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Reversible Systems



ẋ = F(x) x ∈ Rn

F : Rn → Rn smooth

Reversibility:

→ a (closed) subgroup Γ ⊂ GL(n;R)

→ a nontrivial character χ : Γ → {1,−1}

(R) gF(x) = χ(g)F(gx), ∀g ∈ Γ, ∀x ∈ Rn

⇒ gx̃(t; x) = x̃(χ(g)t; gx), ∀g ∈ Γ, ∀t ∈ R, ∀x ∈ Rn



Simple case

Γ = {I, R}, χ(R) = −1
with R ∈ L(Rn) a linear involution: R2 = I

(R) RF(x) = −F(Rx) ∀x ∈ Rn

⇒ Rx̃(t, x) = x̃(−t, Rx)

Further assumption:

n = 2N and dim Fix(R) = N



Example

ÿ + f(y) = 0

f(y) = y(1 − y)

�
N = 1

R(y, ẏ) = (y,−ẏ)



Symmetric solutions

= solutions with orbit γ such that R(γ) = γ

Main result: an orbit γ is symmetric if and only if

γ ∩ Fix(R) �= ∅

By setting t = 0 at one of the intersection points
x0 the solution x̃(t, x0) along such orbit satisfies

Rx̃(t, x0) = x̃(−t, x0)



Symmetric periodic solutions

Excluding symmetric equilibria, a solution with orbit
γ is symmetric and periodic if and only if

γ ∩ Fix(R) = {x0, x1}

for two distinct points x0 �= x1.

The minimal period equals 2 times the time needed
to travel from x0 to x1.



Fix(R)

x0
x1 = x̃(T, x0)

period = 2T

time = T



Symmetric periodic orbits are given by the inter-
section of

Fix(R) (N-dimensional)

and

{x̃(t; x) | t ∈ R, x ∈ Fix(R)} ((N+1)-dimensional).

Consequence: symmetric periodic orbits appear typ-
ically in one-parameter families.





How do these one-parameter families of

symmetric periodic orbits start, finish and

(or) branch from each other?



Reversible Liapunov Center Theorem



Period Blow-Up



Many more possibilities arise in higher dimensions
(N > 1).

Adding parameters also allows to show certain
transitions.

�
ÿ + f(y) = z

z̈ + g(z) = 0

Are there, close to the symmetric periodic solutions
for z = 0, any periodic solutions with z �= 0 but
small?

g(0) = 0, g�(0) = 1



Reversible Hopf bifurcation

ẋ = F(x, λ) x ∈ R2N, λ ∈ R, RF(x, λ) = −F(Rx, λ)

F(0, λ) = 0
Aλ := DxF(0, λ)

If µ ∈ C is an eigenvalue of Aλ, then so is −µ.

λ < 0 λ = 0 λ > 0



λ > 0

λ = 0

λ < 0



Branching of subharmonics
�

ÿ + f(y) = z

z̈ + g(z) = 0 g(0) = 0, g�(0) = 1

Assume that the unperturbed system (z = 0) has
a one-parameter family of symmetric periodic orbits
— we call this the primary family.

When another family (with z �= 0) of periodic orbits
branches off this primary family, then the limiting
period along the bifurcating branch must be an in-
teger multiple of the period at the branching point
along the primary branch:
⇒ resonance condition



α
α0T (α)

ρ

T̃ (ρ)

lim
ρ→0

T̃ (ρ) = qT (α0) (q ∈ N)



Resonance condition

In the general case a necessary condition for a sym-
metric periodic orbit to be at a branching point is
a pair of multipliers which are roots of unity, i.e. a
pair of multipliers of the form

exp(±iθ0) with θ0 =
2πp
q

, gcd(p, q) = 1

Approach:

Poincaré map



Poincaré map

with Σ chosen to be R-invariant; also dim(Σ) = 2N−1.

P : Σ → Σ

⇒ P (0) = 0

⇒ R P R = P −1

⇒ 1 is always an eigenvalue of DP (0), with odd
(algebraic) multiplicity ≥ 1

Assumption: 1 is a simple eigenvalue of DP (0)



Problem:
find small q-periodic orbits of the Poincaré map P

Using Lyapunov-Schmidt method this reduces to a

3-dimensional and Dq-equivariant

bifurcation problem (when q ≥ 3)

(Res) DP (0) has a pair of simple eigenvalues of the
form

exp(±iθ0) with θ0 =
2πp
q

gcd(p, q) = 1, q ≥ 3



Period-doubling (q = 2)

Resonance condition: −1 is an eigenvalue of DP (0)
with geometric multiplicity one and algebraic multi-
plicity two

The problem of finding period-doubled solutions re-
duces to a 3-dimensional bifurcation problem with
a D2-symmetry (D2 = Z2 + reversibility)

⇒ Z2-symmetry: if x satisfies P 2(x) = x the so
does P (x)

⇒ 3-dimensional: generalized kernel with coordi-
nates (α, ξ, η)



Period-doubling (q = 2)

The bifurcation equations reduce to

ξ ϕ(α, ξ2) = 0 and η = 0

with ϕ(0,0) = 0.

⇒ primary branch {(α,0,0) | α ∈ R}

⇒ period-doubled branch {(α∗(ξ2), ξ,0) | ξ ∈ R}
Requirement: transversality condition

∂ϕ
∂α

(0,0) �= 0



Period-doubling (q = 2)

(α∗(ξ2), ξ) and (α∗(ξ2),−ξ)
correspond to the same
period-doubled orbit

α < 0 α = 0 α > 0

Transversality condition:



Dq-equivariance

⇒ if x ∈ Σ generates a q-periodic orbit of P , then
so do P (x), P 2(x),. . . ,P q(x) = x

⇒ this gives a Zq-equivariance, which combines with
the reversibility to give a Dq-equivariance

3-dimensional

⇒ critical eigenvalues of DP (0): 1 and exp(±iθ0)

⇒ coordinates: (α, z) = (α, ρ exp(iθ)) ∈ R × C

q ≥ 3



Bifurcation equations

B(u) =
�
h0(u)im(zq), ih1(u)z + ih2(u)z̄q−1

�
= 0

u = (α, z) ∈ R × C

h1(0) = 0

hi : R × Z → R (i = 0,1,2)

hi(u) = hi(S0u) = hi(Ru) (i = 0,1,2)

S0u = S0(α, z) = (α, eiθ0z)

Ru = R(α, z) = (α, z̄)



B(u) =
�
h0(u)im(zq), ih1(u)z + ih2(u)z̄q−1

�
= 0

⇒ B(α,0) = 0 (∀α ∈ R) ⇒ primary branch

⇒ if either h0(0) �= 0 or h2(0) �= 0 then B(u) = 0
implies (with z = ρ exp(iθ))

im(zq) = ρq sin(qθ) = 0



q = 5



Along these ”rays” the bifurcation equations reduce
to a single scalar equation in the two variables α
and ρ = |z|:

for θ = 0 mod (2π/q), and

for θ = π/q mod (2π/q)

b1(α, ρ) := h1(α, ρ) + ρq−2h2(α, ρ) = 0 (�)

b2(α, ρ) := h1(α, ρe
iπ
q ) − ρq−2h2(α, ρe

iπ
q ) = 0 (�)



⇒ we assume the following transversality condition

∂h1
∂α

(0,0) �= 0

⇒ h1(0,0) = 0



Generic subharmonic bifurcation

(�) ⇒ α = α∗+(ρ)

(�) ⇒ α = α∗−(ρ)

elliptic →

← hyperbolic



Generic subharmonic bifurcation

α∗
+
(ρ1) = α∗−(ρ2) = d (with d > 0 small) ⇒

|ρ1 − ρ2| = O

�
d

q−2
2

�
(Arnol’d tongue)



Conditions for such generic subharmonic bifurcation:

⇒ a pair of simple multipliers of the form

exp(±iθ0) with θ0 =
2πp
q

, gcd(p, q) = 1

⇒ transversality condition

? What if any of these conditions is not satisfied?



Degenerate subharmonic branching

1 the critical pair of multipliers exp(±iΘ0)
is not simple

2 the transversality condition is not
satisfied



1 Nonsimple critical multipliers



1 Nonsimple critical multipliers



1 Nonsimple critical multipliers



⇒ this requires N ≥ 3

⇒ this is a codimension one phenomenon:

the splitting happens exactly at the
q-th root of unity

⇒ we introduce an external parameter λ ∈ R



λ < 0



λ > 0



Under appropriate conditions this persists for λ = 0.

Both for λ < 0 and for λ > 0 we have just one
generic subharmonic bifurcation along the primary
branch.



2 No transversality



2 No transversality



2 No transversality



2 No transversality



In our example

�
ÿ + f(y) = z
z̈ + g(z) = 0

this happens when along the primary family the pe-
riod reaches a (local) maximum or minimum precisely
at an orbit where the resonance consition is satis-
fied.

Again, this is a codimension one situation, so also
here we add an external parameter λ ∈ R.



λ < 0

⇒ two generic subharmonic bifurcations



λ > 0

⇒ no generic subharmonic bifurcations



Bifurcation equations

and

b1(α, ρ, λ) = Aλ + Bρ2 + Cα2 + h.o.t. = 0

b2(α, ρ, λ) = Aλ + Bρ2 + Cα2 + h.o.t. = 0

The two equations differ only in the higher order
terms. We assume ABC �= 0.
⇒ two possible bifurcation scenario’s.



The
Banana
Scenario

BC > 0



ACλ < 0



λ closer to 0



ACλ ≥ 0



The
Banana Split
Scenario

BC < 0



ACλ < 0



λ = 0



ACλ > 0



A numerical example
�

ÿ + (y + y2 + γy3) = z
z̈ + ω2z = 0

⇒ two parameters γ and ω
⇒ we take q = 5

 0

 2

 4

 6

 8

 10

 0  2  4  6  8  10

For γ = 0.3 the period
map for the unperturbed
y-equation (z = 0) shows
a maximum



ω = 0.4003
q = 5



However...

Along both arcs of the banana we found a transition
from elliptic to hyperbolic or vice-versa.



Theoretically we should get

What’s
wrong?



The answer

Our example is not fully generic due to the presence

of a first integral — the amplitude of the forcing

equation.

When along a branch of symmetric periodic orbits in
a reversible system with a first integral the integral
reaches a maximum or a minimum, then typically one
will see at the same time a change of stability (from
elliptic to hyperbolic or vice versa)



Change of stability



Non-generic banana scenario

ACλ < 0



Non-generic banana scenario

λ closer to 0



Non-generic banana scenario

ACλ ≥ 0



Non-generic banana split scenario

ACλ < 0



Non-generic banana split scenario

λ = 0



Non-generic banana split scenario

ACλ > 0



Transition
from non-generic to generic banana
�

ÿ + (y + y2 + γy3) = z
z̈ + (ω2 + �y)z = 0

Increasing � we see the following transition scenario
from the non-generic situation (� = 0) to the generic
situation — all other parameters are kept fixed.



Transition
from non-generic to generic banana

� = 0



Transition
from non-generic to generic banana

� = 0.02



Transition
from non-generic to generic banana

� = 0.025



Transition
from non-generic to generic banana

� = 0.028



Wild banana’s!



Thank You


