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A folk theorem
from bifurcation theory...



Change of Stability
implies

Bifurcation



Numerical calculations by Sebius Doedel





?How can this be explained?



The system studied by Sebius forms a special 
case of

Discrete Non-Linear 
Schroedinger Equations

DNLSE 



The system is Hamiltonian:

with

ψ̇k = i
∂H

∂ψ̄k
, k ∈ ZN = Z/NZ,

H = H(ψk, ψ̄k)

=
N∑

k=1

(
|ψk − ψk+1|2 − |ψk|4 − δk|ψk|2

)
.

H = H(ψk, ψ̄k)

=
N∑

k=1

(
|ψk − ψk+1|2 − |ψk|4 − δk|ψk|2

)
.

H = H(ψk, ψ̄k)

=
N∑

k=1

(
|ψk − ψk+1|2

− |ψk|4 − δk|ψk|2
)

.



Explicitly the equations take the form:

with

and

ψ̇k = −i
[
(ψk−1 + ψk+1 − 2ψk)

+ 2|ψk|2ψk + δkψk

]
,

ψk ∈ C

k ∈ ZN.



The system is equivariant with respect to the
    -action defined byS1

(θ, ψk) !→ eiθψk, ∀θ ∈ S1, ∀k.

F = F (ψk, ψ̄k) =
N∑

k=1
|ψk|2.

There is a corresponding first integral
(Noether’s theorem):



This      -equivariance allows us to consider
relative equilibria, that is, special periodic 
solutions of the form

S1

ψk(t) = eiωtψ̂k,

(ω ∈ R, ψ̂k ∈ C, k ∈ ZN).

The problem then reduces to a set of algebraic
equations, namely:

(ω + δk + 2|ψ̂k|2)ψ̂k

+ (ψ̂k−1 + ψ̂k+1 − 2ψ̂k) = 0,

(k ∈ ZN).



The system is also reversible, with reversor
given by

R(ψ1, ψ2, . . . , ψN) = (ψ̄1, ψ̄2, . . . , ψ̄N).



When

then there is an additional       -equivariance,
generated by

A special case

Z2

δk =

{
0 for k != m (mod N),
δ for k = m (mod N),

S(ψ1, . . . , ψm−1, ψm, ψm+1, . . . , ψN)

= (ψ2m−1, . . . , ψm+1, ψm, ψm−1, . . . , ψ2m).



When

then there is an additional       -equivariance,
generated by

Z2

δk =

{
0 for k != m (mod N),
δ for k = m (mod N),

S(ψ1, . . . , ψm−1, ψm, ψm+1, . . . , ψN)

= (ψ2m−1, . . . , ψm+1, ψm, ψm−1, . . . , ψ2m).

A special case



Symmetric
Periodic Orbits

in
Reversible Systems



Consider a (smooth) 2N-dimensional system

ẋ = X(x),

with flow x̃(t, x).

Suppose there is a linear operator R such that

R2 = Id, dim(Fix(R)) = N,

and

X(Rx) = −RX(x).

Then

x̃(t, Rx) = Rx̃(−t, x).



A solution x̃(t, x) is symmetric (or more precisely:
R-symmetric) if the corresponding orbit

γ = {x̃(t, x) | t ∈ R}

is R-invariant:

R(γ) = γ.

A solution is symmetric if and only if its orbit has
at least one intersection point with Fix(R).

A non-equilibrium solution is symmetric and peri-

odic if and only if its orbit has exactly two intersec-
tion points with Fix(R); the shortest time between
these two intersections is one half of the minimal
period.



Fix(R)



Then

x1 ∈ x̃(T0/2,Fix(R)) ∩ Fix(R).

Both x̃(T0/2,Fix(R)) and Fix(R) are N-dimensional.

If the intersection of these two N-dimensional sub-
manifolds is transversal at x1 then the intersection
point persists when we replace T0 by any nearby T ,
i.e. we obtain a one-parameter family of symmetric
periodic orbits parametrized by the period.

Now suppose that x0 ∈ Fix(R)
generates such symmetric pe-
riodic solution, with minimal
period T0 > 0, and let x1 =
x̃(T0/2, x0) ∈ Fix(R).

x0 x1



Even if x̃(T0/2,Fix(R)) and fix(R) do not intersect
transversally at x1 it may still be that the (N +1)-
dimensional manifold {x̃(t, x) | t ∈ R, x ∈ Fix(R)}
and the N-dimensional manifold Fix(R) intersect
transversally at x1.

Also in this case we have a one-dimensional family
of symmetric periodic orbits; only, this time the
family can not be parametrized by the period.



Conclusion

Typically in reversible systems symmetric 
periodic orbits belong to one-parameter 
families of such symmetric periodic orbits.



?
Is it possible to have along such one-parameter 
family of symmetric periodic orbits a change of 
stability without any further branching?



The monodromy matrix M0 of a symmetric pe-
riodic orbit x̃(t, x0) (with x0 ∈ Fix(R) and x1 =
x̃(T0/2, x0) ∈ Fix(R)) satisfies the relation

RM0R = M−1
0 .

As a consequence, if µ ∈ C is a multiplier, then so
are µ−1, µ̄ and µ̄−1.

Characteristic multipliers
of symmetric periodic orbits



  

  

Characteristic multipliers
of symmetric periodic orbits

if µ = −1 is a multiplier, then its
algebraic multiplicity is even

all other multipliers come in pairs
{µ, µ̄} with |µ| = 1, or in quadru-
ples {µ, µ̄, µ−1, µ̄−1} with |µ| "= 1

µ = 1 is always a multiplier, with
even algebraic multiplicity ≥ 2



The same rules apply to the eigenvalues
of DP (x0), where P is any Poincaré-map
at x0, except that µ = 1 is always an
eigenvalue, with odd multiplicity ma ≥ 1.

A change of stability is only possible (and
will typically happen) if ma ≥ 3.

Characteristic multipliers
of symmetric periodic orbits



Now suppose that — as in our DNLSE example —
the system has also a first integral H : R2N → R.

Let Σ = X(x0)⊥ and consider the corresponding
Poincaré-map P : x0 +Σ→ x0 +Σ. Let HΣ be the
restriction of H to x0 + Σ. Then

HΣ(P (x)) = HΣ(x), ∀x ∈ x0 + Σ.

Differentiating this relation at x0 = P (x0) gives us

DHΣ(x0) · DP (x0) = DHΣ(x0),

in other words:

Im
(
DP (x0)− IdΣ

)
⊂ ∇HΣ(x0)

⊥.



Differentiating at s = 0 shows that

DP (x0) · x̂′(0) = x̂′(0),

that is:

x̂′(0) ∈ Ker
(
DP (x0)− IdΣ

)
.

From the other side, if we assume that the sym-
metric periodic solution x̃(t, x0) belongs to a one-
parameter family of such solutions, then P must
have a one-dimensional curve of fixed points pass-
ing through x0:

P (x̂(s)) = x̂(s), with x̂(s) ∈ x0+Σ and x̂(0) = x0.



If moreover 1 is a simple eigenvalue of DP (x0)
then we have also that

Σ = Ker
(
DP (x0)− IdΣ

)
⊕ Im

(
DP (x0)− IdΣ

)
.

So, our assumptions imply

x̂′(0) ∈ Ker
(
DP (x0)− IdΣ

)

and

Im
(
DP (x0)− IdΣ

)
⊂ ∇HΣ(x0)

⊥.

We assume that both x̂′(0) and ∇HΣ(x0) are non-
zero.



Therefore, if 1 is a simple eigenvalue of DP (x0):

Im
(
DP (x0)− IdΣ

)
= ∇HΣ(x0)

⊥

and

DH(x0) · x̂′(0) %= 0.

In particular, if

DH(x0) · x̂′(0) = 0,

— for example when H reaches a local maximum
or minimum along the given branch of symmetric
periodic orbits — then we have necessarily

ma ≥ 3,

and typically there will be a change of stability.



A change of stability
without branching!



H

Of course we could also
look at it this way...



However, in our example, there 
is no reason why at each of 
the indicated transition points 
the Hamiltonian should reach 
a maximum or a minimum!



Therefore, in order to obtain some 
more convincing results, we have to 
make a more detailed analysis of 
the Poincaré-map.



We then explore the different possibilities...

We start with a symmetric periodic orbit in a re-
versible system.

We assume that the linearization of a Poincaré-
map at this symmetric periodic orbit has 1 as an
eigenvalue with algebraic multiplicity ma = 3.



Let the symmetric periodic orbit be given by

γ0 = {x̃(t, x0) | t ∈ R},

with x0 ∈ Fix(R), and with minimal period T0 > 0.

To define a Poincaré map we consider at x0 a sec-
tion

x0 + Σ

transversal to γ0, and such that the subspace Σ of
R2N is R-invariant. For example, we can assume
that R is orthogonal, and take Σ = X(x0)⊥.

Since X(x0) ∈ Fix(−R) this implies that

dim(Fix(R) ∩Σ) = N.



Then

R ◦P ◦R = P−1.

Also

P (0) = 0 and dim(ker(As − IΣ)) = 3,

where As is the semisimple part of A := DP (0).

We define the Poincaré-map P : Σ→ Σ by

P (y) := x̃(τ(y), x0 + y)− x0,

where τ : Σ → R is the (unique) function which is
smooth near the origin and such that

x̃(τ(y), x0 + y) ∈ x0 + Σ and τ(0) = T0.



We look then for fixed points of P near x0.

¿ Qué?



The simple answer:
That is what Sebius did...

The more complicated answer:
For each k ≥ 2 there are a finite number
of conditions on the eigenvalues of DP (x0)
which ensure that all q-periodic points of
P in a sufficiently small neighborhood of
x0 and with q ≤ k are fixed points of P .



Observe that

dim(U ∩ Fix(R)) = 2

and

dim(U ∩ Fix(−R)) = 1

To describe these fixed points we can use a Lyapu-
nov-Schmidt reduction; this reduction involves the
3-dimensional and R-invariant subspace

U := ker(As − IΣ).

So we are interested in the small fixed points y ∈ Σ
of the Poincaré-map P .



The Lyapunov-Schmidt reduction tells us that there
is a smooth 1-1-relation between the small fixed
points of P and the small fixed points of a smooth
mapping P0 : U → U which has the following prop-
erties:

(1) P0(0) = 0 and DP0(0) = DP (0)
U
;

(2) R0 ◦P0 ◦R0 = P−1
0 , where R0 = R

U
.

Moreover, the small fixed points of P0 coincide with
the solutions of the equation

B(u) := P0(u)− P−1
0 (u) = 0.



Observe that

B(R0u) = −R0B(u), ∀u ∈ U.

Moreover, B(0) = 0 and DB(0) = 2A0, where A0

is a nilpotent linear operator on U defined by

DP0(0) = eA0

and satisfying

R0A0 = −A0R0.



Using normal forms we can approximate P0(u) and
B(u) up to any order; these normal forms give also
information on the stability of the fixed points.

Taking into account that

dim(Fix(R0) = 2 and dim(Fix(−R0) = 1,

and restricting to cases which have codimension 1
on the linear level, we find the following cases.



Using normal forms we can approximate P0(u) and
B(u) up to any order; these normal forms give also
information on the stability of the fixed points.

Taking into account that

dim(Fix(R0) = 2 and dim(Fix(−R0) = 1,

and restricting to cases which have codimension 1
on the linear level, we find the following cases.

The singularity which we want
to study should appear along one-
parameter families of symmetric 

periodic orbits

The codimension condition implies that A0 != 0.



A0 =





0 0 0
0 0 1
0 0 0





❶ A2
0 = 0

R0 =





1 0 0
0 1 0
0 0 −1







❶ A2
0 = 0

Two crossing branches of symmetric periodic or-
bits; there is an exchange of stability at the cross-
ing.



A0 =





0 0 0
0 0 1
0 0 0





A2
0 = 0❷

R0 =





1 0 0
0 −1 0
0 0 1







!!!
A2

0 = 0❷

A single branch of symmetric periodic orbits. There
is a change of stability, but no bifurcation.



A0 =





0 1 0
0 0 1
0 0 0





R0 =





1 0 0
0 −1 0
0 0 1





A2
0 != 0❸



!!!
A2

0 != 0

A single branch of symmetric periodic orbits. There
is a change of stability, but no bifurcation.

❸



When we turn to the case where our reversible
system has an additional S1 × Z2-symmetry and
when we suppose that γ0 is a symmetric relative
equilibrium which is also symmetric under the Z2-
symmetry, then the Poincaré-map has a special
structure and some further possibilities arise.

First we have to clarify the set-up for this particular
case.



Observe: there are lots of reversors:

R, RS, ReJ0θ, RSeJ0θ.

(1) J2
0 = −Id, S2 = Id and R2 = Id;

(2) J0S = SJ0, J0R = −RJ0 and SR = RS;

(3) dim(Fix(R)) = N and dim(Fix(RS)) = N ;

(4) X(eJ0θx) = eJ0θX(x) for all θ ∈ S1 = Z/2πZ;

(5) X(Sx) = SX(x);

(6) X(Rx) = −RX(x).

We consider again a smooth system

ẋ = X(x), (with x ∈ R2N),

and assume that there exist orthogonal linear op-
erators J0, S and R such that the following holds:



Now let x0 ∈ R2N be such that

Rx0 = Sx0 = x0

and

X(x0) = Ω0J0x0, (Ω0 "= 0).

Then x0 generates a relative equilibrium

x̃(t, x0) = eΩ0J0tx0,

with an orbit γ0 which is invariant under both the
reversors R and RS, and with minimal period T0 =
2π/Ω0 (by replacing J0 by −J0 when necessary we
may w.l.o.g. assume that Ω0 > 0).



We set Σ = (J0x0)⊥ and observe that (by the or-
thogonality of J0, R and S) the transversal section
x0 + Σ is invariant under R, S and RS.

We have

dim
(
Fix(R) ∩Σ

)
= dim

(
Fix(RS) ∩Σ

)
= N.

All points in a sufficiently small tubular neighbor-
hood of γ0 have a unique representation of the
form

eJ0θ
(
x0 + y

)
, with (θ, y) ∈ S1 ×Σ.

To study bifurcations near γ0 we construct a Poinca-
ré-map, as follows.



All points in a sufficiently small tubular neighbor-
hood of γ0 have a unique representation of the
form

eJ0θ
(
x0 + y

)
, with (θ, y) ∈ S1 ×Σ.

γ0

x0 + Σ

eJ0θ(x0 + y)

x0

x0 + y



We have

R2N = R(J0x0)⊕Σ,

and therefore, by continuity and for y ∈ Σ suffi-
ciently small,

R2N = R
(
J0(x0 + y)

)
⊕Σ.

Therefore, for y ∈ Σ sufficiently small, we have

X(x0 + y) = Ω(y)J0(x0 + y) + Y (y),

with Ω : Σ→ R and Y : Σ→ Σ such that:

(1) Ω(0) = Ω0 and Y (0) = 0;

(2) Ω(Ry) = Ω(Sy) = Ω(y);

(3) Y (Ry) = −RY (y) and Y (Sy) = SY (y).



As a consequence, it is not hard to prove that

x̃(t, x0 + y) = eJ0Ω(y)t
(
x0 + ỹ(t, y)

)
,

where ỹ(t, y) is the flow of the reversible, Z2-equi-
variant and (2N − 1)-dimensional system

ẏ = Y (y).



As a consequence, it is not hard to prove that

x̃(t, x0 + y) = eJ0Ω(y)t
(
x0 + ỹ(t, y)

)
,

where ỹ(t, y) is the flow of the reversible, Z2-equi-
variant and (2N − 1)-dimensional system

ẏ = Y (y).

x0 + Σ

x̃(t, x0 + y) = eJ0Ω(y)t
(
x0 + ỹ(t, y)

)

x0

x0 + y

x0 + ỹ(t, y)



It follows that the Poincaré-map P : Σ→ Σ is given
by

P (y) = ỹ(2πΩ(y)−1, y).

Also P (0) = 0 and

DP (0) = exp
(
2πΩ−1

0 A
)

, with A = DY (0).



We assume (as before):

DP (0) has the eigenvalue 1

with algebraic multiplicity ma = 3.

We look then for small fixed points of P .



Due to the relation

P (y) = ỹ(2πΩ(y)−1, y)

a fixed point y ∈ Σ of P is

• either an equilibrium of the system

ẏ = Y (y);

• or a point belonging to a periodic orbit of the
same system with minimal period of the form

2π

mΩ(y)
, (m ≥ 1).



So we have to study (small) equilibria and periodic
orbits (with minimal period near 2π(mΩ0)−1) of
the reversible and Z2-equivariant system

ẏ = Y (y),

under the further condition that

DP (0) = exp
(
2πΩ−1

0 A
)

(A = DY (0))

has the eigenvalue 1 with algebraic multiplicity 3.

Again we use a Lyapunov-Schmidt reduction.



Setting

A0 = A
U

, R0 = R
U

and S0 = S
U

,

we have the following properties:

We set

U = ker
(
(DP (0)− Id)3

)
.

This subspace of Σ is 3-dimensional and invariant
under A, R and S.

(1)
(
exp(2πΩ−1

0 A0) − IdU

)3
= 0, R2

0 = IdU and

S2
0 = IdU ;

(2) A0R0 = −R0A0, A0S0 = S0A0 and R0S0 =
S0R0;

(3) dim(Fix(R0)) = dim(Fix(R0S0)) = 2.



Appropriate versions of Lyapunov-Schmidt tell us
that it is sufficient to study equilibria and periodic
orbits of a reduced system

u̇ = Z(u),

where the reduced vectorfield Z : U → U has the
following properties:

(1) Z(0) = 0 and DZ(0) = A0;

(2) Z commutes with the semi-simple part of A0;

(3) Z(R0u) = −R0Z(u) and Z(S0u) = S0Z(u).

With these ingredients we can start a detailed study,
exploring the different possibilities for A0, R0 and
S0.



Assuming a number of generic conditions on higher
order coefficients in the Taylor expansion of Z(z),
imposing again our “codimension 1” condition, and
possibly interchanging R and RS the problem boils
down to 5 cases; 3 of these correspond to the 3
cases which we found in the general case, but there
are also 2 new situations which depend on the ad-
ditional symmetries.



A0 =





0 0 0
0 0 1
0 0 0





❶

R0 = R0S0 =





1 0 0
0 1 0
0 0 −1





A2
0 = 0, R0S0 = R0



❶ A2
0 = 0, R0S0 = R0

Two crossing branches of relative equilibria sym-
metric w.r.t. both R and RS; exchange of stability
at the crossing.



A0 =





0 0 0
0 0 1
0 0 0





❷ A2
0 = 0, R0S0 = R0

R0 = R0S0 =





1 0 0
0 −1 0
0 0 1







❷ A2
0 = 0, R0S0 = R0

A single branch of relative equilibria, symmetric
w.r.t. both R and RS. A change of stability, and
no bifurcation.



A0 =





0 0 0
0 0 1
0 0 0





R0 =





1 0 0
0 1 0
0 0 −1



 R0S0 =





1 0 0
0 −1 0
0 0 1





A2
0 = 0, R0S0 != R0❸



A pitchfork bifurcation of relative equilibria, with
the usual exchange of stability and symmetry-brea-
king. Central branch is symmetric w.r.t. both R

and RS, the bifurcating branch is only symmetric
w.r.t. R.

A2
0 = 0, R0S0 != R0❸



R0 = R0S0 =





1 0 0
0 −1 0
0 0 1





A0 =





0 1 0
0 0 1
0 0 0





A2
0 != 0, R0S0 = R0❹



A single branch of relative equilibria, symmetric
w.r.t. both R and RS. A change of stability, and
no bifurcation.

A2
0 != 0, R0S0 = R0❹



dimKer(A0) = 1, R0 = R0S0

A0 =





0 0 0
0 0 mΩ0

0 −mΩ0 0





R0 = R0S0 =





1 0 0
0 1 0
0 0 −1





❺



dimKer(A0) = 1, R0 != R0S0

A0 =





0 0 0
0 0 mΩ0

0 −mΩ0 0





R0 =





1 0 0
0 1 0
0 0 −1



 R0S0 =





1 0 0
0 −1 0
0 0 1





❺



dimKer(A0) = 1

A branch of relative equilibria, symmetric w.r.t.
both R and RS, and a bifurcating (half-)branch of
2-tori filled with periodic orbits; the symmetry of
these depend on the case. No change of stability.

❺





Branching without...
...Change of Stability!



Muchas Gracias!


