determine its linear part D1H(0, λ, σ) ∈ L(U1).
This can be done by forgetting the higher order term ĝ(u, λ) in the reduction from (4.3) to
(4.8). Then (4.4) reduces to

û = σSNT (u1 + û)−
k−1∑
j=1

λjS
j+1(NT )j+1(u1 + û); (4.11)

its solution û equals D1û
∗(0, λ, σ) · u1. Applying consecutively each of the projections πi

(i = 2, . . . , k) to (4.11) shows that

πiû = hi−1(σ, λ)Si−1(NT )i−1u1, (2 ≤ i ≤ k), (4.12)
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where we define the polynomials hi(σ, λ) (0 ≤ i ≤ k) by the following iteration scheme:

h0(σ, λ) := 1, h1(σ, λ) := σ, hi(σ, λ) := σhi−1(σ, λ)−
i−1∑
j=1

λjhi−1−j(σ, λ) (2 ≤ i ≤ k). (4.13)

Bringing (4.12) into the left hand side of (4.5) (in which we put again ĝ = 0) we find

D1H(0, λ, σ) · u1 = hk(σ, λ)u1, ∀u1 ∈ U1, (4.14)

where hk(σ, λ) is the polynomial (of degree k in σ) which comes out of the iteration scheme
(4.13). Observe that hk(σ, λ) only depends on the first k − 1 components (λ1, . . . , λk−1) of
λ ∈ Rm.

Remark 5. The polynomial hk(σ, λ) appearing in (4.14) also comes out of the following
problem. Consider, for small λ, the operator Aλ given by (4.2), and suppose we want to
determine the purely imaginary eigenvalues of this operator; such eigenvalues will be close
to ±i, so let us denote them by ±(1 + σ)i. We have then to determine the kernel of

A2
λ + (1 + σ)2IU = A2

λ − (1 + σ)2S2 = (Aλ − (1 + σ)S)(Aλ + (1 + σ)S).

For λ and σ small Aλ + (1 + σ)S is close to (2S +N), and hence invertible. It follows that
Aλ has the eigenvalues ±(1 + σ)i if and only if ker (Aλ − (1 + σ)S) is nontrivial, that is, if
and only if the equation

σSu = Nu+
k−1∑
j=1

λjS
j+1(NT )ju (4.15)

has a nonzero solution u ∈ U . Repeating the calculations which we just made shows that
this is equivalent to

hk(σ, λ) = 0. (4.16)

We conclude that ±(1 + σ)i are eigenvalues of Aλ if and only if (4.16) holds. �

It follows from the foregoing that the function β appearing in (4.10) has the form

β(ρ, λ, σ) = hk(σ, λ)ρ+ β̃(ρ, λ, σ)ρ3 (4.17)

for some Cq−3-function β̃ : R × Rm × R → R which is even in ρ. We now make our final
hypothesis, which is a non-degeneracy condition:

(N-D) b := β̃(0, 0, 0) 6= 0.

Under this condition we can replace ρ by |β̃(ρ, λ, σ)|−1/2
ρ in (4.17); setting also ε := −sgn(b)

it follows that for nontrivial solutions the equation (4.10) reduces to

hk(σ, λ)− ερ2 = 0; (4.18)

this is a polynomial equation whose solutions can be studied more or less explicitly, at least
for low values of k. In what follows we will discuss the global solution set of (4.18), but
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it is clear that only solutions (ρ, λ, σ) near (0, 0, 0) correspond to solutions of our original
problem. Also, if (ρ, λ, σ) is a solution then so is (−ρ, λ, σ), but both correspond to the
same periodic orbit of (1.1). Finally, we observe that the equation (4.18) only depends on
the essential parameters λ1, . . . , λk−1. For simplicity of formulation we will therefore assume
that m = k − 1, i.e. that λ = (λ1, . . . , λk−1); it should be obvious how to reformulate the
results in the case m > k − 1.

For each λ ∈ Rk−1 we define

S(k)
λ := {σ ∈ R | εhk(σ, λ) ≥ 0}. (4.19)

Then the solution set of (4.18) is given by

Σk = {(±(εhk(σ, λ))
1
2 , λ, σ) | λ ∈ Rk−1, σ ∈ S(k)

λ }. (4.20)

The set S(k)
λ is completely determined by ε and by the zeros of hk(·, λ), and consists of at

most [k
2
] + 1 closed intervals. These intervals merge or disappear together with the zeros of

hk(·, λ) = 0, which allows us to define the bifurcation set for (4.18) as

Bk := {λ ∈ Rk−1 | hk(σ, λ) = Dσhk(σ, λ) = 0 for some σ ∈ R}. (4.21)

The following result characterizes this bifurcation set.

Theorem 10. The bifurcation set Bk is diffeomorphic to the standard cuspoid of order k,
i.e. to the fold for k = 2, the cusp for k = 3, the swallowtail for k = 4, the butterfly for
k = 5, etc.

Proof . The standard versal unfolding of (the germ at zero of) the function σ 7→ σk (k ≥ 2)
is given by Hk(σ, λ) := σk +

∑k−1
j=1 λjσ

k−1−j (λ ∈ Rk−1), and the cuspoid of order k is defined
as the bifurcation set Bk for the zeros of Hk(·, λ), i.e.

Bk := {λ ∈ Rk−1 | Hk(σ, λ) = DσHk(σ, λ) = 0 for some σ ∈ R}.

To prove the theorem we will show that we can write the function hk(σ, λ) in the form

hk(σ, λ) = σk −
k−1∑
j=1

φj(λ)σk−1−j, (4.22)

where the functions φj : Rk−1 → R (1 ≤ j ≤ k − 1) are such that the mapping Φ : Rk−1 →
Rk−1 defined by

Φ(λ) := (φ1(λ), . . . , φk−1(λ)), ∀λ ∈ Rk−1, (4.23)

forms a diffeomorhism of Rk−1 onto itself. The theorem then follows from the relation
hk(σ, λ) = Hk(σ,−Φ(λ)).

To prove the statements about hk(σ, λ) we observe that a direct calculation using (4.13)
shows that

h2(σ, λ) = σ2 − λ1,

h3(σ, λ) = σ3 − 2λ1σ − λ2,

h4(σ, λ) = σ4 − 3λ1σ
2 − 2λ2σ − (λ3 − λ2

1),

h5(σ, λ) = σ5 − 4λ1σ
3 − 3λ2σ

2 − (2λ3 − 3λ2
1)σ − (λ4 − 2λ1λ2), etc. . .
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This motivates us to put

hi(σ, λ) = σi −
i−1∑
j=1

(i− j)λjσ
i−1−j +

i−1∑
j=3

ψ
(i)
j (λ1, . . . , λj−2)σ

i−1−j (4.24)

in the iteration scheme (4.13); in (4.24) the last term is absent for i ≤ 3, and the polyno-

mials ψ
(i)
j (λ1, . . . , λj−2) (3 ≤ j ≤ i − 1) are to be determined. After some straightforward

rearrangements one finds the following iteration scheme for these polynomials:

ψ
(i)
j (λ1, . . . , λj−2) = ψ

(i−1)
j (λ1, . . . , λj−2) + (i− j)

j−2∑
m=1

λmλj−1−m

−
j−4∑
m=1

λmψ
(i−1−m)
j−1−m (λ1, . . . , λj−3−m), (4.25)

valid for 3 ≤ j ≤ i− 1; at the right hand side of (4.25) the first term is absent if j = i− 1,
and the last term if j ≤ 4. It follows from these calculations that (4.22) holds, with

φj(λ) =

{
(k − j)λj if j = 1, 2, j ≤ k − 1,

(k − j)λj − ψ
(k)
j (λ1, . . . , λj−2) if 3 ≤ j ≤ k − 1.

(4.26)

The triangular structure of these expressions immediately imply that the mapping Φ given
by (4.23) is indeed a diffeomorphism of Rk−1 onto itself. �

It follows from the foregoing theorem and from the well known properties (see e.g. [7]) of
the cuspoids that Bk forms a stratified set which is equal to the closure of its codimension
one strata. More precisely, we call a parameter value λ ∈ Bk a simple bifurcation point if
two conditions are satisfied: (1) there exists a unique σ = σλ ∈ R such that hk(σ, λ) =
Dσhk(σ, λ) = 0; and (2) D2

σhk(σλ, λ) 6= 0. We call such simple bifurcation point elliptic if

εD2
σhk(σλ, λ) < 0, and hyperbolic if εD2

σhk(σλ, λ) > 0. The set B(1)
k of simple bifurcation

points forms a codimension one submanifold of Rk−1 (in general not connected), and Bk =

cl(B(1)
k ). For example, for k = 2 we have B2 = B(1)

2 = {0}, and the only bifurcation value
λ = 0 is elliptic if ε = −1, and hyperbolic if ε = 1. In general the complement of Bk consists
of a finite number of open connected components, each of which has the origin in its closure;
we call parameter values belonging to this complement regular. We now describe the solution
set of (4.18) for such regular parameter values and the transitions which take place when
one moves from one connected component of Rk−1 \Bk to another by crossing Bk at a simple
bifurcation point.

Fix a regular parameter value λ ∈ Rk−1 \ Bk; then the connected components of S(k)
λ have

one of the following forms:

(i) A compact interval [α, β], with hk(α, λ) = hk(β, λ) = 0 and εhk(σ, λ) > 0 for σ ∈]α, β[;
we call the corresponding branch of periodic solutions of (1.1) a local loop. At both
sides the loop ends at the equilibrium x = 0, forming there the two invariant manifolds
given by the Liapunov Center Theorem and corresponding to the eigenvalue pairs
±(1 + α)i and ±(1 + β)i of Aλ.
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(ii) A semi-infinite closed interval of the form ] − ∞, α] or [α,∞[, with hk(α, λ) = 0
and εhk(σ, λ) > 0 for either σ < α or σ > α, depending on the case; we call the
corresponding branch of periodic solutions of (1.1) a global branch (although the term
“global” has to be taken with a grain of salt — see the observation after (4.18)). Such
global branch ends at one side at the equilibrium x = 0, forming there the invariant
manifold given by the Liapunov Center Theorem and corresponding to the eigenvalue
pair ±(1 + α)i of Aλ. If k is odd then there is exactly one global branch for each
regular value of λ; if k is even and ε = −1 then there are no global branches.

(iii) The whole real line R, which means that εhk(σ, λ) > 0 for all σ ∈ R; this is only
possible if k is even and ε = 1. The corresponding branch of periodic solutions does
not pass through the equilibrium; we therefore call this a detached branch. Observe
that in this case the linear operator Aλ has no purely imaginary eigenvalues, and so
the Liapunov Center Theorem cannot be applied to get invariant manifolds filled with
periodic orbits.

(iv) If k is even and ε = −1 then there is the possibility that S(k)
λ = ∅ (i.e. εhk(σ, λ) < 0

for all σ). In this case there are no periodic orbits besides the equilibrium x = 0.

The number and type of the connected components of S(k)
λ do not change as λ moves within

the same connected component of Rk−1\Bk. As λ crosses from one such connected component

to another via a simple bifurcation point λ0 ∈ B(1)
k and in the appropriate direction then one

of the following changes will occur:

(a) If λ0 is elliptic then one of the compact components of S(k)
λ shrinks to the point σλ0

for λ = λ0 and then disappears; this corresponds to one of the local loops shrinking
down to the equilibrium and then disappearing.

(b) If λ0 is hyperbolic then we have the following possibilities:

(b1) Two compact components of S(k)
λ merge into one single compact component;

this corresponds to two local loops merging into a single one.

(b2) A compact component of S(k)
λ merges with a semi-infinite component; this

corresponds to a local loop merging with a global branch, resulting in a single
global branch.

(b3) S(k)
λ consists of just two semi-infinite intervals which merge for λ = λ0 to result

in S(k)
λ = R (this is only possible if k is even and ε = 1); this means that two

global branches of periodic solutions become tangent to each other and then
merge into a detached branch.

For example, if k = 2 then scenario (a) occurs if ε = −1, and scenario (b3) if ε = 1.
In general, passing from one connected component of Rk−1 \ Bk to another via a higher
codimension bifurcation point several of the foregoing transitions will happen at the same
time.

We conclude this paper with a brief description of the bifurcation picture in the case k = 3.
From h3(σ, λ) = σ3 − 2λ1σ − λ2 one easily calculates that the bifurcation set for k = 3 is
given by the cusp B3 = {(λ1, λ2) | 32λ3

1 = 27λ2
2 }. All bifurcation points except the origin

λ = 0 are simple; a bifurcation point (λ1, λ2) ∈ B3 is elliptic if ελ2 > 0, and hyperbolic if
ελ2 < 0. The complement R2 \ B3 has two connected components: for parameter values in
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C1 := {(λ1, λ2) | 32λ3
1 < 27λ2

2 } there is just one global branch of periodic solutions, while
for parameter values in the other component C2 := {(λ1, λ2) | 32λ3

1 > 27λ2
2 } we have one

global branch and one local loop of periodic solutions. Crossing the bifurcation set from C2

to C1 (i.e. in the direction of decreasing λ1) at an elliptic point the local loop shrinks and
disappears; crossing in the same direction at a hyperbolic point the local loop merges with
the global branch. Passing from C2 to C1 via the origin λ = 0 we see at the same time the
shrinking of the local loop and its merging with the global branch.
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