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Numerical calculations by Sebius Doedel
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The system studied by Sebius forms a special
case of

Discrete Non-Lit
Schroedlnger Equatlons

DNLSE






s take th

Explicitly the equation




The system is equivariant with respect to the
St action defined by
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There is a Correspondmg flrst mtegral
(Noether’s theorem): .

N

F=Frdp) = Y vl

k=1



. a .
This S -equivariance allows us to consider

that s, spemal periodic
solutions of the form

wk (t) i Zw ’(p k, .
(WéR WECC k€ Zy).

The problem then reduces to a set of algebraic
equations, namely:

(w + 6 + 2|92 Py

+ (Y1 + Y1 — 2¢) = 0,



with reversor

I';e.,', j,

O reversli

The system is als



A special case

When

Ok

={§

TN 75 .

y '/. RO S B Y

¥ / - ,-,',. F Lok 2rad
2 AR Pl

-; 7

S S

O S S P A A :

{74 ' o, =31 '.'.'_‘.',’:",."‘,/ﬁ ‘ ;. ' o
S e (L e il T

[ 2 s T o o s T ’

A L T S iSSP S i AN
e = o )i LA eSS AN AT

L AN DS A S SNy id ) 7 A N S A
e R S G Tl a s 0

s ‘/,I:,,f). eyt ool .

e A J = & )
v » 8 TN | k 7 e
f Y B P >4 3 r
( B /AN ’ :

" . St y »

: SENEE A Wl
. '. | 1 ..I. - >

then there is an addltlonal ZQ equwarlance
generated by
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Consider a (smooth) 2N-dimensional system
= X(z),
with flow z(t, z).
Suppose there is a linear operator R such that
RP—p d;
and
X(Rx)—=~Bx(1)
T hen
T(t, Rr) = Rz(—t,x).



A solution Z(t,z) is symmetric (or more precisely:
R-symmetric) if the corresponding orbit

v={#(t,z) |t € R}
is R-invariant: A . '
R(v) = .

A solution is symmetric iIf and only if its orbit has
at least one intersection point with Fix(R).

A non-equilibrium solution iIs symmetric and peri-
odic if and only if its orbit has exactly two intersec-
tion points with Fix(R); the shortest time between
these two intersections is one half of the minimal
period.






Now suppose that zg € Fix(R)
generates such symmetric pe-

riodic solution, with minimal
period Tp > 0, and let z; = w
#(To/2,20) € FiXtR), = =«

T hen

z1 € (Tp/2, Fix(R)) N Fix(R).
Both x(1Tp/2, Fix(R)) and Fix(R) are N-dimensional.

If the intersection of these two N-dimensional sub-
manifolds is transversal at 1 then the intersection
point persists when we replace 1y by any nearby T,
l.e. we obtain a one-parameter family of symmetric
periodic orbits parametrized by the period.



Even if 2(15/2,Fix(R)) and fix(R) do not intersect
transversally at x7 it may still be that the (N 4 1)-
dimensional manifold {z(t,z) | t € R, x € Fix(R)}
and the N-dimensional manifold Fix(R) intersect
transversally at z;. .

Also in this case we have a one-dimensional family
of symmetric periodic orbits; only, this time the
family can not be parametrized by the period.



Conclusion

Typically in reversible systems symmetric
periodic orbits belong to one-parameter
families of such symmetric periodic orbits.



s it possible to
family of symmetric perlodlc orbits a change of
stability without any further branching?



Characteristic multipliers
of symmetric periodic orbits

The monodromy matrix Mg of a symmetric pe-
riodic orbit #(t,zg) (with zg € Fix(R) and z; =
T(1Th/2,zg) € Fix(R)) satisfies the relation

RMoR = My .

As a consequence, if u € C is a multiplier, then so

e Dand g



Characteristic multipliers
of symmetric periodic orbits

uw =1 is always a multiplier, with
even algebraic multlpI|C|ty o )

if uw = —1 Is a multiplier, then its
algebraic multiplicity Is even

all other multipliers come in pairs
{p, n} with |u| = 1, or in quadru-

pleS {,LL,FL,,LL_]',,[_L_]'} with |,LL‘ # 1



Characteristic multipliers
of symmetric periodic orbits

T he same rules apply to the eigenvalues
of DP(xg), where P is any Poincaré-map
at zg, except that g = 1 IS always an
eigenvalue, with odd multiplicity mqg > 1.

A change of stability is only possible (and
will typically happen) if mq > 3.



Now suppose that — as in our DNLSE example —
the system has also a first integral H : RN — R.

Let ¥ = X(xg9)*- and consider the corresponding
Poincaré-map P:zg+2 — zg+ 2. Let Hy be the
restriction of Hto s £t > The

Hs(P(z)) = Hs (2} i 7+ > .

Differentiating this relation at zg = P(zg) gives us

DHs(xg) - DP(z0) = DHyx (x0),

In other words:

Im(DP(xo) — Idy) C VHy (20)™



From the other side, if we assume that the sym-
metric periodic solution z(t,zg) belongs to a one-
parameter family of such solutions, then P must
have a one-dimensional curve of fixed points pass-
ing through zg: .

P(3(s)) = #(s), with #(s) € zo+% and Z(0) = zo.

Differentiating at s = 0 shows that
DP(zp) -2 (0) = 7 (0),
that Is:

7'(0) € Ker(DP(xo) . Idz>.



So, our assumptions imply

7'(0) € Ker(DP(xO) v Idz)
and

Im (DP(:EO) . Idz)c YL (o)t

We assume that both #/(0) and VHs(zp) are non-
zero.

If moreover 1 is a simple eigenvalue of DP(xg)
then we have also that

S — Ker(DP(a:O) . Idz) D Im(DP(a:O) - Idz).



Therefore, if 1 is a simple eigenvalue of DP(xp):
Im (DP($0) - Idz) = VHs (z0)"
and | ‘
DH (x0) - #(0) # 0.
In particular, if v
DH (zg) - #'(0) = 0,

— for example when H reaches a local maximum
or minimum along the given branch of symmetric
periodic orbits — then we have necessarily

ma237

and typically there will be a change of stability.
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We start with a symmetric periodic orbit in a re-
versible system.

We assume that the linearization of a Poincare-
map at this symmetric periodic orbit has 1 as an
eigenvalue with algebraic multiplicity m, = 3.

We then explore the different possibilities...



Let the symmetric periodic orbit be given by

o = {Z(¢,z0) | t € R},
with zg € Fix(R), and with minimal period 1 > O.
To define a Poincaré map we consider at xg a sec-
tion |
0 2

transversal to vg, and such that the subspace > of
R2N is R-invariant. For example, we can assume
that R is orthogonal and toke ¥ — X(zg)

Since X (xg) € Fix(—R) this implies that

dim (Fix(R) N <) = N.



We define the Poincaré-map P : > — > by

P(y) = #(r(y), 20+ ) — o

where 7 : > — R is the (unigue) function which is
smooth near the origin and such that

M) codky e L o) — T
T hen
Ro.P-R=P '
Also

PLOy =0 and dimfkeri . - | )) — 3
where Ag is the semisimple part of A ;= DP(0).



We look then for fixed points of P near 10,



ne simple answer:
nat is what Sebius did...

The more complicated answer:

For each k > 2 there are a finite number
of conditions on the eigenvalues of DP(xq)
which ensure that all g-periodic points of
P in a sufficiently small neighborhood of
ro and With g ~ k are fixed points of .




So we are interested in the small fixed points y € >
of the Poincaré-map P.

To describe these fixed points we can use a Lyapu-
nov-Schmidt reduction; this reduction involves the
3-dimensional and R-invariant subspace

U:=Kker(As — Is).

Observe that

dimlU i Ex(H)) — 2
and

dim(UnNFix(—-R)) =1



The Lyapunov-Schmidt reduction tells us that there
IS @ smooth 1-1-relation between the small fixed
points of P and the small fixed points of a smooth
mapping Py : U — U which has the following prop-
erties: .

(1) Py(0) = 0 and DPy(0) = DP(0)]
(2) Roo Foo g — Po_l, where iy — R‘U.

Moreover, the small fixed points of Py coincide with
the solutions of the equation

Bluy = Py P (v O



Observe that
B(Rou)= -HeBlu) yuecl.

Moreover, B(0) = 0 and DB(0) = 2Ag, where Ag
is a nilpotent linear operator on U defined by

DPy(0) = 70
and satisfying

RgAg = —AgRp.



Using normal forms we can approximate Py(uw) and

B(w) up to any order; thes

e normal forms give also

iInformation on the stability of the fixed points.

Taking into account that

dim(Fix(Rpg) = 2 and

dim(Fix(—Rg) = 1,

and restricting to cases which have

on the linear level, we fino

the following cases.



Using normal form e can approximate Py(u) and
al forms give also

{xed points.

The singularity which we want
to study should appear along one-
parameter families of symmetric
periodic orbits

_RO) = A,

and restricting to cases which have
on the linear level, we find the following cases.

The codimension condition implies that Ag = O.



) = O




Two crossing branches of symmetric periodic or-
DIts; there is an exchange of stability at the cross-

INng.







A single branch of symmetric periodic orbits. T here
IS @ change of stability, but no bifurcation.






A single branch of symmetric periodic orbits. T here
IS @ change of stability, but no bifurcation.



When we turn to the case where our reversible
system has an additional S x Zo-symmetry and
when we suppose that *y. |s a symmetric relative
equilibrium which is also Setrlc under the Zo-
symmetry, then the Pouncare—f_jfép has a special
structure and some further pcssrbllntles arise.

First we have to clarify the set-u'p for this particular
case.



We consider again a smooth system

i = X(x), (with e R?Y)

and assume that there exist orthogonal linear op-
erators Jp, S and R such that the following holds:

(1) J2 = —Id, S?2 =1d and R? = Id:

(2) JoS=85Jdg, Jogli — 7 0 gl a8 S
(3)dim(Fix(R)) = N and dimtFix(is)) — N ;
(4) X(e’o92) = /09X () for all B € 5! = 7/277Z;
(5) X(5z) = 8X(0),

(6) X(Rx) = —RX(x).

Observe: there are lots of reversors:

I RS R ng iob



Now let zg € R%Y be such that
Rxg = Szg = x0

and

X(zg) = Q0Jozro, (820 % 0).

Then zg generates a relative equilibrium

#t,x0) = 0y

with an orbit vg which is invariant unc

er

reversors R and RS, and with minimal

pDer

0Doth the

od 1 —

27 /20 (by replacing Jg by —Jg when necessary we

may w.l.o.g. assume that 29 > 0).



To study bifurcations near yg we construct a Poinca-
rée-map, as follows.

We set ¥ = (Jpzg)+ and observe that (by the or-
thogonality of Jg, R and §) the transversal section
rog + X is invariant under R, S and RS.

VWe have

dim (Fix(R) N z) — dim (Fix(RS) 8 z) =

All points in a sufficiently small tubular neighbor-
hood of g have a unique representation of the
form

€JOH(CCO + y), with (0,y) & 9 w5



ghbor-
of the

form

eJOe(a:O -+ y), with (0,y) & 5 %5



We have
R2Y = R(Joxg) & X,

and therefore, by contmunty and for y € 2 suffi-
ciently small, '

R & IRi(Jo(l’o-l- y)) o
Therefore, for y € > sufficiently small, we have

Xxot+y)=S0yllglig = 1)+ Y (y),
with €2 : > SR anad ¥ 2 @ 3 gl that:

(1)SU0) = Qg and v (0] |}

(2) Q(Ry) = Q(Sy) = Q2(y);
(3) Y(Ry) = —RY(y) and Y (Sy) = SY (y).



AS a consequence, It iIs not hard to prove that

i(t, 20 + y) = e DB @6 4 (2, 1)),

where g(t,y) is the flow of the reversible, Zy-equi-
variant and (2N — 1)-dimensional system

=Yyl



AS a consequence, It is not hard to prove that




It follows that the Poincaré-map P : > — 2 iIs given
0)Y

P(y) = g(2n2(y) *,v).

Also P(0) = 0 and

DP(0) = exp (27r§261A) . with A= DY (0).



We assume (as before):

DP(0) has the elgenvalue 1

with algebraic multlpllc:lty = 3.

We look then for small fixed points of P.



Due o the felation
P(y) = §(27(y) ", )
a fixed pointye = of Pis
e cither an equilibrium of the system
=1

e Or a point belonging to a periodic orbit of the
same system with minimal period of the form

27T
o (e~ 1)




So we have to study (small) equilibria and periodic
orbits (with minimal period near 2x(m$p) 1) of
the reversible and Zs-equivariant system

under the further condition that
DP(0) = exp (27TS251A) (A = DY (0))

has the eigenvalue 1 with algebraic multiplicity 3.

Adgain we use a Lyapunov-Schmidt reduction.



We set
U = ker ((DP(O) - 1d)3) .

T his subspace of X is 3-dimensional and invariant
under A, R and §.

Setting
Ap — A‘U, Ry — R‘U and Sp =S| ,
we have the following properties:
3
(1) (exp(2725 " Ag) — Idy)” = 0, RZ = Idy and
SCQ) — IdU;
(2) AgBg = —HgAg, Apgbog = SgAdg and Hpdg —
SoRo:;
(31 dimlEix( ) =dini(Fix{ Roon) ) = 2.



Appropriate versions of Lyapunov-Schmidt tell us
that it iIs sufficient to study equilibria and periodic
orbits of a reduced system

P

where the reduced vectorfield Z : U — U has the
following properties: |

(1) Z(0) =0 and DZ{0) — &
(2) Z commutes with the semi-simple part of Ag;
(3) Z(Rpu) = —HoZlu) a2l ogl) — S/ (u).

With these ingredients we can start a detailed study,
exploring the different possibilities for Ag, Rp and
50-




Assuming a number of generic conditions on higher
order coefficients in the Taylor expansion of Z(z),
Imposing again our "codimension 1"’ condition, and
possibly interchanging R and RS the problem boils
down to 5 cases; 3 OF these caitespond to the 3
cases which we found in the general case, but there
are also 2 new situations which depend on the ad-
ditional symmetries.







& 2-0 Rk,

Two crossing branches of relative equilibria sym-
metric w.r.t. both R and RS; exchange of stability
at the crossing.






& 2-0, Rt RS

A single branch of relative equilibria, symmetric
w.r.t. both R and RS. A change of stability, and
no bifurcation.




€ 12=0, RoSy# Ro

OOO

Aa=1l0 0

00 o
1 0 1 i1 4 0
ngp—=10 1 1) o — 1 0 —1 0O
O 0 —1 g b 1



€ 12=0, RoSy# Ro

A pitchfork bifurcation of relative equilibria, with
the usual exchange of stability and symmetry-brea-
kKing. Central branch is symmetric w.r.t. both R
and RS, the bifurcating branch is only symmetric
w.r.t. R.




€Y 4220, RySy= Ry




€Y 4220, RySy= Ry

A single branch of relative equilibria, symmetric
w.r.t. both R and RS. A change of stability, and
no bifurcation.




@ dimKer(Apg) = 1, Rg = RpSo

Apo=10 B g
0O —mS2g O

O
0
—1

Q) = &

1
RO:ROSOz(O
0



@ dimKer(Apg) = 1, Rg # RpSo

Apo=10 B g
0O —mS2g O




@ dimKer(Ap) = 1

A branch of relative equilibria,

both R and RS, and a

oifurcating

2-tori filled with perioc

IC orbits. &

these depend on the case. No cha

symmetric w.r.t.
(half-)branch of
ne symmetry of

nge of stability.
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