

Recent Trends in Dynamical Systems In honour of Jürgen Scheurle München, January 11-13, 2012

Branches of

 periodic orbits in reversible systemsAndré Vanderbauwhede
Ghent University and Universidad de Sevilla

Dedicated to Jürgen Scheurle on the occasion of his 60th birthday

Based on joint work with

Jürgen Knobloch
Bernold Fiedler
Maria-Cristina Ciocci
Francisco Javier Muñoz Almaraz
Jorge Galán
Emilio Freire
Sebius Doedel

Reversible Systems

$$
\dot{x}=F(x)
$$

$$
x \in \mathbb{R}^{n}
$$

$$
F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \text { smooth }
$$

Reversibility:

\rightarrow a (closed) subgroup $\Gamma \subset G L(n ; \mathbb{R})$
\rightarrow a nontrivial character $\chi: \Gamma \rightarrow\{1,-1\}$
$(R) \quad g F(x)=\chi(g) F(g x), \quad \forall g \in \Gamma, \forall x \in \mathbb{R}^{n}$
$\Rightarrow g \widetilde{x}(t ; x)=\widetilde{x}(\chi(g) t ; g x), \quad \forall g \in \Gamma, \forall t \in \mathbb{R}, \forall x \in \mathbb{R}^{n}$

Simple case

$$
\Gamma=\{I, R\}, \quad \chi(R)=-1
$$

$$
\text { with } R \in \mathcal{L}\left(\mathbb{R}^{n}\right) \text { a linear involution: } R^{2}=1
$$

(R) $\quad R F(x)=-F(R x) \quad \forall x \in \mathbb{R}^{n}$

$$
\Rightarrow \quad R \widetilde{x}(t, x)=\widetilde{x}(-t, R x)
$$

Further assumption:

$$
n=2 N \text { and } \operatorname{dim} \operatorname{Fix}(R)=N
$$

Example

$$
\ddot{y}+f(y)=0
$$

$$
\left\{\begin{array}{l}
N=1 \\
R(y, \dot{y})=(y,-\dot{y})
\end{array}\right.
$$

$f(y)=y(1-y)$

Symmetric solutions

$=$ solutions with orbit Y such that $R(Y)=Y$

Main result: an orbit y is symmetric if and only if

$$
Y \cap \operatorname{Fix}(R) \neq \emptyset
$$

By setting $t=0$ at one of the intersection points x_{0} the solution $\widetilde{x}\left(t, x_{0}\right)$ along such orbit satisfies

$$
R \widetilde{x}\left(t, x_{0}\right)=\widetilde{x}\left(-t, x_{0}\right)
$$

Symmetric periodic solutions

Excluding symmetric equilibria, a solution with orbit r is symmetric and if and only if

$$
r \cap \operatorname{Fix}(R)=\left\{x_{0}, x_{1}\right\}
$$

for two distinct points $x_{0} \neq x_{1}$.
The minimal period equals 2 times the time needed to travel from x_{0} to x_{1}.
time $=T$

Fix(R)

$$
\text { period }=2 T
$$

Symmetric periodic orbits are given by the intersection of
$\operatorname{Fix}(R) \quad(N$-dimensional)
and
$\{\widetilde{x}(t ; x) \mid t \in \mathbb{R}, x \in \operatorname{Fix}(\mathbb{R})\} \quad((N+1)$-dimensional).

Consequence: symmetric periodic orbits appear typically in one-parameter families.

How do these one-parameter families of symmetric periodic orbits start, finish and (or) branch from each other?

Reversible Liapunov Center Theorem

Period Blow-Up

Many more possibilities arise in higher dimensions ($N>1$).

$$
\left\{\begin{array}{l}
\ddot{y}+f(y)=z \\
\ddot{z}+g(z)=0
\end{array} \quad g(0)=0, g^{\prime}(0)=1\right.
$$

Are there, close to the symmetric periodic solutions for $z=0$, any periodic solutions with $z \neq 0$ but small?

Adding parameters also allows to show certain transitions.

Reversible Hopf bifurcation

$$
\begin{aligned}
\dot{x}= & F(x, \lambda) \quad x \in \mathbb{R}^{2 N}, \lambda \in \mathbb{R}, R F(x, \lambda)=-F(R x, \lambda) \\
& F(0, \lambda)=0 \\
& A_{\lambda}:=D_{x} F(0, \lambda)
\end{aligned}
$$

If $\mu \in \mathbb{C}$ is an eigenvalue of A_{λ}, then so is $-\mu$.

$\lambda=0$

$\lambda>0$

$$
\lambda<0
$$

$$
\lambda=0
$$

$$
\lambda>0
$$

Branching of subharmonics

$$
\left\{\begin{array}{l}
\ddot{y}+f(y)=z \\
\ddot{z}+g(z)=0
\end{array} \quad g(0)=0, g^{\prime}(0)=1\right.
$$

Assume that the unperturbed system $(z=0)$ has a one-parameter family of symmetric periodic orbits - we call this the primary family.

When another family (with $z \neq 0$) of periodic orbits branches off this primary family, then the limiting period along the bifurcating branch must be an integer multiple of the period at the branching point along the primary branch:
\Rightarrow resonance condition

$$
\lim _{\rho \rightarrow 0} \tilde{T}(p)=q^{T}\left(a_{0}\right) \quad(q \in \mathbb{N})
$$

Resonance condition

In the general case a necessary condition for a symmetric periodic orbit to be at a branching point is a pair of multipliers which are roots of unity, i.e. a pair of multipliers of the form

$$
\exp \left(\pm i \theta_{0}\right) \quad \text { with } \theta_{0}=\frac{2 \pi p}{q}, \operatorname{gcd}(p, q)=1
$$

Approach:
Poincaré map

Poincaré map

$$
P: \Sigma \rightarrow \Sigma
$$

with Σ chosen to be R-invariant; also $\operatorname{dim}(\Sigma)=2 N-1$.
$\Rightarrow P(0)=0$
$\Rightarrow R P R=P^{-1}$
$\Rightarrow 1$ is always an eigenvalue of $D P(O)$, with odd (algebraic) multiplicity ≥ 1

Assumption: 1 is a simple eigenvalue of $D P(0)$
(Res) $D P(0)$ has a pair of simple eigenvalues of the form

$$
\exp \left(\pm i \theta_{0}\right) \quad \text { with } \theta_{0}=\frac{2 \pi p}{q} \operatorname{gcd}(p, q)=1, q \geq 3
$$

Problem:
find small q-periodic orbits of the Poincaré map p

Using Lyapunov-Schmidt method this reduces to a 3-dimensional and \mathbb{D}_{q}-equivariant
bifurcation problem (when $q \geq 3$)

Period-doubling $(q=2)$

Resonance condition: -1 is an eigenvalue of $D P(0)$ with geometric multiplicity one and algebraic multiplicity two

The problem of finding period-doubled solutions reduces to a 3-dimensional bifurcation problem with a \mathbb{D}_{2}-symmetry $\left(\mathbb{D}_{2}=\mathbb{Z}_{2}+\right.$ reversibility $)$
$\Rightarrow \mathbb{Z}_{2}$-symmetry: if x satisfies $p^{2}(x)=x$ the so does $P(x)$
\Rightarrow 3-dimensional: generalized kernel with coordinates (a, ξ, η)

Period-doubling $(q=2)$

The bifurcation equations reduce to

$$
\xi \varphi\left(a, \xi^{2}\right)=0 \text { and } \eta=0
$$

with $\varphi(0, O)=0$.
\Rightarrow primary branch $\{(a, 0,0) \mid a \in \mathbb{R}\}$
\Rightarrow period-doubled branch $\left\{\left(a^{*}\left(\xi^{2}\right), \xi, 0\right) \mid \xi \in \mathbb{R}\right\}$
Requirement: transversality condition

$$
\frac{\partial \varphi}{\partial a}(0,0) \neq 0
$$

Period-doubling $(q=2)$

$$
\begin{aligned}
& \left(a^{*}\left(\xi^{2}\right), \xi^{2}\right) \text { and }\left(a^{*}\left(\xi^{2}\right),-\xi_{)}\right. \\
& \text {correspond to the same } \\
& \text { period-doubled orbit }
\end{aligned}
$$

Transversality condition:

\mathbb{D}_{q}-equivariance

\Rightarrow if $x \in \sum$ generates a q-periodic orbit of P, then so do $P(x), p^{2}(x), \ldots, p q(x)=x$
\Rightarrow this gives a \mathbb{Z}_{q}-equivariance, which combines with the reversibility to give a \mathbb{D}_{q}-equivariance

3-dimensional

\Rightarrow critical eigenvalues of $\operatorname{DP}(0): 1$ and $\exp \left(\pm i \theta_{0}\right)$.
\Rightarrow coordinates: $(a, z)=(a, p \exp (i \theta)) \in \mathbb{R} \times \mathbb{C}$

Bifurcation equations

$$
\begin{aligned}
& B(u)=\left(h_{0}(u) \operatorname{im}\left(z^{q}\right), i h_{1}(u) z+i h_{2}(u) z^{q-1}\right)=0 \\
& u=(a, z) \in \mathbb{R} \times \mathbb{C} \\
& h_{i}: \mathbb{R} \times \mathbb{Z} \rightarrow \mathbb{R} \quad(i=0,1,2) \\
& h_{1}(0)=0 \\
& h_{i}(u)=h_{i}\left(S_{0} u\right)=h_{i}(R u) \quad(i=0,1,2) \\
& S_{0} u=S_{0}(a, z)=\left(a, e^{i \theta_{0}} z\right) \\
& R u=R(a, z)=(a, \bar{z})
\end{aligned}
$$

$$
B(u)=\left(h_{0}(u) i m\left(z^{q}\right), i h_{1}(u) z+i h_{2}(u) z^{q-1}\right)=0
$$

$$
\Rightarrow B(a, 0)=0 \quad(\forall a \in \mathbb{R}) \quad \Rightarrow \text { primary branch }
$$

\Rightarrow if either $h_{0}(0) \neq 0$ or $h_{2}(0) \neq 0$ then $B(u)=0$ implies (with $z=p \exp (i \theta)$)

$$
\operatorname{im}\left(z^{q}\right)=p^{q} \sin (q \theta)=0
$$

Along these "rays" the bifurcation equations reduce to a single scalar equation in the two variables a and $\rho=|z|$:

$$
b_{1}(a, p):=h_{1}(a, p)+p^{q-2} h_{2}(a, p)=0
$$

for $\theta=0 \bmod (2 \pi / q)$, and
$b_{2}(a, p):=h_{1}\left(a, p e^{\frac{i \pi}{q}}\right)-p^{q-2} h_{2}\left(a, p e^{\frac{i \pi}{q}}\right)=0$ (*)

$$
\text { for } \theta=\pi / q \bmod (2 \pi / q)
$$

$$
\Rightarrow h_{1}(0,0)=0
$$

\Rightarrow we assume the following transversality condition

Generic subharmonic bifurcation

$$
\begin{aligned}
& (\star) \Rightarrow a=a_{+}^{*}(p) \\
& (\star) \Rightarrow
\end{aligned}
$$

Generic subharmonic bifurcation

$$
\left.a_{+}^{*}\left(\rho_{1}\right)=a_{-}^{*}\left(\rho_{2}\right)=d \quad \text { (with } d>0 \text { small }\right) \quad \Rightarrow
$$

$$
\left|p_{1}-p_{2}\right|=0\left(d^{\frac{q-2}{2}}\right) \quad \text { (Arnol'd tongue) }
$$

Conditions for such generic subharmonic bifurcation:
\Rightarrow a pair of simple multipliers of the form

$$
\exp \left(\pm i \theta_{0}\right) \quad \text { with } \theta_{0}=\frac{2 \pi p}{q}, \operatorname{gcd}(p, q)=1
$$

\Rightarrow transversality condition

?
What if any of these conditions is not satisfied?

Degenerate subharmonic branching

1the critical pair of multipliers $\exp \left(\pm i \Theta_{0}\right)$ is not simple

2
the transversality condition is not satisfied

Nonsimple critical multipliers

Nonsimple critical multipliers

Nonsimple critical multipliers
\Rightarrow this requires $N \geq 3$
\Rightarrow this is a codimension one phenomenon: the splitting happens exactly at the q-th root of unity
\Rightarrow we introduce an external parameter $\lambda \in \mathbb{R}$
$\lambda<0$

$\lambda>0$

Both for $\lambda<0$ and for $\lambda>0$ we have just one generic subharmonic bifurcation along the primary branch.

Under appropriate conditions this persists for $\lambda=0$.

No transversality

No transversality

No transversality

No transversality

In our example

$$
\left\{\begin{array}{l}
\ddot{y}+f(y)=z \\
\ddot{z}+g(z)=0
\end{array}\right.
$$

this happens when along the primary family the period reaches a (local) maximum or minimum precisely at an orbit where the resonance consition is satisfied.

Again, this is a codimension one situation, so also here we add an external parameter $\lambda \in \mathbb{R}$.

$\lambda<0$

\Rightarrow two generic subharmonic bifurcations
$\lambda>0$

\Rightarrow no generic subharmonic bifurcations

Bifurcation equations

$$
b_{1}(a, p, \lambda)=A \lambda+B p^{2}+C a^{2}+\text { h.o.t. }=0
$$

and

$$
b_{2}(a, p, \lambda)=A \lambda+B p^{2}+C a^{2}+\text { h.o.t. }=0
$$

The two equations differ only in the higher order terms. We assume $A B C \neq 0$.
\Rightarrow two possible bifurcation scenario's.

$$
B C>0
$$

The
Banana
Scenario
$A C \lambda<0$

λ closer to 0

$A C \lambda \geq 0$

A numerical example

$\left\{\begin{array}{l}\ddot{y}+\left(y+y^{2}+r y^{3}\right)=z \\ \ddot{z}+\omega^{2} z=0\end{array}\right.$
\Rightarrow two parameters Y and ω
\Rightarrow we take $q=5$

For $y=0.3$ the period map for the unperturbed y-equation ($z=0$) shows a maximum

$$
\begin{aligned}
& \omega=0.4003 \\
& q=5
\end{aligned}
$$

However...

Along both arcs of the banana we found a transition from elliptic to or vice-versa.

Theoretically we should get

The answer

Our example is not fully generic due to the presence of a first integral - the amplitude of the forcing equation.

When along a branch of symmetric periodic orbits in a reversible system with a first integral the integral reaches a maximum or a minimum, then typically one will see at the same time a change of stability (from elliptic to hyperbolic or vice versa)

Change of stability

Non-generic banana scenario
$A C \lambda<0$

Non-generic banana scenario
λ closer to 0

Non-generic banana scenario
$A C \lambda \geq 0$

Non-generic banana split scenario
\%
$A C \lambda<0$

Non-generic banana split scenario
$\%$

$$
\lambda=0
$$

Transition

from non-generic to generic banana

$$
\left\{\begin{array}{l}
\ddot{y}+\left(y+y^{2}+r y^{3}\right)=z \\
\ddot{z}+\left(\omega^{2}+\epsilon y\right) z=0
\end{array}\right.
$$

Increasing 6 we see the following transition scenario from the non-generic situation $(\varepsilon=0)$ to the generic situation - all other parameters are kept fixed:

Transition

from non-generic to generic banana
$\varepsilon=0$

Transition

from non-generic to generic banana
$\varepsilon=0.02$

Transition

from non-generic to generic banana
$\epsilon=0.025$

Transition

from non-generic to generic banana
$\varepsilon=0.028$

Wild banana's!

Thank You

