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Chapter 1

Combinatorics of finite generalized
quadrangles

1.1 Axioms and definitions

A (finite) generalized quadrangle (GQ) is an incidence structure S = (P,B, I) in which P and B are
disjoint (nonempty) sets of objects called points and lines (respectively), and for which I is a symmetric
point-line incidence relation satisfying the following axioms:

(i) Each point is incident with 1 + t lines (t > 1) and two distinct points are incident with at most
one line.

(ii) Each line is incident with 1 + s points (s > 1) and two distinct lines are incident with at most
one point.

(iii) If x is a point and L is a line not incident with x, then there is a unique pair (y, M) ∈ P ×B for
which x I M I y I L.

Generalized quadrangles were introduced by J. Tits [217].
The integers s and t are the parameters of the GQ and S is said to have order (s, t); if s = t, S is

said to have order s. There is a point-line duality for GQ (of order (s, t)) for which in any definition or
theorem the words “point” and “line” are interchanged and the parameters s and t are interchanged.
Normally, we assume without further notice that the dual of a given theorem or definition has also
been given.

A grid (resp., dual grid) is an incidence structure S = (P,B, I) with P = {xij ‖ i = 0, . . . , s1 and j =
0, . . . , s2}, s1 > 0 and s2 > 0 (resp., B = {Lij ‖ i = 0, . . . , t1 and j = 0, . . . , t2}, t1 > 0 and
t2 > 0), B = {L0, . . . , Ls1 ,M0, . . . ,Ms2} (resp., P = {x0, . . . , xt1 , y0, . . . , yt2}), xij I Lk iff i = k (resp.,
Lij I xk iff i = k), and xij I Mk iff j = k (resp., Lij I yk iff j = k). A grid (resp., dual grid) with
parameters s1, s2 (resp., t1, t2) is a GQ iff s1 = s2 (resp., t1 = t2). Evidently the grids (resp., dual
grids) with s1 = s2 (resp., t1 = t2) are the GQ with t = 1 (resp., s = 1).

Let S be a GQ, a grid, or a dual grid. Given two (not necessarily distinct) points x, y of S, we
write x ∼ y and say that x and y are collinear provided that there is some line L for which x I L I y.
And x 6∼ y means that x and y are not collinear. Dually, for L,M ∈ B, we write L ∼ M or L 6∼ M
according as L areM are concurrent or nonconcurrent, respectively. If x ∼ y (resp., L ∼ M) we may
also say that x (resp., L) is orthogonal or perpendicular to y (resp., M). The line (resp., point) which
is incident with distinct collinear points x, y (resp., distinct concurrent lines L,M) is denoted by xy
(resp., LM or L ∩M).

1



2 Finite generalized quadrangles

For x ∈ P put x⊥ = {y ∈ P ‖ y ∼ x}, and note that x ∈ x⊥. The trace of a pair (x, y) of distinct
points is defined to be the set x⊥∩y⊥ and is denoted tr(x, y) or {x, y}⊥. We have |{x, y}⊥| = s+1 or t+1
according as x ∼ y or x 6∼ y. More generally, if A ⊂ P, A “perp” is defined by A⊥ = ∩{x⊥ ‖ x ∈ A}.
For x 6∼ y, the span of the pair (x, y) is sp(x, y) = {x, y}⊥⊥ = {u ∈ P ‖ u ∈ z⊥∀z ∈ x⊥ ∩ y⊥}. If
x 6∼ y, then {x, y}⊥⊥ is also called the hyperbolic line defined by x and y. For x 6= y, the closure of
the pair (x, y) is cl(x, y) = {z ∈ P ‖ z⊥ ∩ {x, y}⊥⊥ 6= ∅}.

A triad (of points) is a triple of pairwise noncollinear points. Given a triad T = (x, y, z), a center
of T is just a point of T⊥. We say T is acentric, centric or unicentric according as |T⊥| is zero, positive
or equal to 1.

Isomorphisms (or collineations), anti-isomorphisms (or correlations), automorphisms, anti-automorphisms,
involutions and polarities of generalized quadrangles, grids, and dual grids are defined in the usual
way.

1.2 Restrictions on the parameters

Let S = (P,B, I) be a GQ of order (s, t), and put |P| = v, |B| = b.

1.2.1. v = (s + 1)(st + 1) and b = (t + 1)(st + 1).

Proof. Let L be a fixed line of S and count in different ways the number of ordered pairs (x,M) ∈
P ×B with x  I L, x I M , and L ∼M . There arises v− s− 1 = (s + 1)ts or v = (s + 1)(st + 1). Dually
b = (t + 1)(st + 1). 2

1.2.2. s + t divides st(s + 1)(t + 1).

Proof. If E = {{x, y} ‖ x, y ∈ P and x ∼ y}, then it is evident that (P, E) is a strongly regular
graph [17, 77] with parameters v = (s + 1)(st + 1), k (or n1) = st + s, λ (or p1

11) = s− 1, µ (or p2
11)

= t+1. The graph (P, E) is called the point graph of the GQ. Let P = {x1, . . . , xv} and let A = (aij)
be the v × v matrix over R for which aij = 0 if i = j or xi 6∼ xj , and aij = 1 if i 6= j and xi ∼ xj , i.e.
A is an adjacency matrix of the graph (P, E) (cf. [17]).

If A2 = (cij), then we have : (a) cii = (t + 1)s; (b) if i 6= j and xi 6∼ xj , then cij = t + 1; (c) if
i 6= j and xi ∼ xj , then cij = s − 1. Consequently A2 − (s − t − 2)A − (t + 1)(s − 1)I = (t + 1)J .
(Here I is the v × v identity matrix and J is the v × v matrix with each entry equal to 1.) Evidently
(t + 1)s is an eigenvalue of A, and J has eigenvalues 0, v with multiplicities v − 1, 1, respectively.
Since ((t + 1)s)2 − (s − t − 2)(t + 1)s − (t + 1)(s − 1) = (t + 1)(st + 1)(s + 1) = (t + 1)v, the
eigenvalue (t + 1)s of A corresponds to the eigenvalue v of J , and so (t + 1)s has multiplicity 1. The
other eigenvalues of A are roots of the equation x2 − (s − t − 2)x − (t + 1)(s − 1) = 0. Denote the
multiplicities of these eigenvalues θ1, θ2 by m1,m2, respectively. Then we have θ1 = −t−1, θ2 = s−1,
v = 1 + m1 + m2, and s(t + 1) −m1(t + 1) + m2(s − 1) = tr(A) = 0. Hence m1 = (st + 1)s2/(s + t)
and m2 = st(s + 1)(t + 1)/(s + t). Since m1,m2 ∈ N, the proof is complete. 2

1.2.3. (The inequality of D.G. Higman [77, 78]). If s > 1 and t > 1, then t 6 s2, and dually s 6 t2.

Proof. (P.J. Cameron [31]). Let x, y be two noncollinear points of S. Put V = {z ∈ P ‖ z 6∼
x and z 6∼ y}, so |V | = d = (s + 1)(st + 1) − 2 − 2(t + 1)s + (t + 1). Denote the elements of V by
z1, . . . , zd and let ti = |{u ∈ {x, y}⊥ ‖ u ∼ zi}|. Count in different ways the number of ordered pairs
(zi, u) ∈ V × {x, y}⊥ with u ∼ zi to obtain∑

i

ti = (t + 1)(t− 1)s. (1.1)
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Next count in different ways the number of ordered triples (zi, u, u′) ∈ V × {x, y}⊥ × {x, y}⊥ with
u 6= u′, u ∼ zi, u′ ∼ zi, to obtain ∑

i

ti(ti − 1) = (t + 1)t(t− 1). (1.2)

From 1.1 and 1.2 it follows that
∑

i t
2
i = (t + 1)(t− 1)(s + t).

With dt =
∑

i ti, 0 6
∑

i(t − ti)2 simplifies to d
∑

i t
2
i − (

∑
i ti)

2 > 0, which implies d(t + 1)(t −
1)(s + t) > (t + 1)2(t− 1)2s2, or t(s− 1)(s2 − t) > 0, completing the proof. 2

There is an immediate corollary of the proof.

1.2.4. (R.C. Bose and S.S. Shrikhande [19] ). If s > 1 and t > 1, then s2 = t iff d
∑

t2i − (
∑

ti)2 = 0
for any pair (x, y) of noncollinear points iff ti = t for all i = 1, . . . , d and for any pair (x, y) of
noncollinear points iff each triad (of points) has a constant number of centers, in which case this
constant number of centers is s + 1.

Remark: D.G. Higman first obtained the inequality t 6 s2 by a complicated matrix-theoretic method
[77, 78]. R.C. Bose and S.S. Shrikhande [19] used the above argument to show that in case t = s2

each triad has 1+ s centers, and P.J. Cameron [31] apparently first observed that the above technique
also provides the inequality. (See Paragraph 1.4 below for a simplified proof in the same spirit as that
of D.G. Higman’s original proof.)

1.2.5. If s 6= 1, t 6= 1, s 6= t2, and t 6= s2, then t 6 s2 − s and dually s 6 t2 − t.

Proof. Suppose s 6= 1 and t 6= s2. By 1.2.3 we have t = s2 − x with x > 0. By 1.2.2 (s + s2 −
x)|s(s2 − x)(s + 1)(s2 − x + 1). Hence modulo s + s2 − x we have 0 ≡ x(−s)(−s + 1) ≡ x(x− 2s). If
x < 2s, then s + s2 − x 6 x(2s− x) forces x ∈ {s, s + 1}. Consequently x = s, x = s + 1, or x > 2s,
from which it follows that t 6 s2 − s. 2

1.3 Regularity, antiregularity, semiregularity, and property (H)

Continuing with the same notation as in 1.2, if x ∼ y, x 6= y, or if x 6∼ y and |{x, y}⊥⊥| = t + 1,
we say that the pair (x, y) is regular . The point x is regular provided (x, y) is regular for all y ∈ P,
y 6= x. A point x is coregular provided each line incident with x is regular. The pair (x, y), x 6∼ y, is
antiregular provided |z⊥ ∩ {x, y}⊥| 6 2 for all z ∈ P \ {x, y}. A point x is antiregular provided (x, y)
is antiregular for all y ∈ P \ x⊥.

A point u is called semiregular provided that z ∈ cl(x, y) whenever u is the unique center of the 2
(x, y, z). And a point u has property (H) provided z ∈ cl(x, y) iff x ∈ cl(y, z), whenever (x, y, z) is a
triad consisting of points in u⊥. It follows easily that any semiregular point has property (H).

1.3.1. Let x be a regular point of the GQ S = (P,B, I) of order (s, t). Then the incidence structure
with pointset x⊥ \ {x}, with lineset the set of spans {y, z}⊥⊥, where y, z ∈ x⊥ \ {x}, y 6∼ z, and with
the natural incidence, is the dual of a net (cf. [17]) of order s and degree t + 1. If in particular
s = t > 1, there arises a dual affine plane of order s. Moreover, in this case the incidence structure πx

with pointset x⊥, with lineset the set of spans {y, z}⊥⊥, where y, z ∈ x⊥, y 6= z, and with the natural
incidence, is a projective plane of order s.

Proof. Easy exercise. 2

1.3.2. Let x be an antiregular point of the GQ S = (P,B, I) of order s, s 6= 1, and let y ∈ x⊥ \ {x}
with L being the line xy. An affine plane π(x, y) of order s may be constructed as follows. Points
of π(x, y) are just the points of x⊥ that are not on L. Lines are the pointsets {x, z}⊥⊥ \ {x}, with
x ∼ z 6∼ y, and {x, u}⊥ \ {y}, with y ∼ u 6∼ x.



4 Finite generalized quadrangles

Proof. Easy exercise. 2

Now let s2 = t > 1, so that by 1.2.4 for any triad (x, y, z) we have |{x, y, z}⊥| = s + 1. Evidently
|{x, y, z}⊥⊥| 6 s + 1. We say (x, y, z) is 3-regular provided |{x, y, z}⊥⊥| = s + 1. Finally, the point x
is called 3-regular iff each triad containing x is 3-regular.

1.3.3. Let S be a GQ of order (s, s2), s 6= 1, and suppose that any triad contained in {x, y}⊥,
x ∼ y, is 3-regular. Then the incidence structure with pointset {x, y}⊥, with lineset the set of ele-
ments {z, z′, z′′}⊥⊥, where z, z′, z′′ are distinct points in {x, y}⊥, and with the natural incidence, is an
inversive plane of order s (cf. [50]).

Proof. Immediate. 2

For the remainder of this section let x and y be fixed, noncollinear points of the GQ S = (P,B, I)
of order (s, t), and put {x, y}⊥ = {z0, . . . , zt}. For A ⊂ {0, . . . , t} let n(A) be the number of points
that are not collinear with x or y and are collinear with zi iff i ∈ A.

1.3.4. (i) n(∅) = 0 iff each triad (x, y, z) is centric.

(ii) n(A) = 0 for each A with 2 6 |A| 6 t iff (x, y) is regular.

(iii) n(A) = 0 for all A with 3 6 |A| iff (x, y) is antiregular.

(iv) n(A) = 0 if |A| = t.

Proof. (i), (ii) and (iii) are immediate. To prove (iv), suppose that x 6∼ u 6∼ y, u ∼ zi for i =
0, . . . , t− 1, and u 6∼ zt. Let Li be the line incident with zt and concurrent with uzi, i = 0, . . . , t− 1.
Then L0, . . . , Lt−1, xzt, yzt must be t+2 distinct lines incident with zt, a contradiction. Hence n(A) = 0
if |A| = t. 2

1.3.5. The following three equalities hold:∑
A n(A) = s2t− st− s + t, (1.3)∑
A |A|n(A) = t2s− s, (1.4)∑
A |A|(|A| − 1)n(A) = t3 − t. (1.5)

Proof. Note first that
∑

A n(A) is just the number of points not collinear with x or y. Then count
in different ways the number of ordered pairs (u, zi) with u ∼ zi and u not collinear with x or y, to
obtain

∑
A |A|n(A) = (t + 1)(t − 1)s, which is 1.4. Finally, count in different ways the number of

ordered triples (u, zi, zj) with u ∈ {zi, zj}⊥, zi 6= zj , and u not collinear with x or y. It follows readily
that

∑
A |A|(|A| − 1)n(A) = (t + 1)t(t− 1). 2

These three basic equations may be manipulated to obtain the following:

n(∅) = s2t− t2s− st +
t3 + t

2
− 1

2

∑
|A|>2

(|A| − 1)(|A| − 2)n(A), (1.6)

∑
|A|=1

n(A) = (t2 − 1)(s− t) +
∑
|A|>2

(|A|2 − 2|A|)n(A), (1.7)

∑
|A|=2

n(A) =
1
2
(t3 − t)− 1

2

∑
|A|>2

(|A|2 − |A|)n(A), (1.8)

(t + 1)n(∅) = (s− t)t(s− 1)(t + 1) + (t− 1)
∑
|A|=2

n(A) +

∑
2<|A|<t

(|A| − 1)(t + 1− |A|)n(A). (1.9)
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For each integer α = 0, 1, . . . , t + 1, let Nα =
∑
|A|=α n(A). Suppose there are three distinct α, β, γ,

0 6 α, β, γ 6 t + 1, for which θ 6∈ {α, β, γ} implies that Nθ = 0. Note that we allow Nα = 0 also for
example. Then equations 1.3, 1.4, 1.5 can be written in matrix form as 1 1 1

α β γ
α(α− 1) β(β − 1) γ(γ − 1)

  Nα

Nβ

Nγ


=

 s2t− st− s + t
t2s− s
t3 − t

 . (1.10)

The determinant of this linear system is ∆ = (α − β)(β − γ)(γ − α), and we may use Cramer’s rule
to solve for Nα, Nβ, Nγ . As α, β, γ were given in no particular order, it suffices to solve for just one:

Nα =
(s2t− st− s + t)βγ − (t2 − 1)s(β + γ) + (t2 − 1)(s + t)

(α− β)(α− γ)
. (1.11)

First, suppose that Nβ = Nγ = 0, i.e. there is at most one index for which Nα 6= 0. Then equations
1.3, 1.4, 1.5 become

Nα = s2t− st− s + t,
αNα = t2s− s,
α(α− 1)Nα = t3 − t.

(1.12)

Eliminating α and Nα we find that (t− 1)(s− 1)(s2 − 1) = 0, and that if s2 = t 6= 1, then α = s + 1
and Nα = s(s− 1)(s2 + 1). This result was also contained in 1.2.4.

Second, suppose that Nγ = 0. By the formula for Nγ we know the following:

(s2t− st− s + t)αβ − (t2 − 1)s(α + β) + (t2 − 1)(s + t) = 0. (1.13)

Here there are two cases of special interest: α = 0 and α = 1. If α = 0, then β = (s + t)/s, if t > 1.
If α = 1, then β = (t2 − 1)/(st− s2 + s− 1), which forces s 6 t if t 6= 1.

Finally, consider again the 0 case. If s > t > 1, then by 1.7 and 1.9 it follows that both N1 > 0
and N0 > 0. So suppose α = 0, β = 1, with s, t, γ > 1. Then Nγ = t(t2 − 1)/γ(γ − 1).

The case γ = t + 1 forces s > t by 1.9 and occurs precisely when (x, y) is regular. Here N0 =
(s− t)t(s− 1), N1 = (t2 − 1)(s− 1), and Nt+1 = t− 1.

The case γ = 2 occurs precisely when (x, y) is antiregular, in which case N0 = s2t − t2s − st +
t(t2 + 1)/2, N1 = (t2 − 1)(s− t), N2 = t(t2 − 1)/2. Since N1 > 0, we have s > t if t > 1.

There is one last specialization we consider: 1 = α < β < γ = 1 + t.
Here

N1 = (1 + t)(s− 1)(1− t + β(s− 1))/(β − 1),
Nβ = t(s− 1)(t + 1)(t− s)/(β − 1)(t + 1− β),
Nt+1 = (t2 − 1− β(st− s2 + s− 1))/(t + 1− β).

(1.14)

Since N1 > 0, β > (t− 1)/(s− 1) if s 6= 1. Since Nβ > 0, t > s.

1.3.6. (i) If 1 < s < t, then (x, y) is neither regular nor antiregular.

(ii) The pair (x, y) is regular (with s = 1 or s > t) iff each triad (x, y, z) has exactly 0, 1 or t + 1
centers. When s = t this iff each triad (x, y, z) is centric.

(iii) If s > t, then N1 = 0 iff either t = 1 or s = t and (x, y) is antiregular. Hence for s = t the pair
(x, y) is antiregular iff each triad (x, y, z) has 0 or 2 centers.
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(iv) If s = t and each point in x⊥ \ {x} is regular, then every point is regular.

Proof. In the preceding paragraph we proved that a GQ containing a regular or antiregular pair of
points satisfies s > t if s > 1, t > 1. We remark that for s = 1 any pair of points is regular, and
that for t = 1 any pair of points is regular and any noncollinear pair of points is antiregular. By the
definition of regularity, the pair (x, y) is regular iff each triad (x, y, z) has exactly 0, 1, or t+1 centers.
When s = t and (x, y) is regular, then N0 = 0 and so each triad is centric. Conversely, if s = t,
s 6= 1, and each triad (x, y, z) is centric (recall that the pair (x, y) is fixed), then by 1.9 n(A) = 0 if
2 6 |A| < t, i.e. each triad has 0, 1 or t + 1 centers and so (x, y) is regular.

If t = 1, then it is trivial that N1 = 0. If s = t and (x, y) is antiregular, then the paragraph
preceding the theorem informs us that N1 = 0. Conversely, assume N1 = 0 and s > t. Then from 1.7
we have t = 1 or s = t and n(A) = 0 for |A| > 2, i.e. t = 1 or s = t and (x, y) is antiregular.

Now let s = t and assume that each point in x⊥ \ {x} is regular. Let y 6∼ x and z1, z2 ∈ {x, y}⊥,
z1 6= z2. Since (z1, z2) is regular, clearly (x, y) is regular. Hence x is regular. To complete the proof
that each point is regular, it suffices to show that if (x, u, u′) is a triad, then (u, u′) is regular. But
since x is regular, by (ii) there is some point z ∈ {x, u, u′}⊥. By the regularity of z, for any point
z′ ∈ {u, u′}⊥ \ {z}, the pair (z, z′) is regular, forcing (u, u′) to be regular. 2

1.4 An application of the Higman-Sims technique

Let A = (aij) denote an n × n real symmetric matrix. Suppose that ∆ = {∆1, . . . ,∆r} and Γ =
{Γ1, . . . ,Γu} are partitions of {1, . . . , n}, and that Γ is a refinement of ∆. Put δi = |∆i|, γi = |Γi|,
and let

δij =
∑
µ∈∆i

∑
ν∈∆j

aµν , γij =
∑
µ∈Γi

∑
ν∈Γj

aµν .

Define the following matrices:

A∆ = (δij/δi)16i,j6r and AΓ = (γij/γi)16i,j6u.

If µ1, . . . , µr, with µ1 6 . . . 6 µr, are the characteristic roots of A∆ and λ1, . . . , λu, with λ1 6 . . . 6 λu,
are the characteristic roots of AΓ, then by a theorem of C.C. Sims (c.f. p. 144 of [76]; the details are
in S.E. Payne [134] and are considerably generalized in W. Haemers [66]) it must be that λ1 6 µ1 6
µr 6 λu. Moreover, if y = (y1, . . . , yr)T satisfies A∆y = λ1y (so λ1 = µ1), then AΓx = λ1x, where
x = (. . . , xk, . . .)T is defined by xk = yi whenever Γk ⊂ ∆i.

We give the following important application.

1.4.1. (S.E. Payne [134]). Let X = {x1, . . . , xm}, m > 2, and Y = {y1 . . . , yn}, n > 2, be disjoint
sets of pairwise noncollinear points of the GQ S = (P,B, I) of order (s, t), s > 1, and suppose that
X ⊂ Y ⊥. Then (m− 1)(n− 1) 6 s2. If equality holds, then one of the following must occur:

(i) m = n = 1+s, and each point of Z = P \ (X∪Y ) is collinear with precisely two points of X∪Y .

(ii) m 6= n. If m < n, then s|t, s < t, n = 1 + t, m = 1 + s2/t, and each point of P \X is collinear
with either 1 or 1 + t/s points of Y according as it is collinear with some point of X

Proof. Let P = {w1, . . . , wv} and let B be the (0, 1)-matrix (bij) over R defined by bij = 1 if wi 6∼ wj

and bij = 0 otherwise. So B = J−A−I, where A, J , I are as in the proof of 1.2.2, and it readily follows
from that proof that B has eigenvalues s2t, t, −s. Let {∆1,∆2,∆3} be the partition of {1, . . . , v}
determined by the partition {X, Y, Z} of P . Put δij =

∑
k∈∆i

∑
`∈∆j

bk`, δi = |∆i|, and define the
3× 3 matrix B∆ = (δij/δi)16i,j63. Clearly δ1 = m, δ2 = n, δ3 = v− (m+n), δ11 = (m− 1)m, δ12 = 0,
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δ13 = (s2t − (m − 1))m, δ21 = 0, δ22 = (n − 1)n, δ23 = (s2t − (n − 1))n, δ31 = (s2t − (m − 1))m,
δ32 = (s2t− (n− 1))n, δ33 = s2tδ3 − δ31 − δ32. Hence

B∆ =

 m− 1 0 s2t−m + 1
0 n− 1 s2t− n + 1

(s2t−m+1)m
v−m−n

(s2t−n+1)n
v−m−n s2t− (s2t−m+1)m+(s2t−n+1)n

v−m−n


If s2t, θ1, θ2 (with θ1 6 θ2) are the eigenvalues of B∆ then θ1 + θ2 = tr(B∆)− s2t = ((m + n)(st + s +
2)−2v−2mn)/(v−m−n) and θ1θ2 = (detB∆)/s2t = ((1+s+st)(2mn−m−n)+v−mnv)/(v−m−n).
By the theorem of C.C. Sims the eigenvalues of B∆ belong to the closed interval determined by the
smallest and largest eigenvalues of B. Hence −s 6 θ1 6 θ2 6 s2t. But θ1 and θ2 are the roots of
the equation f(x) = 0 with f(x) = x2 − (θ1 + θ2)x + θ1θ2, so that f(−s) > 0. Writing this out
with the values of θ1 + θ2 and θ1θ2 given above yields (s− 1)(st + 1)(s2 − 1−mn + m + n) > 0, i.e.
s2 > (m− 1)(n− 1). In case of equality, i.e. −s = θ1, then y = (y1, y2, y3)T satisfies B∆y = (−s)y, if
we put y1 = (m− 1− s2t)/(s + m− 1), y2 = (n− 1− s2t)/(s + n− 1), y3 = 1. Hence it must be that
Bx = (−s)x, where x = (. . . , xk, . . .)T is defined by xk = yi whenever k ∈ ∆i. Let us now assume,
without loss of generality, that X = {w1, . . . , wm} and Y = {wm+1, . . . , wm+n}. Then

x = ( y1, . . . , y1, y2, . . . , y2, 1, . . . , 1)T .
m times n times v −m− n times

For the first m + n rows of B this yields no new information. But consider the point wi, i > m + n.
Suppose wi is not collinear with t1 points of x, is not collinear with t2 points of Y , and hence is not
collinear with s2t− t1 − t2 points of points of Z. Then the product of the ith row of B with x, which
must equal −s, is actually t1y1 + t2y2 + s2t− t1 − t2 = −s. This becomes

t1/(s + m− 1) + t2/(s + n− 1) = 1. (1.15)

If wi lies on a line joining a point of X and a point of Y , then t1 = m− 1 and t2 = n− 1, and eq. 1.15
gives no information. On the other hand, if wi is not on such a line, then either t1 = m or t2 = n.
Suppose t1 = m, so wi is collinear with no point of X. Using eq. 1.15 we find that the number of
points of Y collinear with wi is n− t2 = 1 + (n− 1)/s. If m = n = s + 1, this says each point not on
a line joining a point of X with a point of Y must be collinear with two points of X and none of Y
or with two points of Y and none of X. If 1 < m < s + 1, so 1 + (m − 1)/s is not an integer, then
each point of P is collinear with some point of Y . This implies that each point wi of Z is either on
a line joining points of X and Y or is collinear with 1 + (n − 1)/s points of Y . Suppose n < 1 + t.
Then there is some line L incident with some point of X but not incident with any point of Y . But
then any point wi on L, wi 6∈ X, cannot be collinear with any point of Y , a contradiction. Hence it
must be that n = 1 + t, from which it follows that m = 1 + s2/t. This essentially completes the proof
of the theorem. 2

This result has several interesting corollaries.

1.4.2. Let x1, x2 be noncollinear points.

(i) By putting X = {x1, x2} and Y = {x1, x2}⊥ we obtain the inequality of D.G. Higman. If also
t = s2, part of the corollary 1.2.4 of R.C. Bose and S.S. Shrikhande is obtained.

(ii) Put X = {x1, x2}⊥⊥ and Y = {x1, x2}⊥. If |X| = p + 1 (and s > 1) it follows that pt 6 s2.
Moreover, if pt = s2 and p < t, then each point wi 6∈ cl(x1, x2) is collinear with 1+ t/s = 1+ s/p
points of {x1, x2}⊥. (This inequality and its interpretation in the case of equality were first
discovered by J.A. Thas [196]. Moreover, using an argument analogous to that of P.J. Cameron
in the proof of 1.2.3, he proves that if p < t and if each triad (wi, x1, x2), wi 6∈ cl(x1, x2), has
the same number of centers, then pt = s2).
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(iii) Let s2 = t, s > 1, and suppose that the triad (x1, x2, x3) is 3-regular. Put X = {x1, x2, x3}⊥⊥
and Y = {x1, x2, x3}⊥. Then |X| = |Y | = s + 1, so that by 1.4.1 each point of P \ (X ∪ Y )
is collinear with precisely two points of X ∪ Y . (This lemma was first discovered by J.A. Thas
[193] using the trick of Bose-Cameron.)

1.5 Regularity revisited

Let S = (P,B, I) be a GQ of order (s, t), s > 1 and t > 1.

1.5.1. (i) If (x, y) is antiregular with s = t, then s is odd [214].

(ii) If S has a regular point x and a regular pair (L0, L1) of nonconcurrent lines for which x is
incident with no line of {L0, L1}⊥, then s = t is even [180].

(iii) If x is coregular, then the number of centers of any triad (x, y, z) has the same parity as 1 + t
[144].

(iv) If each point is regular, then (t + 1)|(s2 − 1)s2.

Proof. Let (x, y) be antiregular with s = t > 1 and {x, y}⊥ = {u0, . . . , us}. For i = 0, 1, let
x I Li I ui I Mi I y, and let K ∈ {L0,M1}⊥, L1 6= K 6= M0. The points of K not collinear with x or y
are denoted v2, . . . , vs. Let ui ∼ vj for some i > 2. Then (x, y, vj) is a triad with center ui, and hence,
by 1.3.6 (iii), with exactly one other center ui′ . It follows that u2, . . . , us occur in pairs of centers of
triads of the form (x, y, vj), each pair being uniquely determined by either of its members. Hence s−1
is even, and (i) is proved.

Next suppose that x and (L0, L1) satisfy the hypotheses of (ii), so that by 1.3.6 (i) we have s = t.
If {L0, L1}⊥⊥ = {L0, . . . , Ls}, then let yi be defined by x ∼ yi I Li, i = 0, . . . , s. By 1.3.1 the elements
x, y0, y1, . . . , ys are s+2 points of the projective plane πx of order s defined by x. It is easy to see that
each line of πx through x contains exactly one point of the set {y0, . . . , ys}. Suppose that the points
yi, yj , yk, with i, j, k distinct, are collinear in the plane πx. Then the triad (yi, yj , yk) has s+1 centers.
Let uj (resp., uk) be the point incident with Lj (resp., Lk) and collinear with yi. Then uk ∈ {yi, yk}⊥,
hence uk ∼ yj , giving a triangle with vertices yj , uk, uj . Consequently {y0, . . . , ys} is an oval [50] of
the plane πx. Since the s + 1 tangents of that oval concur at x, the order s of πx is even [50].

Now assume that x is coregular. Let u1, . . . , um be all the centers of a triad (x, y, z) with {x, y}⊥ =
{u1, . . . , um, um+1, . . . , ut+1}. We may suppose m < t+1. For i > m, let Li be the line through x and
ui and Mi the line through y and ui. Let K be the line through z meeting Li and N the line through z
meeting Mi. Let M be the line through y meeting K, and L the line through x meeting N . Since the
line Li through x is regular, the pair (Li, N) must be regular, and it follows that M must meet L in
some point ui′ ∈ {x, y}⊥, m+1 6 i′ 6 t+1, i′ 6= i. In this way with each point ui ∈ {um+1, . . . , ut+1}
there corresponds a point ui′ ∈ {um+1, . . . , ut+1}, i 6= i′, and clearly this correspondence is involutory.
Hence the number of points {x, y}⊥ that are not centers of (x, y, z) is even, proving (iii).

Finally, assume that each point is regular. The number of hyperbolic lines of S equals (1 + s)(1 +
st)s2t/(t + 1)t. Hence (t + 1)|(1 + s)(1 + st)s2. Since (1 + s)(1 + st)s2 = (1 + s)(1 + s(t + 1)− s)s2,
this divisibility condition is equivalent to (t + 1)|(1 + s)(1− s)s2, proving (iv). 2

We collect here several useful consequences of 1.3.6 and 1.5.1, always with s > 1 and t > 1.

1.5.2. (i) If S has a regular point x and a regular line L with x  I L, then s = t is even [180].

(ii) If s = t is odd and if S contains two regular points, then S is not self-dual [180].

(iii) If x is coregular and t is odd, then |{x, y}⊥⊥| = 2 for all y 6∈ x⊥ [144].
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(iv) If x is coregular and s = t, then x is regular iff s is even [127, 144].

(v) If x is coregular and s = t, then x is antiregular iff s is odd [144].

Proof. If S has a regular point x and a regular line L, x  I L, then it is easy to construct a line Z,
Z 6∼ L, such that x is incident with no line of {L,Z}⊥. Then from 1.5.1 (ii) it follows that s = t is
even. Now suppose that s = t is odd, and that S contains two regular points x and y. If S admits an
anti-automorphism θ, then xθ and yθ are regular lines. Since at least one of xθ and yθ is not incident
with at least one of x and y, an application of part (i) finishes the proof of (ii).

For the remainder of the proof suppose that x is coregular, and y is an arbitrary point not collinear
with x. If z ∈ {x, y}⊥⊥ \ {x, y}, and if z′ I zu, z′ 6∈ {z, u}, for some u ∈ {x, y}⊥, then u is the unique
center of (x, y, z′). Hence t is even by 1.5.1 (iii), proving (iii). Now assume s = t. If x is regular, then
any triad (x, y, z) has 1 or 1 + s centers by 1.3.6, implying s is even. Conversely, if s is even, then by
1.5.1 (iii) any triad (x, y, z) is centric, hence by 1.3.6 x is regular, proving (iv). To prove (v), first note
that if s = t and x is antiregular then s is odd by 1.5.1 (i). Conversely, suppose that s = t is odd and
let (x, y, z) be any triad containing x. By 1.5.1 (iii) the number of centers of (x, y, z) must be even.
Hence from 1.3.6 (iii) it follows that x must be antiregular. 2

1.6 Semiregularity and property (H)

Throughout this section S = (P,B, I) will denote a GQ of order (s, t), and the notation of Section 1.3
will be used freely.

Let x, y be fixed, noncollinear points. Each point u ∈ {x, y}⊥ is the unique center of (s −
1)n({x, y}⊥) triads (x, y, z) with z ∈ cl(x, y). It follows that (x, y, z) can be a unicentered triad
only for z ∈ cl(x, y) precisely when N1 = (t + 1)(s − 1)n({x, y}⊥), which proves the first part of the
following theorem.

1.6.1. (i) Each point of S is semiregular iff N1 = (t + 1)(s − 1)Nt+1 for each pair (x, y) of non-
collinear points.

(ii) If s = 1 or t = 1 then each point is semiregular and hence satisfies property (H).

(iii) If s = t and u ∈ P is regular or antiregular, then u is semiregular.

(iv) If s > t, then u ∈ P is regular iff u is semiregular.

Proof. Parts (i) and (ii) are easy. Suppose u ∈ P is regular. If u is a center of the triad (x, y, z), then
(x, y) is regular. But |{x, y}⊥⊥| = 1 + t implies that u⊥ ⊂ cl(x, y). Hence z ∈ cl(x, y), implying that
u is semiregular. Conversely, suppose that u ∈ P is both semiregular and not regular. Then there
must be a pair (x, y), x 6∼ y, x, y ∈ u⊥, with |{x, y}⊥⊥| < 1 + t. It follows that some line L through
u is incident with no point of {x, y}⊥⊥. By the semiregularity of u, the s points of L different from u
must each be collinear with a distinct point of {x, y}⊥ different from u. Hence s 6 t, proving (iv). To
complete the proof of (iii), let s = t and suppose u is antiregular. From 1.3.6 (iii) it follows that each
triad of points in u⊥ has exactly two centers, implying that u is semiregular. 2

Remark: It is now easy to see that each point of S is semiregular if any one of the following holds:

(i) s = 1 or t = 1,

(ii) each point of S is regular,

(iii) s = t and each point is antiregular,
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(iv) t = s2 (since each triad has 1 + s centers),

(v) |{x, y}⊥⊥| > 1 + s2/t for all points x, y with x 6∼ y (use 1.4.2 (ii)).

For x, y ∈ P, x 6∼ y, let u ∈ {x, y}⊥ and put T = {x, y}⊥⊥, so T ⊂ u⊥. If L1, . . . , Lr are the lines
projecting T from u, r = |T |, put Tu = {x ∈ P ‖ x I Li for some i = 1, . . . , r}.

1.6.2. (i) Let u be a point of S having property (H). Let T and T ′ be two spans of noncollinear
points both contained in u⊥. If Tu ∩ T ′u contains two noncollinear points, then Tu = T ′u, so
|T | = |T ′|.

(ii) Let each point of S have property (H). Then there is a constant p such that |{x, y}⊥⊥| = 1 + p
for all points x, y with x 6∼ y.

Proof. (i) If |T ∩T ′| > 2, clearly T = T ′. So first suppose T ∩T ′ = {x}. By hypothesis there must be
points y ∈ T , y′ ∈ T ′, with y ∼ y′, y 6= y′. If T ′ = {x, y′}, then clearly T ′u ⊂ Tu. Now suppose there
is some point z′ ∈ T ′ \ {x, y′}. Since y ∈ cl(x, z′) and u has property (H), it must be that z′ ∈ cl(x, y),
i.e. z′⊥ ∩ T 6= ∅. Since S contains no triangles we have z′ ∈ Tu, implying T ′ ⊂ Tu. It follows that
always T ′u ⊂ Tu. Similarly, Tu ⊂ T ′u. Finally, suppose that T ∩ T ′ = ∅, but {z, z′} ⊂ Tu ∩ T ′u,
z 6∼ z′. Let x and x′ be the points of T and T ′, respectively, on the line uz, and let y and y′ be
the points of T and T ′, respectively, on the line uz′. So T = {x, y}⊥⊥, T ′ = {x′, y′}⊥⊥. If we put
T ′′ = {x, y′}⊥⊥, then by the previous case Tu = T ′′u = T ′u.

(ii) First suppose that T and T ′ are both hyperbolic lines with T ∪ T ′ ⊂ u⊥ for some point u. If
Tu∩ T ′u contains two noncollinear points, then |T | = |T ′| by (i). Suppose there is a point y 6= u with
y ∈ Tu ∩ T ′u. Let y1 ∈ T , y1 6∼ y, and y′1 ∈ T ′, y′1 6∼ y. If T1 = {y, y1}⊥⊥ and T ′1 = {y, y′1}⊥⊥, then
by (i) we have Tu = T1u and T ′u = T ′1u. We may assume that T1 6= T ′1, and hence that T1 6⊂ T ′1
and T ′1 6⊂ T1. Let z ∈ T1 \ T ′1 and z′ ∈ T ′1 \ T1, where we may assume z 6∼ z′, since otherwise
|T | = |T1| = |T ′1| = |T1|. As z′ 6∈ T1, there is a point u′ ∈ {y, z}⊥ and u′ 6∈ {y, z′}⊥. Let L be
the line through z′ that has a point v on u′z (u′ 6= v 6= z), and let M be the line through y having
a point w in common with L (v 6= w 6= z′). By (i) we know |{v, y}⊥⊥| = |{z, y}⊥⊥| = |T1| and
|{v, y}⊥⊥| = |{z′, y}⊥⊥| = |T ′1|. Hence |T | = |T ′| in case Tu∩T ′u 6= ∅. So suppose that Tu∩T ′u = ∅,
and let z ∈ T , z′ ∈ T ′. From the preceding case it follows that |T | = |{z, z′}⊥⊥| = |T ′|. This completes
the proof that |T | = |T ′| in case T ∪ T ′ ⊂ u⊥ for some point u.

Finally, suppose T = {y, z}⊥⊥, y 6∼ z, T ′ = {y′, z′}⊥⊥, y′ 6∼ z′, and {y, z}⊥ ∩ {y′, z′}⊥ = ∅. If
each point of {y, z}⊥ is collinear with each point of {y′, z′}⊥, then T = {y′, z′}⊥ and T ′ = {y, z}⊥,
so |T | = |T ′|. So suppose that u 6∼ u′ with u ∈ {y, z}⊥, u′ ∈ {y′, z′}⊥. Let v, w ∈ {u, u′}⊥.
The points of {v, w}⊥⊥ ∪ T (resp., {v, w}⊥⊥ ∪ T ′) are collinear with the point u (resp., u′). Hence
|T | = |{v, w}⊥⊥| = |T ′|, by the preceding case. 2

1.6.3. Let each point of S be semiregular and suppose s > 1. Then one of the following must occur:

(i) s > t and each point of S is regular.

(ii) s = t and each point of S is regular or each point is antiregular.

(iii) s < t and |{x, y}⊥⊥| = 2 for all x, y ∈ P with x 6∼ y.

(iv) There is a constant p, 1 < p < t, such that |{x, y}⊥⊥| = 1 + p for all points x, y with x 6∼ y.

Proof. Since each point of S is semiregular, each point of S has property (H). Hence there is a
constant p, 1 6 p 6 t, such that |{x, y}⊥⊥| = 1 + p for all points x, y with x 6∼ y. If p = t, then each
point is regular and consequently s > t. Now assume p = 1 and s > t. If t = 1, then s > t and each
point of S is regular. For t 6= 1 we must show that s = t and each point is antiregular. So let (x, y, z)
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be a triad with center u. Then |{x, y}⊥⊥| = 2 implies z 6∈ cl(x, y), so by the semiregularity of u the
triad must have another center. Hence (x, y) belongs to no triad with a unique center, i.e. N1 = 0.
By 1.3.6 (iii) s = t and (x, y) is antiregular. So each point of S is antiregular. 2

1.7 Triads with exactly 1 + t/s centers

Let x be a fixed point of the GQ S = (P,B, I) of order (s, t), s > 1, t > 1.

1.7.1. (i) The triads (y1, y2, y3) contained in x⊥ have a constant number of centers iff the triads
(x, u1, u2) containing x have exactly 0 or α (α a constant) centers. If one of these equivalent
situations occurs, then (s + 1)|s(t− 1) and the constants both equal 1 + t/s.

(ii) Let y ∈ P \x⊥. Then no triad containing (x, y) has more than 1+ t/s centers iff each such triad
has exactly 0 or 1 + t/s centers iff no such triad has α centers with 0 < α < 1 + t/s. In such a
case there are t(s− 1)(s2 − t)/(s + t) acentric triads containing x and y, and (t2 − 1)s2/(s + t)
triads containing x and y with exactly 1 + t/s centers.

(iii) If s = qn and t = qm with q a prime power, and if each triad in x⊥ has 1 + t/s centers, then
there is an odd integer a for which n(a + 1) = ma.

Proof. (i) Suppose there is a constant α such that each triad (x, u1, u2) containing x has 0 or α
centers. By the remark following eq. 1.13 in 1.3, we have α = 1 + t/s. There are d = (t2 − 1)s3t/6
triads T1, T2, . . . , Td contained in x⊥. Let 1 + ri be the number of centers of Ti, so that

∑d
i=1 ri =

s2t(t + 1)t(t − 1)/6. Count the ordered triples (Ti, u1, u2), where Ti is a triad in x⊥ and (x, u1, u2)
is an ordered triad in T⊥i , to obtain

∑
i ri(ri − 1) = s2tNα(1 + t/s)(t/s)(t/s − 1)/6. Here Nα is the

number of triads containing (x, u1), x 6∼ u1, and having exactly α = 1 + t/s centers. From eq. 1.4 of
1.3.5 it follows that Nα = (t2 − 1)s2/(s + t). Hence d(

∑
r2
i ) − (

∑
ri)2 = 0, implying that ri is the

constant (
∑

ri)/d = t/s.
Conversely, assume that the number ri + 1 of centers of Ti is a constant. Then ri = s2t(t + 1)t(t−

1)/(t2 − 1)s3t = t/s. Fix y1 in x⊥ \ {x}. The number of triads V1, . . . , Vd′ containing x and having y1

as center is d′ = t(t − 1)s2/2. If 1 + ti denotes the number of centers of Vi, 1 6 i 6 d′, it is easy to
check that

∑
i ti = stt(t−1)/2 and

∑
i ti(ti−1) = sts(t−1)(t/s)(t/s−1)/2. Hence d′(

∑
t2i ) = (

∑
ti)2,

and ti is the constant (
∑

ti)/d′ = t/s. It follows immediately that each centric triad (x, u1, u2) has
exactly 1 + t/s centers.

Suppose that these equivalent situations occur. Fix u1, u1 6∼ x, and let L be a line which is incident
with no point of {x, u1}⊥ (since s 6= 1 such a line exists). Then the number of points u2, u2 I L, for
which (x, u1, u2) is a centric triad equals (t− 1)/(1 + t/s). Hence (s + t)|s(t− 1), and (i) is proved.

(ii) Fix y ∈ P \ x⊥, and apply the notation and results of 1.3. Using eq. 1.4 and 1.5 we have

s−1
1+t∑
α=0

αNα − t−1
1+t∑
α=0

α(α− 1)Nα = (t2 − 1)− (t2 − 1) = 0,

which may be rewritten as

N1 =
1+t∑
α=2

((sα2 − α(s + t))/t)Nα. (1.16)

The coefficient of Nα in (1.16) is nonnegative iff α > 1 + t/s, and equals 0 iff α = 1 + t/s. Assume
that Nα = 0 for α > 1 + t/s. Since N1 > 0, we must have Nα = 0 for α = 1, 2, . . . , t/s. Hence each
triad containing (x, y) has 0 or 1 + t/s centers. Conversely, assume Nα = 0 for 0 < α < 1 + t/s. Since
N1 = 0, we necessarily have Nα = 0 for α > 1 + t/s. Hence each triad containing (x, y) has exactly 0
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or 1 + t/s centers. Finally, if this last condition holds, it is easy to use eq. (1.3) and eq. (1.4) to solve
for N0 and N1+t/s, completing the proof of (ii).

(iii) Given the hypotheses of (iii), from part (i) we have t > s and (s + t)|s(t − 1), from which it
follows that (1+qm−n)|(qm−1). Since qm−1 = (qm−n+1)qn−qn−1, there results (1+qm−n)|(1+qn).
Consequently n(a + 1) = ma with a odd. 2

Remark: If the conditions of 1.7.1 (i) hold with s = t > 1, then s is odd and x is antiregular. Moreover,
putting s = t > 1 in 1.7.1 (ii) yields part of 1.3.6 (iii).

For the remainder of this section we suppose that each triad contained in x⊥ has exactly 1 + t/s
centers, so that each triad containing x has 0 or 1 + t/s centers. Let T = {x, u1, u2} be a fixed triad
with T⊥ = {y0, y1, . . . , yt/s}. Each triad in T⊥ also has 1 + t/s centers. For A ⊂ {0, 1, . . . , t/s}, let
m(A) be the number of points collinear with yi for i ∈ A, but not collinear with x, u1, u2 or yi for
i 6∈ A.

Note first that
∑

A m(A) = |P \ (x⊥ ∪ u⊥1 ∪ u⊥2 )|, so∑
A

m(A) = s2t− 2st− 2s + 3t− t/s. (1.17)

Now count in different ways the number of ordered pairs (w, yi) with w ∼ yi and w not collinear with
x, u1, or u2, to obtain ∑

A

|A|m(A) = (s + t)(t− 2). (1.18)

Next count the number of ordered triples (w, yi, yj) with w ∼ yi, w ∼ yj , yi 6= yj , and w not collinear
with x, u1, or u2 to obtain ∑

A

|A|(|A| − 1)m(A) = (s + t)t(t− 2)/s2. (1.19)

Finally, count the number of ordered 4-tuples (w, yi, yj , yk) with w a center of the triad (yi, yj , yk),
and w not collinear with x, u1, or u2, to obtain∑

A

|A|(|A| − 1)(|A| − 2)m(A) = (s + t)t(t− s)(t− 2s)/s4. (1.20)

For 0 6 α 6 1 + t/s, put Mα = Σαm(A), where Σα denotes the sum over all A with |A| = α. Then
eqs. (1.17)-(1.20) become ∑

α

Mα = s2t− 2st− 2s + 3t− t/s, (1.21)∑
α

αMα = (s + t)(t− 2), (1.22)∑
α

α(α− 1)Mα = (s + t)t(t− 2)/s2, (1.23)∑
α

α(α− 1)(α− 2)Mα = (s + t)t(t− s)(t− 2s)/s4. (1.24)

We conclude this section with a little result on GQ of order (s, s2), in which each triad must have
exactly 1 + t/s = 1 + s centers.

1.7.2. Let S = (P,B, I) be a GQ of order (s, s2), s > 2, with a triad (x0, x1, x2) for which {x0, x1, x2}⊥ =
{y0, . . . , ys}, {x0, . . . , xs−1} ⊂
{x0, x1, x2}⊥⊥. Suppose there is a point xs for which xs ∼ yi, i = 0, . . . , s − 1 and xs 6∼ xj, j =
0, . . . , s− 1. Then xs ∼ ys, i.e. (x0, x1, x2) is 3-regular. It follows immediately that any triad in a GQ
of order (3, 9) must be 3-regular.
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Proof. The number of points collinear with ys and also with at least two points of {y0, . . . , ys−1} is
at most s(s− 1)/2 + s, and the number of points collinear with ys and incident with some line xsyi,
i = 0, 1, . . . , s − 1, is at most s. Since s > 2, we have s(s − 1)/2 + 2s < s2 + 1 = t + 1. Hence there
is a line L incident with ys, but not concurrent with xsyi, i = 0, 1, . . . , s − 1, and not incident with
an element of {yi, yj}⊥, i 6= j, 0 6 i, j 6 s − 1. The point incident with L and collinear with yi is
denoted by zi, i = 0, . . . , s− 1. Clearly all s points zi are distinct. Since S has no triangles, the point
xs is not collinear with any zi, forcing xs ∼ ys. 2

1.8 Ovoids, spreads and polarities

An ovoid of the GQ S = (P,B, I) is a set O of points of S such that each line of S is incident with a
unique point of O. A spread of S is a set R of lines of S such that each point of S is incident with a
unique line of R. It is trivial that a GQ with s = 1 or t = 1 has ovoids and spreads.

1.8.1. If O (resp., R) is an ovoid (resp., spread) of the GQ S of order (s, t), then |O| = 1 + st (resp.,
|R| = 1 + st).

Proof. For an ovoid O, count in different ways the number of ordered pairs (x, L) with x ∈ O and L
a line of S incident with x. Use duality for a spread. 2

1.8.2. (S.E. Payne [116]) If the GQ S = (P,B, I) of order s admits a polarity, then 2s is a square.
Moreover, the set of all absolute points (resp., absolute lines) of a polarity θ of S is an ovoid (resp.,
spread) of S.

Proof. Let θ be a polarity the GQ S = (P,B, I) of order s. A point x (resp., line L) of S is an
absolute point (resp., line) of θ provided x I xθ (resp., L I Lθ). We first prove that each line L of S
is 0 with at most one absolute point of θ. So suppose that x, y are distinct absolute points incident
with L. Then x I xθ, y I yθ, and xθ ∼ yθ since x ∼ y. Hence L ∈ {xθ, yθ}, since otherwise there arises
a triangle with sides L, xθ, yθ. So suppose L = xθ. As y I xθ, we have x I yθ. Since y I yθ, clearly
yθ = xy = L = xθ, implying x = y, a contradiction. So each line of S is incident with at most one
absolute point of θ. A line L is absolute iff L I Lθ iff Lθ is absolute. Now assume L is not absolute,
i.e. L  I Lθ. If Lθ I M I u I L, then Lθ I uθ I M θ I L, hence uθ = M and M θ = u. Consequently u and
M are absolute, and we have proved that each line L is incident with at least one absolute point. It
follows that the set of absolute points of θ is an ovoid. Dually, the set of all absolute lines is a spread.

Denote the absolute points of θ by x1, x2, . . . , xs2+1. It is clear that the absolute lines of θ are
the images xθ

i = Li, 1 6 i 6 s2 + 1. Let P = {x1, . . . , xs2+1, . . . , xv}, B = {L1, . . . , Ls2+1, . . . , Lv},
with xθ

i = Li, 1 6 i 6 v, and let D = (dij) be the v × v matrix over R for which dij = 0 if xi  I Lj ,
and dij = 1 if xi I Lj (i.e. D is an incidence matrix of the structure S). Then D is symmetric and
D2 = (1 + s)I + A where A is the adjacency matrix of the graph (P, E) (c.f. the proof of 1.2.2).
By 1.2.2 D2 has eigenvalues (s + 1)2, 0, and 2s, with respective multiplicities 1, s(s2 + 1)/s, and
s(s + 1)2/2. Since D has a constant row sum (resp., column sum) equal to s + 1, it clearly has s + 1
as an eigenvalue. Hence D has eigenvalues s + 1, 0,

√
2s and −

√
2s with respective multiplicities 1,

s(s2 + 1)/2, a1 and a2, where a1 + a2 = s(s + 1)2/2. Consequently trD = s + 1 + (a1 − a2)
√

2s. But
trD is also the number of absolute points of θ, i.e. trD = 1 + s2. So s2 + 1 = s + 1 + (a1 − a2)

√
2s,

implying that 2s is square. 2

1.8.3. A GQ S = (P,B, I) of order (s, t), with s > 1 and t > s2 − s, has no ovoid.

Proof. We present two proofs of this theorem. The first is due to J.A. Thas [207]; the second is the
original one due to E.E. Shult [165].
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(a) Let O be an ovoid of a GQ S of order (s, s2), s 6= 1. Let x, y ∈ O, x 6= y, and count the number
N of ordered pairs (z, u) with u ∈ O \ {x, y}, z ∈ {x, y}⊥, and u ∼ z. Since any two points of O
are noncollinear, we have {x, y}⊥ ∩ O = ∅, and hence N = (s2 + 1)(s2 − 1). By 1.2.4 N also equals
(|O| − 2)(1 + s) = (s3 − 1)(1 + s), which yields a contradiction if s 6= 1. Hence a GQ of order (s, s2),
s 6= 1, has no ovoid.

Let O be an ovoid of a GQ S of order (s, t), s 6= 1. Since t 6= s2, by 1.2.5 t 6 s2 − s.
(b) Let O be an ovoid of the GQ S = (P,B, I) of order (s, t) with s 6= 1. Fix a point x 6∈ O and

let V = {y ∈ O ‖ y ∼ x}. Further, let z 6∈ O, z 6∼ x, and let Lz = {u ∈ V ‖ u ∼ z}. We note that
d = |{z ∈ P ‖ z 6∈ O and z 6∼ x}| = t(s2−s+1). If tz = |Lz|, then

∑
z tz = (1+t)ts and

∑
z tz(tz−1) =

(1+ t)t2. Since d
∑

z t2z− (
∑

z tz)2 > 0, there arises t(s2−s+1)(1+ t)t(t+s)− (1+ t)2t2s2 > 0. Hence
(s− 1)(s2 − t− s) > 0, from which t 6 s2 − s. 2

1.8.4. ([207]) Let S = (P,B, I) be a GQ of order s, having a regular pair (x, y) of noncollinear points.
If O is an ovoid of S, then |O ∩ {x, y}⊥⊥|, |O ∩ {x, y}⊥| ∈ {0, 2}, and |O ∩ ({x, y}⊥ ∪ {x, y}⊥⊥)| = 2.
If the GQ S of order s, s 6= 1, contains an ovoid O and a regular point z not on O, then s is even.

Proof. Let O ∩ ({x, y}⊥ ∪ {x, y}⊥⊥) = {y1, . . . , yr}. If u ∈ P \ ({x, y}⊥ ∪ {x, y}⊥⊥), then u is on just
one line joining a point of {x, y}⊥ to a point of {x, y}⊥⊥; if u ∈ {x, y}⊥ ∪ {x, y}⊥⊥, then u is on s + 1
lines joining a point of {x, y}⊥ to a point of {x, y}⊥⊥. We count the number of all pairs (L, u), with L
a line joining a point of {x, y}⊥ to a point of {x, y}⊥⊥ and with u a point of O which is incident with
L. We obtain (s + 1)2 = s2 + 1 − r + r(1 + s). Hence r = 2. Since no two points of O are collinear,
there follows |O ∩ {x, y}⊥⊥|, |O ∩ {x, y}⊥| ∈ {0, 2}.

Let O be an ovoid of the GQ S of order s and let z be a regular point not on O. Let y 6∈ O, z ∼ y,
z 6= y. The points of O collinear with y are denoted by z0, . . . , zs, with z0 I zy. By the first part of
the theorem, for each i = 1, . . . , s, {z, zi}⊥⊥∩O = {zi, zj} for some j 6= i. Hence |{z1, . . . , zs}| is even,
proving the second part of the theorem. 2

There is an immediate corollary.

1.8.5. Let S = (P,B, I) be a GQ of order s, s even, having a regular pair of noncollinear points. Then
the pointset P cannot be partitioned into ovoids.

Proof. Let (x, y) be a regular pair of noncollinear points of the GQ S = (P,B, I) of order s. If P can
be partitioned into ovoids, then by 1.8.4 |{x, y}⊥⊥| is even. Hence s is odd. 2

The following is a related result for the case s 6= t.

1.8.6. ([207]). Let S = (P,B, I) be a GQ of order (s, t), 1 6= s 6= t, and suppose that there is
an hyperbolic line {x, y}⊥⊥ of cardinality p + 1 with pt = s2. Then any ovoid O of S has empty
intersection with {x, y}⊥⊥.

Proof. Suppose that the ovoid O has r+1, r > 0, points in common with {x, y}⊥⊥. Count the number
N of ordered pairs (z, u), with z ∈ {x, y}⊥, u ∈ O\{x, y}⊥⊥, and u ∼ z. Since any two points of O are
noncollinear, we have O ∩ {x, y}⊥ = ∅. Hence N = (t + 1)(t− r) = (s2/p + 1)(s2/p− r). The number
of points of O \ {x, y}⊥⊥ collinear with a point of {x, y}⊥⊥ equals (p− r)(t + 1) = (p− r)(s2/p + 1).
Each of these points of O is collinear with exactly one point of {x, y}⊥. Further, by 1.4.2 (ii), any
point of O \ cl(x, y) is collinear with exactly 1 + s/p points of {x, y}⊥. Consequently N also equals
(p − r)(s2/p + 1) + (s3/p − r − (p − r)(s2/p + 1))(s + p)/p. Comparing these two values for N , we
find r = p/s. Hence both p|s and s|p, implying p = s and r = 1. From pt = s2 it follows that t = s, a
contradiction. 2

Remark: Putting t = s2, s 6= 1, in the above result we find that a GQ of order (s, s2), s 6= 1, has no
ovoid.
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1.9 Automorphisms

Let S = (P,B, I) be a GQ of order (s, t) with P = {x1, . . . , xv} and B = {L1, . . . , Lb}. Further, let
D = (dij) be the v × b matrix over C for which dij = 0 or 1 according as xi  I Lj or xi I Lj (i.e. D is
an incidence matrix of the structure S). Then DDT = A + (t + 1)I, where A is an adjacency matrix
of the point graph of S (c.f. 1.2.2). If M = DDT , then by the proof of 1.2.2, M has eigenvalues
τ0 = (1 + s)(1 + t), τ1 = 0, τ2 = s + t, with respective multiplicities m0 = 1, m1 = s2(1 + st)/(s + t),
m2 = st(1 + s)(1 + t)/(s + t).

Let θ be an automorphism of S and let Q = (qij) (resp., R = (rij)) be the v × v matrix (resp.,
b × b matrix) over C, with qij = 1 (resp., rij = 1) if xθ

i = xj (resp., Lθ
i = Lj) and qij = 0 (resp.,

rij = 0) otherwise. Then Q and R are permutation matrices for which DR = QD. Since QT = Q−1

and RT = R−1 for permutation matrices, there arises QM = QDDT = DRDT = DRRT DT (Q−1)T =
DDT Q = MQ. Hence QM = MQ.

1.9.1. (C.T. Benson [10], c.f. also [142]). If f is the number of points fixed by the automorphism θ
and if g is the number of points x for which xθ 6= x ∼ xθ, then

tr(QM) = (1 + t)f + g and (1 + t)f + g ≡ 1 + st(mod s + t).

Proof. Suppose that θ has order n, so that (QM)n = QnMn = Mn. It follows that the eigenvalues of
QM are the eigenvalues of M multiplied by the appropriate roots of unity. Since MJ = (1+s)(1+ t)J
(J is the v×v matrix with all entries equal to 1), we have (QM)J = (1+s)(1+ t)J , so (1+s)(1+ t) is
an eigenvalue of QM . From m0 = 1 it follows that this eigenvalue of QM has multiplicity 1. Further,
it is clear that 0 is an eigenvalue of QM with multiplicity m1 = s2(1 + st)/(s + t). For each divisor d
of n, let Ud denote the sum of all primitive d-th roots of unity. Then Ud is an integer [87]. For each
divisor d of n, the primitive d-th roots of unity all contribute the same number of times to eigenvalues
θ of QM with |θ| = s + t. Let ad denote the multiplicity of ξd(s + t) as an eigenvalue of QM , with
d|n and ξd a primitive d-th root of unity. Then we have tr(QM) =

∑
d|n ad(s + t)Ud + (1 + s)(1 + t).

Hence tr(QM) = 1 + st(mod s + t). Let f and g be as given in the theorem. Since the entry on
the i-th row and the i-th column of QM is the number of lines incident with xi and xθ

i , we have
tr(QM) = (1 + t)f + g, completing the proof. 2

1.9.2. If fP (resp., fB) is the number of points (resp., lines) fixed by the automorphism θ, and if gP
(resp., gB) is the number of points x (resp., lines L) for which xθ 6= x ∼ xθ (resp., Lθ 6= L ∼ Lθ),
then

tr(QDDT ) = (1 + t)fP + gP = (1 + s)fB + gB = tr(RDT D).

Proof. The last equality is just the dual of the first, which was established in 1.9.1. To obtain the
middle equality, count the pairs (x, L) for which x ∈ P, L ∈ B, x I L, xθ ∼ x, Lθ ∼ L. This number
is given by (1 + t)fP + gP + N/2 = (1 + s)fB + gB + N/2, where N is the number of pairs (x, L) for
which x I L, xθ ∼ x, x 6= xθ, Lθ ∼ L, Lθ 6= L. The desired equality follows. 2

1.10 A second application of Higman-Sims

Let S = (P,B, I) be a GQ of order (s, t), P = {w1, . . . , wv}. Let ∆ = {∆1,∆2} be any partition of
{1, . . . , v}. Put δ1 = |∆1|, δ2 = |∆2| = v − δ1.

Let δij be the number of ordered pairs (k, l) for which k ∈ ∆i, l ∈ ∆j and wl 6= wk. Here we recall
the notation of 1.4. So for the matrix B of 1.4, the resulting B∆ is

B∆ =
(

e s2t− e
δ1(s2t− e)/δ2 s2t− δ1(s2t− e)/δ2

)
, with e = δ11/δ1.
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One eigenvalue of B∆ is clearly s2t, so the other is t = tr(B∆) − s2t = e − δ1(s2t − e)/δ2. By the
result of C.C. Sims as applied in 1.4, we have −s 6 e − δ1(s2t − e)/δ2, with equality holding iff
δ1 − e = s + δ1/(1 + s). If equality holds (δ1 − v, δ1)T is an eigenvector of B∆ associated with the
eigenvalue −s, hence it must be that

x = (δ1 − v, . . . , δ1 − v, δ1, . . . , δ1)
δ1 times δ2 times

is an eigenvector of B associated with −s. It is straightforward to check that this holds iff each point
of ∆1 is collinear with exactly δ1 − e = s + δ1/(1 + s) points of ∆1, and each point of ∆2 is collinear
with exactly δ2 + e− s2t + s = s + δ2(1 + s) points of ∆2. The following theorem is obtained

1.10.1. (S.E. Payne [125]). Let X1 be any nonempty, proper subset of points of the GQ S of order
(s, t), |X1| = δ1. Then the average number e of points of X1 collinear in S with a fixed point of
X1 satisfies e 6 s + δ1/(1 + s), with equality holding iff each point of X1 is collinear with exactly
s + δ1/(1 + s) points of X1, iff each point of X2 = P \X1 is collinear with exactly δ1/(1 + s) points of
∆1.



Chapter 2

Subquadrangles

2.1 Definitions

The GQ S ′ = (P ′,B′, I′) of order (s′, t′) is called a subquadrangle of the GQ S = (P,B, I) of order (s, t)
if P ′ ⊂ P, B′ ⊂ B, and if I′ is the restriction of I to (P ′ ×B′) ∪ (B′ ×P ′). If S ′ 6= S, then we say that
S ′ is a proper subquadrangle of S.

From |P| = |P ′| it follows easily that s = s′ and t = t′, hence if S ′ is a proper subquadrangle then
P 6= P ′, and dually B′ 6= B. Let L ∈ B. Then precisely one of the following occurs: (i) L ∈ B′, i.e.
L belongs to S ′; (ii) L 6∈ B′ and L is incident with a unique point x of P ′, i.e. L is tangent to S ′ at
x; (iii) L 6∈ B′ and L is incident with no point of P ′, i.e. L is external to S ′. Dually, one may define
external points and tangent points of S ′. From the definition of a GQ it easily follows that no tangent
point may be incident with a tangent line.

2.2 The basic inequalities

2.2.1. Let S ′ be a proper subquadrangle of S, with notation as above. Then either s = s′ or s > s′t′.
If s = s′, then each external point is collinear with exactly 1 + st′ points of an ovoid of S ′; if s = s′t′,
then each external point is collinear with exactly 1 + s′ points of S ′. The dual holds, similarly.

Proofs. (a) ([189]). Let V be the set of the points external to S ′. Then |V | = d = (1 + s)(1 + st)−
(1 + s′)(1 + s′t′)− (1 + t′)(1 + s′t′)(s− s′).

If t = t′, then from d > 0 there arises (s− s′)t(s− s′t) > 0, implying s = s′ or s > s′t.
We now assume t > t′. Let V = {x1, . . . , xd} and let ti be the number of points of P ′ which

are collinear with xi. We count in two different ways the ordered pairs (xi, z), xi ∈ V , z ∈ P ′,
xi ∼ z, and we obtain

∑
i ti = (1 + s′)(1 + s′t′)(t− t′)s. Next we count in different ways the ordered

triples (xi, z, z′), xi ∈ V , z ∈ P ′, z′ ∈ P ′, z 6= z′, xi ∼ z, xi ∼ z′, and we obtain
∑

i ti(ti − 1) =
(1+ s′)(1+ s′t′)s′2t′(t− t′). Hence

∑
i t

2
i = (1+ s′)(1+ s′t′)(t− t′)(s+ s′2t′). As d

∑
i t

2
i − (

∑
i ti)

2 > 0,
we obtain (1 + s′)(1 + s′t′)(t− t′)(s− s′)(s− s′t′)(st + s′2t′2) > 0. Since t > t′, it must be that s = s′

or s > s′t′. Further, we note that ti = (
∑

i ti)/d for all i ∈ {1, . . . , d} iff d
∑

i t
2
i − (

∑
i ti)

2 = 0, i.e.
iff s = s′ or s = s′t′. If s = s′, then ti = 1 + st′ for all i. Hence in such a case each external point is
collinear with the 1 + st′ points of an ovoid of S ′. If s = s′t′, then ti = 1 + s′ for all i. 2

(b) ([126]). Refer to the proof of 1.10.1, and let ∆1 be the indices of the points of S ′, ∆2 the set
of remaining indices. Then δ1 = (1 + s′)(1 + s′t′), and each point indexed by an element of ∆1 is
collinear with exactly 1 + s′ + s′t′ such points. Hence 1 + s′ + s′t′ 6 s + (1 + s′)(1 + s′t′)/(1 + s). This
is equivalent to 0 6 (s − s′t′)(s − s′), and when equality holds each external point is collinear with
exactly (1 + s′)(1 + s′t′)/(1 + s) points of S ′. When s = s′, this number is 1 + s′t′. When s = s′t′, this
number is 1 + s′. 2

17
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The next results are easy consequences of 2.2.1, although they first appeared in J.A. Thas [183].

2.2.2. Let S ′ = (P ′,B′, I′) be a proper subquadrangle of S = (P,B, I), with S having order (s, t) and
S ′ having order (s, t′), i.e. s = s′ and t > t′. Then we have:

(i) t > s; if t = s, then t′ = 1.

(ii) If s > 1, then t′ 6 s; if t′ = s > 2, then t = s2.

(iii) If s = 1, then 1 6 t′ < t is the only restriction on t′.

(iv) If s > 1 and t′ > 1, then
√

s 6 t′ 6 s, and s3/2 6 t 6 s2.

(v) If t = s3/2 > 1 and t′ > 1, then t′ =
√

s.

(vi) Let S ′ have a proper subquadrangle S ′′ of order (s, t′′), s > 1. Then t′′ = 1, t′ = s, and t = s2.

Proofs. These are all easy consequences of 2.2.1, along with the inequality of D.G. Higman. We give
two examples. (ii) Suppose that s > 1. By Higman’s inequality we have t 6 s2. Hence using the dual
of 2.2.1 also, we have t′ 6 t/s 6 s, implying t′ 6 s. If t′ = s, then s = t′ = t/s, implying t = s2.
(vi) Let S ′ have a proper subquadrangle S ′′ of order (s, t′′), s > 1. Then t′ 6 s and t′′ 6 t′/s 6 s/s,
implying t′′ = 1 and t′ = s. By (ii) we have t = s2. 2

2.3 Recognizing subquadrangles

A theorem which will appear very useful for several characterization theorems is the following [183].

2.3.1. Let S ′ = (P ′,B′, I′) be a substructure of the GQ S = (P,B, I) of order (s, t) for which the
following conditions are satisfied:

(i) If x, y ∈ P ′ (x 6= y) and x I L I y, then L ∈ B′.

(ii) Each element of B′ is incident with 1 + s elements of P ′.

Then there are four possibilities:

(a) S ′ is a dual grid (and then s = 1).

(b) The elements of B′ are lines which are incident with a distinguished point of P, and P ′ consists
of those points of P which are incident with these lines.

(c) B′ = ∅ and P ′ is a set of pairwise noncollinear points of P.

(d) S ′ is a subquadrangle of order (s, t′).

Proof. Suppose that S ′ = (P ′,B′, I′) satisfies (i) and (ii) and is not of type (a), (b) or (c). Then
B′ 6= ∅, P ′ 6= ∅ and s > 1. If L′ ∈ B′, then there exists a point x′ ∈ P ′ such that x′  I L′. Let x and
L be defined by x′ I L I x I L′. By (i) and (ii) we have x ∈ P ′ and L ∈ B′. Hence S ′ satisfies (iii) in
the definition of a GQ. Clearly S ′ satisfies (ii) and we now show that S ′ satisfies (i) of that definition.
Consider a point x′ ∈ P ′ and suppose that x′ is incident with t′ + 1 lines of B′. Since B′ 6= ∅, t′ > 0.
Let y′ ∈ P ′ be a point which is not collinear with x′ and suppose it is incident with t′′ + 1 lines of B′.
By (iii) in the definition of GQ it is clear that t′ = t′′. Hence t′ + 1 is the number of lines of B′ which
are incident with any point not collinear with at least one of the points x′ or y′. So we consider a
point z′ ∈ P ′ which is in {x′, y′}⊥.



Subquadrangles 19

First suppose that t′ = 0. Let x′z′ = L′, y′z′ = L′′, and L ∈ B′ \ {L′, L′′}. Then x′  I L and y′  I L.
Since there exists a line of B′ which is incident with x′ (resp., y′) and concurrent with L, it follows
that L and L′ (resp., L and L′′) are concurrent. Hence z′ I L, and S ′ is of type (b), a contradiction.

Now assume t′ > 0. Consider a line L ∈ B′ for which x′ I L and z′  I L. On L there is a point u′,
with u′ 6∼ y′ and u′ 6∼ z′. Then the number of lines of B′ which are incident with z′ equals the number
of lines of B′ which are incident with u′, which equals t′′ + 1 since y′ 6∼ u′, and hence equals t′ + 1.

We conclude that each point of P ′ is incident with t′+1 (> 2) lines of B′, which proves the theorem.
2

2.4 Automorphisms and subquadrangles

Let θ be an automorphism of the GQ S = (P,B, I) of order (s, t).

2.4.1. The substructure Sθ = (Pθ,Bθ, Iθ) of the fixed elements of θ must be given by at least one of
the following:

(i) Bθ = ∅ and Pθ is a set of pairwise noncollinear points.

(i)′ Pθ = ∅ and Bθ is a set of pairwise nonconcurrent lines.

(ii) Pθ contains a point x such that x ∼ y for every point y ∈ Pθ and each line of Bθ is incident with
x.

(ii)′ Bθ contains a line L such that L ∼ M for every line M ∈ Bθ, and each point of Pθ is incident
with L.

(iii) Sθ is a grid.

(iii)′ Sθ is a dual grid.

(iv) Sθ is a subquadrangle of order (s′, t′), s′ > 2 and t′ > 2.

Proof. Suppose Sθ is not of type (i), (i)′, (ii), (ii)′, (iii), (iii)′. Then Pθ 6= ∅ 6= Bθ. If x, y ∈ Pθ, x 6= y,
x ∼ y, then (xy)θ = xθyθ = xy, so the line xy belongs to Bθ. Dually, if L,M ∈ Bθ, L 6= M , then the
point common to L and M belongs to Pθ. Next, let L ∈ Bθ and consider a point x ∈ Pθ, with x  I L.
Further, let y and M be defined by x I M I y I L. Then xθ I M θ I yθ I Lθ, i.e. x I M θ I yθ I L. Hence
M = M θ and y = yθ, i.e. M ∈ Bθ, y ∈ Pθ. It follows that Sθ satisfies (iii) in the definition of GQ.
Now parts (i) and (ii) in the definition of GQ are easily obtained by making a variation on the proof
of 2.3.1. 2

2.5 Semiregularity, property (H) and subquadrangles

The following result will be recognized later as a major step in the proofs of certain characterizations
of the classical GQ.

2.5.1. Let each point of the GQ S = (P,B, I) of order (s, t) have property (H). Then one of the
following must occur:

(i) Each point is regular.

(ii) |{x, y}⊥⊥| = 2 for all x, y ∈ P, x 6∼ y.
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(iii) There is a constant p, 1 < p < t, such that |{x, y}⊥⊥| = 1+ p for all x, y ∈ P, x 6∼ y, and s = p2,
t = p3. Moreover, if L and M are nonconcurrent lines of S, then {x ∈ P ‖ x I L} ∪ {y ∈ P ‖
y I M} is contained in the pointset of a subquadrangle of order (s, p) = (p2, p).

Proof. Let each point of S have property (H). By 1.6.2 there is a constant p such that |{x, y}⊥⊥| = 1+p
for all points x, y ∈ P, x 6∼ y. If p = t, then all points of S are regular, and we have the case (i). If p = 1,
we have case (ii). So assume 1 < p < t, so that necessarily s 6= 1. For L ∈ B, put L∗ = {x ∈ P ‖ x I L}.
Now consider two nonconcurrent lines L and M , and denote by P ′ the union of the sets {x, y}⊥⊥,
with x ∈ L∗ and y ∈ M∗. First we shall prove that each common point of the distinct sets {x, y}⊥⊥
and {x′, y′}⊥⊥, with x, x′ ∈ L∗ and y, y′ ∈ M∗, belongs to L∗ ∪M∗. If {x, y}⊥⊥ and {x′, y′}⊥⊥ are
the pointsets of distinct lines of S, then evidently {x, y}⊥⊥ ∩ {x′, y′}⊥⊥ = ∅. Now let x ∼ y and
x′ 6∼ y′. Suppose that z ∈ {x, y}⊥⊥ ∩ {x′, y′}⊥⊥, with z 6∈ {x, y}. Since x ∈ {z, x′}⊥ = {y′, x′}⊥,
we have x ∼ y′, a contradiction as there arises a triangle xyy′. Finally, let x 6∼ y, x′ 6∼ y′, and
z ∈ {x, y}⊥⊥ ∩ {x′, y′}⊥⊥, with z 6∈ {x, y}. The point which is incident with L and collinear with z is
denoted by u. Since u ∈ {z, x}⊥ = {y, z}⊥ and u ∈ {z, x′}⊥ = {y′, x′}⊥, we have y ∼ u ∼ y′, which is
clearly impossible.

Now consider a point x ∈ L∗ and define V and y by x I V I y I M . If z1 I V , z1 6= y, and z2 I M ,
z2 6= y, then by 1.6.2 the set cl(z1, z2) ∩ y⊥, i.e. Ty if T = {z1, z2}⊥⊥, is independent of the choice of
the points z1, z2. That set will be denoted by xM∗. By 1.6.2, any span having at least two points in
common with xM∗ must be contained in xM∗. If u ∈ xM∗, u 6∼ x, then {u, x}⊥⊥ ∩M∗ 6= ∅. Hence
u ∈ P ′, and it follows that xM∗ ⊂ P ′.

Next let N be a line whose points belong to the set xM∗, where N 6= M and N 6= V . We shall
prove that the union P ′′ of the spans {z, u}⊥⊥, z ∈ N∗ and u ∈ L∗, coincides with P ′. First we note
that the spans {z, u}⊥⊥ with z ∈ M∗ ∩ N∗ are contained in P ′. Now consider an hyperbolic line
{z, x}⊥⊥ with z ∈ N∗ \M∗. Evidently {z, x}⊥⊥ has a point in common with M∗, and {z, x}⊥⊥ ⊂
xM∗ ⊂ P ′. Finally, consider a span {z, u}⊥⊥, with z ∈ N∗ \M∗ and u ∈ L∗ \ {x}. The hyperbolic
line {x, z}⊥⊥ has a point v in common with M∗. From the preceding paragraph we have vL∗ ⊂ P ′.
But {x, z}⊥⊥ = {x, v}⊥⊥ ⊂ vL∗, so {z, u}⊥⊥ has two points in common with vL∗ and hence must be
contained in vL∗. This shows P ′′ ⊂ P ′. Interchanging the roles of P ′ and P ′′ shows P ′ = P ′′. (Or
|P ′′| = |P ′| = (s + 1)(sp + 1) and P ′′ ⊂ P ′ imply P ′′ = P ′.)

The next step is to show that for any two distinct collinear points x, y ∈ P ′, the span {x, y}⊥⊥
(= (xy)∗) is contained in P ′. The case {x, y} ⊂ L∗ ∪M∗ is trivial. So suppose that {x, y} 6⊂ L∗ ∪M∗

and that x ∈ L∗ ∪M∗. Assume that x ∈ L∗ and y ∈ {y1, y2}⊥⊥, with y1 ∈ L and y2 ∈ M∗. In
such a case {x, y}⊥⊥ ⊂ y2L

∗ ⊂ P ′. So suppose that {x, y} ∩ (L∗ ∪M∗) = ∅. Evidently we may also
assume that {x, y}⊥⊥ ∩ (L∗ ∪M∗) = ∅. Let x ∈ {x1, x2}⊥⊥ (resp., y ∈ {y1, y2}⊥⊥), with x1 ∈ L∗ and
x2 ∈ M∗ (resp., y1 ∈ L∗ and y2 ∈ M∗). First, we suppose that {x1, x2}⊥⊥ is an hyperbolic line (i.e.
x1 6∼ x2). Then let z1 and N be defined by x I N I z1 I L. Clearly N∗ ⊂ x2L

∗. Since we have proved
that the union P ′′ of the sets {z, u}⊥⊥, z ∈ N∗ and u ∈M∗, coincides with P ′, the point y belongs to
P ′′. By a preceding case, {x, y}⊥⊥ ⊂ P ′′, so {x, y}⊥⊥ ⊂ P ′. Second, we suppose x1 ∼ x2, and without
loss of generality that y1 ∼ y2. Since x ∼ y, clearly x1 6= y1 and x2 6= y2. Let u be a point of the
hyperbolic line {x2, y1}⊥⊥, x2 6= u 6= y1, and let P ′′ be the union of the sets {v, w}⊥⊥, w ∈ M∗ and
v ∈ N∗ = {x1, u}⊥⊥. As P ′ = P ′′, y is contained in a set {v, w}⊥⊥, w ∈ M∗ and v ∈ N∗. Evidently
v 6∼ w, so that by a previous case {x, y}⊥⊥ ⊂ P ′′ = P ′. We conclude that for any distinct collinear
points x, y ∈ P ′, the span {x, y}⊥⊥ is contained in P ′.

Now let B′ be the set of all lines of S which are incident with at least two points of P ′, and let
I′=I ∩((P ′×B′)∪ (B′×P ′)). Then by 2.3.1 the structure S ′ = (P ′,B′, I ′) is a subquadrangle of order
(s, t′) of S.

Since |P ′| = (s + 1)(sp + 1) = (s + 1)(st′ + 1), we have t′ = p. By the inequality of D.G. Higman
we have s 6 p2, and by 2.2.1 we have t > sp. Moreover, by 1.4.2 (ii) we have pt 6 s2. There results
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sp2 6 pt 6 s2, implying s > p2. Hence s = p2. It now also follows easily that t = p3, which completes
the proof of the theorem. 2

The preceding theorem is essentially contained in J.A. Thas [196]. We now have the following easy
corollary.

2.5.2. Let each point of S be semiregular and suppose s > 1. Then one of the following must occur:

(i) s > t and each point of S is regular.

(ii) s = t and each point of S is regular or each point is antiregular.

(iii) s < t and |{x, y}⊥⊥| = 2 for all x, y ∈ P with x 6∼ y.

(iv) The conclusion of 2.5.1 (iii) holds.

Proof. Immediate from 1.6.3 and 2.5.1. (Recall that any semiregular point has property (H).) 2

2.6 3-Regularity and subquadrangles

2.6.1. ([210]). Let (x, y, z) be a 3-regular triad of the GQ S = (P,B, I) of order (s, s2), s > 1, and let
P ′ be the set of all points incident with lines of the form uv, u ∈ {x, y, z}⊥ = X and v ∈ {x, y, z}⊥⊥ =
Y . If L is a line which is incident with no point of X ∪Y and if k is the number of points in P ′ which
are incident with L, then k ∈ {0, 2} if s is odd and k ∈ {1, s + 1} is s is even.

Proof. Let L be a line which is incident with no point of X∪Y . If x ∈ X = {x, y, z}⊥, if w I M I m I L,
and if M is not a line of the form uv, u ∈ X and v ∈ Y = {x, y, z}⊥⊥, then there is just one point
w′ ∈ X \ {w} which is collinear with m. Hence the number r of lines uv, u ∈ X and v ∈ Y , which are
concurrent with L, has the parity of |X| = s + 1. Clearly r is also the number of points in P ′ (P ′ is
the set of all points incident with lines of the form uv) which are incident with L.

Let {L1, L2, . . .} = L be the set of all lines which are incident with no point of X ∪ Y , and
let ri be the number of points in P ′ which are incident with Li. We have |L| = s3(s2 − 1) and
|P ′ \ (X ∪ Y )| = (s + 1)2(s − 1). Clearly

∑
i ri = (s + 1)2(s − 1)s2, and

∑
i ri(ri − 1) is the number

of ordered triples (uv, u′v′, Li), with u, u′ distinct point of X, with v, v′ distinct points of Y , and with
uv ∼ Li ∼ u′v′ where u, v, u′, v′ are not incident with Li. Hence

∑
i ri(ri − 1) = (s + 1)2s2(s− 1).

Let s be odd. Then ri is even, and so
∑

i ri(ri − 2) > 0 with equality iff ri ∈ {0, 2} for all i. Since∑
i ri(ri − 2) = (s + 1)2s2(s− 1)− (s + 1)2(s− 1)s2 = 0, we have indeed ri ∈ {0, 2} for all i.
Let s be even. Then ri is odd, and so

∑
i(ri−1)(ri− (s+1)) 6 0 with equality iff ri ∈ {1, s+1} for

all i. Since
∑

i(ri−1)(ri− (s+1)) = (s+1)2s2(s−1)− (s+1)(s+1)2(s−1)s2 +(s+1)s3(s2−1) = 0,
we have indeed ri ∈ {1, s + 1} for all i. 2

2.6.2. ([210]). Let (x, y, z) be a 3-regular triad of the GQ S = (P,B, I) of order (s, s2), s even. If P ′
is the set of all points incident with lines of the form uv, u ∈ X = {x, y, z}⊥ and v ∈ Y = {x, y, z}⊥⊥,
if B′ is the set of all lines in B which are incident with at least two points of P ′, and if I′ is the
restriction of I to (P ′ × B′) ∪ (B′ × P ′), then S ′ = (P ′,B′, I′) is a subquadrangle of order s. Moreover
(x, y) is a regular pair of S ′, with {x, y}⊥′ = {x, y, z}⊥ and {x, y}⊥′⊥′ = {x, y, z}⊥⊥.

Proof. We have |P ′| = (s + 1)2(s − 1) + 2(s + 1) = (s + 1)(s2 + 1). Let L be a line of B′. If L is
incident with some point of X ∪ Y , then clearly L is of type uv, with u ∈ X and v ∈ Y . Then all
points incident with L are in P ′. If L is incident with no point of X ∪ Y , then by 2.6.1 L is again
incident with s+1 points of P ′. Now by 2.3.1 S ′ = (P ′,B′, I′) is a subquadrangle of order (s, t′). Since
|P ′| = (s + 1)(st′ + 1) we have t′ = s, and so S ′ is a subquadrangle of order s. Since X ∪ Y ⊂ P ′,
|X| = |Y | = s+1, and each point of X is collinear with each point of Y , we have {x, y}⊥′ = {x, y, z}⊥
and {x, y}⊥′⊥′ = {x, y, z}⊥⊥. 2
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2.7 k-arcs and subquadrangles

Let S = (P,B, I) be a GQ of order (s, t), s > 1, t > 1. A k-arc of S is a set of k pairwise noncollinear
points. A k-arc O is complete provided it is not contained in a (k + 1)-arc.

Let O be an (st− ρ)-arc of S, for some integer ρ. Let B′ be the set of lines of S incident with no
point of O. An easy calculation shows that |B′| = (1 + t)(1 + ρ), implying that ρ > −1. Evidently O
is an ovoid precisely when ρ = −1. For the remainder of this section we assume that ρ > 0. Let L be
a fixed line of B′ incident with points y0, . . . , ys, and let ti be the number of lines (6= L) of B′ incident
with yi, i = 0, . . . , s.

s∑
i=0

ti = (1 + s)t− (st− ρ) = t + ρ. (2.1)

Eq. (2.1) says that each line of B′ is concurrent with t + ρ other lines of B′. Put ti = θi + ρ. It
follows that each line M of B′ incident with yi is concurrent with exactly t− θi lines ( 6= M) of B′ at
points different from yi. Count the lines of B′ concurrent with lines of B′ through yi (including the
latter) to obtain (θi +ρ+1)(1+ t− θi). Clearly this number is bounded above by |B′| = (1+ t)(1+ρ),
from which we obtain the following:

θi((t− ρ)− θi) 6 0, (2.2)

with equality holding iff each line of B′ is concurrent with some line of B′ through yi.
Clearly ti 6 t, so θi 6 t− ρ. And θi = t− ρ iff O ∪ {yi} is also an arc. From now on suppose that

O is a complete (st− ρ)-arc, ρ > 0. Then θi < t− ρ, so that by eq. (2.2) we have

θi 6 0. (2.3)

The average number of lines of B′ through a point of L is
1 + (t + ρ)/(1 + s) =

∑s
i=0(θi + ρ + 1)/(1 + s) 6 ρ + 1. Hence ρ > t/s, with equality holding iff

θi = 0 for i = 0, . . . , s, iff each point of L is on exactly ρ + 1 lines of B′. (2.4)

2.7.1. Any (st− ρ)-arc of S with 0 6 ρ < t/s is contained in an uniquely defined ovoid of S. Hence
if S has no ovoid, then any k-arc of S necessarily has k 6 st− t/s.

Proof. By the preceding paragraph it is clear that any (st − ρ)-arc O of S with 0 6 ρ < t/s is
contained in an (st− ρ + 1)-arc O′. If ρ = 0, then O′ is an ovoid. If ρ > 0, then 0 6 ρ− 1 < t/s, and
O′ is contained in an (st − ρ + 2)-arc O′′, etc. Finally, O can be extended to an ovoid. Now assume
that O is contained in distinct ovoids O1 and O2. Let x ∈ O1 \ O2. Then each of the t + 1 lines
incident with x is incident with a unique point of O2 \ O1. Hence |O2 \ O1| > t + 1, implying that
|O2 \ O| > t + 1, i.e. ρ + 1 > t + 1 which is an impossibility. 2

2.7.2. Let O be a complete (st− t/s)-arc of S. Let B′ be the set of lines incident with no point of O;
let P ′ be the set of points on (at least) one line of B′; and let I′ be the restriction of I to points of P ′
and lines of B′. Then S ′ = (P ′,B′, I′) is a subquadrangle of order (s, ρ) = (s, t/s).

Proof. Use (2.2) and (2.4). 2

Putting s = t in 2.7.2 yields the following corollary.

2.7.3. Any GQ of order s having a complete (s2 − 1)-arc must have a regular pair of lines.

2.7.4. Let S be a GQ of order s, s > 1, with a regular point x. Then S has a complete (2s + 1)-arc.

Proof. Let T1 and T2 be two distinct hyperbolic lines containing x. By 1.3.1 there is a point y for
which T⊥1 ∩ T⊥2 = {y}. Let z I xy, z 6= x, z 6= y. Then (T1 \ {x}) ∪ (T⊥2 \ {y}) ∪ {z} is a complete
(2s + 1)-arc of S. 2
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2.7.5. Let S be a GQ of order s, s > 1, having an ovoid O and a regular point x, x 6∈ O (so s is even
by 1.8.4). Then (O \ x⊥) ∪ {x} is a complete (s2 − s + 1)-arc.

Proof. Clearly O′ = (O \ x⊥) ∪ {x} is an (s2 − s + 1)-arc. If O′ ∪ {y} is an arc, then {x, y}⊥ =
O ∩ y⊥ = O ∩ x⊥, contradicting 1.8.4 2
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Chapter 3

The known generalized quadrangles
and their properties

3.1 Description of the known GQ

We start by giving a brief description of three families of examples known as the classical GQ, all of
which are associated with classical groups and were first recognized as GQ by J. Tits [50].

3.1.1. The classical GQ, embedded in PG(d, q), 3 6 d 6 5, may be described as follows:

(i) Consider a nonsingular quadric Q of projective index 1 [80] of the projective space PG(d, q),
with d = 3, 4 or 5. Then the points of Q together with the lines of Q (which are the subspaces
of maximal dimension on Q) form a GQ Q(d, q) with parameters

s = q, t = 1, v = (q + 1)2, b = 2(q + 1), when d = 3,

s = t = 1, v = b = (q + 1)(q2 + 1), when d = 4,

s = q, t = q2, v = (q + 1)(q3 + 1), b = (q2 + 1)(q3 + 1),
when d = 5.

Since Q(3, q) is a grid, its structure is trivial. Further, recall that the quadric Q has the following
canonical equation:

x0x1 + x2x3 = 0, when d = 3,

x2
0 + x1x2 + x3x4 = 0, when d = 4,

f(x0, x1) + x2x3 + x4x5 = 0,

where f is an irreducible binary quadratic form when d = 5.

(ii) Let H be a nonsingular hermitian variety of the projective space PG(d, q2), d = 3 or 4. Then
the points of H together with the lines on H form a GQ H(d, q2) with parameters

s = q2, t = q, v = (q2 + 1)(q3 + 1), b = (q + 1)(q3 + 1),
when d = 3,

s = q2, t = q3, v = (q2 + 1)(q5 + 1), when d = 4.

Recall that H has the canonical equation

xq+1
0 + xq+1

1 + . . . + xq+1
d = 0.

25
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(iii) The points of PG(3, q), together with the totally isotropic lines with respect to a symplectic
polarity, form a GQ W (q) with parameters

s = t = q, v = b = (q + 1)(q2 + 1).

Recall that the lines of W (q) are the elements of a linear complex of lines of PG(3, q), and that
a symplectic polarity of PG(3, q) has the following canonical bilinear form:

x0y1 − x1y0 + x2y3 − x3y2 = 0.

The earliest known non-classical examples of GQ were discovered by J. Tits and first appeared in
P. Dembowski [50].

3.1.2. For each oval or ovoid O in PG(d, q), d = 2 or 3, there is a GQ T (O) constructed as follows:
Let d = 2 (resp., d = 3) and let O be an oval [50] (resp., and ovoid [50]) of PG(d, q). Further, let
PG(d, q) = H be embedded as an hyperplane in PG(d + 1, q) = P . Define points as (i) the points of
P \H, (ii) the hyperplanes X of P for which |X ∩ O| = 1, and (iii) one new symbol (∞). Lines are
defined as (a) the lines of P which are not contained in H and meet O (necessarily in a unique point),
and (b) the points of O. Incidence is defined as follows: A point of type (i) is incident only with lines
of type (a); here the incidence is that of P . A point of type (ii) is incident with all lines of type (a)
contained in it and with the unique element of O in it. The point (∞) is incident with no line of type
(a) and all lines of type (b). It is an easy exercise to show that the incidence structure so defined is a
GQ with parameters

s = t = q, v = b = (q + 1)(q2 + 1), when d = 2
s = q, t = q2, v = (q + 1)(q3 + 1), b = (q2 + 1)(q3 + 1), when d = 3.

If d = 2, the GQ is denoted by T2(O); if d = 3, the GQ is denoted by T3(O). If no confusion is
possible, these quadrangles are also denoted by T (O).

3.1.3. ([70, 1]). Associated with any complete oval O in PG(2, 2h) there is a GQ T ∗2 (O) of order
(q − 1, q + 1), q = 2h.

Proof. Let O be a complete oval, i.e. a (q + 2)-arc [80], of the projective plane PG(2, q), q = 2h, and
let PG(2, q) = H be embedded as a plane in PG(3, q) = P . Define an incidence structure T ∗2 (O) by
taking for points just those points of P \H and for lines just those lines of P which are not contained
in H and meet O (necessarily in a unique point). The incidence is that inherited from P . It is
evident that the incidence structure so defined is a GQ with parameters s = q − 1, t = q + 1, v = q3,
b = q2(q + 2). 2

3.1.4. ([121]). To each regular point x of the GQ S = (P,B, I) of order s, s > 1, there is associated
a GQ P (S, x) of order (s− 1, s + 1).

Proof. Let x be a regular point of the GQ S = (P,B, I) of order s, s > 1. Then P ′ is defined to be
the set P \ x⊥. The elements of B′ are of two types: the elements of type (a) are the lines of B which
are not incident with x; the elements of type (b) are the hyperbolic lines {x, y}⊥⊥, y 6∼ x. Now we
define the incidence I′. If y ∈ P ′ and L ∈ B′ is of type (a), then y I′ L iff y I L; if y ∈ P ′ and L ∈ B′ is
of type (b), then y I′ L iff y ∈ L′. We now show that the incidence structure S ′ = (P ′,B′, I′) is a GQ
of order (s− 1, s + 1).

It is clear that any two points of S ′ are incident (with respect to I′) with at most one line of S ′.
Moreover, any point of P ′ is incident with s points of P ′. Consider a point y ∈ P ′ and a line L of type
(a), with y 6I′ L. Let z be defined by x ∼ z and z I L. If y ∼ z, then no line of type (a) is incident with
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y and concurrent with L. But then, by the regularity of x, there is a point of P ′ which is incident with
the line {x, y}⊥⊥ of type (b) and the line L. If y 6∼ z, then there is just one line of type (a) which is
incident with y and concurrent with L. By the regularity of x, the line of type (b) containing y is not
concurrent with L. Finally, consider a point y ∈ P ′ and a line L = {x, u}⊥⊥, x 6∼ u, of type (b) with
y 6∈ L. It is clear that no line of type (b) is incident with y and concurrent with L. If y is collinear
with at least two points of L, then by the regularity of x we have y ∼ x, i.e. y 6∈ P ′, a contradiction.
Hence y is collinear with at most one point of L. If u 6∼ y, then by 1.3.6 the triad (x, y, u) has a center
v, and consequently the line of type (a) defined by v I M I y is incident with y and concurrent with
L. 2

The GQ S ′ = (P ′,B′, I′) of order (s− 1, s + 1) will be denoted by P(S, x).
A quick look at the examples of order s in 3.1.1 and 3.1.2 reveals that regular points and regular

lines arise in the following cases (for more details and proofs see 3.3): all lines of Q(4, q) are regular;
the points of Q(4, q) are regular iff q is even; all points of W (q) are regular; the lines of W (q) are
regular iff q is even; the unique point (∞) of type (iii) of T2(O) is regular iff q is even; all lines of type
(b) of T2(O) are regular. The corresponding GQ of S.E. Payne will be considered in detail in 3.2.

3.1.5. ([1]). For each odd prime power q there is a GQ AS(q) of order (q − 1, q + 1).

Proof. An incidence structure AS(q) = (P,B, I), q an odd prime power, is to be constructed as
follows. Let the elements of P be the points of the affine 3-space AG(3, q) over GF(q). Elements of B
are the following curves of AG(3, q):

(i) x = σ, y = a, z = b,

(ii) x = z, y = σ, z = b,

(iii) x = cσ2 − bσ + a, y = −2cσ + b, z = σ.

Here the parameter σ ranges over GF(q) and a, b, c are arbitrary elements of GF(q). The incidence I
is the natural one. It remains to show that AS(q) is indeed a GQ of order (q − 1, q + 1).

It is clear that |P| = q3, that |B| = q2(q + 2), and that each element of B is incident with q
elements of P. For each value of c there are q2 curves of type (iii), and these curves have not point in
common. For suppose the curves corresponding to (a, b, c) and a′, b′, c′) intersect. Then for some σ we
have cσ2 − bσ + a = cσ2 − b′σ + a′ and −2cσ + b′ = −2cσ + b, which clearly implies b = b′ and a = a′.
Similarly, no two curves of the form (i) (or of the form (ii)) intersect. Thus we have q + 2 families of
nonintersecting curves, q2 curves in each family and q points on each curve. Hence each point of P is
incident with exactly q + 2 elements of B, one from each family.

Now we shall show that two curves in different families meet in at most one point. This is clear if
one of the curves is of type (i) or (ii), and we only need to consider two curves of type (iii). Suppose the
curve corresponding to (a, b, c) meets the curve corresponding to (a′, b′, c′) at two different parameter
values, say σ and τ . Then we have −2cσ + b = −2c′σ + b′ and −2cτ + b = −2c′τ + b′. Hence
c(τ − σ) = c′(τ − σ), with τ 6= σ. Consequently c = c′ and the two curves coincide.

Finally, we shall show that axiom (iii) in the definition of GQ is satisfied. It is sufficient to prove
that AS(q) does not contain triangles. For indeed, if AS(q) has no triangles, then the number of points
collinear with at least one point of a line L equals q + q(q + 1)(q− 1) = q3 = |P|, which proves (iii) in
the definition of GQ. We must consider the following possibilities for L1, L2, L3 to form a triangle.

(a) L1 of type (i), L2 of type (ii), L3 of type (iii). Let L be x = σ, y = a1, z = b1; let L2 be x = a2,
y = σ, z = b2; let L3 be x = c3σ

2 − b3σ + z3, y = −2c3σ + b3, z = σ. Since L1 and L2 meet, we must
have b1 = b2. But then both L1 and L2 meet L3 at the same point, with parameter value σ = b1 = b2,
and there is no triangle.

(b) L1 of type (i) and L2, L3 of type (iii). Let L1 be x = σ, y = a1, z = b1; let L2 and L3 be,
respectively, x = c2σ

2−b2σ+a2, y = −2c2σ+b2, z = σ, and x = c3σ
2−b3σ+a3, y = −2c3σ+b3, z = σ.
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The line L1 meets both L2 and L3 at points with parameter value b1. We have a1 = −2c2b1 + b2 =
−2c3b1 + b3. If L2, L3 meet at the point with parameter value σ 6= b1, then −2c2σ + b2 = −2c3σ + b3,
which with the previous equation gives 2c2(σ − b1) = 2c3(σ − b1), implying c2 = c3. Hence L2 and L3

do not meet, a contradiction.
(c) L1 of type (ii) and L2, L3 of type (iii). Let L1 be x = a1, y = σ, z = b1; and let L2 and L3 be

as given in (b). The line L1 meets both L2 and L3 at points with parameter value b1. We now have
a1 = c2b

2
1 − b2b1 + a2 and a1 = c3b

2
1 − b3b1 + a3. If L2, L3 meet at the point with parameter value

σ 6= b1, then c2σ
2 − b2σa2 = c3σ

2 − b3σ + a3 and −2c2σ + b2 = −2c3σ + b3, which with the previous
equations give c2(σ + b1)− b2 = c3(σ + b1)− b3 and (b1 − σ)(c2 − c3) = 0, from which c2 = c3. Hence
L2 and L3 do not meet, a contradiction.

(d) L1, L2, L3 are of type (iii). Let Li be x = ciσ
2 − biσ + ai, y = −2ciσ + bi, z = σ, i = 1, 2, 3.

Suppose that Li, Lj , i 6= j, meet each other at the point with parameter value σij = σji, where σ12,
σ23, σ31 are distinct. Then

ciσ
2
ij − biσij + ai = cjσ

2
ij − bjσij + aj (3.1)

and
− 2ciσij + bi = −2cjσij + bj , (3.2)

giving
− biσij + 2ai = −bjσij + 2aj . (3.3)

By (3.2) we have

σ23σ31(b1 − b2) + σ31σ12(b2 − b3) + σ12σ23(b3 − b1) =
2σ23σ31σ12(c1 − c2) + 2σ31σ12σ23(c2 − c3) + 2σ12σ23σ31(c3 − c1) = 0. (3.4)

By (3.3) we have
σ12(b1 − b2) + σ23(b2 − b3) + σ31(b3 − b1) = 0. (3.5)

Eliminating b1 from (3.4) and (3.5), we obtain (σ12 − σ23)(σ12 − σ31)(σ31 − σ23)(b2 − b3) = 0. Hence
b2 = b3, and by (3.2) σ23(c2− c3) = 0. Since c2 6= c3, we have σ23 = 0. Analogously σ31 = σ12 = 0. So
σ12 = σ23 = σ31, a contradiction.

It follows that AS(q) has no triangles and consequently is a GQ. 2

In their paper [1], R.W. Ahrens and G. Szekeres also note that the incidence structure (P∗,B∗, I∗)
with P∗ = B∗ and L I∗ M , L ∈ P∗, M ∈ B∗, iff L ∼ M and L 6= M in (P,B, I), is a symmetric
2 − (q2(q + 2), q(q + 1), q) design. These designs are new. (See Section 3.6 for a further study of
symmetric designs arising from GQ.) They also remark that for q = 3 there arises a GQ with 27
points and 45 lines, whose dual can also be obtained as follows: lines of the GQ are the 27 lines on a
general cubic surface V in PG(3, C) [4], points of the GQ are the 45 tritangent planes [4] of V , and
incidence is inclusion.

The only known family of GQ remaining to be discussed was discovered by W.M. Kantor [89] while
studying generalized hexagons and the family G2(q) of simple groups. We now give the method by
which Kantor used the hexagons to construct the GQ. In 10.6, using the theory of GQ as group coset
geometries, we shall give a self-contained algebraic presentation that was directly inspired by W.M.
Kantor’s original paper.

3.1.6. ([89]). For each prime power q, q ≡ 2 mod 3, there is a GQ K(q) of order (q, q2) which arises
from the generalized hexagon H(q) of order q associated with the group G2(q).

Construction: A generalized hexagon 42 [123] of order q (> 1) is an incidence structure S = (P,B, I
), with a symmetric incidence relation satisfying the following axioms:

(i) each point (resp., line) is incident with q + 1 lines (resp., points);
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(ii) |P| = |B| = 1 + q + q2 + q3 + q4 + q5;

(iii) 6 is the smallest positive integer k such that S has a circuit consisting of k points and k lines.

There is a natural metric defined on P ∪B: an object is at distance 0 from itself, an incident point
and line are at distance 1, etc. Clearly the maximum distance between any two objects in P ∪B is 6.
The generalized hexagon of order q, q a prime power, is known.

This generalized hexagon arises from the group G2(q) and was introduced by J. Tits in his cel-
ebrated paper on triality [217]. One of the two dual choices of this generalized hexagon has a nice
representation in PG(6, q) [217]: its points are the points of a nonsingular quadric Q; its lines are
(some, but not all of the) lines of Q; incidence is that of PG(6, q). The generalized hexagon with that
representation will be denoted by H(q).

Let S = (P,B, I) be a generalized hexagon of order q. Define an incidence structure S∗ = (P∗,B∗, I∗
) as follows. Let L be a fixed line of S. The points of S∗ will be the points of L and the lines of S at
distance 4 from L. Lines of S∗ are L, the points of S at distance 3 from L and the lines of S at distance
6 from L. We now define the incidence I∗: a point of L (in S) is defined to be incident (in S∗) with
the lines of S∗ which are at distance 1 or 2 (in S) from it. For the incidence structure S∗ so defined,
the following properties are easy to check: each point is incident with 1+ q2 lines, each line is incident
with 1 + q points, any two points are incident with at most one line, and both |P∗| and |B∗| have the
correct values for S∗ to be a GQ of order (q, q2). It is easy to discover a simple geometric configuration
whose absence from S is necessary and sufficient for S∗ to be a GQ. Recently, using mainly projective
geometry techniques in PG(6, q), J.A. Thas [82, 207] proved that this configuration is absent from
H(q) when q ≡ 2 (mod 3). In this work we shall give a group theoretical proof directly inspired by
W.M. Kantor’s paper, and hence we defer it until 10.6.2, when GQ as group coset geometries are
introduced.

3.2 Isomorphisms between the known GQ

We start off by considering GQ of order q, q > 1, for which the known examples are Q(4, q), W (q),
T2(O), and their duals.

3.2.1. Q(4, q) is isomorphic to the dual of W (q). Moreover, Q(4, q) (or W (q)) is self-dual iff q is
even.

Proof. Let Q+ be the Klein quadric of the lines of PG(3, q) [4]. Then Q+ is an hyperbolic quadric
of PG(5, q). The image of W (q) on Q+ is the intersection of Q+ with a nontangent hyperplane of
PG(4, q) of PG(5, q). The nonsingular quadric Q+ ∩ PG(4, q) of PG(4, q) is denoted by Q. The lines
of W (q) which are incident with a given point form a flat pencil of lines, hence their images on Q+

form a line of Q. Now it easily follows that W (q) is isomorphic to the dual of Q(4, q).
Now consider the nonsingular quadric Q of PG(4, q). Let L0 and L1 be nonconcurrent lines of

Q(4, q). Then the 3-space L0L1 intersects Q in an hyperbolic quadric having reguli {L0, L1, . . . , L1}
and {M0,M1, . . . ,Mq}. In Q(4, q) we have Li ∼Mj , i, j = 0, . . . , q, so (L0, L1) is a regular pair of lines
of Q(4, q). Hence each point of Q(4, q) is coregular. From 1.5.2 it follows that each point of Q(4, q)
is regular or antiregular according as q is even or odd. Thus for q odd Q(4, q) (and also W (q)) is not
self-dual.

So let q be even. The tangent 3-spaces of Q all meet in one point n, the nucleus of Q [80]. From n
we project Q onto a PG(3, q) not containing n. This yields a bijection of the pointset of Q(4, q) onto
PG(3, q), mapping the (q + 1)(q2 + 1) lines of Q(4, q) onto (q + 1)(q2 + 1) lines of PG(3, q). Since the
q + 1 lines of Q(4, q) which are incident with a given point are contained in a tangent 3-space of Q,
they are mapped onto elements of a flat pencil of lines of PG(3, q). Hence the images of the lines of
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Q(4, q) constitute a linear complex of lines [159] of PG(3, q), i.e. they are the totally isotropic lines
with respect to a symplectic polarity of PG(3, q). It follows that Q(4, q) ∼= W (q), and consequently
Q(4, q) and W (q) are self-dual. 2

Remark: In [218] J. Tits proves that W (q) is self-polar iff q = 22h+1, h > 0. Let θ be a polarity
of W (q), q = 22h+1, h > 1. By 1.8.2 the set of all absolute points (resp., lines) of θ is an ovoid O
(resp., a spread V ) of W (q). It is easily seen that O (resp., V ) is an ovoid [50] (resp., spread [50])
of PG(3, q). J. Tits proves that O is not a quadric and that the associated inversive plane admits he
Suzuki group Sz(q) as automorphism group. Finally, the spread V is the Lüneburg-spread giving rise
to the non-desarguesian Lüneburg-plane [100, 184].

3.2.2. The GQ T2(O) is isomorphic to Q(4, q) iff O is an irreducible conic; it is isomorphic to W (q)
iff q is even and O is a conic.

Proof. Let Q be a nonsingular quadric of PG(4, q) and let x ∈ Q. Project Q from x onto a PG(3, q)
contained in PG(4, q) but not containing x. Then there arises a bijection θ from the set of all points of
Q(4, q) not collinear with x, onto the pointset PG(3, q) \ PG(2, q), where PG(2, q) is the intersection
of PG(3, q) and the tangent 3-space of Q at x. In other words, if O is the conic Q∩PG(2, q), then we
have a bijection θ from the set of all points of Q(4, q) not collinear with x, onto the set of all points
of T2(O) not collinear with (∞). Now we extend θ in the following way: if y is a point of Q(4, q) with
y ∼ x and y 6= x, then define yθ to be the intersection of PG(3, q) and the tangent 3-space of Q at
y, i.e. yθ is the projection of that tangent 3-space from x onto PG(3, q); define xθ to (∞); if L is a
line of Q(4, q), define Lθ to be the projection of L onto PG(3, q) (from x). If L does not contain x,
then Lθ is a line of PG(3, q) containing a point of O; if L contains x, then Lθ is a point of O. Now
it is clear that θ is an isomorphism of Q(4, q) onto T2(O). Hence, if O is an irreducible conic, then
T2(O) ∼= Q(4, q).

Conversely, suppose that T2(O) ∼= Q(4, q). Then by an argument in the proof of the previous
theorem, all pairs of lines of T2(O) are regular. Let L0 and L1 be nonconcurrent lines of type (a)
of T2(O), and suppose they define distinct points x0 and x1 of O. If {L0, L1}⊥ = {M0,M1, . . . ,Mq}
and {L0, L1}⊥⊥ = {L0, L1, . . . , Lq}, then L0, . . . , Lq,M0, . . . ,Mq are lines of type (a) of T2(O). More-
over, in T2(O) and also in PG(3, q) Li is concurrent with Mj , i, j = 0, . . . , q. Hence {L0, L1}⊥ and
{L0, L1}⊥⊥ are the reguli of an hyperbolic quadric Q+ of PG(3, q) [80]. Clearly O is the intersection
of Q+ with a nontangent plane, so O is an irreducible conic.

If q is even and O is a conic, then T2(O) ∼= Q(4, q) ∼= W (q). Conversely, suppose that T2(O) ∼=
W (q). As all points of W (q) are regular and the lines of T2(O) through (∞) are regular, by 1.5.2 q
must be even. In this case T2(O) ∼= Q(4, q) ∼= W (q), implying that O is a conic. (In the case q is
odd another pleasant argument is as follows: by B. Segre’s theorem [158] the oval O is a conic. Hence
T2(O) ∼= Q(4, q), implying Q(4, q) ∼= W (q), a contradiction since q is odd.) 2

Remark: If q is odd, then the oval O is a conic, implying T2(O) ∼= Q(4, q). If q is even and O is a
conic, then T2(O), which is isomorphic to Q(4, q), is self-dual. The problem of determining all ovals
for which T2(O) is self-dual has been solved (c.f. M. Eich and S.E. Payne [56], S.E. Payne and J.A.
Thas [143], and also Chapter 12). A complete classification of T2(O) would also entail a complete
classification of the ovals, a problem which at present seems hopeless.

We now consider the known GQ of order (q, q2). For q = 2, the GQ of order (q, q2) are also the
GQ of order (q, q + 2). But in 5.3.2 we shall prove that up to isomorphism there is only one GQ of
order (2, 4). For q > 2, the known examples are Q(5, q), the dual of H(3, q2), T3(O), and K(q).

3.2.3. Q(5, q) is isomorphic to the dual of H(3, q2).

Proof. Let Q be an elliptic quadric, i.e. a nonsingular quadric of projective index 1, in PG(5, q).
Extend PG(5, q) to PG(5, q2). Then the extension of Q is an hyperbolic quadric Q+, i.e. a nonsingular
quadric of projective index 2, in PG(5, q2). Hence Q+ is the Klein quadric of the lines of PG(3, q2).
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So to Q in Q+ there corresponds a set V of lines in PG(3, q2). To a given line L of the GQ Q(5, q)
there correspond q + 1 lines of PG(3, q2) that all lie in a plane and pass through a point x. Let H
be the set of points on the lines of V . Then with each point of Q(5, q) there corresponds a line of V
and with each line L of Q(5, q) there corresponds a point x of H. With distinct lines L, L′ of Q(5, q)
correspond distinct points x, x′ of H (a plane of Q+ contains at most one line of Q). Since a point
y of Q(5, q) is on q2 + 1 lines of Q(5, q), these q2 + 1 lines are mapped onto the q2 + 1 points of the
image of y. Hence we obtain an anti-isomorphism from Q(5, q) onto the structure (H,V, I) where I is
the natural incidence relation. So (H,V, I) is a GQ of order (q2, q) embedded in PG(3, q2). But now
by a celebrated result of F. Buekenhout and C. Lefèvre [29], which will be proved in the next chapter,
the GQ (H,V, I) must be H(3, q2). 2

The proof just give is in J.A. Thas and S.E. Payne [214]. An algebraic proof of the same theorem
was given by A.A. Bruen and J.W.P. Hirschfeld [24].

3.2.4. T3(O) is isomorphic to Q(5, q) iff O is an elliptic quadric of
PG(3, q).

Proof. Let Q be a nonsingular quadric of projective index 1 of PG(5, q), and let x ∈ Q. Project Q
from x onto a PG(4, q) ⊂ PG(5, q) not containing x. Then there arises a bijection θ from the set of
all points of Q(5, q) not collinear with x, onto the pointset PG(4, q) \ PG(3, 1), where PG(3, q) is the
intersection of PG(4, q) and th tangent 4-space of Q at x. In other words, if O is the elliptic quadric
PG(3, q)∩Q, then we have a bijection θ from the set of all points of Q(5, q) not collinear with x, onto
the set of all points of T3(O) not collinear with (∞). We extend θ in the following way: if y is a point
of Q(5, q) with x 6= y ∼ x, then define yθ to be the intersection of PG(4, q) and the tangent 4-space of
Q at y, i.e. yθ is the projection of that tangent 4-space from x onto PG(4, q) (note that yθ ∩PG(3, q)
is a tangent plane of O); define xθ to be (∞); if L is a line of Q(5, q), define Lθ to be the projection
of L onto PG(4, q) (from x). If L does not contain x, then Lθ is a line of PG(3, q) which contains a
point of O; if L contains x, then Lθ is a point of O. Now it is clear that θ is an isomorphism of Q(5, q)
onto T3(O). Hence, if O is an elliptic quadric of PG(3, q), then T3(O) ∼= Q(5, q).

Conversely, suppose that T3(O) ∼= Q(5, q). Since the 3-space defined by any pair of nonconcurrent
lines o fQ(5, q) intersects Q in an hyperbolic quadric, it is clear that any pair of lines of Q(5, q) is
regular. Hence any pair of lines of T3(O) is regular.

Let L0 and L1 be nonconcurrent lines of type (a) of T3(O), and suppose they define distinct
points x0 and x1 of O. If {L0, L1}⊥ = {M0,M1, . . . ,Mq} and {L0, L1}⊥⊥ = {L0, L1, . . . , Lq} then
L0, . . . , Lq,M0, . . . ,Mq are lines of type (a) of T3(O). Moreover, in T3(O) and also in PG(4, q) Li is
concurrent with Mj , i, j = 0, . . . , q. Hence L0, . . . , Lq,M0, . . . ,Mq are contained in a three dimensional
space P , and moreover {L0, L1}⊥ and {L0, L1}⊥⊥ are the reguli of an hyperbolic quadric Q+ of P [80].
If PG(3, q) is the three dimensional space containing O, then clearly Q+∩O = Q+∩PG(3, q) = P ∩O.
Hence P ∩O is an irreducible conic. It follows that for any 3-space P of PG(5, q) with P 6⊂ PG(4, q)
and |P ∩ O| > 1, the oval P ∩ O is an irreducible conic. Since all ovals on O are conics, the ovoid O
is an elliptic quadric by a result of A. Barlotti [5]. 2

3.2.5. For q ≡ 2 (mod 3) and q > 2 the GQ K(q) is never isomorphic to a T3(O).

Proof. For a complete proof of this theorem we refer to 10.6.2, where it is shown that K(q) has a
unique regular line if q > 2, whereas the point (∞) of T3(O) is always coregular. 2

We now turn to isomorphisms between the known GQ of order (q−1, q+1). For the case q = 3 see
that the remarks preceding 3.2.3. For q > 3, the known examples are T ∗2 (O), P (S, x) (resp., P (S, L))
with x (resp., L) a regular point (resp., line) of the GQ S of order q, and mathrmAS(q). In choosing
the regular point x or regular line L in some GQ S of order q, by 3.2.1 and 3.2.2 we may restrict
ourselves to the GQ T2(O).
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For q odd, every oval O is an irreducible conic by B. Segre’s theorem [158] and hence by 3.2.2
T2(O) ∼= Q(4, q). So in that case all lines of T2(O) are regular and all points are antiregular, and
moreover T2(O) is homogeneous in its points (resp., lines). Consequently for q odd there arises only
one GQ of S.E. Payne. Perhaps the nicest model of that GQ is obtained by considering P (W (q), x):
points of the GQ are the points of PG(3, q) \PG(2, q), with PG(2, q) the polar plane of x with respect
to the symplectic polarity θ defining W (q); lines of the GQ are the totally isotropic lines of θ which
do not contain x, and also all lines of PG(3, q) which contain x and are not contained in PG(2, q).

Now assume that q is even. Here the structure T2(O) depends, naturally, on the nature of the oval
O. In general the point (∞) and all lines incident with it are regular. If some additional point or line is
regular then T2(O) must belong to a completely determined list of examples (c.f. 3.3 and Chapter 12
for the details). And for q = 2h > 8, there are examples of O for which there is a unique line L∞
of regular points. For any one of these regular points x different from (∞), the GQ P (T2(O), x) was
shown by S.E. Payne [124] not to be isomorphic to any T ∗2 (O). However, as we show below, both
T ∗2 (O) and AS(q) do arise as special cases of the general construction P (S, x). This underscores the
importance of this general method of construction, and strongly suggests that a complete classification
of the GQ P (S, x) and P (S, L), for q even, is hopeless.

3.2.6. ([120]) The GQ T ∗2 (O) and AS(q) are isomorphic to the respective GQ P (T2(O′), (∞)), with
O′ = O \ {x} and x ∈ O, and P (W (q), y).

Proof. Consider T ∗2 (O), with O a complete oval of PG(2, q), q = 2h. Let O′ = O \ {x}, with x some
point of O. Then O′ is an oval with nucleus x [80]. Now consider the GQ T2(O′). The point (∞)
is a regular point of T2(O′) (which may be considered to follow from the fact that all tangent lines
of O′ meet at x, of from the fact that (∞) is coregular and q is even). It is easy to see that the GQ
P (T2(O′), (∞)) coincides with the GQ T ∗2 (O). Hence T ∗2 (O) is a GQ of S.E. Payne.

Now consider the GQ AS(q), q odd, of R.W. Ahrens and G. Szekeres. Recall that the elements of
P are the point of AG(3, q) and that the elements of B are the following curves of AG(3, q):

(i) x = σ, y = a, z = b; denoted [−a, b].

(ii) x = a, y = σ, z = b; denoted [a,−b].

(iii) x = cσ2 − bσ + a, y = −2cσ + b, z = σ; denoted [c, b, a].

Here the parameter σ ranges over the elements of GF(q), and a, b, c are fixed but arbitrary elements
of GF(q). The set of q lines of type (ii) with fixed b will be denoted by (b); the set of q lines of
type (iii) of AS(q) with fixed c and b will denoted by (c, b). Further, we introduce the notation
[c] = {(c, b) ‖ b ∈ GF(q)} and [∞] = {(b) ‖ b ∈ GF(q)}. Then we define a new incidence structure
S ′ = (P ′,B′, I′) in the following way. The elements of P ′ are of four types: a symbol (∞), the elements
(b) and (c, b), and the points of P. The elements of B′ are the lines of type (ii) and (iii) of B, the
elements [c], and [∞]. Further, we define I′ by (∞) I′ [∞], (∞) I′ [c] for all c ∈ GF(q), (b) I′ [∞] for
all b ∈ GF(q), (b) I′ [a,−, b] for all a, b ∈ GF(q), (c, b) I′ [c] for all b, c ∈ GF(q), (c, b) I′ [c, b, a] for all
a, b, c ∈ GF(q), u I′ L iff u I L for all u ∈ P and all lines of L of type (ii) or (iii) of B. It is easily
checked that each point of P ′ is incident with q + 1 lines of B′, and each line of B′ is incident with
q + 1 points of P ′. Now using the fact that for each value of c there are q2 mutually disjoint lines of
type (iii) in AS(q), and after checking that in S ′ two lines L,M of type (ii) or (iii) concur at a point
(b) or (c, b) iff in AS(q) the q lines of {L,M}⊥ are of type (i), it is not difficult to show that S ′ is a
GQ of order q.

Next we show that all points of S ′ are regular. By 1.3.6 it is sufficient to prove that any triad of
points of S ′ is centric. There are several cases according to the types of the points in the triad. In the
following a point (x, y, z) ∈ P will be called a type I point, a point (c, b) a type II point, a point (b)
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a type III point, and the point (∞) the type IV point. There are many cases to consider, but several
of them are easy. We present the details only for the least trivial of the cases.

First of all we consider the case (IV,I,I). Let u and v be the points of type I. Further, assume that
L is the line of type (i) of AS(q) incident with u and that M is the line of AS(q) which contains v and
is concurrent with L. If w is defined by u I′ N I′ w I′ M , then in S ′ the point w is collinear with (∞).
Hence in S ′ the triad ((∞), u, v) is centric, so that the point (∞) is regular.

Before starting with the other cases we remark that in S ′ the points (x0, y0, z0) and (x1, y1, z1)
(resp., (c, b) and (x, y, z)) are collinear iff (y0 + y1)(z1 − z0) = 2(x0 − x1) (resp., y = −2cz + b).

Consider now the case (I,I,I), and suppose (u0, u1, u2), ui = (xi, yi, zi), is a triad of points. For
subscripts reduced mod 3 to one of 0, 1, 2, this means that (yi+yi+1)(zi+1−zi) 6= 2(xi−xi+1), i = 0, 1, 2.
We then wish to find a point u3 = (x3, y3, z3) of type I such that (yi+y3)(z3−zi) = 2(xi−x3), i = 0, 1, 2,
or a point (c, b) of type II such that b = yi +2czi, i = 0, 1, 2, or a point (b) of type III such that b = zi,
i = 0, 1, 2. A point u3 = (x3, y3, z3) satisfying the above conditions can be found iff the following
system of linear equations in y3, z3 has a solution:

(z1 − z0)y3 + (y0 − y1)z3 = y0z0 − y1z1 + 2(x0 − x1),
(z2 − z0)y3 + (y0 − y2)z3 = y0z0 − y2z2 + 2(x0 − x2).

The determinant of this system is
a

= z0(y2 − y1) + z1(y0 − y2) + z2(y1 − y0). Hence if
a
6= 0 we can

solve for a u3 of type I. On the other hand, if
a

= 0 and zi 6= zj for some i 6= j, then it is easily verified
that the system b = yi + 2czi, i = 0, 1, 2, has a solution in b, c. Finally, if

a
= 0 and z0 = z1 = z2,

then (z0) is collinear with u0, u1, u2. This completes case (I,I,I). The other cases that are not trivial
are for triads (III,II,I), (III,I,I), (II,II,I), and (I,I,I). But even there the computations are somewhat
simpler than, and in the same spirit as the ones just presented.

So we have proved that all points of S ′ are regular. Clearly we have AS(q) ∼= P (S ′, (∞)). We
finally prove that S ′ ∼= W9q). For that purpose we introduce the incidence structure S ′′ = (P ′′,B′′, I′′),
with P ′′ = P ′, B′′ the set of spans (in S ′) of all points-pairs of P ′, and I′′ the natural incidence. By
1.3.1 and using the fact that any triad of points of S ′ is centric, it follows that any three noncollinear
points of S ′′ generate a projective plane. Since |P ′′| = q3 + q2 + q + 1, S ′′ is the design of points and
lines of the projective 3-space PG(3, q) over GF(q). Clearly all spans (in S ′) of collinear point-pairs
containing a given point x, form a flat pencil of lines in PG(3, q). it follows immediately that the set
of all spans of collinear point-pairs is a linear complex of lines of PG(3, q) [159], i.e. is the set of all
totally isotropic lines for some symplectic polarity. Hence S ′ ∼= W (q) and the theorem is proved. 2

Remark: In [15] it is proved that T ∗2 (O1) ∼= T ∗2 (O2) iff there is an isomorphism θ of the plane π1 of O1

onto the plane π2 of O2 for which Oθ
1 = O2.

3.3 Combinatorial properties: regularity, antiregularity, semiregu-
larity and property (H)

In this section we consider the pure combinatorics of the known GQ. Many of the properties in the
following theorems will be seen to be of fundamental importance for a large variety of characterizations
of the known GQ. We start by considering the classical GQ, and by 3.2.1 it is sufficient to consider
Q(3, q), Q(4, q), Q(5, q), and H(4, q2). Of course, the structure of Q(3, q) is trivial.

3.3.1. (i) Properties of Q(4, q): all lines are regular; all points are regular iff q is even; all points
are antiregular iff q is odd; all points and lines are semiregular and have property (H).

(ii) Properties of Q(5, q): all lines are regular; all points are 3-regular; all points and lines are
semiregular and have property (H).
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(iii) Properties of H(4, q2): for any two noncollinear points x, y we have |{x, y}⊥⊥| = q + 1; for any
two nonconcurrent lines L,M we have |{L,M}⊥⊥| = 2, but (L,M) is not antiregular; all points
are semiregular and have property (H) but no line is semiregular.

Proof. (i) This is an immediate corollary of 1.6.1 and the proof of 3.2.1.
(ii) It was observed in the proof of 3.2.4 that all lines of Q(5, q) are regular. So consider a triad

(x0, x1, x2). Since t = s2 we have |{x0, x1, x2}⊥|q + 1. It is clear that {x0, x1, x2}⊥ = Q ∩ π⊥, where
π⊥ is the polar plane of the plane π = x0x1x2 with respect to the quadric Q. Since π and π⊥

are mutually polar, each point of Q ∩ π is collinear in Q(5, q) with each point of Q ∩ π⊥. Hence
|{x0, x1, x2}⊥⊥| = |Q∩ π| = q + 1, and (x0, x1, x2) is 3-regular. It follows that all points are 3-regular.
Since all lines are regular, by 1.6.1 they are semiregular and hence satisfy property (H). Since no triad
(of points) has a unique center, also all points are semiregular and satisfy property (H).

(iii) Consider two noncollinear points x, y of H(4, q2). Then {x, y}⊥ = H ∩π, where pi is the polar
plane of the line L = xy (of PG(4, q2)) with respect to the hermitian variety H. The set of all points
of H that are collinear with all points of H ∩ π is clearly L ∩H. Hence |{x, y}⊥⊥| = |H ∩ L| = q + 1.
Further, consider two nonconcurrent lines L,M of H(4, q2). If PG(3, q2) is the 3-space containing L
and M , then PG(3, q2)∩H = H ′ is a nonsingular hermitian variety of PG(3, q2). Moreover, the trace
(resp., span) of (L,M) in H(4, q2) coincides with the trace (resp., span) of (L,M) in H ′(3, q2). Hence
|{L,M}⊥⊥| = 2. Since t > s in H(4, q2), the pair (L,M) is not antiregular.

Now we shall show that all the points are semiregular. Suppose that u is the unique center of the
triad (x, y, z). Since (|{x, y}⊥⊥| − 1)t = s2, part (ii) of 1.4.2 tells us that z ∈ cl(x, y). Hence u is
semiregular. It follows also that all points satisfy property (H).

From |{L,M}⊥⊥| = 2 for each pair (L,M) of nonconcurrent lines, it follows that all lines have
property (H). Finally, we show that no line is semiregular. Consider three lines L,M, V of H(4, q2)
with L ∼ V ∼ M 6∼ L. Further, let N be a line of H(4, q2) for which N ∼ V , L 6∼ N 6∼ M , and
which is not contained in the 3-space PG(3, q2) defined by L and M . Then V is the unique center of
the triad (L,M,N), but N 6∈ cl(L,M). Hence V is not semiregular, and the proof of (iii) is complete.
2

We now turn out attention to the GQ T (O).

3.3.2. (i) All lines of type (b) of T2(O) are regular. The point (∞) is regular or antiregular according
as q is even or odd.

(ii) All lines of type (b) of T3(O) are regular, and the point (∞) is 3-regular.

Proof. (i) Let x ∈ O be a line of type (b). We shall prove that x is regular. Consider a line L of type
(a) which is not concurrent with x. The intersection of O and L is denoted by y, x 6= y. It is clear
that {x, L}⊥ contains y and the q lines of the plane xL which contain x but not y. And {x, L}⊥⊥
contains x and the q lines of the plane xL which contains y but not x. Hence |{x, L}⊥⊥| = q + 1 and
(x, L) is regular. It follows that (∞) is coregular and the proof of (i) is complete by 1.5.2.

(ii) An argument analogous to that in (i) shows that all lines of type (b) of T3(O) are regular. It
remains only to prove that (∞) is 3-regular. Let ((∞), x, y) be a triad, so that x and y are points
of type (i). The 3-space PG(3, q) which contains O and the line xy of PG(4, q) have a point z 6∈ O
in common. Exactly q + 1 tangent planes π1, . . . , πq+1 of O contain z. It is clear that {(∞), x, y}⊥
consists of the q + 1 3-spaces xπ1, . . . , xπq+1. And {(∞), x, y}⊥⊥ contains (∞) and the q points of
xy \ {z}. Hence |{(∞), x, y}⊥⊥| = q + 1, and consequently (∞) is 3-regular. 2

There is a kind of converse.

3.3.3. (i) If T2(O) has even one regular pair of nonconcurrent lines of type (a) defining distinct
points of O, then O is a conic and T2(O) is isomorphic to Q(4, q).
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(ii) If T2(O) has a regular point of type (i), then q is even, O is a conic and T2(O) is isomorphic to
Q(4, q).

(iii) If T3(O) has a regular line of type (a), then O is an elliptic quadric and T3(O) is isomorphic to
Q(5, q).

(iv) If T3(O) has a 3-regular point other than (∞), then O is an elliptic quadric and T3(O) is iso-
morphic to Q(5, q).

Proof. (i) Suppose that (L,M) is a regular pair of nonconcurrent lines of T2(O) of type (a) defining
distinct points of O. Then all elements of {L,M}⊥ and {L,M}⊥⊥ are of type (a), and in PG(3, q) each
line of {L,M}⊥ has a point in common with each line of {L,M}⊥⊥. Hence {L,M}⊥ and {L,M}⊥⊥
are the reguli of some hyperbolic quadric Q+ of PG(3, q). Evidently O is a plane intersection of Q+,
and thus O is a conic and by 3.2.2 the proof of (i) is complete.

(ii) Suppose that some type (i) point of T2(O) is regular. Since the translations of PG(3, q) \
PG(2, q), O ⊂ PG(2, q), induce a group of automorphisms of T2(O) which is transitive on points of
type (i), clearly all points of type (i) are regular. It follows easily that all points are regular, and then
by 1.5.2 that q is even since lines of type (b) are regular. Then by 1.5.2 again all lines are regular, so
an appeal to part (i) completes the proof of (ii).

(iii) Suppose that T3(O) has a regular line L of type (a). The point of O defined by L is denoted by
x. By an argument analogous to that used in the proof of (i) it follows that all ovals on O containing x
are conics. So if x′ ∈ O \ {x}, the ovals on O containing x and x′ are conics. If q is even, by a theorem
of O. Prohaska and M. Walker [147] the ovoid O is an elliptic quadric, i.e. T3(O) ∼= Q(5, q). If q is
odd, by a result of A. Barlotti[5] O must be an elliptic quadric, so that by 3.2.4 T3(O) ∼= Q(5, q).

(iv) Finally, suppose that T3(O) has a 3-regular point x of type (i) or (ii). In Step 3 of the proof
of 5.3.1 we shall show that x is coregular. Now by part (iii) the proof is complete. 2

Note: If q is odd, any oval (resp., ovoid) is necessarily a conic (resp., an elliptic quadric), so that
T2(O) ∼= Q(4, q) (resp., T3(O) ∼= Q(5, q)). For q even, q > 4, there are always ovals O for which T2(O)
has a unique line of regular points (c.f. Chapter 12 for more details). And for q = 2h, h odd, h > 2,
the Tits ovoids provide examples of T3(O) not isomorphic to Q(5, q).

In 10.6.2 we shall prove that for q ≡ 2 (mod 3), q > 2, L (as used in the construction given in
3.1.6) is the unique regular line of K(q). Hence by Step 3 of the proof of 5.3.1 K(q), q 6= 2, has no
3-regular point. This has the following interesting corollary: if q = 22h+1, h > 1, there are at least
three pairwise nonisomorphic GQ of order (q, q2).

We now turn to the known GQ of order (q − 1, q + 1). In 5.3.2 we shall prove that every GQ of
order (2, 4) is isomorphic to Q(5, 2). Hence all lines of the GQ of order (2, 4) are regular, and all its
points are 3-regular. Note that a GQ of order (q− 1, q + 1), q > 2, has no regular pair of noncollinear
points since s < t.

3.3.4. The pair (L,M) of nonconcurrent lines of T ∗2 (O) is regular iff L and M define the same point
of O.

Proof. Let L and M be distinct lines of T ∗2 (O) which define the same point y of the complete oval
O. The plane LM of PG(3, q) intersects O in two points y and z. It is clear that {L,M}⊥ consists of
the q lines distinct from yz which are contained in the plane LM and pass through the point z. The
span {L,M}⊥⊥ consists of the q lines distinct from yz which are contained in the plane LM and pass
through the point y. Hence the pair (L,M) is regular.

Further, let L and M be nonconcurrent lines of T ∗2 (O) which define different points y and z of O.
If (L,M) is regular, then {L,M}⊥
(resp., {L,M}⊥⊥) defines q different points u1, . . . , uq (resp., y = y1, z = y2, . . . , yq) of O. Moreover,
ui 6= yj for all i, j = 1, . . . , q. Hence |O| > 2q, which is impossible since q > 2. 2
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In determining all regular elements of P (W (q), x) we may restrict ourselves to the case q odd, since
otherwise P (W (q), x) ∼= T ∗2 (O) where O is a conic. Note that in the case q odd P (W (q), x) ∼= AS(q).

3.3.5. The pair (L,M), L 6∼M , of P (W (q), x), q > 3, is regular iff one of the following holds: (i) L
and M are hyperbolic lines of W (q) which contain x, or (ii) in W (q) L and M are concurrent lines.

Proof. Let L and M be distinct lines of P (W (q), x) which are both of type (b), i.e. which are
hyperbolic lines of W (q) through x. Let π be the polar plane of x with respect to the symplectic
polarity θ of PG(3, q) defining W (q). If y is the pole of the plane LM with respect to θ, then {L,M}⊥
consists of the q lines of PG(3, q) distinct from xy which are contained in the plane LM and pass
through the point y. All lines of {L,M}⊥ are of type (a). The span {L,M}⊥⊥ consists of the q lines
of PG(3, q) distinct from xy, which are contained in the plane LM and pass through the point x. All
lines of {L,M}⊥⊥ are of type (b). Since |{L,M}⊥⊥| = q, the pair (L,M) is regular.

Finally, suppose that (L,M) is a regular pair of nonconcurrent lines with L of type (b) and M of
type (a) or with both L and M of type (a) but non concurrent in W (q). Then {L,M}⊥ and {L,M}⊥⊥
each contain at least q − 1 lines of type (a). Let Z1, . . . , zq−1 (resp., V1, . . . , Vq−1) be lines of type (a)
contained in {L,M}⊥ (resp., {L,M}⊥⊥). Then in W (q) the line Zi is concurrent with the line Vj , for
all i, j = 1, . . . , q − 1. Since q > 3 and by 3.3.1 all lines of W (q), q odd are antiregular, and we have a
contradiction. 2

3.4 Ovoids and spreads of the known GQ

As usual we consider the classical case first.

3.4.1. (i) The GQ Q(4, q) always has ovoids. It has spreads iff q is even, but in that case has no
partition into ovoids or spreads by 1.8.5.

(ii) The GQ Q(5, q) has spreads but no ovoids.

(iii) The GQ H(4, q2) has no ovoid. For q = 2 it has no spread (A.E. Brouwer [21]). For q > 2,
whether or not it has a spread seems to be an open problem.

Proof. (i) Let us consider the GQ Q(4, q). In PG(4, q) consider a hyperplane PG(3, q) for which
PG(3, q) ∩ Q is an elliptic quadric Q−. Then Q− is an ovoid of Q(4, q). If q is even, then Q(4, q) is
self-dual, and hence Q(4, q) has spreads. If q is odd, since all lines of Q(4, q) are regular, the dual of
1.8.4 guarantees that Q(4, q) has no spread.

(ii) Let H be a nonsingular hermitian variety in PG(3, q2). Then any hermitian curve on H, i.e.
any nonsingular plane intersection of H, is an ovoid of the GQ H(3, q2). Hence H(3, q2) has ovoids,
implying that Q(5, q) has spreads. By 1.8.3 Q(5, q) has no ovoid.

(iii) Here we propose two proofs.
(a) Suppose H(4, q2) did have an ovoid O, and let {x, y} ⊂ O. Then {x, y}⊥⊥ has cardinality q+1.

Since at = s2, by 1.8.6 O has an empty intersection with {x, y}⊥⊥, a contradiction.
(b) Again suppose that O is an ovoid of H(4, q2), and consider the intersection of O with a

hyperplane PG(3, q2) of PG(4, q2). If H∩PG(3, q2) is a nonsingular hermitian variety H ′ of PG(3, q2),
then O ∩ PG(3, q2) = O′ is an ovoid of the GQ H ′(3, q2). Hence |O′| = q3 + 1. If H ∩ PG(3, q2) has a
singular point p, then |O ∩ PG(3, q2)| = 1 if p ∈ O and |O ∩ PG(3, q2)| = q3 + 1 if p 6∈ O. So for any
PG(3, q2) we have |O ∩ PG(3, q2)| ∈ {1, q3 + 1}. From J.A. Thas [185] it follows that O is a line of
PG(4, q2), a contradiction.

By an exhaustive search A.E. Brouwer [21] showed that H(4, 4) has no spread. We do not know
whether or not H(4, q2) has a spread when q > 2. 2
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For q an even power of 2, only one type of ovoid of Q(4, q) is known. But for q22h+1
, h > 1, two

types of ovoids of Q(4, q) are known. Their projections from the nucleus of Q onto a PG(3, q) are the
elliptic quadric and the Tits ovoid [218]. On the other hand, the corresponding spreads of W (q) are
the regular spread [50] and the Lüneburg-spread [100] of PG(3, q). Details and proofs are in J.A. Thas
[184].

Recently W.M. Kantor [90] proved that for odd values of q there exist ovoids of Q(4, q) which are
not contained in some PG(3, q), i.e. which are not obtained in the way described in the proof of the first
part of 3.4.1. One of the classes constructed by W.M. Kantor is the following. Consider in PG(4, q),
q odd, the nonsingular quadric Q with equation x2

2 + x0x4 + x3x1 = 0. Let σ ∈ Aut GF(q) and let
−k be a nonsquare in GF(q). Then {(0, 0, 0, 0, 1)} ∪ {(1, x1, x2, kxσ

1 ,−x2
2 − kxσ+1

1 ) ‖ x1, x2 ∈ GF(q)}
is an ovoid O of Q(4, q). (It is easy to check that O is contained in some PG(3, q) iff σ is the identity
permutation). Moreover, he showed that the corresponding spread of W (q) gives rise to a Knuth
semifield plane [50].

Without using the duality between H(3, q2) and Q(5, q) it is possible to give a short proof that
Q(5, q) has a spread. Indeed, over a quadratic extension of GF(q) we consider two mutually skew
and conjugated planes π and π′ on the extension Q∗ of Q. For each point p ∈ Q, let L be the line
containing p and intersecting π and π′. Since L contains at least three points of Q∗, L is a line of Q∗.
As L is a line of PG(5, q), L is a line of Q. The set of all such lines L evidently is a spread of the GQ
Q(5, q).

Further, we show that H(3, q2) has different types of ovoids. Let H ′ be an hermitian curve on H.
If x, y ∈ H ′, x 6= y, then (H ′ \ {x, y}⊥⊥) ∪ {x, y}⊥ is also an ovoid. For more information about the
spreads of Q(5, q) we refer to J.A. Thas [209, 207].

Finally, we remark that the second part of (ii) was first proved by A.A. Bruen and J.A. Thas [25]
using a method analogous to that used in proof (b) of (iii).

3.4.2. (i) The GQ T2(O) always has an ovoid, but for q even it has no partition into ovoids or
spreads by 1.8.5.

(ii) The GQ T3(O) has no ovoid but always has spreads.

Proof. (i) Let π be a plane which has no point in common with O. The q2 points of type (i) in π
together with the point (∞) clearly constitute an ovoid of T2(O). If the oval O of PG(2, q) is contained
in some other ovoid O′ of PG(3, q), PG(2, q) ⊂ PG(3, q), then an ovoid of T2(O) may also be obtained
as follows. Let O = {x0, . . . , xq} and let πi be the tangent plane of O′ at xi, i = 0, . . . , q. Then the
set (O′ \O) ∪ {π0, π1, . . . , πq} is an ovoid of T2(O).

(ii) By 1.8.3 the GQ T3(O) has no ovoid. Finally, we show that T3(O) always has spreads. Let
x ∈ O, let π be a plane of PG(3, q) ⊃) for which x 6∈ π, and let L be the intersection of π and the
tangent plane of O at x. Further, let V be a threespace through π which is distinct from PG(3, q),
and let W be a line spread of V containing L as an element. The elements of W are denoted by
L, L1, . . . , Lq2 . Since L ∩ Li = ∅, the plane Lix has exactly two points in common with O, say x
and xi. Notice that {x, xi} = O ∩ xyi, with {yi} = π ∩ Li. Clearly O = {x, x1, . . . , xq2}. The lines
distinct from xxi which join xi to the points of Li are denoted by Mi1,Mi2, . . . ,Miq. Now we show
that {M11,M12, . . . ,Mq2q, x} is a spread of T3(O).

Clearly the lines Mij and Mij′ of T3(O), j 6= j′, are not incident with a common point of T3(O) of
type (i), and since MijMij′ ∩ PG(3, q) = xxi is not a tangent line of O, they are not incident with a
common point of T3(O) of type (iii). It is also clear that Mij and Mi′j′ , i 6= i′, are not incident with
a common point of type (ii), and since Mij , Mi′j′ and x generate a four dimensional space, the lines
Mij and Mi′j′ of T3(O) cannot be incident with a common point of type (i). Finally, the lines x and
Mij of T3(O) are not incident with a common point of T3(O). Since |{M11, . . . ,Mq2q, x}| = q3 + 1, we
conclude that {M11, . . . ,Mq2q, x} is a spread of T3(O). 2
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3.4.3. The GQ P (S, x) always has spreads. It has an ovoid iff S has an ovoid containing x.

Proof. Consider a GQ S of order s, s > 1, with a regular point x. If x I L, then the s2 lines of S
which are concurrent with L but not incident with x constitute a spread of P (S, x). In addition, the
set of all lines of type (b) is a spread of P (S, x). Further, we note that for each spread V of S, the
set V \ {L}, where L is the line of V which is incident with x, is a spread of P (S, x).

Let O be an ovoid of the GQ S with x ∈ O. It is clear that O \ {x} is an ovoid of P (S, x) if every
line of type (b) contains exactly one point of O \ {x}. But this follows immediately from 1.8.4.

Conversely, suppose that O′ is an ovoid of P (S, x). It is immediate from the construction of P (S, x)
that O′ ∪ {x} is an ovoid of S. 2

3.4.4. the GQ K(q) has spreads but no ovoid.

Proof. By 1.8.3 K(q) has no ovoid. We sketch a proof that K(q) always has spreads. Let V be a
spread of the generalized hexagon H(q), i.e. let V be a set of Q3 + 1 lines of H(q) every two of which
are at distance 6 [36]. If the regular line L of K(q) belongs to V , then it is easy to show that V is a
spread of K(q). Since H(q) always has spreads containing L [203], the GQ K(q) always has a spread.
2

Note: Suppose that H(q) is constructed on the quadric Q of PG(6, q). Let PG(5, q) be a hyperplane
of PG(6, q) which contains L and for which Q ∩ PG(5, q) is elliptic [80]. Then by J.A. Thas [203] the
lines of H(q) which are contained in PG(5, q) constitute a spread of K(q).

3.5 Subquadrangles

Here we shall describe some of the known subquadrangles of both the classical and of the other known
GQ, with the main emphasis being on large subquadrangles.

(a) Consider Q(5, q), with Q a nonsingular quadric of projective index 1 in PG(5, q). Intersect Q
with a nontangent hyperplane PG(4, q). Then the points and lines of Q′ = Q∩PG(4, q) form the GQ
Q′(4, q). Here s2 = t = q2, s = s′ = t′, so that t = s′t′. Since all lines of Q(5, q) (resp., Q′(4, q)) are
regular, Q(5, q) (resp., Q′(4, q)) has subquadrangles with t′′ = 1 and s′′ = s′ = s.

Similarly, consider H(4, q2), with H a nonsingular hermitian variety of PG(4, q2). Intersect H
with a nontangent hyperplane PG(3, q2). Then the points and lines of H ′ = H ∩ PG(3, q2) form the
GQ H ′(3, q2). here t = s3/2 = q3, s = s′, t′ =

√
s, and again t = s′t′. Since all points of H ′(3, q2) are

regular, H ′(3, q2) has subquadrangles with t′′ = t′ =
√

s and s′′ = 1.
Now consider Q(4, q) and extend GF(q) to GF(q2). Then Q extends to Q and Q(4, q) to Q(4, q2).

Here Q(4, q) is a subquadrangle of Q(4, q2), and we have t = s = q2 and t′ = s′ = q. Hence t = s′t′.
(b) Consider T3(O) and let π be a plane of PG(3, q) ⊃ O for which O∩π = O′ is an oval. Then by

considering a hyperplane PG′(3, q) of PG(4, q), for which PG(3, q) ∩ PG′(3, q) = π, we obtain T2(O′)
as a subquadrangle of T3(O). Here s2 = t == q2 and s = s′ = t′, so again t = s′t′.

(c) Consider an irreducible conic C ′ of the plane PG(2, q) ⊂ PG(3, q), where q = 2h. Let GF(qn),
n > 1, be an extension of the field GF(q) and let PG(3, qn) (resp., PG(2, qn) and C) be the corre-
sponding extension of PG(3, q) (resp., PG(2, q) and C ′). If x is the nucleus of C ′, then x is also the
nucleus of C, and C ′ ∪ {x} = O′ (resp., C ∪ {x} = O) is a complete oval of the plane PG(2, q) (resp.,
PG(2, qn)). Evidently T ∗2 (O′) is a subquadrangle of T ∗2 (O). In this case we have s = qn−1, t = qn +1,
s′ = q − 1, and t′ = q + 1. For n = 2 we have s = s′t′.
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3.6 Symmetric designs derived from GQ

3.6.1. (i) A GQ of order q gives rise to a symmetric 2-(q3 + q2 + q + 1, q2 + q + 1, q + 1) design.

(ii) A GQ of order (q + 1, q − 1) gives rise to a symmetric 2-(q2(q + 2), q(q + 1), q) design.

Proof. (i) Let S = (P,B, I) be a GQ of order q. Define as follows a new incidence structure
S ′ = (P ′,B′, I′): P ′ = B′ = P, and x I′ y for x ∈ P ′, y ∈ B′, iff x ∼ y in S. Clearly S ′ is a symmetric
2-(q3 +q2 +q+1, q2 +q+1, q+1) design. The identity mapping of P is a bijection of P ′ onto B′ which
defines a polarity θ of S ′. Moreover, all points and lines of S ′ are absolute for θ. We also remark that
an incidence matrix of S ′ is given by A + I, where A is an adjacency matrix of the point graph of S.

(ii) Let S = (P,B, I) be a GQ of order (q + 1, q − 1), and let S ′ = (P ′,B′, I′) be defined by:
P ′ = B′ = P, and x I′ y for x ∈ P ′, y ∈ B′, iff x 6= y and x ∼ y in S. Clearly S ′ is a symmetric
2-(q2(q + 2), q(q + 1), q) design (cf. also our comments following the proof of 3.1.5). The identity
mapping of P is a bijection of P ′ onto B′, which defines a polarity θ of S ′. Moreover, θ has no absolute
point. Further, we note that any adjacency matrix of the point graph of S is an incidence matrix of
the design S ′. 2

Let S1 = (P1,B1, I1) and S2 = (P2,B2 I2) be two GQ of order q (resp., (q + 1, q − 1)), and let S ′1
and S ′2 be the corresponding designs. It is straightforward to check that any isomorphism of S1 onto
S2 induces an isomorphism of S ′1 onto S ′2. In [56] M.M. Eich and S.E. Payne consider the following
converse: In which cases is an isomorphism between S ′1 and S ′2 necessarily induced by an isomorphism
of the underlying GQ? We now survey their main results.

3.6.2. If S1 and S2 have order (q +1, q− 1), q > 3, then any isomorphism from S ′1 onto S ′2 is induced
by a unique isomorphism from S1 onto S2. For q = 2 this result does not hold.

Proof. First suppose q > 3 and let τ be an isomorphism from S ′1 = (P ′1,B′1, I′1) onto S ′2 = (P ′2,B′2, I′2).
Then τ is a pair (α, β), where α is a bijection from P ′1 onto P ′2 and β is a bijection of B′1 onto B′2
satisfying x I′1 y iff xα I′2 yβ . Hence α and β are really bijections from P1 onto P2 satisfying x ∼ y iff
xα ∼ yβ and xα 6= yβ for distinct elements x and y. Assume that α is not an isomorphism of the point
graph of S1 onto the point graph of S2. Then there must be distinct collinear points x and y in S1

such that xα and yα are not collinear in S2. Let z1, . . . , zq be the remaining points incident with the
line xy of S1. Then zβ

1 , zβ
2 , . . . , zβ

q must be precisely the elements of {xα, yα}⊥. Since x ∼ y, clearly
xβ ∼ yα (xβ 6= yα). So we may assume that yα, xβ , and say zβ

1 are collinear in S2. But zα
i ∼ xβ

(zα
i 6= xβ) and zα

i ∼ zβ
1 (zα

i 6= zβ
1 ), for i = 2, . . . , q. Hence yα, xβ, zβ

1 , zα
2 , . . . , zα

1 must be the q + 2
points incident with some line L of S2. For 2 6 i, j 6 q, i 6= j, it must be that zβ

i ∼ zα
j (zβ

i 6= zα
j ),

zβ
i ∼ yα (zβ

i 6= yα), so that zβ
i is incident with L. But then xα ∼ zβ

j (xα 6= zβ
i ) for 1 6 i ≤ implies xα

is incident with L, so xα ∼ yα, a contradiction. Hence α must be an isomorphism of the point graph
of S1 onto the point graph of S2. Again let x ∼ y in S1 with x 6= y, and let z1, . . . , zq be the remaining
points incident with the line xy of S1. Then zα

1 , zα
2 , . . . , zα

q are the remaining points incident with the
line xαyα of S2. We have yβ ∼ zα

i (yβ 6= zα
i ) and yβ ∼ xα (yβ 6= xα). Hence yβ = yα, implying α = β.

It is now clear that τ is induced by a unique isomorphism from S1 onto S2.
Now suppose that q = 2, so S = (P,B, I) is a grid. Let P = {xij ‖ i, j = 1, . . . , 4}, B =

{L1, . . . , L4,M1, . . . ,M4}, xij I Lk iff i = k and xij I Mk iff j = k. Let α be the permutation of P
defined by xα

12 = x21, xα
21 = x12, xα

11 = x22, xα
22 = x11, xα

34 = x43, xα
43 = x34, xα

33 = x44, xα
44 = x33 and

xα
ij = xij in all other cases. Then the permutation α of the pointset of the corresponding 2-(16, 6, 2)

design S ′ clearly defines an automorphism of S ′, but α is not an automorphism of the point graph of
S. 2

The situation for GQ of order q requires somewhat more effort. Let S = (P,B, I) be a GQ of order
q, q 6= 1. A point x∞ of S is called a center of irregularity provided the following is true: if y and z
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are distinct collinear points in P \ x⊥∞, then there is some point w such that w ∼ z and (y, w) is an
irregular (i.e. not regular) pair. The following result is a key lemma in the treatment of the order q
case.

3.6.3. Suppose S has a center of irregularity. Let α be a permutation of P satisfying the following:

(i) y ∼ yα for all y ∈ P,

(ii) y ∼ w iff yα ∼ wα−1
, for all y, w ∈ P,

(iii) If (y, w) is an irregular pair of points, then w 6∼ yα−1
.

Then α is the identity.

Proof. Suppose x∞ is a center of irregularity, and let y be a point such that y 6∼ x∞ and y 6= yα−1
,

so y 6= yα. By (i) y ∼ yα−1
. If yα−1 6∼ x∞, there must be some point w such that w ∼ yα−1

and
(y, w) is irregular. But this is impossible by (iii). Hence yα−1 ∼ x∞. Now if y 6= yα−1

, then by (i) and
(ii) yα must be incident with the line yyα−1

. Hence yα 6∼ x∞, and the argument just applied to show
yα−1 ∼ x∞ now shows that (yα)α−1

= y must be collinear with x∞, a contradiction. So yα = yα−1
. We

have proved that α2 fixes each point in P \ x⊥∞. If z ∈ P \ x⊥∞, then by (ii) xα
∞ 6∼ zα−1

, i.e. xα
∞ 6∼ zα.

Again by (ii) xα2

∞ 6∼ z. Since xα2

∞ 6∼ z for all z ∈ P \ x⊥∞, we have xα2

∞ = x∞. If u ∈ x⊥∞ \ {x∞}, then
for u′ ∈ {x∞} ∪ (P \ x⊥∞) and u′ ∼ u, we have uα ∼ (u′)α−1

, i.e. uα ∼ u′α. Again by (ii) uα2 ∼ u′.
It easily follows that uα2

= u. Hence α2 is the identity permutation of P, and by (ii) α defines an
automorphism π of S.

We now claim α fixes x∞. For suppose xα
∞ = z 6= x∞. Then z ∼ x∞. Let L be the line zx∞. Since

α2 is the identity, zα = x∞, which implies that α must fix the set of all points incident with L. Also
z must be a center of irregularity. It now follows for z just as it did for x∞ that if y is a point such
that y 6= yα and y 6∼ z, then yα ∈ {y, z}⊥. If y ∼ z, y 6∼ x∞, y 6= yα, then yα ∈ {y, z}⊥ ∩ {y, x∞}⊥,
implying yα I L. This is impossible since Y 6I L. Hence any point y with y 6∼ z and y 6∼ x∞ must be
fixed by α. Since each line M , m 6∼ L, is incident with at least two points not collinear with x∞ or z
(by 1.3.4 (iv) all points of a GQ of order 2 are regular), it is clear that Mα = M . It follows readily
that α is the identity automorphism of S, which contradicts the assumption that xα

∞ 6= x∞.
Finally, since α fixes x∞, it must leave P \ x⊥∞ invariant. Then by the first part of the proof α

must fix each point of P \ x⊥∞. It follows readily that α is the identity. 2

If S is a GQ of order q, q 6= 1, in which each pair of noncollinear points is irregular, then clearly
each point is a center of irregularity and 3.6.3 applies.

3.6.4. Let S1 = (P1,B1, I1) and S2 = (P2,B2, I2) be GQ of order q, q > 1. If S2 has a center of
irregularity, then any isomorphism from S ′1 onto S ′2 is induced by an isomorphism from S1 onto S2.

Proof. Suppose that S ′1 and S ′2 are isomorphic, and that S2 has a center of irregularity. Further,
assume that Qi is an incidence matrix of Si, i = 1, 2, with points labeling columns and lines labeling
rows. Then AT

i Ai = (s + 1)I + Ai, with Ai an adjacency matrix of the point graph of Si. Hence
AT

i Qi − sI = Ni is an incidence matrix of the design S ′i. Since S ′q ∼= S ′2, there are permutation
matrices M1 and M2 such that M1N1M2 = N2. By reordering the points of S1 so that its new
incidence matrix is Q1M

−1
1 , we may suppose N1 = N2M for some permutation matrix M . If M = I,

we are done.
So suppose M 6= I. Since N1 = N2M and N2 are symmetric, we have

MT N2 = N2M (3.6)

If P2 = {x1, . . . , xv}, then let the permutation α be defined by xj = xα
i iff (M)ij 6= 0. By (3.6)

xi ∼ xj iff xα
i ∼ xα−1

j , for all points xi, xj of P2. Since N2M has only 1’s on its main diagonal, we
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have xi ∼ xα
i for all points xi of P2. We now prove that for any irregular pair (xi, xj) of points of S2,

we have xi 6∼ xα−1

j . Suppose the contrary for a particular i and j. If P1 = {y1, . . . , yv}, then from
N1 = N2M it follows that yn ∼ ym iff xn ∼ xα−1

m . So in particular yi ∼ yj in S1. Since xj ∼ xα−1

j ,
xi ∼ xα−1

i , xi ∼ xα−1

j , xα−1

i ∼ xj , we have xα−1

j , xα−1

i ∈ {xi, xj}⊥ (notice that xi 6∼ xj since (xi, xj)
is irregular). Now consider a point yk incident with the line yiyj . Then xi ∼ xα−1

k and xj ∼ xα−1

k ,
implying {xi, xj}⊥ = {xα−1

k ‖ yk I yiyj}. If yr I yiyj , then xr ∼ xα−1

k for all xα−1

k ∈ {xi, xj}⊥. Hence
(xi, xj) is regular, a contradiction. So for any irregular pair (xi, xj) of points of S2 we have xi 6∼ xα−1

j .
Now by 3.6.3 α is the identity permutation of P2. So M = I and the proof is complete. 2

We are now in a position to resolve the problem of this section for at least the known GQ.

3.6.5. Suppose S1 and S2 are GQ of order q, q > 1, and that S2 is isomorphic to one of the known
GQ. Then one of the following two situations must arise:

(i) S2
∼= W (q). If S ′1 ∼= S ′2, then also S1

∼= W (q). However, not every isomorphism from S ′1 to S ′2
is induced by one from S1 to S2.

(ii) S2 has a center of irregularity, so that each isomorphism from S ′1 to S ′2 is induced by one from
S1 to S2.

Proof. Since all points of W (q) are regular, it has no center of irregularity. The symmetric design
arising from W (q) clearly is isomorphic to the well known design of points and planes of PG(3, q).
Here the polarity θ of the design is essentially the symplectic polarity of PG(3, q) defining W (q).
Moreover, it is an easy geometrical exercise to prove that W (q) is the only GQ of order q that gives
rise to the symmetric design S ′ formed by the points and planes of PG(3, q). Since any element
of PGL(4, q) defines an automorphism of S ′ and since there are always elements in PGL(4, q) that
are not automorphisms of the point graph of W (q), there are automorphisms of S ′ not induced by
automorphisms of W (q).

If S2
∼= Q(4, q), there are two cases. If q is even, then Q(4, q) ∼= W (q), so it is already handled. If

q is odd, then each point is antiregular, and in particular is a center of irregularity.
The only remaining known GQ of order q is T2(O) and its dual, where q is even and O a nonconical

oval. In this case we now show that (∞) is a center of irregularity for T2(O) and each line of T2(O) of
type (b) is a center of irregularity for the dual of T2(O).

First we prove that for any line x of type (b) of T2(0) (x ∈ 0) is a center of irregularity for the dual
of T2(0). Let L and M be two concurrent lines each of which is not concurrent with x (then L and
M are of type (a)). Let L ∼ y and M ∼ z, with y and z of type (b) (possibly y = z). In PG(3, q), let
u ∈ M \ {z} and u 6∈ L. The line xu of PG(3, q) is a line N of type (a) of T2(O) for which N ∼ M .
By 3.3.3 the pair (L,N) is irregular, so we have proved that x is a center of irregularity for the dual
of T2(O).

Finally, we prove that the point (∞) is a center of irregularity for T2(O). By 3.3.3 no point of type
(i) is regular. Let x and y be two collinear points of type (i). Since x is not regular, there is some point
z for which (x, z) is irregular. The point which is collinear with z and incident with xy is denoted
by u. First let u be of type (i). The perspectivity of PG(3, q) with center x and axis PG(2, q) ⊃ O
which maps u onto y is denoted by σ. Since σ induces an automorphism of T2(O) and since (x, zσ) is
irregular, where xσ ∼ y, we are done. So suppose u is of type (ii). Let {x, z}⊥ = {u, u1, . . . , uq} and
let {u1, ui}⊥ = {x, z, u1

i , . . . , u
q−1
i }, i = 2, . . . , q. Clearly (x, uj

i ) is irregular. Now suppose uj
i ∼ u for

all i = 2, . . . , q and j = 1, . . . , q−1. Then u ∈ {u1, ui}⊥⊥ and equivalently ui ∈ {u, u1}⊥⊥, i = 2, . . . , q.
Hence (u, u1) is regular, a contradiction. It follows that there is some uj

i for which uj
i 6∼ u. Now by a

preceding argument there is a point u′ for which u′ ∼ y and (x, y′) is irregular. 2
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Chapter 4

Generalized quadrangles in finite
projective spaces

4.1 Projective generalized quadrangles

A projective GQ S = (P,B, I) is a GQ for which P is a subset of the pointset of some projective space
PG(d, K) (of dimension d over a field K), B is a set of lines of PG(d, K), P is the union of all members
of B considered as sets of points, and the incidence relation I is the one induced by that of PG(d, K).
If PG(d′, K) is the subspace of PG(d, K) generated by all points of P , then we say PG(d′, K) is the
ambient space of S.

All finite projective GQ were first determined by F. Buekenhout and C. Lefèvre in [29] with a proff
most of which is valid in the infinite case. Indepenedently, D. Olanda [110, 111] has given a typically
finite proof and J.A. Thas and P. De Winne [213] have given a different combinatorial proof under
the assumption that the case d = 3 is already settled. More recently, K.J. Dienst [51, 52] has settled
the infinite case. The main goal of this chapter is to give the proof of F. Buekenhout and C. Lefèvre.
However, because the GQ in this book are finite, we have modified their presentation somewhat.

The definition of GQ used by F. Buekenhout and C. Lefèvre was a little more general and included
grids. However, a routine exercise shows that a projective grid consists of a pair of opposite reguli in
some PG(3, K) (and hence a GQ). Until further notice we shall suppose S = (P,B, I) to be a finite
projective GQ of order (s, t), s > 2, t > 2, with ambient space PG(d, s), d > 3.

For the subspace of PG(d, s) generated by the poinsets or points
P1, . . . , Pk, we shall frequently use the notation < P1, . . . , Pk >.

4.2 The tangent hyperplane

4.2.1. If W is a subspace of PG(d, s) and if W ∩B denotes the set of all lines of S in W , then for the
substructure S ∩S = (W ∩P,W ∩B,∈) we have one of the following: (a) The elements of W ∩B are
lines which are incident with a distinguished point of P, and W ∩ P consists of the points of P that
are incident with these lines; (b) W ∩B = ∅ and W ∩P is a set of pairwise noncollinear points of S;
(c) W ∩S is a projective subquadrangle of S. If W is a hyperplane of PG(d, s), then W ∩P generates
W .

Proof. By 2.3.1 and since s 6= 1, it is immediate that we have one of (a), (b), (c). So suppose W is
a hyperplane of PG(d, s). By definition there is a point p ∈ P ∈ (W ∪ P). It suffices to show that an
arbitrary line L of B is in < W ∩P, p >. We may suppose that L meets W in some point q. If p ∈ L,
the required conclusion is obvious. So suppose p 6∈ L and let L′ be a line of B through p (L′ 6= L)

43



44 Finite generalized quadrangles

meeting W in a point q′, with q′ 6= q. Clearly L′ is in < W ∩ P, p >. There must be a point r′ of
L′, r′ 6= q′, such that the line M of B through r′ intersecting L meets L in a point r different from q.
Then M has two distinct points in < W ∩ P, p >: the point r′ of L′ and the point M ∩W . Hence r
is in < W ∩ P, p >, so that L has two point of < W ∩ P, p >. 2

If p ∈ P, a tangent to S at p is any line L through p such that either L ∈ B or L ∩ P = {p}. The
union of all tangents to S at p will be called the tangent set of S at p, and we denote it by S(p). The
relation between S(p) and p⊥ is: p⊥ = P ∩ S(p). A line L of PG(d, s) is a secant to S if L intersects
P in at least two points but is not a member of B.

4.2.2. If p and q are collinear points of S, then p⊥ ∩ q⊥ is the line < p, q >.

Proof. Clear. 2

4.2.3. For each p ∈ P, < p⊥ >⊂ S(p).

Proof. We must show that for each line L through p in < p⊥ > either L ∈ B or L intersects P exactly
in p. So suppose that p ∈ L 6∈ B, L ⊂< p⊥ >. First, suppose that there is some line L1 of B through
p and a second tangent L2 to S at p for which the plane α =< L1, L2 > contains L. If L were not a
tangent at p it would contain some point q p 6= q ∈ P. There would be a unique line M ∈ B through
q and intersecting L1 in p1, p1 6= p. As M is contained in α, M meets L2 in a point p2, p2 6= p. Then
p, p2 ∈ L2 implies L2 ∈ B, since L2 is a tangent to S containing two points of S. But then L1 and L2

are two lines of S through p intersecting M , contradicting the assumption that S is a GQ. Hence L
must be a tangent.

Second, as PG(d, s) is finite dimensional there is an integer k such that < p⊥ > is generated by k
lines L1, . . . , Lk of S through p. Let Xi =< L1 ∪ . . . ∪ Li >, i = 2, . . . , k. By the first case we know
X2 ⊂ S(p). Now we use induction on i. Assume Xi ⊂ S(p), and let L be som eline of Xi+1 through p.
We may suppose L 6= Li+1 and L 6⊂ Xi. Then the plane α =< L, Li+1 > intersects Xi along a line L′.
By induction hypothesis L′ is a tangent to S at p, so that α =< Li+1, L

′ > satisfies the hypothesis of
the first case. Hence L is a tangent to S at p, and it follows that Xi+1 ⊂ S(p). 2

4.2.4. < p⊥ > is a hyperplane of PG(d, s).

Proof. Consider a point q ∈ P\ < p⊥ >. By 4.2.1 < p⊥, q > ∩S is a subquadrangle of S. Clearly
this subquadrangle has order (s, t), so it must coincide with S. Hence < p⊥, q >= PG(d, s), i.e.
dim < p⊥ >= d− 1. 2

4.2.5. The hyperplane < p⊥ > is the tangent set S(p) to S at p, and is called the tangent hyperplane
to S at p.

Proof. By the preceding results we know that < p⊥ > is a hyperplane contained in S(p). If equality
did not hold, there would some tangent line L at p not in < p⊥ >. We use induction on the dimension
of PG(d, s) to obtain the desired contradiction. First suppose d = 3. Let L1 be a line of S through p
and let α be the plane < L, L1 >. If there was a point q ∈ α∩P with q 6∈ L1, there would be a line M
of B through q meeting L1 in a point not p. But M would be in α and hence meet L in a point (6= p)
of P, an impossibility. Hence each point of α ∩ P is on L1. But every line of S intersects α, implying
every line of S meets L1, an impossibility. So the result holds for d = 3. Suppose d > 3 and consider
two lines L1 and L2 of S through p. Let H be a hyperplane containing < L,L1, L2 >. As L is not in
< p⊥ >, H is not < p⊥ >. By 4.2.1 < H ∩ P >= H, and either H ∩ P is the pointset of a GQ in
H or H ∩ P ⊂ p⊥. If H ∩ P ⊂ p⊥, then H =< H ∩ P >⊂< p⊥ >, or H =< p⊥ >, a contradiction.
So H ∩ S is a subquadrangle of S. But then using the induction hypothesis in the ambient space of
H ∩ S we reach a contradiction. 2
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4.2.6. Let p, q, r be three distinct points of S on a line of PG(d, s). Then the intersections S(p)∩S(q),
S(q) ∩ S(r), and S(r) ∩ S(q) coincide.

Proof. First suppose that < p, q, r > is not a line of S, and let w be any point of p⊥ ∩ q⊥. Then
p, q ∈ w⊥, and r ∈< p, q >⊂< w⊥ >= S(w). Since r ∈ P and r ∈ S(w), clearly r ∈ w⊥. Hence
any point of p⊥ ∩ q⊥ also belongs to r⊥. We claim < p⊥ > ∩ < q⊥ >=< p⊥ ∩ q⊥ >. Indeed
< p⊥ > ∩ < q⊥ > must be a (d−2)-dimensional subspace containing < p⊥∩q⊥ >, so that < p⊥∩q⊥ >
is at least (d − 2)-dimensional. Hence < p⊥ > ∩ < q⊥ >=< p⊥ ∩ q⊥ >. Then S(p) ∩ S(q) =< p⊥ >
∩ < q⊥ >=< p⊥ ∩ q⊥ >⊂< r⊥ >= S(r), completing the proof. Now suppose < p, q, r > is a line of
S, so by 4.2.2 p⊥ ∩ q⊥ =< p, q > and S(p) ∩ S(q) ∩ P =< p, q >. Let w be any point of S(p) ∩ S(q)
not on < p, q >. If r′ is on the line < r, w >, r′ 6= r and r′ 6= w, then < p, r′ > is in S(p). Since
< p, r′ > ∩ < q,w > is not a point of S, < p, r′ > is not a line of S, so r′ 6∈ P. Hence the line < r,w >
intersects P at the unique point r, implying that each point w of S(p)∩ S(q) not on < p, q > belongs
to S(r). This completes the proof. 2

4.2.7. Let L be a secant containing three distinct points p, a, a′ of P. Then the perspectivity σ of
PG(d, s) with center p and axis S(p) mapping a onto a′ leaves P invariant.

Proof. Clearly σ fixes all points of S(p) and thus fixes p⊥. Let b ∈ P \ p⊥. First suppose b is not on
L and let α be the plane < p, a, b >. Consider the line M =< a, b >. Then M intersects S(p) at a
point c, fixed by σ. Hence Mσ =< a′, c >.

If M is a line of S, then c ∈ P so the tangent line < p, c > is a line of S. Thus the plane
< p, a, c >= α is in the tangent hyperplane S(c). Hence, since a′ ∈ α, it follows that a′ ∼ c and Mσ

is a line of S and bσ is a point of S.
If M is not a line of S, suppose there is a point u ∈ P \ S(p) with u ∈ a⊥ ∩ b⊥. The argument of

the previous paragraph, with u in the role of b, shows that uσ ∈ P. Then with u and uσ playing the
roles of a and a′, respectively, it follows that bσ ∈ P. On the other hand, suppose a⊥ ∩ b⊥ ⊂ S(p).
Consider points u, u′ ∈ P \ S(p) with a ∼ u ∼ u′ ∼ b. Then consecutive applications of the previous
paragraph show that uσ, u′σ, and finally bσ are all in P.

Second, suppose b is on L, and use the fact that if u is any point of P not on L then uσ ∈ P. It
follows readily that bσ ∈ P. 2

4.2.8. All secant lines contain the same number of point of S.

Proof. Let L and L′ be secant lines. First suppose L and L′ have a point p of P in common, and
let M be any secant line through p. If some M is incident with more than two points of P, by 4.2.7
we may consider the nontrivial group G of all perspectivities with center p and axis S(p), leaving P
invariant. The group G is regular on the set of points of M in P but different from p, for each M .
Hence each secant through p has 1+ |G| points of P, so that L and L′ have the same number of points
of S. If no M is incident with more than two points of P, then clearly L and L′ contain two points of
S.

Secondly, suppose L and L′ do not have any point of P in common, and choose points p, p′ of P
on L,L′, respectively. If p 6∼ p′, then < p, p′ > is a secant, so meets P in the same number of points
as do L and L′, by the previous paragraph. If p ∼ p′, choose a point q ∈ P with p 6∼ q 6∼ p′, and apply
the previous paragraph to the secant lines L, < p, q >, < p′, q >, L′. 2

4.3 Embedding S in a polarity: preliminary results

The goal of this section and the next is to extend the mapping p 7→ S(p) to a polarity of PG(d, s), i.e.
to construct a mapping π such that
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(a) for each point x of PG(d, s), π(x) is a hyperplane of PG(d, s),

(b) for each p ∈ P, π(p) = S(p),

(c) x ∈ π(y) implies y ∈ π(x).

For a point x of PG(d, s), the collar Sx of S for x is the set of all points p of S such that p = x or the
line < p, x > is a tangent to S at p. For example, if x ∈ P, Sx is just x⊥. If x 6∈ P, the collar Sx is
the set of points p of P such that < p, x > ∩P = {p}.

For all x ∈ PG(d, s) the polar π(x) of x with respect to S is the subspace of PG(d, s) generated by
the collar Sx, i.e. π(x) =< Sx >. In particular, if x ∈ P, then π(x) = S(x) (c.f. 4.2.5).

4.3.1. For any point x, let p1 and p2 be distinct points of Sx. Then P∩ < p1, p2 >⊂ Sx.

Proof. Suppose p ∈ P∩ < p1, p2 >, p1 6= p 6= p2. Since x ∈ S(p1) ∩ S(p2), by 4.2.6 also x ∈ S(p),
hence p ∈ Sx. 2

4.3.2. Each line L of S intersects the collar Sx for each point x of PG(d, s), in exactly one point,
unless each point of L is in Sx.

Proof. The result is clearly true if x ∈ P, so suppose x 6∈ P. Put α =< L, x >. If α ∩ P is the
set of points on L, then each point of L is in Sx. So suppose y ∈ α ∩ P, y 6∈ L. Then y ∼ p for a
unique point p of L. By 4.2.5 each line of α =< L, y > through p is a tangent at p, and hence p ∈ Sx.
Moreover by 4.3.1 p is the unique point of L in Sx unless each point of L is in Sx. 2

4.3.3. Either π(x) =< Sx > is a hyperplane or π(x) = PG(d, s).

Proof. Again we may assume that x 6∈ P. If the assertion is false for some point x, then π(x) is
contained in some subspace X of codimension 2 in PG(d, s). Each line L ∈ B intersects X by 4.3.2.
Therefore if p is a point of S not on X, Sp is contained in < X, p > and as < Sp > is a hyperplane,
< X, p >=< Sp >= S(p). Any line L′ of S through p must contain a second point q of P not in X.
Then S(p) =< X, p >=< X, q >= S(q), an obvious impossibility. 2

4.3.4. If π(x) is a hyperplane, then Sx = P ∩ π(x).

Proof. Clearly Sx ⊂ P ∩π(x). Suppose there were a point p of P ∩π(x) not in Sx. Then either some
line L of S through p does not lie in π(x), or π(x) = S(p). In the first case L intersects π(x) exactly
in p. Then as p 6∈ Sx, L is on no point of Sx, contradicting 4.3.2. In the second case, as p 6∈ Sx, each
line of B through p has exactly one point in Sx. So on any line of B through p there is a point p′,
p′ 6= p, of S(p) \ Sx, and there is a line L of B through p′ but not in π(x) = S(p), leading back to the
first case. 2

4.3.5. Let x be a point of PG(d, s) and a, a′ distinct points of P different from x and not in π(x),
which are collinear with x. Then the perspectivity σ of PG(d, s) with center x and axis π(x) mapping
a onto a′ leaves P invariant.

Proof. If x ∈ P, the result is known by 4.2.7, since < x, a, a′ > is a secant line. So suppose x 6∈ P,
and note that σ fixes all points of P ∩π(x). Let b be a point of P \π(x) not on < a, a′ >. Let α be the
plane < x, a, b > and M the line < a, b >. If M ∩ π(x) = {c}, then Mσ =< a′, c >. By an argument
similar to that used in the proof of 4.2.7 we may assume M ∈ B. Then c ∈ P ∩π(x) = Sx, by 4.3.4, so
< c, x > and M , and hence α =< x, a, c > are in the tangent hyperplane S(c). Then a′ ∈ α ⊂ S(c),
forcing Mσ =< a′, c >∈ B, i.e. bσ ∈ P. Finally, if b is a point of P \ π(x) on the line < a, a′ >, it
follows readily that bσ ∈ P. 2
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4.3.6. Suppose that secant lines to S have at least three points of P. If π(x) is a hyperplane, then
either y ∈ π(x) implies x ∈ π(y), or there is a point z with π(z) = PG(d, s) and Sz 6= P.

Proof. Clearly we may suppose π(y) to be a hyperplane. Consider a nontrivial perspectivity σ with
center x and axis π(x) and leaving P invariant (σ exists by 4.3.5). Since y ∈ π(x), σ fixes y and by
definition of π(y) must leave π(y) invariant. But the invariant hyperplanes of a nontrivial perspectivity
are its axis and all hyperplanes through its center. First suppose π(y) is the axis of σ, i.e. π(x) = π(y).
If x ∈ π(x), there is nothing to show. So suppose x 6∈ π(x). Let p1 and p2 be two points of P \ {y} on
a secant L through y, and let q ∈ P, p1 ∼ q ∼ q2. Then S(p1) and S(p2) do not contain y because it
contains p1 and p2 on L, i.e. q ∈ π(y) = π(x). Since S(p1) ∩ S(p2) =< p⊥1 ∩ p⊥2 >, S(p1) ∩ S(p2) is in
π(x) = π(y) and does not contain y. Furthermore, as p1 and p2 are not in π(x), S(p1) and S(p2) do
not contain x. Consequently, as x 6∈ π(x), S(p1) and S(p2) intersect the line < x, y > in two distinct
points z1 and z2, different from x and y. But the line < x, y > is in the tangent hyperplane of each
point of Sx = Sy = P ∩ π(x). Hence Sz1 contains Sx = Sy and the point p1, but not the point p2. So
π(z1) = PG(d, s) and Sz1 6= P. Consequently, if there is no z such that π(z) = PG(d, s) and Sz 6= P,
then π(y) is not the axis of σ and π(y) must contain x, completing the proof. 2

4.4 The finite case

Throughout this book attention is concentrated on finite GQ. The arguments given in hte first three
sections of this chapter hold also in the case of a projective space of finite dimension d > 3 over an
infinite field. For the remainder of this chapter, however, finiteness is essential. Recall that S has
order (x, t), s > 2, t > 2, and denote by ` + 1 the constant number (cf. 4.2.8) of points of S on a
secant line. If ` = 1, P is a quadratic set in the sense of F. Buekenhout [27] and by his results S
formed by the points and lines on a nonsingular quadric of projective index 1 in PG(d, s), d = 4 or 5.
Hence we assume that ` > 1 and proceed to establish (a), (b), (c) of 4.3.

4.4.1. ` = t/sd−3, and d = 3 or 4.

Proof. The secant lines through a point p ∈ P are the sd−1 lines of PG(d, s) through p which do not lie
in the tangent hyperplane S(p). Hence the total number of points of P is `sd−1 + |p⊥| = (1+s)(1+st),
implying ` = t/sd−3. By Higman’s inequality we know that t 6 s2, so that 2 6 ` 6 s2/sd−3, implying
d = 3 or 4. 2

A subset E of P is called linearly closed in P if for all x, y ∈ E, x 6= y, the intersection < x, y > ∩P
is contained in E. Thus any subset X of P generates a linear closure X in P.

4.4.2. Let d = 3, and suppose a0, a1, a2 are three points of P noncollinear in PG(3, s). Then
{a0, a1, a2} = P∩ < a0, a1, a2 >.

Proof. If the plane α =< a0, a1, a2 > contains a line of S, the lemma is trivial. Hence suppose α
contains no line of S. As d = 3, any secant line intersects P in exactly t + 1 points. Take a point
p (6= a0) of P on the secant line < a0, a1 >. The t + 1 secant lines < p, q >, where q is a point of
P∩ < a0, a1 >, intersect P in points which are in the linear closure {a0, a1, a2}. As each of these
lines < p, q > intersects P in t + 1 points, there are t(t + 1) + 1 points of P on these lines. Hence
|{a0, a1, a2}| > t2+t+1. If the claim of 4.4.2 were false, there would be a point r ∈ (P∩α)\{a0, a1, a2}.
Then every line of α through r contains at most one point of {a0, a1, a2}, so there are at least t2 + t+1
lines of α through r which are secant to P. Therefore, we obtain (t2 + t + 1)(t− 1) + 1 = t3 points of
P in α not belonging to {a0, a1, a2}. Hence |α∩}| > t3 + t2 + t + 1. Since no two points of α ∩ P are
collinear in S, and s 6 t2, we have t3 + t2 + t + 1 6 1 + st 6 1 + t3, an impossibility that completes
the proof. 2
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4.4.3. Let d = 4, and suppose a0, a1, a2 are three points of P noncollinear in PG(4, s). Then
{a0, a1, a2} = P∩ < a0, a1, a2 >.

Proof. As before we may suppose that α =< a0, a1, a2 > contains no line of S. Fix a point p ∈ P ∩α
and a line L ∈ B incident with p. Put q =< a0, a1, a2, L >. Then for Q ∩ S there are the following
two possibilities: (a) The elements of Q ∩ B are lines which are incident with a distinguished point
of P, and Q ∩ P consists of the points of P which are incident with these lines, and (b) Q ∩ S is a
projective subquadrangle of S. If we have (b), then by the preceding result α∩P is the linear closure
of {a0, a1, a2} in P, as desired. If we have (a), two cases are possible. (i) There exists a line L′ ∈ B
through a point of α such that < α,L′ > intersects S in a subquadrangle. Then 4.4.2 still applies.
(ii) For each line L ∈ B intersecting α, B′ =< α,L > ∩B is a set of lines through a point bi of L not
on α, and P ′ =< α,L > ∩P is the set of all points on the lines of B′. Here < α,L > is the tangent
hyperplane at bi. Hence α contains 1 + t points of P : a0, . . . , at. Clearly aj ∼ bi for all i and j.
Furthermore, by the definition of the points bi, the line of B through a given point aj are the lines
< aj , bi >. Hence there are exactly q + t points bi. This means S has two (disjoint) sets {aj}, {bk} of
1 + t (pairwise noncollinear) points with aj ∼ bi, 0 6 i, j 6 t. By Payne’s inequality 1.4.1, t2 6 s2, i.e.
t 6 s. But ` = t/s > 1 makes this impossible, completing the proof. 2

4.4.4. Let {ai} be a family of points of P. Then the linear closure of {ai} in P is P∩ < ai >.

Proof. First note that if s = 2 (and ` > 1, < P >= PG(d, s) by assumption), then any line containing
at least two points of P is entirely contained in P. Hence all points of PG(d, s) are points of P, so the
lemma is trivial. Hence we assume s > 2. Also it is clear that the result holds if < ai > is a point, line,
or plane. Further, we may assume that the points ai are linearly independent in PG(d, s). As PG(d, s)
is finite, we may apply induction as follows: suppose the result is true for k points a0, . . . , ak−1, 3 6 k,
indexed so that < a0, . . . , ak−1 > is not contained in S(a0), and let ak ∈ P\ < ao, . . . , ak−1 >. We
show that the result holds for {a0, . . . , ak}. Put Li =< a0, ai >, i = 1, . . . , k, and let β be any plane
through Lk contained in < L1, . . . , Lk >. Clearly β intersects < L1, . . . , Lk > in a line L. We show
that P∩ < Lk, L >⊂ {a0, . . . , ak}, from which the desired result follows immediately. Suppose L is
incident with at least two points of P. By the induction hypothesis the points of P on L are all in
{a0, . . . , ak−1}. And then 4.4.2 and 4.4.3 show that P∩ < Lk, L > is in {a0, . . . , ak}. Now suppose
that L is a tangent line whose points are not all in P. If < Lk, L > contains no point of P not on
Lk, there is nothing more to show. So suppose p is a point of P∩ < Lk, L > but not on Lk. Consider
the plane α generated by L and a secant line through a0 in the space < L1, . . . , Lk−1 > (such a line
exists since S(a0) 6⊃< a0, . . . , ak−1 >). This plane is not in the tangent hyperplane S(a0), so L is the
unique tangent line at a0 in α. Hence there are two secant lines A, K in α and through a0. Each of
the planes < Lk, A >, < Lk,K > is not in S(a0), and hence contains exactly one tangent line at a0.
Consider in < Lk, A > a secant line C (C 6= Lk) such that the plane < C, p > intersects < Lk,K >
in a secant line D. (The line C exists because < Lk, A > has at least four lines through a0). By the
induction hypothesis the points of P on A and K belong to {a0, . . . , ak−1}. Hence by 4.4.2 and 4.4.3
the points of P on C and D belong to {a0, . . . , ak}. But as p ∈< C,D >, again by 4.4.2 and 4.4.3
p ∈ {a0, . . . , ak}. 2

4.4.5. Sx 6= P.

Proof. Clearly we may suppose x 6∈ P, and there are two cases: d = 3 and d = 4. First suppose that
d = 3 and that Sx = P. Each line through x intersecting P must be a tangent line, so the number of
tangent lines through x is |P| = (1 + s)(1 + st). As t > 1, there are at least (1 + s)2 = 1 + 2s + s2

lines of PG(3, s) through x, of which there are only 1 + s + s2. So we may suppose d = 4 and Sx = P.
Let p ∈ P. If L is a line of S through p, the plane < x, L > intersects P in the points of L, because
all points of P are points of Sx. Hence the 1 + t lines of S through p together with x generate t + 1
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distinct planes. Since all thses planes are contained in S(p) and dim S(p) = 3, we have 1 + tles + 1,
an impossibility since t/s = ` > 1. 2

4.4.6. π(x) is a hyperplane.

Proof. This result is known for x ∈ P, so suppose x 6∈ P. Consider the intersection π(x)∩P. By 4.3.1
and 4.4.4 all points of π(x) ∩ P are in S(x), implying Sx = π(x) ∩ P. If π(x) were not a hyperplane,
then by 4.3.3 π(x) = PG(d, s), implying Sx = π(x) ∩ P = P, am impossibility by 4.4.5. 2

This completes the proof that conditions (a), (b), (c) of Section 4.3 hold, so that π is a polarity.
We show that P is the set of absolute points of π. Since B is the set of all lines of PG(d, s) which
contain x and are contained in π(x) ∩ P, where x runs over P, B must be the set of totally isotropic
lines of π.

4.4.7. x ∈ π(x) iff x ∈ P.

Proof. If x ∈ P, we know that x ∈ π(x). We shall prove that if x ∈ π(x), then x ∈ P. First suppose
d = 3, so the number of lines through x in π(x) is equal to s+1. Suppose x ∈ π(x)\P. If p ∈ P∩π(x),
then < p, x > is a tangent. If π(x) contains a line L of S, then all points of π(x) ∩ P are on L. Since
every line of S contains a point of π(x), all lines of S are concurrent with L, a contradiction. If π(x)
contains no line of S, every line of S meets π(x) in exactly one point, and every point of π(x) ∩ P is
on 1 + t lines of S. Hence |π(x) ∩ P| = 1 = st, and there are at least q + st lines through x in π(x),
an impossibility for t > 1. Finally, we may suppose d > 3 (i.e. d = 4) and let x ∈ π(x) \ P. Let H
be the hyperplane containing x and two lines L1, L2 of S through a point p, p 6∈ π(x) (notice that
x 6∈< L1, L2 >). The intersection H ∩ S is a subquadrangle, since otherwise H would be the tangent
hyperplane S(p), forcing p to be in π(x). Clearly H is the ambient space of H ∩S. If π′(x) is the polar
of x with repsect to H ∩ S, then π′(x) = π(x)∩H. Hence x ∈ π′(x), a contradiction since dim H = 3
and x 6∈ P. 2

This completes the proof of F. Buekenhout and C. Lefèvre:

4.4.8. A projective GQ S = (P,B, I) with ambient space PG(d, s) must be obtained in one of the
following ways:

(i) There is a unitary or symplectic polarity π of PG(d, s), d = 3 or 4, such that P is the set of
absolute points of π and B is the set of totally isotropic lines of π.

(ii) There is a nonsingular quadric Q of projective index 1 in PG(d, s), d = 3, 4 or 5, such that P
is the set of points of Q and B is the set of lines on Q.

Hence S must be one of the classical examples described in Chapter 3.



50 Finite generalized quadrangles



Chapter 5

Combinatorial characterizations of the
known generalized quadrangles

5.1 Introduction

In this chapter we review the most important purely combinatorial characterizations of the known
GQ. Several of these theorems appeared to be very useful and were important tools in the proofs of
certain results concerning strongly regular graphs with strongly regular subconstituents [34], coding
theory [34], the classification of the antiflag transitive collineation groups of finite projective spaces
[35], the Higman-Sims group [8], small classical groups (E.E. Shult, private communication), etc.

In the first part we shall give characterizations of the classical quadrangles W (q) and Q(4, q).
The second part will contain all known characterizations of T3(O) and Q(5, q). Next an important
characteriaztion of H(3, q2) by G. Tallini [176] is given. Then we prove two characterization theorems
of H(4, q2). In the final part conditions are given which characterize several GQ at the same time,
and the chapter ends with a characterization by J.A. Thas [205] of all classical GQ and their duals.

5.2 Characterizations of W (q) and Q(4, q)

Historically, this next result is probably the oldest combinatorial characterization of a class of GQ. A
proof is essentially contained in R.R. Singleton [168] (although he erroneously thought he had proved
a stronger result), but the first satisfactory treatment may have been given by C.T. Benson [10]. No
doubt it was discovered independently by several authors (e.g. G. Tallini [176]).

5.2.1. A GQ S of order s (s > 1) is isomorphic to W (s) iff all its points are regular.

Proof. By 3.2.1 and 3.3.1 all points of W (s) are regular. Conversely, let us assume that S = (P,B, I)
is a GQ of order s (s 6= 1) for which all points are regular. Now we introduce the incidence structure
S ′ = (P ′,B′, I′), with P ′ = P, B′ the set of spans of all point-pairs of P, and I′ the natural incidence.
Then S is isomorphic to the substructure of S ′ formed by all points and the spans of all pairs of points
collinear in S. By 1.3.1 and using the fact that any triad of points is centric by 1.3.6, it follows that
any three noncollinear points of S ′ generate a projective plane. Since |P ′| = s3 + s2 + s + 1, S ′ is the
design of points and lines of PG(3, s). Clearly all spans (in S) of collinear point-pairs containing a
gien point x, form a flat pencil of lines of PG(3, s). Hence the set of all spans collinear point-pairs is
a linear complex of lines of PG(3, s) (cf. [159]), i.e. is the set of all totally singular isotropic lines for
some symplectic polarity. Consequently S ∼= W (s). 2

5.2.2. ([197]). A GQ S of order (s, t), s 6= 1, is isomorphic to W (s) iff |{x, y}⊥⊥| > s + 1 for all x, y
with x 6= y.
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Proof. For W (s) we have |{x, y}⊥⊥| = s + 1 for all points x, y with x 6= y. Conversely, suppose S
has order (s, t), s 6= 1, and |{x, y}⊥⊥| > s + 1 for all x, y with x 6= y. By 1.4.2 (ii) we have st 6 s2.
Since |{x, y}⊥⊥| 6 t + 1 for x 6∼ y, there holds t > s. Hence s = t and |{x, y}⊥⊥| = s + 1 for all x, y
with x 6= y. Then S ∼= W (s) by 5.2.1. 2

5.2.3. Up to isomorphism there is only one GQ of order 2.

Proof. Let S be a GQ of order 2. Consider two points x, y with x 6∼ y, and let {x, y}⊥ = {z1, z2, z3}.
If {z1, z2}⊥ = {x, y, u}, then by 1.3.4 (iv) we have u ∼ z3. Hence (x, y) is regular. So every point is
regular and S ∼= W (2). 2

5.2.4. (J.A. Thas [186]). A GQ S = (P,B, I) of order s, s 6= 1, is isomorphic to W (2h) iff it has an
ovoid O each triad of which is centric.

Proof. The GQ W (2h) has an ovoid O by 3.4.1 (i) and each triad of O is centric by 1.3.6 (ii) and 3.3.1
(i). Conversely, suppose the GQ S of order s, s 6= 1, has an ovoid O each triad of which is centric.
Consider a point p ∈ P \O. The s+1 lines incident with p are incident with s+1 points of O. Such a
subset C of order s + 1 of O is called a circle. The number of circles is at most (s2 + 1)(s + 1)− |O| =
s(s2+1). Since every triad of O is centric, there are at least (s2+1)s2(s2−1)/(s+1)s(s−1) = s(s2+1)
circles. Consequently, there are exactly s(s2 + 1) circles, every three elements of O are contained in
just one circle, and each circle is determined by exactly one point p 6∈ O. It follows that O together
with the set of circles is a 3-(s2+1, s+1, 1) design, i.e. an inversive plane [50] of order s. This inversive
plane will be denoted by I∗(O). The point p 6∈ O defining the circle C will be called the nucleus of C.

Now consider two circles C and C ′ with respective nuclei p and p′, where p ∼ p′. If p I L I p′ and
if x is the point of O which is incident with L, then C ∩ C ′ = {x}. Hence the w − 1 circles distinct
from C which are tangent to C at x have as nuclei the s− 1 points distinct from x and p, which are
incident with L.

Consider a circle C, a point x ∈ C, and a point y ∈ O \C. Through y there passes a unique circle
C ′ with C ∩ C ′ = {x}. Now take a point u ∈ C \ {x}, and consider the unique circle C ′′ with u ∈ C ′′

and C ′ ∩C ′′ = {y}. We shall prove that |C ∩C ′′| = 2. If not, then C ∩C ′′ = {u}. And the nucleus of
C (resp., C ′, C ′′) is denoted by p (resp., p′, p′′). By the preceding paragraph there are distinct lines
L, L′, L′′ such that p′ I L I p′′, p′′ I L′ I p, p I L′′ I p′, giving a contradiction. Hence |C ∩ C ′′| = 2.
If u runs through C \ {x}, then we obtain a partition of C \ {x} into pairs of distinct points. Hence
|C \ {x} = s is even. Since s is even, I∗(O) is egglike by the celebrated theorem of P. Dembowski
[50], and hence s = 2h. Consequently there exists an ovoid O′ in PG(3, w) together with a bijection σ
from O′ onto O, such that for every plane π of PG(3, s) with |π ∩ O′| > 1, we have that (π ∩ O′)σ is
a circle of I∗(O). If W (s) is the GQ arising from the symplectic polarity θ defined by O′ [50], i.e. if
W (s) is the GQ formed by the points of PG(3, s) together with the tangent lines of O′, then we define
as follows a bijection φ from the pointset and lineset of W (s) onto the pointset and lineset of S: (i)
xφ = xσ for x ∈ O′; (ii) for x 6∈ O′ the point xφ is the nucleus of the circle (xφ ∩ O′)σ of I∗(O); and
(iii) if L is a line of W (s) which is tangent to O′ at x, Lφ is the line of S joining xφ to the nucleus of
the circle (π ∩O′)σ, where π is a plane of PG(3, s) which contains L but is not tangent to O′. In one
of the preceding paragraphs it was shown that Lφ is independent of the plane π. Now it is an easy
exercise to show that φ is am isomorphism of W (s) onto S. 2

In view of 1.3.6 (ii), there is an immediate corollary.

5.2.5. A GQ S of order s, s 6= 1, is isomorphic to W (2h) iff it has an ovoid O each point of which is
regular.

5.2.6. (S.E. Payne and J.A. Thas [143]). A GQ S = (P,B, I) of order s, s 6= 1, is isomorphic to
W (2h) iff it has a regular pair (L1, L2) of nonconcurrent lines with the property that any triad of points
lying on lines of {L1, L2}⊥ is centric.
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Outline of proof. By 3.3.1 all lines and points of W (2h) are regular, and then by 1.3.6 (ii) all triads
of points and lines are centric.

Conversely, suppose the GQ S of order s, s 6= 1, has a regular pair (L1, L2) of nonconcurrent lines
with the property that any triad of points lying on lines of {L1, L2}⊥ is centric. Let {L1, L2}⊥ =
{M1, . . . ,Ms+1}, {L1, L2}⊥⊥ = {L1, . . . , Ls+1}, and Li I xij I Mj , i, j = 1, . . . , s + 1. Consider
a point p ∈ P \ V , with V = {xij ‖ i, j = 1, . . . , s + 1}. The s + 1 lines incident with p are
incident with s + 1 points of V . Such a subset C of order s + 1 of V is called a circle. By an
argument similar to that used in the proof of 5.2.4 one proves that each triad of V is contained in
exactly one circle and that any circle C is determined by exactly one point p ∈ P \ V . The point
p will be called the nucleus of C. Now we consider the incidence structure M∗ = (V,B′, I′), where
B′ = {L1, L2}⊥ ∪ {L1, L2}⊥⊥ ∪ {C ‖ C is a circle} and I′ is defined in the obvious way. Then it is
clear that M∗ is a Minkowski plane of order s [68]. That s is even folows from an argument analogous
to the corresponding one in 5.2.4. Now by a theorem proved independently by W. Heise [72] and N.
Percsy [146], the Minkowski plane M∗ is miquelian [68], i.e. is isomorphic to the classical Minkowski
plane arising form the hyperbolic quadric H in PG(3, s). Hence s = 2h. If W (s) is the GQ arising
from the symplectic polarity θ defined by H [80], which means that W (s) is the GQ formed by the
points of PG(3, s) together with the tangent lines of H, then in a manner analogous to that used in
the preceding proof one shows that W (s) ∼= S. 2

5.2.7. (F. Mazzocca [102], S.E. Payne and J.A. Thas [143]). Let S be a GQ of order s, s 6= 1, having
an antiregular point x. Then S is isomorphic to Q(4, s) iff there is a point y, y ∈ x⊥ \ {x}, for which
the associated affine plane π(x, y) is desarguesian.

Proof. Since S = (P,B, I) has an antiregular point x, s is odd by 1.5.1 (i). And for Q(4, s), s odd,
it is clear that each associated affine plane π(x, y) (see 1.3.2) is the desarguesian plane AG(2, s).

Conversely, suppose that y, y ∈ x⊥ \ {x}, is a point for which the associated affined plane π(x, y)
is desarguesian. We consider the incidence structure L∗ = (x⊥ \ {x},B′, I′), where B′ = B1 ∪ B2 with
B1 = {M ∈ B ‖ x I M} and B2 = {{x, z}⊥ ‖ z 6∼ x} and where I′ is defined in the obvious way. We
shall prove that L∗ is a Laguerre plane of order s [68], for which the elements of B1 are the generators
(or lines) and the elements of B2 are the circles.

Clearly each point of L∗ is incident with a unique element of B1, and a generator and a circle
intersect in exactly one point. Next, let x1, x2, x3 be pairwise noncollinear points of L∗. Hence
(x1, x2, x3) is a triad of S with center x. By the antiregularity of x, the triad has exactly one center
z 6= x (see 1.3.6 (iii)). Hence x1, x2, x3 lie on a unique circle Cz. Further, we remark that each circle
has s + 1 points and that there exist some C ∈ B2 and some d ∈ x⊥ \ {x} such that d  I′ C. Finally,
we have to show that for each C ∈ B2, d ∈ C, u ∈ (x⊥ \ {x}) \ C, u 6∼ d, there is a unique circle C1

with u ∈ C1 and C ∩ C1 = {d}. But this is an easy consequence from the preceding properties and
|x⊥ \ {x}| = s2 + s, |{x ‖ x I′ M}| = s for all M ∈ B1, |C| = s + 1 for all C ∈ B2.

It is clear that the internal structure L∗y [68] of the Laguerre plane L∗ with respect to the point y is
essentially the affine plane π(x, y). Since π(x, y) is desarguesian, then by a theorem proved by Y. Chen
and G. Kaerlein [39] and independently by S.E. Payne and J.A. Thas [143], there is an isomorphism
σ from the Laguerre plane L∗ onto the classical Laguerre plane arising from the quadric cone C∗ in
PG(3, s).

Let C∗ be embedded in the nonsingular quadric Q of PG(4, s). The vertex of C∗ is denoted by
X∞. Now let xφ = x∞ and wφ = wσ for all s ∈ x⊥ \ {x}. If z 6∼ x and C = {x, z}⊥ ∈ B2, then zφ

is the unique point of the GQ Q(4, s) for which {zφ, x∞}⊥ = Cσ. Evidently φ is a bijection from P
onto Q. Moreover, it is easy to check that collinear (resp., noncollinear) points of S are mapped by φ
collinear (resp., noncollinear) points of Q(4, s). It follows immediately that S ∼= Q(4, s). 2

There is an easy corollary.
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5.2.8. Let S be a GQ of order s, s 6= 1, having an antiregular point x. If s 6 8, i.e. if s ∈ {3, 5, 7},
then S is isomorphic to Q(4, s).

Proof. Since each plane of order s, s 6 8, is desarguesian [80], the result follows. 2

From the proof of 5.2.7 it follwos that with each GQ S of ordre s, s 6= 1, having an antiregular
point there corresponds a Laguerre plane L∗ of order s. In [143] it is also shown that, conversely, with
each Laguerre plane L∗ of odd order s there corresponds a GQ of order s with at least one antiregular
point.

5.3 Characterizations of T3(O) and Q(5, q)

The following characterization theorem will appear to be very important, not only for the theory of
GQ but also for other domains in combinatorics: see e.g. L. Batten and F. Buekenhout [8], and P.J.
Cameron, J.-M. Goethals, and J.J. Seidel [34].

5.3.1. (J.A. Thas [198]). A GQ of order (s, s2), s > 1, is isomorphic to T3(O) iff it has a 3-regular
point x∞.

Proof. By 3.3.2 (ii) the point (∞) of T3(O) is 3-regular. Conversely, suppose that S = (P,B, I) is
a GQ of order (s, s2), s > 1, for which the point x∞ is 3-regular. The proof that S is isomorphic to
T3(O) is arranged into a sequence of five rather substantial steps.

Step 1. The inversive plane π(x∞).
Let y ∈ P\x⊥∞. In 1.3.3 we noticed that the incidence structure π(x∞, y) with pointset {x∞, y}⊥, with
lineset the set of elements {z, z′, z′′}⊥⊥ where z, z′, z′′ ∈ {x∞, y}⊥, and with the natural incidence, is
an inversive plane [50] of order s. Let O∞ be the set {L1, . . . , Ls2+1}, where L1, . . . , Ls2+1 aer the
s2 + 1 lines which are incident with x∞. If C is a circle of π(x∞, y), then Cy is the subset of O∞
consisting of the lines Li for which x∞ I Li I xi, with xi ∈ C. The set of elements Cy is denoted By.
It is clear that πy(x∞) = (O∞, By,∈) is an inversive plane of order s which is isomorphic to π(x∞, y).
The goal of Step 1 is to show that By is independent of the point y.

Suppose that Li, Lj , Lk are distinct lines through x∞, and that x1, x2, x3, x′3, x∞ are distinct points
with x1 I Li, x2 I Lj , x3 I Lk I x′3. We prove that each line of O∞ which is incident with a point of
{x1, x2, x3}⊥⊥ = C is also incident with a point of {x1, x2, x

′
3}⊥⊥ = C ′. So let L` ∈ O∞, ` 6∈ {i, j, k},

be incident with a point x4 of C, and assume L` is incident with no point of C ′. Then by 1.4.2 (iii)
x4 is collinear with two points x∞ and x′′4 of {x1, x2, x

′
3}perp. But x′′4 ∈ {x1, x2, x4}⊥ = {x1, x2, x3}⊥

implies x′′4, x3, x
′
3 are the vertices of a triangle, a contradiction. Hence each line of O∞ which is incident

with a point of C is also incident with a point of C ′.
Now consider two points y, z ∈ P \x⊥∞. Let Li, Lj , Lk be distinct elements of O∞, and let x1, x2, x3

(resp., x′1, x
′
2, x

′
3) be the points of π(x∞, y) (resp., π(x∞, z)) which are incident with Li, Lj , Lk, respec-

tively. The sets {x1, x2, x3}⊥⊥ and {x′1, x′2, x′3}⊥⊥ are denoted by C and C ′, respectively. We have to
consider four cases:

(1) If C = C ′, then each line of O∞ which is incident with a point of C is also incident with a
point of C ′.

(2) If |C ∩C ′| = 2, then by the preceding paragraph each line of O∞ which is incident with a point
of C is also incident with a point of C ′.

(3) Let |C ∩ C ′| = 1, say C ∩ C ′ = {x4}, with x1 6= x4 6= x2. Each line of O∞ which is incident
with a point of C is also incident with a point of {x′1, x2, x4}⊥⊥ and hence alsxo with a point of
{x′1, x′2, x2}⊥⊥ = C ′.

(4) Let C ∩ C ′ = ∅. Each line of O∞ which is incident with a point of C is also incident with a
point of {x1, x2, x3}⊥⊥ and hence also with a point of C ′, by the preceding case.
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From (1)-(4) it follows that the circle LiLjLk of the inversive plane πy(x∞) coincides with the
circle LiLjLk of the inversive plane πz(x∞). Hence By = Bz, i.e. πy(x∞) = πz(x∞). The inversive
plane πy(x∞), which is independent of the choice of the point y, will be denoted by π(x∞).

Step 2. The inversive plane π(x∞) is egglike.
Here we must prove that π(x∞) arises from an ovoid in PG(3, s). Since there is a unique inversive
plane of order s for s = 2 or 3 (cf. [50]), we may assume s > 4.

Let z ∼ x∞, z 6= x∞, and define the following incidence structure Sz = (Pz,Bz, Iz). The set Pz is
just x⊥∞ \z⊥. The elements of type (i) of Bz are the set L∗ = {u ∈ Pz ‖ u I L}, with x∞ I L and z  I L.
The elements of type (ii) of Bz are the sets {z, u1, u2}⊥⊥, with (z, u1, u2) a triad and u1, u2 ∈ Pz. Iz
is the natural incidence. It is clear that Sz is a 2-(s3, s, 1) design. We shall prove that Sz is the design
of points and lines of AG(3, s).

By a theorem of F. Buekenhout [26] it is sufficient to prove that any three noncollinear points
u1, u2, u3 of Sz generate an affine plane. We consider three cases:

(a) Let ui, uj , i 6= j, be incident with an element of type (i) in Bz, and let {i, j, k} = {1, 2, 3}.
From the proof of Step 1 it follows that the s2 points of Pz which are collinear (in S) with a point of
{z, ui, uk}⊥⊥ form a 2-(s2, s, 1) subdesign of Sz. This subdesign is an affine plane containing u1, u2, u3.
So the triangle with vertices u1, u2, u3 of Sz generates an affine plane.

(b) Let (u1, u2, u3) be a triad and suppose that the line x∞z of S is incident with some point of
{u1, u2, u3}⊥⊥. From the proof of Step 1 it follows that the s2 points of Pz which are collinear (in
S) with a point of {u1, u2, u3}⊥⊥ form a 2-(s2, s, 1) subdesign of Sz. So the triangle u1u2u3 of Sz

generates an affine plane.
(c) Let (u1, u2, u3) be a triad and suppose that the line x∞z of S is incident with no point of

{u1, u2, u3}⊥⊥. By 1.4.2 (iii) there is exactly one point x′ for which x′ ∈ z⊥ ∩ {u1, u2, u3}⊥, x′ 6= x∞.
Now the internal (or residual) [50] structure of the inversive plane π(x∞, x′) at z is an affine plane of
order s which is a substructure of Sz and contains the points u− 1, u2, u3.

Hence Sz is the design of points and lines of AG(3, s). All lines of type (i) of Bz are parallel lines
of AG(3, s), and thus define a point (∞) of PG(3, s). If y′ is the point defined by y′ I x∞z and y′ ∼ y,
then let O′

y = ({x∞, y}⊥) ∪ {(∞)}. It is easy to check that no three points of O′
y are collinear in

PG(3, s). Hence O′
y is an ovoid of PG(3, s). If C is a circle of π(x∞, y) which does not contain y′, then

C ⊂ O′
y, and by (c) C is a plane intersection of the ovoid O′

y of PG(3, s), the plane being the projective
completion of the internal structure of π(x∞, x′) at z where x′ is the unique element of C⊥ \ {x∞}
that is collinear with z. If C is a circle of π(x∞, y) which contains y′, then (C \ {y′}) ∪ {(∞)} is the
intersection of O′

y with the projective completion of the affine subplane of Sz, having as points the s2

points of Pz which are collinear (in S) with a point of C \ {y′}. Hence π(x∞, y) is isomorphic to the
egglike inversive plane arising from the ovoid O′

y of PG(3, s).
Since π(x∞) ∼= π(x∞, y), we conclude that the inversive plane π(x∞) is egglike.

Step 3. The point x∞ is coregular.
It is convenient to adopt just for the duration of this proof a notation inconsistent with the standard
labeling of lines of S through x∞. Let L0 be a line through x∞ and let L1 be a second line of S not
concurrent with L0. The proof amounts to showing that (L0, L1) is regular.

Let L′0 be the line through x∞ meeting L1, and let L′1, . . . , L
′
s be the remaining lines in {L0, L1}⊥.

Similarly, let L0, L1, . . . , Ls be the lines in {L′0, L′1}⊥. Let xi2, . . . , xis be the points of Li not on L′0
or L′1, and let x′i2, . . . , x

′
is be the points of L′i not on L0 or L1, i = 2, . . . , s. To show that (L0, L1) is

regular, it will suffice to show that each xij lies on some L′r.
Let y, z, u be the points defined by L0 I y I L′i, L1 I z I L′j , and L1 I u I L′0. Let Cij = {x∞, z, xij}⊥,

C ′
ij = {x∞, z, x′ij}⊥, 2 6 i, j 6 s. Then each Cij and C ′

ij are circles in the inversive plane π(x∞, z).
Moreover, each {Ci2, . . . , Cis, {u}, {y}} and each {C ′

i2, . . . , C
′
is, {u}, {y}} are partitions of the pointset

of π(x∞, z), i.e. each Fi = {Cij ‖ 2 6 j 6 s} and each F ′
i = {C ′

ij ‖ 2 6 jles} are flocks [50, 58]
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of π(x∞, z) with carriers [50, 58] u and y. Since π(x∞, z) is egglike, the flocks Fi and F ′
i are linear

by theorems of W.F. Orr and J.A. Thas [58]. This means that the flocks Fi and F ′
i are uniquely

determined by their carriers. Since they all have the same carriers, we necessarily have F2 = F3 =
. . . = Fs = F ′

2 = . . . = F ′
s. Then, for example, Fi = F ′

i says that for each j, 2 6 j 6 s, there is a
k, 2 6 k 6 s, such that {x∞, z, xij}⊥ = {x∞, z, x′rk}⊥. Hence {x∞, z, xij}⊥⊥ has a point x′rk on L′r.
Fixing i and j, we see that each of the s−1 lines L′2, . . . , L

′
2 contains a point of {x∞, z, xij}⊥⊥\{x∞, z}.

So xij must be on some L′r, and consequently (L0, L1) is regular.
Note: An additional consequence of interest is that each set of points of the form {x∞, z, xij}⊥⊥ lies
entirely in the set of points covered simultaneously by {L0, L1}⊥ and by {L0, L1}⊥⊥.

Step 4. The affine space A = (P∗,B∗,∈).
Let P∗ = P \ x⊥∞. If y and z are distinct points of P∗ collinear in S, define the block yz of type (i)
to be the set of points of P∗ on the line of S through y and z. If y and z are noncollinear points of
P∗, define the block yz of type (ii) to be the set {x∞, y, z}⊥⊥ \ {x∞}. Let B∗ be the set of blocks just
defined. Then A = (P∗,B∗,∈) is a 2-(s4, s, 1) design.

In the set B∗ of blocks we now define a parallelism. Two blocks of type (i) are parallel iff the
corresponding lines of S are concurrent with a same element of O∞ (recall that O∞ consists of the
lines of S incident with x∞). The blocks {x∞, y, z}⊥⊥ \ {x∞} and {x∞, y′, z′}⊥⊥ \ {x∞} of type (ii)
are parallel iff each line of O∞ which is incident with a point of {x∞, y, z}⊥ is also incident with a
point of {x∞, y′, z′}⊥, i.e. iff they both determine the same circle of π(x∞). A block of type (i) is
never parallel ot a block of type (ii). The parallelism defined in this manner will be denoted by ‖ .

By a well known theorem of H. Lenz [99] the design A is the design of points and lines of AG(4, s)
iff the conditions (i) and (ii), or (i) and (ii)′ are satisfied.

(i) Parallelism is an equivalence relation in the set B∗, and each class of prallel blocks is a partition
of the set P∗.

(ii) Let s > 3 and let L ‖ L′, L 6= L′, y ∈ L, y′ ∈ L′, z′ ∈ L′ \ {y′}, p ∈ yy′ \ {y, y′}. Then
L ∩ pz′ 6= ∅.

(ii)′ Let s = 2 and let y, z, u be three distinct points of P∗. If L is the block defined by y ∈ L and
L ‖ zu, and M is the block defined by z ∈M and M ‖ yu, then L ∩M 6= ∅.

It is clear that parallelism is an equivalence relation in the set B∗ and that each class of parallel
blocks of type (i) is a partition of P∗. Since there are no triangles in S, any two distinct parallel blocks
of type (ii) are disjoint. Now let L = {x∞, y, z}⊥⊥ \ {x∞} be a block of type (ii) and let u ∈ P∗. If
we “project” {x∞, y, z}⊥ from x∞, then there arises a circle C of π(x∞). By “intersection” of C and
{x∞, u}⊥, we obtain a circle C ′ of π(x∞, u). Clearly C ′⊥ \ {x∞} is the unique block which contains u
and is parallel to L. Hence condition (i) is satisfied.

Now we assume s > 3 and prove that (ii) is satisfied. So let L ‖ L′, L 6= L′, y ∈ L, y′ ∈ L′,
z′ ∈ L′ \ {y′}, p ∈ yy′ \ {y, y′}. It is clear that (ii) is satisfied if we show that the substructure of A
generated by L and L′ is an affine plane (of order s). Note that the substructure of A generated by L
and L′ has at least s2 points. We have to consider several cases.

Let L and L′ be of type (ii), say L = {x∞, y, z}⊥⊥ \ {x∞} and L′ = {x∞, y′, z′}⊥⊥ \ {x∞}, and let
{x∞, y, z}⊥∩{x∞, y′, z′}⊥ = {x1, x2}. Then the substructure of A generated by L and L′ is contained
in {x1, x2}⊥ \ {x∞}, and hence has at most s2 points. Consequently that substructure is an affine
plane.

Let L and L′ be of type (ii), with notation as in the preceding case, but suppose {x∞, y, z}⊥ ∩
{x∞, y′, z′}⊥ = {x1}. We first prove that for an arbitrary u ∈ L, the line ux1 of S is incident with
a point of L′. Suppose the contrary. Then by 1.4.2 (iii) u is collinear with two points X1 and y1 of
{x∞, y′, z′}⊥. Since L ‖ L′, the line x∞yz is incident with a point z1 of {x∞, y, z}⊥. So there arises a
triangle uz1y1 in S, a contradiction. Consequently, for each point u of L, the line ux1 is incident with
a point of L′. The blocks of type (i) corresponding to the lines ux1, u ∈ L, are denoted M1, . . . ,Ms.
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By an argument just like that used in Step 1, one shows that each block which has a point in common
with Mi,Mj , i 6= j, has a point in common with all s blocks M1, . . . ,Ms. Clearly the substructure of
A generated by M1,M2 has s2 points and contains the blocks L and L′. Hence the blocks L and L′

generate an affine plane.
Let L and L′ be of type (i), and suppose that the corresponding lines of S have a point y in

common (y ∼ x∞). Further, let N be a block of type (ii) having a point in common with L and L′.
The blocks of type (i) corresponding to the lines uy, u ∈ N , are denoted by M1 = L, M2 = L′, . . . ,Ms.
Just as in Step 1, one shows that each block that has a point in common with two of the Mi’s has a
point in common with each of the s blocks M1, . . . ,Ms. Now it is clear that the blocks M1 = L and
M2 = L′ generate an affine plane.

Let L and L′ be of type (i), and suppose that the corresponding lines of S are not concurrent. If
the lines of S which correspond to L and L′ are denoted N1 and N2, respectively, then O∞ contains
one line which is concurrent with N1 and N2. The set of all points of P∗ which are incident with
lines of {N1, N2}⊥ (or {N1, N2}⊥⊥) is denoted by V . We note that |V | = s2. In the last paragraph
of Step 3 we noted that each set of points of the form {x∞, y, z}⊥⊥ \ {x∞}, with y, z ∈ V , y 6∼ z, lies
entirely in V . Hence the substructure of A generated by L and L′ has a pointset V of order s2, and
consequently is an affine plane of order s.

Finally, let L and L′ be of type (ii), say L = {x∞, y, z}⊥⊥ \ {x∞} and L′ = {x∞, y′, z′}⊥⊥ \ {x∞}
and let {x∞, y, z}⊥ ∩ {x∞, y′, z′}⊥ = ∅. First suppose that {x∞, y′, z′}⊥ contains a point z′′ which is
collinear (in S) with z. By the hypothesis L ‖ L′, the line x∞z′′ is incident with some points u of
{x∞, y, z}⊥, and there arises a triangle zuz′′ in S, a contradiction. Hence by 1.4.2 (iii) the point z is
collinear with two points u′ and r′ of L′. Let L1 be the line of O∞ which is concurrent with zu′. The
et of all points of P∗ which are incident iwth lines of {L1, zr′}⊥ (or {L1, zr′}⊥⊥) is denoted by V .
Then |V | = s2, and in the preceding paragraph we noticed that V is the pointset of an affine subplane
of order s of A. Since clearly L′ ⊂ V , it only remains to be shown that L ⊂ V . Let M1, . . . ,Ms−1 be
the blocks of type (ii) in V which contain z. One of thesis blocks is parallel to L′, say M1. Then Mi,
i 6= 1, and L′ have just one point in common, say vi. It follows that there is no line Lj ∈ O∞ which
is incident with a point of M⊥

i , i 6= 1, and a point of L′⊥, since otherwise there arises a triangle with
vertex vi and the other two vertices on Lj (keep in mind that by hypothesis L⊥ and L′⊥ are dijoint).
Since each point of Mi \ {z} is collinear with two points of Mj \ {z}, i 6= j, the sets M⊥

i adn M⊥
j

are disjoint. As Mi ∩Mj = {z}, i 6= j, there is no line of O∞ which is incident with a point of M⊥
i

and with a point of M⊥
j . It now follows easily that the s + 1 lines of O∞ which are incident with a

point of L′⊥ coincide with the s + 1 lines of O∞ which are incident with a point of M⊥
1 . If these lines

are denoted by Li0 , . . . , Lis , then M⊥
1 as well as L⊥ consists of the points of Li0 , . . . , Lis which are

collinear with z. Hence M⊥
1 = L⊥, implying M1 = L. It follows that L ⊂ V , and consequently L and

L′ generate an affine plane of order s.
It is now proved that for s 6= 2 the design A is the design of points and lines of AG(4, s). Finally,

we assume that s = 2.
Let y, z, u be three distinct points of P∗. If L is the block defined by y ∈ L and L ‖ zu, and M is

the block defined by z ∈M and M ‖ yu, then we must prove that L ∩M 6= ∅. We have to consider
several cases.

If uy and uz are blocks of type (i), then from the coregularity of x∞ it follows immediately that L
and M have a point in common.

Let uz be of type (i), uy of type (ii), and let {x∞, u, y}⊥ ∩ (M ∪ {x∞})⊥ = {r}. Just as in the
case s > 2 one shows that u, z, r are collinear, that y ∼ r, and that the line yr of S is incident with a
point of M . Since L is the set of all points of P∗ which are incident with yr, we have L ∩M 6= ∅.

Let uz be of type (i), uy of type (ii), and let {x∞, u, y}⊥ ∩ (M ∪{x∞})⊥ = ∅. If M = {z, r}, then
just as in the last part of the s 6= 2 case, one shows that y ∼ z, y ∼ r, and that the lines uz and yr
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of S are concurrent with a same element of O∞. It follows immediately that L is of type (i) and that
L ∩M 6= ∅.

Clearly the cases uy of type (i) and uz of type (ii) are analogous to the preceding two cases.
Let uz and uy be of type (ii), let L = {y, r}, and let ur be of type (i). In S the point u is collinear

with exactly one point of L. If v is defined by v I ur and v ∈ x⊥∞, then just as in the case s 6= 2 one
sees that z ∼ v and that the line zv is incident with a point of L. Then clearly y I zv. Now from a
preceding case it follows that the block {u, r} has a point in common with the block M . Hence r ∈M ,
and L ∩M 6= ∅.

Finally, let uz and uy be of type (ii), let L = {y, r}, and let ur be of type (ii). If M = {z, v},
then by the preceding case uv is also of type (ii) (since otherwise ur would be of type (i)). As u is
collinear with no poin of L, it is collinear with two points x1, x2 of (L ∪ {x∞})⊥. Since the line x∞xi

is incident with a point of {x∞, u, z}⊥ and since S has no triangles, we have x1, x2 ∈ {x∞, u, z}⊥.
Hence r is collinear with the two common points x1, x2 of {x∞, u, z}⊥, {x∞, u, y}⊥, and {x∞, y, z}⊥.
Analogously, v is collinear with x1 and x2. Hence {x1, x2}⊥ = {x∞, u, y, z, r} = {x∞, u, y, z, v}, and
it must be that r = v, implying L ∩M 6= ∅.

This completes the proof that also for s = 2 the design A is the design of points and lines of
AG(4, s).

Step 5. The GQ T (O∞).
The points of the hyperplane at infinity PG(3, s) of AG(4, s) can be indentified in a natural way with
the elements of O∞, i.e the points of π(x∞), and with the circles of π(x∞). Now we prove that O∞ is
an ovoid of the projective space PG(3, s).

Suppose Li, Lj , Lk ∈ O∞ are collinear in PG(3, s). Projecting these three points Li, Lj , Lk from a
point y ∈ P∗ we obtain three blocks Mi,Mj ,Mk of type (i) that must belong to an affine subplane of
A of order s. If yi ∈ Mi \ {y}, yj ∈ Mj \ {y}, then the block uiyj (of type (ii)) has a point yk (6= y)
in common with Mk (note that the blocks Mk and yiyj are not parallel since they are of different
type). Consequently y ∈ {yi, yj , yk}⊥, implying y ∼ x∞, a contradiction. Hence no three elements of
O∞ are collinear in PG(3, s), if s 6= 2 [50]. So we now assume that s = 2. Let x∞ 6= u I Li ∈ O∞.
Then it is easy to prove that P ′ = {y ∈ P∗ ‖ y ∼ u} is the pointset of an affine subspace AG(3, 2)
of AG(4, 2). Clearly Li is the only point of infinity of AG(3, 2) that belongs to O∞. So the plane
at infinity PG(2, 2) of AG(3, 2) has only the point Li in common with O∞. Consequently for each
Li ∈ O∞ there exists a plane of PG(3, 2) which contains Li and which has only the point Li in common
with O∞. As |O∞| = 5, it follows immediately that O∞ is an ovoid of PG(3, 2).

Now we consider a point u I Li, u 6= x∞. It is easy to show that P ′ = {y ∈ P∗ ‖ y ∼ u} is the
pointset of an affine subspace AG(3, s) of AG(4, s). Clearly Li is the only point at infinity of AG(3, s)
that belongs to O∞, so that the plane at infinity of AG(3, s) is the tangent plane PG(i)(2, s) of O∞ at
Li. So with the s points u on Li, u 6= x∞, there corresponds the s three dimensional affine subspaces
of AG(4, s) which have PG(i)(2, s) as plane at infinity.

At this point it is clear that S has the following description in terms of the ovoid O∞. Points of
S are (i) the points of AG(4, s), (ii) the three dimensional affine subspaces of AG(4, s) that possess
a tangent plane of O∞ as plane at infinity, (iii) one new symbol (∞). Lines of S are (a) the lines of
AG(4, s) whose points at infinity belong to O∞, and (b) the elements of O∞. Points of type (i) are
incident only with lines of type (a) and here the incidence is that of AG(4, s). A point AG(3, s) of
type (ii) is incident with the lines of type (a) that are contained in AG(3, s) and with the unique point
at infinity of AG(3, s) that belongs to O∞. Finally, the unique point (∞) of type (iii) is incident with
all lines of type (b) and with no line of type (a).

We conclude that S is isomorphic to the GQ T3(O∞) of J. Tits. 2

There are some immediate corollaries.

5.3.2. (i) If S is a GQ of order (s, s2), s > 1, in which each point is 3-regular, then S ∼= Q(5, q).
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(ii) Up to isomorphism there is only one GQ of order (2, 4).

(iii) Up to isomorphism there is only one GQ of order (3, 9).

Proof. (i) By Step 3 of the preceding proof each line of S would be regular, and a T3(O) with all
lines regular is isomorphic to Q(5, q) by 3.3.3 (iii).

(ii) Let S be a GQ of order (2, 4). If (x1, x2, x3) is a triad of points, then clearly {x1, x2, x3}⊥⊥ =
{x1, x2, x3}. Hence |{x1, x2, x3}⊥⊥| = 1 + s, every points is 3-regular, and by part (i) we have S ∼=
Q(5, q).

(iii) By 1.7.2 all points of any GQ of order (3, 9) are 3-regular, so part (i) applies. 2

The uniqueness of the GQ of order (2, 4) was proved independently at least five times, by S.
Dixmier and F. Zara [54], J.J. Seidel [164], E.E. Shult [166], J.A. Thas [189] and H. Freudenthal [63].
The uniqueness of a GQ of order (3, 9) was proved independently by S. Dixmier and F. Zara [54] and
by P.J. Cameron [143].

Using the same kind of argument and results from Section 3.2 and 3.3 it is easy to conclude the
following.

5.3.3. (i) Let S be a GQ of order (s, s2), s > 1, with s odd. Then S ∼= Q(5, s) iff S has a 3-regular
point.

(ii) Let S be a GQ of order (s, s2) with s even. Then S ∼= Q(5, s) iff one of the following holds:

(a) All points of S are 3-regular.

(b) S has at least one 3-regular point not incident with some regular line.

Remark: Independently F. Mazzocca [103] proved the following result: A GQ S of order (s, s2), s 6= 1
and s odd, is isomorphic to Q(5, s) iff each point of S is 3-regular.

We now consider the role of subquadrangles in characterizing T3(O).

5.3.4. (J.A. Thas [198]). Let S = (P,B, I) be a GQ of order (s, t), s > 1. Then the following are
equivalent:

(i) S contains a point x∞ such that for every triad of lines having a center incident with x∞ is
contained in a proper subquadrangle S ′ of order (s, t′).

(ii) t > 1 and S contains a point x∞ such that for every triad (u, u′, u′′) with distinct centers x∞
and x′, the points u, u′, u′′, x∞, x′ are contained in a proper subquadrangle of order (s, t′).

(iii) s2 = t, S contains a 3-regular point x∞, and hence S ∼= T3(O).

Proof. By 3.5 (b) it is clear that (iii) implies (i) and (ii). Now we assume that (i) is satisfied. Clearly
we have t > 1. Let K, L, M, N be lines for which x∞ I N , L ∼ N , M ∼ N , K ∼ N , K 6∼ L,
L 6∼ M , M 6∼ K. Then K, L, M are contained in a proper subquadrangle S ′ = (P ′,B′, I′) with order
(s, t′). Suppose that K ′ is not a line of S ′ and that N,K,K ′ are concurrent. Then K ′, L,M are
contained in a proper subquadrangle S ′′ = (P ′′,B′′, I′′) with order (s, t′′). Clearly S ′ 6= S ′′. By 2.3.1
S ′′′ = (P ′ ∩ P ′′,B′ ∩ B′′, I′ ∩ I′′) is a proper subquadrangle of S ′′ of order (s, t′′′). Now by 2.2.2 (vi)
s2 = t, t′′ = s and t′′′ = 1. Since t′′′ = 1, the pair (L,M) is regular. It follows immediately that each
line incident with x∞ is regular, i.e. x∞ is regular.

Let us suppose that s is even. Consider a triad (x∞, y, z) and suppose that u, u′ ∈ {x∞, y, z}⊥,
u 6= u′. Let x′ 6= x∞ and x′ 6= u′, be a point which is incident with the line x∞u. Further, let L be the
line which is incident with x′ and concurrent with yu′. Then the lines x∞u′, zu and L are contained
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in a proper subquadrangle S ′ of order (x, t′). Clearly S ′ contains the lines x∞u′, zu, L, x∞u, yu′, zu′,
and the points x∞, y, z, u, u′. Consequently t′ > 1. By 2.2.2 we have t′ 6 s and since S ′ contains
regular lines we have t′ > s. Hence s = t′. Since s is even and x∞ is a coregular point of S ′ the point
x∞ is regular for S ′ by 1.5.2 (iv). So each triad of points of S ′ containing x∞ has exactly 1 or 1 + s
centers in S ′. Since u and u′ are centers of {x∞, y, z}, the triad (x∞, y, z) has exactly 1 + s centers
u0 = u, u1 = u′, u2, . . . , us which are collinear with each of the points x0 = x∞, x1 = y, x2 = z,
x3, . . . , xs which are collinear with each of the points u0, . . . , us. Hence (x∞, y, z) is 3-regular in S. It
follows that x∞ is 3-regular and hence S is isomorphic to some T3(O).

Now suppose that s is odd. Let (x∞, y, z) be a triad and suppose that u, u′ ∈ {x∞, y, z}⊥, u 6= u′.
Just as in the preceding paragraph one shows that there is a subquadrangle S ′ = (P ′,B′, I′) of S of
order s which contains the points x∞, y, z, u, u′ and the lines x∞u, yu, zu, x∞u′, yu′, zu′. Since s is
odd and x∞ is coregular, the point x∞ is antiregular for S ′ by 1.5.2 (v). Let u′′ ∈ {x∞, y, z}⊥ \ {u, u′}
and let S ′′ = (P ′′,B′′, I′,′) be a subquadrangle of S of order s containing the points x∞, y, z, u, u′′. If
S ′ = S ′′, then in S ′ the triad (x∞, y, z) has at least three centers, a contradiction by the antiregularity
of x∞. Hence S ′ 6= S ′′, u′ 6∈ P ′′ and u′′ 6∈ P ′. Now we consider the incidence structure S1 =
(P ′∩P ′′,B′∩B′′, I′ ∩ I′′). We have x∞, y, z, u ∈ P ′∩P ′′ and x∞u, yu, zu ∈ B′∩B′′. By 2.3.1 one of the
following occurs: (a) each point of P ′ ∩P ′′ is collinear with u and each line of B′ ∩B′′ is incident with
u, and (b) S1 is a proper subquadrangle of S ′ of order (s, t1). If (b) occurs, then by 2.2.2 (vi) t1 = 1,
a contradiction since B′ ∩B′′ contains at least three lines through u. Hence we have (a). By 2.2.1 the
point u′ of Sis collinear with the 1 + s2 points of an ovoid of S ′′. Hence each line incident with u′

has a point in common with S ′′. It follows that |B′ ∩ B′′| = 1 + s. Now we consider a subquadrangle
S ′′′ = (P ′′′,B′′′, I′′′) of S of order s containing the points x∞, y, z, u′, u′′. Then S ′ 6= S ′′′ 6= S ′′. Then
(P ′∩P ′′∩P ′′′ = P2,B′∩B′′∩B′′′ = B2, I′ ∩ I′′ ∩ I′′′=I2) = ((P ′∩P ′′)∩P ′′′, (B′∩B′′)∩B′′′, (I′ ∩ I′′)∩ I′′′) =
(the set of s + 1 points of P ′′′ which are collinear in S ′ (or in S ′′) with u, ∅, ∅). Analogously, we have
P2 = the set of the s + 1 points of P ′ which are collinear in S ′′ (or S ′′′) with u′′ = the set of s + 1
points of P ′′ which are collinear in S ′′′ (or S ′) with u′. Hence P2 = trace of (u, u′) in S ′ = trace of
(u, u′′) in S ′′ = trace of (u′, u′′) in S ′′′. It follows that each point of {x∞, y, z}⊥ is collinear with each
point of the trace of (u, u′) in S ′. Consequently (x∞, y, z) is 3-regular in S. So x∞ is 3-regular and S
is isomorphic to a T3(O), i.e. to Q(5, s).

Hence (i) implies (iii). Finally, we shall prove that (i) follows from (ii).
So assume that (ii) is satisfied. Consider a centric triad of lines (L,L′, L′′) with a center N which is

incident with x∞. Suppose that x∞ is not incident with L′. Let N ′ ∈ {L,L′}⊥ \ {N} and L′ I x′ I N ′.
If N ′ 6∼ L′′, then let L′′′ = L′′; if N ′ ∼ L′′, then let L′′′ be a line for which L′′′ ∼ N , L′′′ ∼ L′,
L′′′ 6∈ {N,L′′}. Further, let N ′′′ be the line which is incident with x′ and concurrent with L′′′, let u
be the point which is incident with N ′′ and collinear with x∞, and let N I u′′ I L′. Then (u, u′, u′′) is
a triad with centers x∞ and x′. Hence u, u′, u′′, x∞, x′ are contained in a proper subquadrangle S ′ of
order (s, t′). Clearly L,L′, L′′ are lines of S ′, so that (i) is satisfied. 2

There is an easy corollary

5.3.5. (i) A GQ S of order (s, t), s > 1, is isomorphic to Q(5, s) iff every centric triad of lines is
contained in a proper subquadrangle of order (s, t′).

(ii) A GQ S of order (s, t), s > 1 and t > 1, is isomorphic to Q(5, s) iff for each triad (u, u′, u′′)
with distinct centers x, x′ the five points u, u′, u′′, x, x′ are contained in a proper subquadrangle
of order (s, t′).

Proof. (i) Let (L,L′, L′′) be a centric triad of lines of Q(5, s). Then there is a PG(4, s) which contains
L,L′, L′′. If Q ∩ PG(4, s) = Q′, then Q′(4, s) is a proper subquadrangle of order s of Q(5, s).

Conversely, suppose that s > 1 and that every centric triad of lines is contained in a proper
subquadrangle of order (s, t′). Then from 5.3.4 it follows that s2 = t and that each point of S is
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3-regular. By 5.3.2 we have S ∼= Q(5, s).
(ii) The proof is analogous and left to the reader. 2

Let S be a GQ of order (s, t), and let (L1, L2, L3) and (M1,M2,M3) be two triads of lines for which
Li 6∼ Mj iff {i, j} = {1, 2}. Let xi be the point defined by Li I xi I Mi, i = 1, 2. This configuration
of seven distinct points and six distinct lines is called a broken grid with carriers x1 and x2. First
suppose S is classical and let M4 be a line in {L1, L2}⊥ not concurrent with any of M1,M2,M3. There
is a PG(4, s) containing the broken grid. hence the threespace PG(3, s) defined by M1 and M2 has
at least one point u in common with M4. It is clear that there is a line L4 which contains u and is
concurrent with M1,M2, and M4. Next suppose that S is the GQ T3(O) and assume that L1 or M1

contains the 3-regular point (∞). Then there is a PG(3, s) ⊂ PG(4, s) for which PG(3, s)∩O is an oval
O′, and such that the corresponding subquadrangle T2(O′) of T3(O) (see 3.5 (b)) contains the groken
grid. If L1 contains (∞), then the line Li is regular. Let L4 ∈ {M1,M2}⊥ (resp., M4 ∈ {L1, L2}⊥)
with L4 6∼ Li (resp., M4 6∼Mi) for i = 1, 2, 3. Then the pair (L1, L4) (resp., (M1,M4)) is regular. So
there must be a line M4 (resp., L4) of T2(O′) (by 1.3.6) which is concurrent with each of L1, L2, L4

(resp., M1,M2,M4). If M1 contains (∞), we can proceed through the same discussion interchanging
Li and Mi. Similarly, the same argument holds if (∞) is on L2 or M2.

The preceding paragraph provides the motivation for the following definitions. Let Γ be a broken
grid with carriers x1 and x2. Assume the same notation as above so that Li adn Mi are the lines
of Γ incident with xi, i = 1, 2. We say that Γ satisfies axiom (D) with respect to the pair (L1, L2)
provided the following holds: If L4 ∈ {M1,M2}⊥ with L4 6∼ Li, i = 1, 2, 3, then (L1, L2, L3) is centric.
Interchanging Li and Mi gives the definition of axiom (D) for Γ w.r.t. the pair (M1,M2). Further, Γ
is said to satisfy axiom (D) provided it satisfies axiom (D) w.r.t. both pairs (L1, L2) and (M1,M2).

5.3.6. Let Γ be a broken grid whose lines are those of the triads (L1, L2, L3) adn (M1,M2,M3), where
Mi 6∼ Lj iff {i, j} = {1, 2}. If Γ satisfies axiom (D) w.r.t. (L1, L2) (or w.r.t. (M1,M2)) and if some
line of Γ through one of its carriers xi (here Li I xi I Mi, i = 1, 2) is regular, then Γ satisfies axiom
(D).

Proof. Without loss of generality we may suppose that Γ satisfies axiom (D) w.r.t (L1, L2). Let
Lj ∈ {M1,M2}⊥ with L1 6∼ Lj 6∼ L2, j ∈ J (|J | = s if x1 ∼ x2, and |J | = s− 1 if x1 6∼ x2). Then by
hypothesis the triad (L1, L2, L3) has a centre Mj (clearly M1 6∼Mj 6∼M2). Since |{M ∈ {L1, L2}⊥ ‖
L1 6∼ M 6∼ L2}| = |J |, it is clear that Γ satisfies axiom (D) w.r.t. (M1,M2) if Lj 6∼ Lk implies
Mj 6∼ Mk, with j, k ∈ J . So suppose Mj = Mk for distinct j, k ∈ J . Then for i = 1 or 2, (Li, Lj , Lk)
is a triad with two centers Mi and Mj = Mk. By hypothesis one of M1,M2, L1, L2 is regular. If either
M1 or M2 is regular then the pair (Lj , Lk) is regular and hence the triad (Li, Lj , Lk) must have 1 + s
centers, forcing L1 ∼M2, a contradiction. If Li is regular, i = 1 or 2, the triad (Li, Lj , Lk) also must
have 1 + s centers, giving a contradiction. 2

Let x be any point of S. We say that S satisfies axiom (D)′x (respectively, axiom (D)′′x) provided
the following holds: Let Γ be any broken grid whose lines are those of the triads (L1, L2, L3) and
(M1,M2,M3), where Li 6∼ Mj iff {i, j} = {1, 2} and where x I L1. Then Γ satisfies axiom (D) w.r.t.
the pair (L1, L2) (respectively, w.r.t. the pair (M1,M2)). We say S satisfies axiom (D)x provided it
satisfies both axiom (D)′x and (D)′′x.

Then the following result is an immediate corollary of 5.3.6.

5.3.7. Let S be a GQ of order (s, t) having a coregular point x. Then S satisfies (D)′x iff it satisfies
(D)′′x iff it satisfies (D)x

5.3.8. (J.A. Thas [198]). Let S = (P,B, I) be a GQ of order (s, t) with s 6= t, s > 1 and t > 1. Then
S is isomorphic to a T3(O) iff it has a coregular point x∞ for which (D)′x∞ (resp., (D)′′x∞) is satisfied.
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Proof. We have already observed that T3(O) satisfies (D)(∞). Conversely, let S = (P,B, I) be a GQ
of order (s, t) with s 6= t, s > 1 and t > 1, and suppose S has a coregular point x∞ for which (D)′x∞
(resp., (D)′′x∞) is satisfied. Then in fact S satisfies (D)x∞

. And since x∞ is coregular we have t > s.
If s = 2, then by 1.2.2 and 1.2.3 S is of order (2, 4). So by 5.3.2 it must be that S ∼= T3(O). We now
assume s > 2.

Suppose that the triad of lines (L,L′, L′′) has at least two centers N and N ′ where x∞ I N . By
regularity of N , the lines L,L′, L′′ are contained in a (proper) subquadrangle of order (s, 1).

Now we consider the triad of lines (L,L′, L′′) with a unique center N which is incident with x∞.
Let {L′, L′′}⊥⊥ = {L0, L1 = L′, L2 = L′′, L3,
. . . , Ls}, with L0 ∼ L, and for all i > 1 let {L,Li}⊥ = {Ni0 = N,Ni1, . . . ,
Nis}. Further, let D(L,L′, L′′) = {y ∈ P ‖ y I Nij , for some i = 1, . . . , s
and some j = 0, 1, . . . , s}. We have |D(L,L′, L′′)| = s3 + 2s + 1.

Consider two points y1, y2 of D(L,L′, L′′) which are incident with a line V of S, and suppose that
V does not contain the intersection z of L and N (in particular L 6= V 6= N). If V ∼ L, then clearly
V is some Nij , and hence all points of V are contained in D(L,L′, L′′). If V ∼ N but V 6∼ L, then V
is concurrent with some Nij , j 6= 0, and belongs to {L,Li}⊥⊥. As all points on all lines of {L,Li}⊥⊥
belong to D(L,L′, L′′), all points of V are contained in D(L,L′, L′′). If V ∈ {L′, L′′}⊥, then the s
points of V not collinear with z are contained in D(L,L′, L′′). Now suppose that V 6∼ L, V 6∼ N ,
V 6∈ {L′, L′′}⊥.

Evidently the point of V which is collinear with z is not contained in D(L,L′, L′′). Let y3 I V ,
y1 6= y3 6= y2, y3 6∼ z. We shall prove that y3 ∈ D(L,L′, L′′).

Let y1 I Nik, i 6= 0, and y2 I Njl, j 6= 0. Clearly Nik 6= Njl and Li 6= Lj . Now we have N ∼ Li,
Njl ∼ V , Njl ∼ L ∼ N , V ∼ Nik ∼ Li, Nik ∼ L, Njl ∼ Lj ∼ N , and x∞ I N 6∼ V , Li 6∼ Njl.
If y2 = Njl ∩ Lj or y1 = Nik ∩ Li, then trivially there is a unique line M which is concurrent with
Li, Lj and V . Suppose y2 6= Njl ∩ Lj and y1 6= Nik ∩ Li. Then (Li, V, L) and (N,Njl, Nik) are the
two triads of a broken grid for which (D)′′x∞ guarantees that the triad (Li, V, Lj) has a center M ,
which is unique because N is regular and N 6∼ V . Let N3 be the line defined by y3 I N3 ∼ L.
Since V 6∈ {L′, L′′}⊥, we cannot have both y1 = Nik ∩ Li and y2 = Njl ∩ Lj . Without loss of
generality we may suppose y2 6= Njl ∩ Lj . Then the triads (N,M,Njl) and (L, V, Lj) give the lines
of a broken grid with N3 ∈ {L, V }⊥ and N3 not concurrent with any of N,M,Njl. Hence by (D)′x∞
there is a line W which is a center of (N,M,N3). Clearly z  I W . Since y3 I N3, N3 ∈ {L,W}⊥ and
W ∈ {N,M}⊥ = {Li, Lj}⊥⊥ = {L′, L′′}⊥⊥, we have y3 ∈ D(L,L′, L′′). Hence V is incident with
exactly s points of D(L,L′, L′′).
Let P ′ = D(L,L′, L′′) ∪ D(L′, L, L′′) and P ′′ = D(L,L′, L′′) ∩ D(L′, L, L′′). We shall prove that
|P ′| = s3 + s2 + s + 1 and |P ′′| = s3 − s2 + 3s + 1. Let z′ be the point incident with N and L′, and
consider a point y ∈ D(L,L′, L′′) with y 6∼ z′. We show that y ∈ D(L′, L, L′′). Since the case y I L
is trivial, we suppose that y  I L. Let Nik be the line through y meeting L. Then Li is the line of
{L′, L′′}⊥⊥ which is concurrent with Nik. If Li = L′, then Nik ∈ {L,L′}⊥ and y ∈ D(L′, L, L′′) by
definition. Now suppose that Li 6= L′. Let Nik I u I L, and let u′ I L with u′ 6∈ {z, u}. Further, let
N ′ and V be defined by u′ I N ′, N ′ ∼ L′, y I V , V ∼ N ′. If V ∈ {L′, L′′}⊥, then y I Li, and then
clearly y ∈ D(L′, L, L′′). So assume V 6∈ {L′, L′′}⊥. Also V 6∼ L and V 6∼ N . If we put y1 = y,
y2 = V ∩ N ′, Lj = L′, then by the preceding paragraph (Li, V, Lj) = (Li, V, L′) has a unique center
M . Note that M ∈ {L′, L′′}⊥. Let y′1 = V ∩M and y′2 = y2 = V ∩N ′. Clearly y′1 = y′2 iff L′ ∼ V iff
N ′ ∩ L′ ∼ y. Since s2 > 2, we may choose u′ in such a way that N ′ ∩ L′ 6∼ y. Then we have y′1 6= y′2,
{y′1, y′2} ⊂ D(L′, L, L′′), V 6∼ L′, V 6∼ N , V 6∈ {L,L′′}⊥, and y 6∼ z′. Now by the preceding paragraph
y ∈ D(L′, L, L′′). Since D(L,L′, L′′) contains s2−s points which are collinear with z′ and not incident
with L′ or N , there holds |P ′′| = s3 − s2 + 3s + 1. It easily follows that |P ′| = s3 + s2 + s + 1.

Next let p, p′ ∈ P ′ with p ∼ p′, say z I pp′. The case N = pp′ is trivial. So suppose N 6= pp′. Since
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p, p′ ∈ D(L′, L, L′′) and z′ 6∈ pp′, it follows from a preceding paragraph that D(L′, L, L′′) contains all
elements incident with the line pp′.

Let z  I pp′, z′  I pp′, pp′ ∼ N . Since pp′ ∈ D(L′, L, L′′) and z′  I pp′, the set D(L′, L, L′′) contains
each point incident with pp′.

Let pp′ 6∼ N . Since s > 2, the line pp′ contains points w,w′ (w 6= w′) for which z 6∼ w 6∼ z′,
z 6∼ w′ 6∼ z′. Hence w,w′ ∈ P ′′. If pp′ ∼ L (resp., pp′ ∼ L′) then all points of pp′ are contained in
D(L,L′, L′′) (resp., D(L′, L, L′′)). So assume L 6∼ pp′ 6∼ L′. If w1 is the point of pp′ not contained in
D(L,L′, L′′), then z ∼ w1, so z′ 6∼ w1 and w1 ∈ D(L′, L, L′′). Hence P ′ contains each point incident
with pp′.

Now from 2.3.1 it follows immediately that P ′ is the pointset of a subquadrangle S ′ of order (s, t′).
Since |P ′| = (s + 1)(s2 + 1) we have t′ = s < t, implying S ′ is proper. Consequently the line L,L′, L′′

are contained in a proper subquadrangle of order (s, t′).
We have now proved that every centric triad of lines (L,L′, L′′) having a center N incident with

x∞ is contained in a proper subquadrangle of order (s, t′). By 5.3.4 s2 = t, the points x∞ is 3-regular,
and S is isomorphic to a T3(O). 2

There is an easy corollary of 5.3.8, 3.3.3 and the note following 3.3.3 whose proof may be completed
by the reader.

5.3.9. Let S be a GQ of order (s, t), with s 6= t, s > 1, t > 1.

(i) If s is odd, then S ∼= Q(5, s) iff S contains a coregular point x∞ for which (D)′x∞ (resp., (D)′′x∞)
is satisfied.

(ii) If s is even, then S ∼= Q(5, q) iff all lines of S are regular and S contains a point x∞ for which
(D)′x∞ (resp., (D)′′x∞) is satisfied.

In order to conclude this section dealing with characterizations of T3(O) and Q(5, s), we introduce
one more basic concept. Let S = (P,B, I) be a GQ of order (s, t). If B⊥⊥ is the set of all hyperbolic
lines, i.e. the set of all spans {x, y}⊥⊥ with x 6∼ y, then let S⊥⊥ = (P,B⊥⊥,∈). For x ∈ P, we say S
satisfies property (A) if for any M = {y, z}⊥⊥ ∈ B⊥⊥ with x ∈ {y, z}⊥, and any u ∈ cl(y, z)∩(x⊥\{x})
with u 6∈ M , the substructure of S⊥⊥ generated by M and u is a dual affine plane. The GQ S is
said to satisfy property (A) if its satisfies (A)x for all x ∈ P. So the GQ S satisfies (A) if for any
M = {y, z}⊥⊥ ∈ B⊥⊥ and any u ∈ cl(y, z)\({y, z}⊥∪{y, z}⊥⊥), the substructure of S⊥⊥ generated by
M and u is a dual affine plane. The duals of (A)x and (A) are denoted by (Â)L and (Â), respectively.
If (A)x is satisfied for some regular point x, then the dual affine planes guaranteed to exist by (A)x

are substructures of the dual net described in 1.3.1.

5.3.10. (J.A. Thas [205]). Let S = (P,B, I) be a GQ of order (s, t), with s 6= t, s > 1 and t > 1.
Then S is isomorphic to a T3(O) iff (Â)L is satisfied for all lines L incident with some coregular point
x∞.

Proof. Let S be the GQ T3(O). Then it is easy to check that (Â)L is satisfied for every line L incident
with the coregular point (∞) of type (iii).

Now let S be a GQ of order (s, t), with s 6= t, s 6= 1 6= t, and having a coregular point x∞ such that
(Â)L is satisfied for all lines L incident with x∞. We shall prove that (D)′′x∞ is satisfied. So suppose
(L1, L2, L3) and (M1,M2,M3) are two triads of lines with x∞ I L1 and Li 6∼ Mj iff {i, j} = {1, 2}.
Let M4 ∈ {L1, L2}⊥ with M4 6∼Mi, i = 1, 2, 3. We must show that the triad (M1,M2,M3) is centric.
Since L1 is regular, any pair of nonconcurrent lines meeting L1 is regular. Since (M1,M3) is regular,
the line M4 is an element of cl(M1,M3). Because M1 6∼ L2, we have M4 6∈ {M1,M3}⊥⊥. Now consider
the dual affine plane π generated by {M1,M3}⊥⊥ and M4 in the structure Ŝ⊥⊥ = (B,P⊥⊥,∈). Clearly
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{M3,M4}⊥⊥ and {M1,M4}⊥⊥ are lines of π. Since L3 (resp., L2) is an element of {M1,M3}⊥ (resp.,
{M3,M4}⊥), the point L3 ∩M2 (resp., L2 ∩M2) is incident with a line R (resp., R′) of {M1,M3}⊥⊥
(resp., {M3,M4}⊥⊥). Then {R,R′}⊥⊥ is a line of π. As any two lines of π intersect, the lines
{M1,M4}⊥⊥ and {R,R′}⊥⊥ have an element R′′ in common. Clearly R′′ ∼M2. If L4 is the line which
is incident with M2 ∩ R′′ and concurrent with M1, then by R′′ ∈ {M1,M4}⊥⊥, we have L4 ∼ M4.
Hence L4 is a center of (M1,M2,M4) and (D)′′x∞ is satisfied. Then by 5.3.8 S is isomorphic to a T3(O).
2

There is an easy corollary.

5.3.11. Let S be a GQ of order (s, t), s 6= t, t > 1.

(i) If s > 1, s odd, then S is isomorphic to Q(5, s) iff (Â)L is satisfied for all lines L incident with
some coregular point x∞.

(ii) If s is even, then S is isomorphic to Q(5, s) iff all lines of S are regular and (Â)L is satisfied
for all lines L incident with some point x∞.

Proof. Left to the reader. 2

We mention without proof one more result of interest which may turn out to be helpful in charac-
terizing the GQ Q(5, s).

5.3.12. (J.A. Thas [193]). Suppose that the GQ S = (P,B, I) of order (s, s2), s 6= 1, has a subquad-
rangle S ′ = (P ′,B′, I′) of order s with the property that every triad (x, y, z) of S ′ is 3-regular in S and
{x, y, z}⊥⊥ ⊂ P ′. Then S ′ ∼= Q(4, s) and S has an involution θ fixing P ′ pointwise.

5.4 Tallini’s characterization of H(3, s)

Let S = (P,B, I) be a GQ of order (s, t), and let B∗ be the set of all spans, i.e. let B∗ = {{x, y}⊥⊥ ‖
x, y ∈ P, x 6= y}. Then S∗ = (P,B∗,∈) is a linear space in the sense of F. Buekenhout [27]. In order
to have no confusion between collinearity in S and collinearity in S∗, points x1, x2, . . . of P which
are on a line of S∗ will be called S∗-collinear. A linear variety of S∗ is a subset P ′ ⊂ P such that
x, y ∈ P ′, x 6= y, implies {x, y}⊥⊥ ⊂ P ′. If P ′ 6= P and |P ′| > 1, the linear variety is proper; if P ′ is
generated by three points which are not S∗-collinear, P ′ is said to be a plane of S∗. Finally, if L ∈ B
with x I L I y and x 6= y, then {x, y}⊥⊥ ∈ B∗ is denoted by L∗.

5.4.1. (G. Tallini [178]). Let S = (P,B, I) be a GQ of order (s, t), with s 6= t, s > 1 and t > 1. Then
S is isomorphic to H(3, s) iff

(i) all points of S are regular, and

(ii) if the lines L and L′ of B∗ are contained in a proper linear variety of S∗, then also the lines L⊥

and L′⊥ of B∗ are contained in a proper linear variety of S∗.

Proof. Let S be the classical GQ H(3, s). By 3.3.1 (ii) all points of S are regular, so (i) is satisfied.
Let V be a proper linear variety of S∗ containing at least three points x, y, z which are not S∗-collinear.
Then x, y, z are noncollinear in PG(3, s) and V is contained in the plane π = xyz of PG(3, s). If V
contains a line L of S, then it is clear that |V | = s

√
s + s + 1 and that V = π ∩ H. Now suppose

that V does not contain a line of S. We shall show that V is an ovoid of S. Assume that the line M
of S has no point in common with V . Since V is a linear variety of S∗, any point of M is collinear
with 0 or 1 point of V . Hence s + 1 > |V |. But V together with the lines of S∗ contained in V is
a 2-(|V |,

√
s + 1, 1) design, which implies that |V | > s +

√
s + 1. But then s + 1 > s +

√
s + 1, an
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impossibility. So V is an ovoid of S, and consequently |V | = s
√

s + 1. It follows immediately that
V = π∩H. Now it is evident that the proper linear varieties of S∗ which contain at least three points
that are not S∗-collinear are exactly the plane intersections of the hermitian variety H. Clearly if the
lines L and L′ of S∗ are contained in a plane of PG(3, s), then also L⊥ and L′⊥ are contained in a
plane of PG(3, s). Hence (ii) is satisfied.

Now we consider the converse. Let S = (P,B, I) be a GQ of order (s, t) with s 6= t, s > 1 and
t > 1. The proof is broken up into a sequence of steps, and to start with we assume only that S
satisfies (i), i.e. all points of S are regular.
(a) Introduction and generalities.
By 1.3.6 (i) we have s > t. Let V be a proper linear variety of S∗ that contains at least three points
x, y, z which are not S∗-collinear. First, suppose that V contains L∗ with L ∈ B, and assume x 6∈ L∗.
If u ∼ x and u I L, then clearly V contains the proper linear variety u⊥ of S∗. Suppose that V 6= u⊥.
Then V contains a subset M∗ with M ∈ B and L∗ ∩M∗ = ∅. The number of points on lines of
S∗ having no point in common with L∗ and M∗ equals (st + 1)(s + 1) = |P|. Hence V = P, a
contradiction. So u⊥ = V and |V | = st + s + 1. Next, suppose that no two points of V are collinear
in S. We shall show that V is an ovoid of S. Assume that the line M of S has no point in common
with V . Since V is a linear variety of S∗ and since every point of S is regular, each point of M is
collinear with 0 or 1 point of V . Hence s + 1 > |V |. But V together with lines of S∗ contained in V
is a 2− (|V |, t + 1, 1) design, so that |V | > t2 + t + 1. Hence s > t2 + t, an impossibility by Higman’s
inequality. So V is an ovoid of S, and consequently |V | = st + 1.

Hence for a proper linear variety V of S∗ which contains at least three non-S∗-collinear points, we
have |V | ∈ {st + s + 1, st + 1}. If |V | = st + s + 1, then V = u⊥ for some u ∈ V ; if |V | = st + 1, then
V is an ovoid of S. Let V1 and V2 be two (distinct) proper linear varieties of S∗ having at least three
non-S∗-collinear points in common, and suppose that |V1| 6 |V2|. Since V1 ∩ V2 is also a proper linear
variety, we necessarily have |V1 ∩ V2| = st + 1, |V2| = st + s + 1. Hence the ovoid V1 ∩ V2 is contained
in some u⊥, a patent impossibility. It follows that each three points which are not S∗-collinear are
contained in at most one proper linear variety, and that each proper linear variety which contains at
least three non-S∗-collinear points is a plane of S∗. If |V | = st + s + 1, V will be referred to as a
nonabsolute plane.

Now we introduce condition (ii)′: every three non-S∗-collinear points are contained in a proper
linear variety of S∗. If (ii)′ is satisfied, then any hyperbolic line L of S is contained in 1 + t absolute
planes and s − t nonabsolute planes of S∗. This is easily seen by noticing that any plane containing
L has exactly one point in common with M∗, with M ∈ B and L ∩M∗ = ∅.

Next we show that condition (ii) implies condition (ii)′. Suppose that (ii) is satisfied and that x, y, z
are three non-S∗-collinear points. Clearly the lines {x, y}⊥ and {x, z}⊥ of S∗ belong to the absolute
plane x⊥. By (ii) the lines {x, y}⊥⊥ and {x, z}⊥⊥ of S∗ belong to a proper linear variety V of S∗, and
hence x, y, z ∈ V . So S also satisfies (ii)′.

Condition (ii)′ seems to be weaker than (ii), and we proceed as far as possible assuming only
condition (ii)′ (in addition to (i)).
(b) Let (ii)′ be satisfied: the affine planes πx = (Px,Bx), x ∈ P.
With (ii)′ satisfied, let x ∈ P, let Px be th set of hyperbolic lines of S containing x, and let Bx be
the set of planes of S∗ different from x⊥ which contain x. If L ∈ Px and V ∈ Bx, then let L Ix V iff
L ⊂ V . It is clear that the incidence structure (Px,Bx, Ix) (briefly (Px,Bx) or πx) is a 2 − (s2, s, 1)
design, i.e. an affine plane of order s. Let x I M I y, x 6= y. Then y⊥ is a line of the affine plane πx.
So with M there correspond s lines of πx and no two of them have a point of πx in common. Hence
these lines form a parallel class of πx. The corresponding improper point of πx is called special, and
the lines of the parallel class are also called special. The special point defined by M , x I M , will also
be denoted by M∗. We note that the special lines of πx are exactly the absolute planes of Bx.

Let V be a nonabsolute plane of S∗, let x ∈ V , and let y 6∈ V with x 6∼ y. If V ′ is a plane of S∗
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with x, y ∈ V ′, then V ∩ V ′ = {x} iff V and V ′ are parallel lines of πx. Since the point {x, y}⊥⊥ of πx

belongs to just one line of πx which is parallel to V , there is just one plane V ′ in S∗ which contains x
and y and is tangent to V at x. As we have V ‖ V ′ in πx and V is nonspecial, also V ′ is nonspecial,
i.e. the plane V ′ is nonabsolute.

Further, let V be a nonabsolute plane with x 6∈ V . The points of V which are collinear (in S)
with x are denoted y0, . . . , yt. The hyperbolic lines containing x and a point of V \ {y0, . . . , yt} are
denoted by M1, . . . ,Mst−t. The points M1, . . . ,Mst−t of πx together with the t + 1 special improper
points of πx form a set A of order st + 1 of the projective completion of πx of πx. Now it is an easy
exercise to show that each line U of πx intersects A in 0, 1, or t + 1 points (if U is the completion of
a special line of πx then it contains 1 or t + 1 elements of A; if U is the completion of a nonspecial
line of πx then it contains 0, 1, or t + 1 elements of A). The lines U of πx intersecting A in 1
point correspond to the absolute planes y⊥0 , . . . , y⊥t , and to the nonabsolute planes containing x and
exactly one point of V \ {y0, . . . , yt}. By the preceding paragraph this number equals st + 1. The
number of lines U of πx intersecting A in t + 1 points equals (st + 1)st/t(t + 1). Hence there are
s2 + s + 1 − (st + 1) − (st + 1)st/t(t + 1) = s(s − t2)/(t + 1) lines in πx having no point in common
with A. Since this number is nonnegative and s 6 t2, it must be that s = t2 and every line U of πx

intersects A in 1 or t + 1 points. Hence A is a unital [50] of πx.
Consequently, from (i) and (ii)′ it follows that s = t2, |V | = t3 + t2 + 1 for an absolute plane, and

|V | = t3 +1 for a nonabsolute plane. Finally, we shall show that two planes V and V ′ always intersect.
If one of these planes is absolute, clearly V ∩ V ′ 6= ∅. If V and V ′ are nonabsolute and x ∈ V \ V ′,
then let A be the unital of πx which corresponds to V . As the projective completion of the nonspecial
line V ′ of πx intersects A in 1 or t + 1 (nonspecial) points, we have |V ∩V ′| = 1 or t + 1. We conclude
that any two planes of S intersect.
(c) Let (ii)′ be satisfied: bundles of planes.
If L is a line of S∗, then the set of all planes of S∗ containing L is called the bundle of planes with
axis L. That bundle is denoted by BL, and |BL| = s + 1 (by one of the last paragraphs of (a)).

Let V0 be a nonabsolute plane of S∗, and let x ∈ V0. By considering the plane πx we see that there
are s−1 nonabsolute planes V1, . . . , Vs−1 which are tangent to V0 at x. The only absolute plane which
is tangent to v0 at x is x⊥ = Vs. Since V0, . . . , Vs−1 are parallel lines of πx, any two of the s+1 planes
V0, . . . , Vs have only x in common. The set {V0, . . . , Vs} will be denoted by β(V0, x) and will be called
a bundle of mutually tangent planes. Clearly β(V0, x) = β(Vi, x), 1 6 i 6 s− 1. Further, two different
bundles β(V, x) and β(V ′, x) of mutually tangent planes (at x) have only the plane x⊥ in common.

Let β be a bundle, and let p be a point not belonging to two elements of β. If β has axis L with
L a line of S∗, then p is contained in one element of β. If β is a bundle of mutually tangent planes
V0, . . . , Vs, then |V0 ∪ . . . ∪ VS | = (t2 + 1)(t3 + 1) = |P|, and consequently here too p is contained in
just one element of β.

Finally, let us consider two planes V and V ′. If |V ∩ V ′| = t + 1, then the planes V and V ′ are
contained in just one bundle, namely βL with L = V ∩ V ′. Now let V ∩ V ′ = {x}, and assume that V
is nonabsolute. Then β(V, x) is the only bundle containing V and V ′.
(d) Let (ii) be satisfied: conjugacy.
Let L be a line of S∗. If L⊥ is a subset of the plane V , we say that L is conjugated to V or that V
is conjugated to L. The planes conjugated to L, with L = M∗ and M ∈ B, are the absolute planes
containing L. The lines (of S∗) conjugated to the absolute plane x⊥, are the lines (of S∗) which
contain the point x. Let V be a plane and let p 6∈ V . Then the hyperbolic line (p⊥ ∩ V )⊥ is the only
line of S∗ which contains p and is conjugated to V . If V is nonabsolute we have (p⊥ ∩ V )⊥ ∩ V = ∅.
Hence in this case the lines of S∗ conjugated to V constitute a partition of P \ V .

We say that the planes V and V ′ (not necessarily distinct) are conjugated if there is a line L in S∗
for which L ⊂ V and L⊥ ⊂ V ′. It follows that a plane is conjugated to itself iff it is absolute. The
set of planes conjugated to the plane V is called the net of planes conjugated to V , and it is denoted
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by Ṽ . If V = x⊥, then Ṽ consists of all planes through x, implying |Ṽ | = t4 + t2 + 1. Conversely, if
all elements of Ṽ have a common point x, then V = x⊥. Since the absolute planes conjugated to the
plane V are the planes x⊥ with x ∈ V , we clearly have Ṽ = Ṽ ′ iff V = V ′.

Let V and V ′ be distinct conjugated planes, and let p ∈ V ′ \ V . The unique line of S∗ which
contains p and is conjugated to V is denoted by N . We shall prove that N ⊂ V ′. Since V and V ′ are
conjugated, there is a line L in S∗ such that L ⊂ V and L⊥ ⊂ V ′. If N = L⊥, we have N ⊂ V ′. So
assume N 6= L⊥. Since N⊥ and L are contained in the plane V , by (ii) the lines (of S∗) N and L⊥

are also contained in some plane V ′′. Since N 6= L⊥, clearly p 6∈ L⊥. Then p and L⊥ are contained
in a unique plane, so that V ′ = V ′′ and hence N ⊂ V ′. This shows that if V is nonabsolute, the lines
of S∗ which are conjugated to V and contain at least one point of V ′ are all contained in V ′ \ V and
constitute a partition of V ′ \ V .

Let V and V ′ be nonabsolute and conjugated. By the previous paragraph t+1 divides |V ′\V |. Since
|V ′\V | ∈ {t3, t3−t}, it must be that |V ′\V | = t3−t, i.e. V ′∩V is a hyperbolic line. It easily follows that
for a nonabsolute plane V we have |Ṽ | = t2(t2−t+1)(t2−t)/(t2−t)+t2(t2−t+1)(t+1)/t2 = t4+t2+1,
where t2(t2− t+1) is the number of hyperbolic lines conjugated to V ; t2− t (resp., t+1) is the number
of nonabsolute (resp., absolute) planes containing an hyperbolic line; and t2 − t (resp., t2) is the
number of hyperbolic lines conjugated to V which are contained in a nonabsolute (resp., absolute)
plane conjugated to V . Hence for any plane V of S∗ we have |Ṽ | = t4 + t2 + 1.

A plane V and a bundle β of planes are called conjugated iff V is conjugated to all elements of β.
And we say that bundles β and β′ are conjugated iff each element of β is conjugated to each element
of β′.

Consider the bundle βL with axis L. If the plane V is conjugated to βL, then V contains all
points x with x⊥ ∈ βL. Consequently V contains L⊥. Conversely, if V contains L⊥, then it is evident
that V is conjugated to βL. It follows that there is just one bundle conjugated to βL, namely β⊥L .
Now consider a bundle β(V, x) of mutually tangent planes. Let V ′ be a plane which is conjugated to
the bundle β(V, x). Then V ′ is conjugated to x⊥, implying x ∈ V ′. Now consider a plane V ′ which
contains x and is conjugated to V . We shall show that V ′ is conjugated to β(V, x).

If V ′ = x⊥, then clearly V ′ is conjugated to β(V, x). So assume V ′ is nonabsolute. Let V ′′ be a
nonabsolute plane which contains x and is conjugated to V ′. Suppose that V 6= V ′′ and |V ∩V ′′| = t+1.
If y ∈ V ∩ V ′′ and y 6∈ V ′, then the hyperbolic line N containing y and conjugated to V ′ is a subset
of V and V ′′. Since both V and V ′′ contain N and x, we have V = V ′′, a contradiction. Hence
V ∩ V ′′′ ⊂ V ′. Let R be a hyperbolic line in one of the absolute planes containing V ∩ V ′′, with
x ∈ R and R 6= V ∩ V ′′. Then R is contained in just one plane V ′′′ which is conjugated to V ′.
Clearly V ′′′ is not absolute and does not contain V ∩V ′′. Since V and V ′′ are not parallel in the affine
plane πx, at least one of these planes, say V , is not parallel to V ′′′. Hence V ∩ V ′′′ is a hyperbolic
line containing x. So V and V ′′′ are distinct planes which contain the hyperbolic line V ∩ V ′′′ 6⊂ V ′

and are conjugated to V ′, a contradiction. Consequently, we have V = V ′′ or |V ∩ V ′′| = 1. Hence
V ′′ ∈ β(V, x). Since the number of nonabsolute planes containing x and conjugated to V ′ equals
(t2(t2 − t + 1)− t2)/(t2 − t) = t2 = |β(V, x)| − 1, it is clear that V ′ is conjugated to β(V, x).

Now consider the t2 + 1 planes which contain x and are conjugated to V . By the preceding
paragraph these planes are mutually tangent at x and hence may form a bundle β(V ′, x). So there
is just one bundle which is conjugated to β(V, x), namely the bundle β(V ′, x), where V ′ is arbitrary
nonabsolute plane which contains x and is conjugated to V .

If β is a bundle, then the unique bundle conjugated to β is denoted by β̃. We note that β̃ consists
of all planes conjugated to β.
(e) Let (ii) be satisfied: some more properties of conjugacy.
Consider two planes V and V ′′, with |V ∩ V ′′| = t + 1, which are conjugated to the nonabsolute plane
V ′. We shall prove that V ∩V ′∩V ′′ = ∅. The case where V or V ′′ is absolute is easy. So assume that
V and V ′′ are nonabsolute. If V ∩ V ′ ∩ V ′′ = {x}, then there are at least two planes which contain
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V ∩ V ′′ 6⊂ V ′ and are conjugated to V ′, a contradiction. If V ∩ V ′′ ⊂ V ′, then by one of the last
paragraphs of (d) we obtain a contradiction. We conclude that always V ∩ V ′ ∩ V ′′ = ∅.

Let the plane V be conjugated to the planes V ′ and V ′′, V ′ 6= V ′′. We shall prove that V is
conjugated to the bundle β containing V ′ and V ′′.

If V ′ = x′⊥ and V ′′ = x′′⊥, then V contains x′ and x′′, and consequently also (V ′ ∩ V ′′)⊥,. By (d)
V is conjugated to the bundle β defined by V ′ and V ′′.

Now let V ′ = x′⊥ and let V ′′ be nonabsolute. If x′ 6∈ V ′′, then V contains x′ and the hyperbolic
line L containing x′ and conjugated to V ′′. Since L = (V ′ ∩ V ′′)⊥, the plane V is conjugated to the
bundle β. If x′ ∈ V ′′, then by the last part of (d) V belongs to the bundle β(W,x), where W is an
arbitrary nonabsolute plane which contains x′ and is conjugated to V ′′. Since the bundles β(V ′′, x′)
and β(W,x′) are conjugated, it is clear that V is conjugated to the bundle β = β(V ′′, x′) containing
V ′′ and V ′.

Finally, let V ′ and V ′′ be nonabsolute. If V = x⊥, then x ∈ V ′ ∩ V ′′, so V is conjugated to the
bundle β. So assume V is nonabsolute. If |V ′∩V ′′| = t+1 and x ∈ V ′∩V ′′, then by the first paragraph
of (e) we have x 6∈ V . The hyperbolic line L which contains x and is conjugated to V belongs to V ′

and V ′′, hence must be the line V ′∩V ′′ of S∗. Consequently V contains (V ′∩V ′′)⊥ which means that
V is conjugated to the bundle β defined by V ′ and V ′′. If V ′ ∩ V ′′ = {x}, then x ∈ V , since otherwise
V ′ and V ′′ would contain the hyperbolic line containing x and conjugated to V . By the last part of
(d) the plane V is conjugated to the bundle β(V ′, x), i.e. to the bundle β containing V ′ and V ′′.

This completes the proof that a plane V is conjugated to a bundle β iff it is conjugated to at least
two planes of β. Now it is clear that for any two planes V and V ′, the set Ṽ ∩V ′ is the unique bundle
which is conjugated to the bundle defined by V and V ′.

Let β be a bundle and let V be a plane which is not in β̃. We shall prove that |β ∩ Ṽ | = 1. If we
should have |β ∩ Ṽ | > 1, then by the preceding paragraph β is conjugated to V , and hence V ∈ β,
a contradiction. So we have only to show that |β ∩ Ṽ | > 1. First suppose that there is a point x
belonging to all elements of β and not contained in V . Then x is contained in just one hyperbolic
line L conjugated to V . By (d) L is contained in an element V ′ of β. Clearly V ′ ∈ Ṽ ∩ β. Next, we
suppose that every element x common to all elements of β is also contained in V . If β = β(V ′′, x),
then x⊥ ∈ β and x⊥ ∈ Ṽ . If β has axis M∗, M ∈ B, then M∗ ⊂ V and V ∈ β̃, a contradiction. So
assume that β has axis N , with N a hyperbolic line. There is a plane contained in β and Ṽ iff there is
a plane conjugated to β̃ and V iff there is a plane conjugated to V , y⊥ and z⊥, with y, z ∈ N , y 6= z.
If V is absolute, then it is clear that there is a plane conjugated to V , y⊥ and z⊥. If V is nonabsolute,
then we have to shot that |β̃′ ∩ z̃⊥| > 1, with β′ = β(V, y). Since z⊥ 6∈ β′, this immediately follows
from one of the preceding cases.

Finally, we give some easy corollaries: (1) if β is a bundle and V a plane not in β, then |Ṽ ∩ β̃| = 1;
(2) if β is a bundle and V is a plane such that β 6⊂ Ṽ , then |β ∩ Ṽ | = 1; and (3) if β is a bundle and
V a plane not in β, then V and β are contained in exactly one net of planes.
(f) Let (ii) be satisfied: the space PG(3, s) and the final step.
Let V be the set of all planes, let B be the set of all bundles of planes, and let Ṽ be the set of all nets of
planes. An element Ṽ of Ṽ is called “incident” with the element V ′ (resp., β) of V (resp., B) iff V ′ ∈ Ṽ
(resp., β ∈ Ṽ ); an element β of B is called “incident” with an element V of V iff V ∈ B. We shall prove
that for such an “incidence” the ordered triple (Ṽ, B, V) is the structure of points, lines and planes of
the projective space PG(3, s). So we have to check that the following properties are satisfied:

(1) Every two nets are “incident” with exactly one bundle.
(2) For every two planes there is exactly one bundle which is “incident” with both of them.
(3) For every plane V and every bundle β which is not “incident” with V , there is exactly one net

“incident” with V and β.
(4) Every bundle β and every net Ṽ which is not “incident” with β are “incident” with exactly

one plane.
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(5) There exist four nets which are not “incident” with a same plane, and for every bundle β there
are exactly s + 1 nets “incident” with β.

In (e) we have proved that for any two planes V and V ′, the set Ṽ ∩ Ṽ ′ is always a bundle, and
hence (1) is satisfied. By the last paragraph of (c) also (2) is satisfied. By Corollary (3) in the last
part of (e) Condition (3) is satisfied. Condition (4) is satisfied by Corollary (2) in the last part of (e).
Let N and N⊥ be hyperbolic lines and let x, y ∈ N , x 6= y, and z, u ∈ N⊥, z 6= u. Then it is clear that
the nets x̃⊥, ỹ⊥, z̃⊥, ũ⊥ are not “incident” with a same plane. Finally, the number of nets “incident”
with a bundle β equals the number of planes conjugated to β, hence equals |β̃| = s + 1 by (d). Hence
(Ṽ, B, V) is the structure of points, lines and planes of PG(3, s).

Now we consider the following bijection θ : Ṽ→, Ṽ 7→ V . It is clear that the images of the s + 1
nets “incident” with a bundle β are the planes which are “incident” with the bundle β̃. Moreover,
if W̃ is “incident” with Ṽ θ = V , then Ṽ is “incident” with W̃ θ = W . So θ defines a polarity of the
projective space (Ṽ, B, V). The “absolute” [50] elements in Ṽ and V for the polarity θ are the nets x̃⊥

and the planes x⊥ (the absolute planes), x ∈ P. The “totally isotropic” [50] bundles are the bundles
β for which β = β̃, i.e. the bundles βM∗ , with M ∈ B. With respect to the “incidence” in (Ṽ, B, V) the
“absolute” nets and “totally isotropic” bundles form a classical GQ S. Since x̃⊥ is “incident” with
βM∗ , M ∈ B, iff x I M in S, the classical GQ S is isomorphic to S. As there are (s3 + 1)(s + 1)
“absolute” nets, the polarity θ is unitary, implying that S is the GQ H(3, s). We conclude that
S ∼= H(3, s). 2

Remark: Using 5.3.5 F. Mazzocca and D. Olanda [106] proved that a GQ S of order (s2, s), s 6= 1, is
isomorphic to H(3, s) iff the following conditions are satisfied:

(i) all points of S are regular,
(ii)′ every three non-S∗-collinear points are contained in a proper linear variety of S∗, and
(iii) for every point x and every triad (y, z, u) with center x, the affine plane πx has an affine Baer

subplane having only special improper points and containing the elements y⊥ ∩ z⊥, z⊥ ∩ u⊥, u⊥ ∩ y⊥.

5.5 Characterizations of H(4, q2)

5.5.1. (J.A. Thas [196]). A GQ S of order (s, t), s3 = t2 and s 6= 1, is isomorphic to the classical
GQ H(4, s) iff every hyperbolic line has at least

√
s + 1 points.

Proof. By 3.3.1 (iii) every hyperbolic line of H(4, s), s = q2, has exactly q + 1 points. Conversely,
suppose that S = (P,B, I) is a GQ of order (s, t), s3 = t2 and s 6= 1, for which |{x, y}⊥⊥| >

√
s+1 for

all x, y ∈ P with x 6∼ y. To show that S ∼= H(4, q2) will require a rather lengthy sequence of steps.
(a) Introduction and generalities.
By 1.4.2 (ii) we have (|{x, y}⊥⊥| − 1)t 6 s2 if x 6∼ y. Hence |{x, y}⊥⊥| 6

√
s + 1 if x 6∼ y. It follows

that each hyperbolic line has exactly
√

s + 1 points. Now, again by 1.4.2 (ii), every triad (x, y, z),
z 6∈ cl(x, y), has exactly

√
s + 1 centers. Let u and v be two centers of the triad (x, y, z), z 6∈ cl(x, y).

Then {x, y}⊥⊥ ∪ {z} ⊂ {u, v}⊥, implying {u, v}⊥⊥ ⊂ {x, y, z}⊥. As |{u, v}⊥⊥| = |{x, y, z}⊥|, we
have {u, v}⊥⊥ = {x, y, z}⊥. It follows that for any triad (x, y, z), z 6∈ cl(x, y), the set {x, y, z}⊥ is a
hyperbolic line, and that {x, y, z} is contained in just one trace (of a pair of noncollinear points).
(b) The subquadrangles SL,M .
Clearly each point of S is semiregular, so each point satisfies property (H). By 2.5.2, for any pair (L,M)
of nonconcurrent lines the set L∗ ∪M∗, with L∗ = {x ∈ P ‖ x I L} and M∗ = {x ∈ P ‖ x I M}, is
contained in a subquadrangle SL,M of order (s,

√
s). The pointset of this subquadrangle is the union

of the sets {x, y}⊥⊥ with x I L and y I M . Now we shall prove that the set L∗ ∪M∗ is contained in
just one proper subquadrangle of S.



70 Finite generalized quadrangles

Let SL,M = (P ′,B′, I′), and consider an arbitrary proper subquadrangle S ′′ = (P ′′.B′′. I′′) of S for
which L∗ ∪M∗ ⊂ P ′′. By 2.3.1 the structure S ′′′ = (P ′ ∩ P ′′,B′ ∩ B′′, I′ ∩ I′′) is a subquadrangle of
order (s, t′′′) of S. Since t 6= s2, by 2.2.2 (vi) we have S ′′′ = SL,M and S ′′′ = S ′′. Hence S ′′ = SL,M .

If SL,M = (P ′,B′, I′) and x, y ∈ P ′, x 6= y, then we show that {x, y}⊥⊥ ⊂ P ′. Clearly we have
{x, y}⊥⊥ ⊂ P ′ if x, y ∈ P ′, x 6= y, and x ∼ y. So assume x 6∼ y. Let x I U and y I V , with U and
V nonconcurrent line of SL,M . The pointset U∗ ∪ V ∗ is contained in the proper subquadrangles SL,M

and SU,V , implying that SL,M = SU,V by the preceding paragraph. Since {x, y}⊥⊥ is contained in the
pointset SU,V , we also have {x, y}⊥⊥ ⊂ P ′.
(c) SL,M

∼= H(3, s).
Next we shall prove that each subquadrangle SL,M = (P ′,B′, I′) is isomorphic to H(3, s). The first
step is to show that each point of SL,M is regular in SL,M . Let y be a point of SL,M which is not
collinear with x. Since every point of {x, y}⊥⊥ ⊂ P ′ is collinear with every point of {x, y}⊥ ∩ P ′, it
follows that the hyperbolic line of SL,M defined by x and y in SL,M has at least

√
s + 1 points. As

the order of Sl,M is (s,
√

s), the span of x and y in SL,M has exactly
√

s + 1 points, implying (x, y) is
regular. Consequently each point of SL,M is regular in SL,M .

Let S∗L,M = (P ′,B′∗,∈) be the linear space introduced in 5.4. Notations and terminology of 5.4
will be used. In order to apply Tallini’s theorem we must prove that if the lines L and L′ of B′∗
are contained in a proper linear variety of S∗L,M , then also the lines L⊥ ∩ P ′ and L′⊥ ∩ P ′ of B′∗ are
contained in a proper linear variety of S∗L,M . Consider the three points x, y, z in P ′ which are not
S∗L,M -collinear. These points are contained in an absolute plane of S∗L,M iff z ∈ cl(x, y) (cf. 5.4.1 (a)).
If z 6∈ cl(x, y), then P ′∩T , with T the unique trace of S containing x, y, z, is a proper linear variety of
S∗L,M which contains x, y, z. Since by 5.4.1 (a) the nonabsolute plane P ′ ∩T of S∗L,M contains s

√
s+1

points, we have T ⊂ P ′. So condition (ii)′ of 5.4.1 is satisfied, and moreover the absolute planes of
S∗L,M are the traces of S which are contained in P ′, i.e. the traces of S containing at least three
non-S∗L,M -collinear points of P ′. Now let L and L′ be two lines of B′∗ which are contained in a proper
linear variety (i.e. a plane) of S∗L,M . There are four cases.

(i) If L and/or L′ consists of the points incident with a line of S, then clearly L⊥∩P ′ and L′⊥∩P ′
are contained in an absolute plane.

(ii) If L and L′ are hyperbolic lines which are contained in the absolute plane z⊥∩P ′, then L⊥∩P ′
and L′⊥ ∩P ′ contain z. Since (ii)′ is satisfied, the hyperbolic lines L⊥ ∩P ′ and L′⊥ ∩P ′ are contained
in a plane of S∗L,M .

(iii) Now suppose that L and L′ are hyperbolic lines which are contained in a nonabsolute plane
of S∗L,M and which have a nonvoid intersection. If L ∩ L′ = {z}, then clearly L⊥ ∩ P ′ and L′⊥ ∩ P ′

are contained in z⊥ ∩ P ′.
(iv) Finally, let L and L′ be disjoint hyperbolic lines which are contained in a nonabsolute plane T

of S∗L,M . If T = {x, y}⊥, then it is easy to show that {x, y}⊥⊥∩P ′ = ∅ and {x, y}⊥⊥ = L⊥∩L′⊥. Let
d be a point of L⊥ ∩ P ′. Then d is collinear with no point of L′, and consequently must be collinear
with

√
s + 1 points of L′⊥. Let e be one of these points, and denote by V the line of S which is

incident with d and e. Further, let R (resp., N) be the line of S which is incident with x (resp., y)
and concurrent with V . If there is a point h with R I h I N , then h I V , implying h is collinear with
d, e and all points of {x, y}⊥⊥. Since h is collinear with at least

√
s + 2 points of L⊥ (resp., L′⊥), we

have h ∈ L (resp., h ∈ L′). Hence L ∩ L′ 6= ∅, a contradiction. Hence R and N are not concurrent,
and we may consider the subquadrangle SR,N = (P ′′,B′′, I′′) of S. Then we have L⊥ ∪ L′⊥ ⊂ P ′′.
Clearly P ′∩P ′′ is a linear variety of S∗L,M which contains L⊥∩P ′ and L′⊥∩P ′. Since |P ′| = |P ′′| and
{x, y}⊥⊥ ∩ P ′ = ∅, we have P ′ ∩ P ′′ 6= P ′, implying L⊥ ∩ P ′ and L′⊥ ∩ P ′ are contained in a proper
linear variety of S∗L,M .

Hence condition (ii) of 5.4.1 is satisfied, and by Tallini’s theorem SL,M
∼= H(3, s).

(d) Threespaces and bundles of threespaces.
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The sets x⊥, x ∈ P, will be called absolute threespaces, and the pointsets of the subquadrangles SL,M

will be called nonabsolute threespaces. The traces of S will be called nonabsolute planes, the sets
cl(x, y) ∩ z⊥, with x 6∼ y and z ∈ {x, y}⊥, will be called absolute planes, and the sets L∗, with L ∈ B
and L∗ = {x ∈ P ‖ x I L} will be called totally absolute planes. We shall show that a plane T which
is not totally absolute and a point x, x 6∈ T , are contained in exactly one threespace. As usual, there
are a few cases to consider.

(i) T = {y, z}⊥, y 6∼ z, and x ∈ cl(y, z). Let x be collinear with the point u of {y, z}⊥⊥. Then
u⊥ is the unique absolute threespace which contains {x} ∪ T . If there is a nonabsolute threespace
E containing {x} ∪ T , then E contains u and thus also all points of u⊥. Hence the point u of the
subquadrangles SL,M with pointset E is incident with t + 1 lines of SL,M , a contradiction.

(ii) T = {y, z}⊥, y 6∼ z, and x 6∈ cl(y, z). Then there is no absolute threespace containing {x} ∪ T .
The point x is collinear with

√
s + 1 points u0, . . . , u√s of T . Let w ∈ T \ {u0, . . . , u√s} and let L be

the line incident with w and concurrent with the line V through x and u0. If x I M I u1, then the
pointset E of SL,M contains x,w, u0, u1. Since w 6∈ {u1, . . . , u√s} = {u0, u1}⊥⊥, we have T ⊂ E by
(c). So {x} ∪ T ⊂ E. Since any threespace through {x} ∪ T contains all points which are incident
with L and M , by (b) there is just one threespace which contains x and T .

(iii) T is an absolute plane with T ⊂ y⊥ and x ∼ y. Then clearly y⊥ is the only threespace through
x and T .

(iv) T is an absolute plane with T ⊂ y⊥ and x 6∼ y. Then {x} ∪ T is not contained in an absolute
threespace. Let T = L∗0 ∪ . . . L∗√

s
with Li ∈ B and L∗i = {z ∈ P ‖ z I Li}, and let M be the line

which is incident with x and concurrent with L0. Any threespace through {x}∪T contains L∗1 and all
points incident with M . Hence the pointset of SL1,M is the unique threespace which contains {x}∪T .

Now we introduce bundles of threespaces.
A nonabsolute bundle is the set of all threespaces which contain a given nonabsolute plane T . From

the first part of (d) it follows that nonabsolute bundle contains
√

s+1 absolute threespaces and s−
√

s
nonabsolute threespaces. The

√
s + 1 absolute threespaces are the threespaces x⊥, with x ∈ T⊥.

The set of all threespaces which contain a given absolute plane is called an absolute bundle. From
the first part of (d) it follows that an absolute bundle contains one absolute threespace and s nonab-
solute threepspaces.

The set of all absolute threespaces which contain a given totally absolute plane is called a totally
absolute bundle. A totally absolute bundle contains s + 1 absolute threespaces.

Hence each bundle of threespaces contains exactly s + 1 elements.
(e) The incidence structure D = (E, B,∈).
The set of all threespaces is denoted by E and the set of all bundles by B. We shall now show that
incidence structure D = (E, B,∈) is a 2− (s4 + s3 + s2 + s + 1, s + 1, 1) design.

The number of absolute threespaces equals (s + 1)(s2√s + 1), and the number of nonabsolute
threespaces equals (s

√
s + 1)(s2√s + 1)s4/(

√
s + 1)(s

√
s + 1)s2 = s4 − s3√s + s3 − s2√s + s2. Hence

|E| = s4 + s3 + s2 + s + 1.
In (d) we noticed that each element of B contains s + 1 elements of E.
Let E be a nonabsolute threespace. The number of threespaces which intersect E in an absolute

plane or a nonabsolute plane is equal to
s|{nonabsolute planes in E}| + s|{absolute planes in E}|. By (c) and the first part of the proof of
Tallini’s theorem (5.4.1), this number of threespaces is equal to s|{set of planes in PG(3, s)}| = s(s3 +
s2+s+1) = |E|−1. It follows that two given threespaces E and E′, with E nonabsolute, are contained
in exactly one bundle. Now consider two absolute threespaces x⊥ and y⊥. If x ∼ y, then clearly x⊥

and y⊥ are contained in the totally absolute bundle defined by the totally absolute plane L∗, with
x I L I y, and in no other bundle. Hence any two threespaces are contained in a unique bundle.

We conclude that D is a 2− (s4 + s3 + s2 + s + 1, s + 1, 1) design.
(f) An interesting property of bundles.
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Let β be the bundle defined by the plane T . Intersect β with a nonabsolute threespace E, with T 6⊂ E
if T is not totally absolute (i.e. if T does not consist of all points incident with some line in β). By
(c) E may be considered as a nonsingular hermitian variety of a PG(3, s). If β = {E0, . . . , Es}, then
by (e) the sets E0 ∩ E, . . . ,Ds ∩ E are plane intersections of the hermitian variety E. Consequently
(Ei ∩ E) ∩ (Ej ∩ E) = T ∩ E (i 6= j) is a point, a hyperbolic line, or an L∗ with L ∈ B.

If T ∩ E is not a point, then clearly the planes E0 ∩ E, . . . , Es ∩ E (no one of which is totally
absolute) are exactly the intersections of the hermitian variety E and the s + 1 planes of PG(3, s)
through T ∩ E. Hence with β there corresponds a bundle of planes in PG(3, s).

Next let T ∩E = {x}. Since E0∩E, . . . , Es∩E are s+1 plane intersections of the hermitian variety
E, having in pairs only the point x in common, their planes π0, . . . , πs in PG(3, s) have a tangent line
of E (in PG(3, s)) in common. Consequently π0, . . . , πs constitute a bundle of planes in PG(3, s).
(g) D is the design of points and lines of PG(4, s).
Let E be the threespace common to the bundles β and β′, β 6= β′. Let E1 and E2 be elements of
β with E,E1, E2 distinct, and let E′

1 and E′
2 be elements of β′ with E,E′

1, E
′
2 distinct. The bundle

containing E1 and E′
1 (resp., E2 and E′

2) is denoted by E1E
′
1 (resp., E2E

′
2). We have to show [226]

that E1E
′
1 ∩ E2E

′
2 6= ∅.

Suppose that β (resp., β′) is defined by the plane T (resp., T ′). Now we prove that T ∩ T ′ 6= ∅.
Evidently T ∪ T ′ ⊂ E. If E is nonabsolute, then T and T ′ are plane intersections of a nonsingular
hermitian variety of PG(3, s) and hence T ∩ T ′ 6= ∅. Now let E be the threespace x⊥, x ∈ P. If at
least one of β, β′ is absolute or totally absolute, then clearly T ∩ T ′ 6= ∅. So we assume that β and
β′ are nonabsolute. Then we have T = {x, z}⊥ and T ′ = {x, z′}⊥ for some z and z′. If x, z, z′ are
contained in a nonabsolute plane {u, v}⊥, then clearly {u, v}⊥⊥ = T ∩ T ′; if x, z, z′ are contained in
an absolute plane, then there is exactly one point w which is collinear with x, z, z′, and T ∩T ′ = {w}.
Hence in all cases T ∩ T ′ 6= ∅.

Let w ∈ T ∩ T ′ and let E′ be a nonabsolute threespace which does not contain w. By (c) E′

may be considered as a nonsingular hermitian variety of a PG(3, s). The planes E ∩ E′, E1 ∩ E′,
E2 ∩ E′, E′

1 ∩ E′, E′
2 ∩ E′ are plane intersections of the hermitian variety E′. Let π, π1, π2, π

′
1, π

′
2 be

the respective planes of PG(3, s) in which these intersections are contained. By (f) π, π1, π2 (resp.,
π, π′1, π

′
2) are elements of a bundle γ (resp., γ′) of planes in PG(3, s). We notice that π, π1, π2 (resp.,

π, π′1, π
′
2) are distinct. We shall now show that γ ∩ γ′ = {π}. If π′ ∈ γ ∩ γ′, then π′ ∩ E′ is the

intersection of E′ and an element R (resp., R′) of β (resp., β′). Since R and R′ both contain π′ ∩ E′

and w (w 6∈ π′ ∩E′), we have R = R′, implying R = R′ = E. Hence π′ = π, i.e. γ ∩ γ′ = {π}. Clearly
the bundles of planes π1π

′
1 and π2π

′
2 have a plane π3 in common. The plane intersection π3 ∩ E′ of

the hermitian variety E′ is the intersection of E′ with an element E3 (resp., E′
3) of the bundle E1E

′
1

(resp., E2E
′
2). Since w is a point of each element of the bundle E1E

′
1 (resp., E2E

′
2), the threespace

E3 (resp., E′
3) is the unique threespace containing π3 ∩ E′ and w. Consequently E3 = E′

3, implying
E1E

′
1 ∩ E2E

′
2 6= ∅.

This completes the proof that D = (E, B,∈) is the design of points and lines of a PG(n, s). Since
|E| = s4 + s3 + s2 + s + 1 and |β| = s + 1 for all β ∈ B, it must be that n = 4.
(h) The final step.
Let P̂ be the set of all absolute threespaces, and let β̂ be the set of all totally absolute bundles. Then
Ŝ = (P̂, β̂,∈) is a GQ of order (s, s

√
s) which is isomorphic to S. The elements of P̂ are points of

PG(4, s) and the elements of β̂ are the lines of PG(4, s). So by the theorem of F. Buekenhout and C.
Lefévre (cf. Chapter 4) Ŝ is a classical GQ. Since t = s

√
s, clearly Ŝ ∼= H(4, s). This completes the

proof that S ∼= H(4, s). 2

We now turn to a characterization of H(4, s) in terms of linear spaces. Let S = (P,B, I) be a
GQ of order (s, t), and let S∗ = (P,B∗,∈), with B∗ = {{x, y}⊥⊥ ‖ x, y ∈ P and x 6= y}, be the
corresponding linear space. Recall (cf. 5.4) that points of P which are on a line of S∗ are called
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S∗-collinear, and that any linear variety of S∗ generated by three non-S∗-collinear points is called a
plane of S∗.

5.5.2. (S.E. Payne and J.A. Thas [214]). Let S have order (s, t) with 1 < s3 6 t2. Then S is
isomorphic to H(4, s) iff each trace {x, y}⊥, x 6∼ y, is a plane (of S∗) which is generated by any three
non-S∗-collinear points in it.

Proof. Let S be the classical GQ H(4, s), and consider a trace {x, y}⊥, x 6∼ y. Let u, v, w be three
non-S∗-collinear points in {x, y}⊥ and call T the plane of S∗ generated by u, v, w. Suppose that
T 6= {x, y}⊥ and let z ∈ {x, y}⊥ \ T . Consider a line L through z which is incident with no point of
{x, y}⊥⊥. If z′ I L, z′ 6= z, then z′ is collinear with the

√
s + 1 points of a span in {x, y}⊥. Since T is

a plane of S∗ and z 6∈ T , z′ is collinear with at most one point of T . Hence s > |T |, a contradiction
since |T | > s

√
s+1 (note that T is the pointset of a 2− (|T |,

√
s+1, 1) design). Consequently {x, y}⊥

is the plane T of S∗.
Conversely, let S = (P,B, I) be a GQ of order (s, t) with 1 < s3 6 t2, and suppose that each trace

{x, y}⊥, x 6∼ y, is a plane of S∗ which is generated by any three non-S∗-collinear points of it. Let
u, v ∈ z⊥, u 6∼ v, and note that |{u, v}⊥⊥| < t + 1, since s < t (cf. 1.3.6). The number of traces
T for which {u, v}⊥⊥ ⊂ T ⊂ z⊥ is denoted by α. Let M be a line of S incident with z that has no
point in common with {u, v}⊥⊥, and let w, w 6= z, be a point incident with M . If two traces T1 and
T2 could contain {u, v}⊥⊥ and w, then T1 ∩ T2 (6= T1) would contain the plane of S∗ generated by
u, v, w, a contradiction. Hence {u, v}⊥⊥ and w are contained in at most one T , implying that α 6 s.
It follows that in {u, v}⊥ there are at most s hyperbolic lines containing z, and by 1.4.2 (ii) each such
hyperbolic line has at most s2/t 6 t1/3 points different from z. Hence |{u, v}⊥ \ {z}| = t 6 st1/3 6 t,
implying s3 = t2 and each hyperbolic line in {u, v}⊥ containing z has exactly 1 +

√
s points. Now it

is clear that each span has exactly 1 +
√

s points. By 5.5.1 S ∼= H(4, s). 2

5.6 Additional characterizations

5.6.1. (J.A. Thas [197]). Let S have order (s, t) with s 6= 1. Then
|{x, y}⊥⊥| > s2/t + 1 for all x, y, with x 6∼ y, iff one of the following occurs:

(i) t = s2,

(ii) S ∼= W (s),

(iii) S ∼= H(4, s).

Proof. If one of the three conditions holds, then clearly |{x, y}⊥⊥| > s2t + 1 for all x, y with x 6∼ y
(cf. 3.3.1).

Conversely, let S = (P,B, I) be a GQ of order (s, t), s 6= 1, for which |{x, y}⊥⊥| > s2t + 1 for all
x, y, with x 6∼ y. On the other hand, by 1.4.2 (ii) we have |{x, y}⊥⊥| 6 s2/t + 1 for all x, y, x 6∼ y.
Hence |{x, y}⊥⊥| = s2t + 1 for all x, y, with x 6∼ y. If s = t, then all points of S are regular and by
5.2.1 S ∼= W (s). From |{x, y}⊥⊥| 6 t + 1, x 6∼ y, it follows that s 6 t. So we now assume that s < t.
By 1.4.2 (ii), each triad (x, y, z), z 6∈ cl(x, y), has exactly 1 = t/s centers. Hence each point of S is
semiregular. By 2.5.2 we have t = s2 or s3 = t2. In the latter case every hyperbolic line has exactly
1 +
√

s points. By 5.5.1 we have S ∼= H(4, s), and the theorem is proved. 2

5.6.2. (J.A. Thas [197], J.A. Thas and S.E. Payne [214]). In the GQ S of order (s, t) each point has
property (H) iff one of the following holds:

(i) each point is regular,
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(ii) each hyperbolic line has exactly two points,

(iii) S ∼= H(4, s).

Proof. If one of (i), (ii), (iii) holds, then clearly each point has property (H) (cf. 1.6.1 and 3.3.1).
Conversely, assume that each point of the GQ S has property (H). By 2.5.1 we must have one

of the following: (i) each point is regular, (ii) all hyperbolic lines have exactly two points, or (iii)′

s3 = t2 6= 1 and each hyperbolic line has 1 +
√

s points. By 5.5.1 (iii)′ implies (iii). 2

5.6.3. (J.A. Thas [197], J.A. Thas and S.E. Payne [214]). Let S be a GQ of order (s, t) in which
each point is semiregular. the one of the following occurs:

(i) s > t and each point is regular,

(ii) s = t and S ∼= W (s),

(iii) s = t and each point is antiregular,

(iv) s < t and each hyperbolic line has exactly two points,

(v) S ∼= H(4, s).

Proof. With the given hypotheses on S, by 2.5.2 we have one of the following: (i) s > t and each
point is regular, (ii)′ s = t and each point is regular, (iii) s = t and each point is antiregular, (iv)
s < t and each hyperbolic line has exactly two points, or (v)′ s3 = t2 6= 1 and each hyperbolic line has√

s + 1 points. But (ii)′ implies (ii) by 5.2.1 and (v)′ implies (v) by 5.5.1. 2

5.6.4. (J.A. Thas [197]). In a GQ S of order (s, t) all triads (x, y, z) with z 6∈ cl(x, y) have a constant
number of centers iff one of the following occurs:

(i) all points are regular,

(ii) s2 = t,

(iii) S ∼= H(4, s).

Proof. If we have one of (i), (ii), (iii), then all triads (x, y, z), z 6∈ cl(x, y), have a constant number of
centers (cf. 1.2.4, 1.4.2 and 3.3.1).

Conversely, suppose that all triads (x, y, z), z 6∈ cl(x, y), have a constant number of centers. Also,
assume that not all points are regular and that s2 6= t. Then there is an hyperbolic line {x, y}⊥⊥ with
p + 1 points, p < t. By 1.4.2 (ii) we have pt = s2 and the number of centers of the triad (x, y, z),
z 6∈ cl(x, y), equals 1 + t/s. From pt = s2 and p < t it follows that s < t. From s2 6= t, it follows that
p 6= 1. Moreover, since 1 + t/s > 1, each point of S is semiregular. Now by 5.6.3 we conclude that
S ∼= H(4, s). 2

5.6.5. (J.A. Thas [197]). The GQ S of order (s, t), s > 1, is isomorphic to one of W (s), Q(5, s)
or H(4, s) iff for each triad (x, y, z) with x 6∈ cl(y, z) the set {x} ∪ {y, z}⊥ is contained in a proper
subquadrangle of order (s, t′).

Proof. If S ∼= W (s), S ∼= Q(5, s), or S ∼= H(4, s), then it is easy to show that each set {x} ∪ {y, z}⊥,
where (x, y, z) is a triad with x 6∈ cl(y, z), is contained in a proper subquadrangle of order (s, t′) (cf.
Section 3.5). Note that in W (s) there is no triad (x, y, z) with x 6∈ cl(y, z).

Conversely, suppose that for each triad (x, y, z) with x 6∈ cl(y, z) the set {x}∪ {y, z}⊥ is contained
in a proper subquadrangle of order (s, t′). If there is no triad (x, y, z) with x 6∈ cl(y, z), then for each
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pair (y, z), y 6∼ z, all points of S belong to cl(y, z), from which it follows easily that (y, z) is regular
and s = t or s = 1. By hypothesis s 6= 1, so from 5.2.1 S ∼= W (s).

Now assume that S 6∼= W (s), so there is a triad (x, y, z) with x 6∈ cl(y, z). Let S ′ = (P ′,B′, I′) be
a proper subquadrangle of order (s, t′) for which {x} ∪ {y, z}⊥ ⊂ P ′. Since S ′ contains a set {y, z}⊥
consisting of t + 1 points, no two of which are collinear, we have t 6 st′ (cf. 1.8.1). Since S ′ is a
proper subquadrangle of S we have t > st′ (2.2.1). Hence st′ = t and {y, z}⊥ is an ovoid of S ′. So x
is collinear with exactly t′ + 1 = 1 + t/s points of {y, z}⊥, implying s 6 t. It follows that each triad
(x, y, z) with x 6∈ cl(y, z) has exactly 1 + t/s centers. By 5.6.4 all points are regular, or s2 = t, or
S ∼= H(4, s). If all points of S are regular, then s = 1 or s > t (1.3.6). Thus s = t, and by 5.2.1
S ∼= W (s), a contradiction. Hence t = s2 or S ∼= H(4, s).

Assume t = s2 with s > 2 and consider a centric triad of lines (L,M,N) with center N ′. Let
x I N ′, x  I L, x  I M , x  I N , y I N , y  I N ′, z I M , z  I N ′, where (x, y, z) is a triad (since s > 2,
the points x, y, z exist). Let {x, y, z}⊥ = {u0, . . . , us}. Then ui  I L, ui  I M , ui  I N , and ui  I N ′,
i = 0, . . . , s. Moreover, no point ui is collinear with the point u defined by N ′ I u I L. Hence there
is at least one point u′ which is incident with L and is collinear with at least two points ui, uj . A
proper subquadrangle S ′ of order (s, t′) which contains {u}∪{ui, uj}⊥ contains u, u′, x, y, z. Hence S ′
contains L,M,N . By 5.3.5 we have S ∼= Q(5, s).

Finally, let s = 2 and t = 4. Then by 5.3.2, S ∼= Q(5, 2). 2

5.6.6. (J.A. Thas [197]). Let S be a GQ of order (s, t) for which not all points are regular. Then S
is isomorphic to Q(4, s), with s odd, to Q(5, s) or to H(4, s) iff each set {x} ∪ {y, z}⊥, where (x, y, z)
is a centric triad with x 6∈ cl(y, z), is contained in a proper subquadrangle of order (s, t′).

Proof. If we have one of S ∼= Q(4, s) with s odd, S ∼= Q(5, s), or S ∼= H(4, s), then it is easy to
show that each set {x} ∪ {y, z}⊥ with (x, y, z) a centric triad and x 6∈ cl(y, z) is contained in a proper
subquadrangle of order (s, t′) (cf. Section 3.5).

Conversely, suppose that for each centric triad (x, y, z) with x 6∈ cl(y, z) the set {x} ∪ {y, z}⊥ is
contained in a proper subquadrangle of order (s, t′). By the proof of the preceding theorem we have
st′ = t, and x is collinear with exactly 1+ t/s points of {y, z}⊥. Hence each centric triad (x, y, z) with
x 6∈ cl(y, z) has exactly 1 + t/s (> 1) centers. So all points of S are semiregular. By 5.6.3 we have
one of the possibilities (iii) s = t and each point is antiregular, (iv) s < t and each hyperbolic line has
exactly two points, or (v) S ∼= H(4, s).

Suppose that we have one of the cases (iii) or (iv). Then each hyperbolic line has exactly two
points. Let (x, y, z) be a centric triad (since not all points are regular, we have t 6= 1, so that such a
triad exists), and let S ′ = (P ′,B′, I′) be a proper subquadrangle of order (s, t′) = (s, t/s) containing
x and {y, z}⊥. The 1 + t/s centers of (x, y, z) are denoted by u0, u1, . . . , ut/s. Consider a point
z′ ∈ ({u0, u1}⊥ \ {x}) ∩ P ′. Notice that z′ 6∈ cl(yz), since y, z 6∈ P ′. Now let S ′′ = (P ′′,B′′, I′′) denote
a proper subquadrangle of order (s, t/s) containing {x} ∪ {z′, z}⊥. As z′ 6∈ P ′′, we have S ′ 6= S ′′. By
2.3.1 the structure S ′′′ = (P ′ ∩ P ′′,B′ ∩ B′′, , I′ ∩ I′′) is a proper subquadrangle of order (s, t′′′) of S ′
(and S ′′), or all the lines of B′ ∩B′′ are incident with x and P ′ ∩P ′′ consists of all points incident with
these lines. Frist assume that S ′′′ is a proper subquadrangle of S ′. By 2.2.2 (vi) we have t = s2. In
this case each triad is centric, so each set {u}∪{v, x}⊥, with (u, v, w) a triad, is contained in a proper
subquadrangle of order (s, t/s) = (s, s). Then by 5.6.5 S ∼= Q(5, s).

Next, assume that for each choice of z′ all elements of B′∩B′′ are incident with x and P ′∩P ′′ consists
of all points incident with these lines. By 2.2.1 the point z′ is collinear with exactly 1+t′s = 1+t points
of S ′′, i.e. every line incident with z′ contains a point of S ′′. It follows easily that |B′ ∩ B′′| = 1 + t/s.
Consequently the lines of S ′ which are incident with x coincide with the lines of S ′′ which are incident
with x. Let L be a line of S ′ which is incident with x. Since {y, z}⊥ (resp., {z, z′}⊥) is an ovoid of S ′
(resp., S ′′), the line L is incident with one point p (resp., p′) of {y, z}⊥ (resp., {z, z′}⊥). But S has
no triangles, so p = p′. Consequently z′ is collinear with the 1 + t/s centers u0, . . . , ut/s of (x, y, z).
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Suppose that s 6= t. Then x, y, z, z′ are centers of the triad (u0, u1, u2). Since we have t/s choices for
the point z′, the triad (u0, u1, u2) has at least 3 + t.s centers, a contradiction since each centric triad
has exactly 1 + t/s centers. So we have s = t, and moreover each point is antiregular by 5.6.3. Hence
s is odd (cf. 1.5.1). Now we consider two lines V and V ′, with V 6∼ V ′. Let u I V , u′ I V ′, u 6∼ u′, and
let x ∈ {u, u′}⊥ with w  I V and w  I V ′. Further, let N be a line concurrent with V and V ′ for which
u  I N and u′  I N . The point u′′ is defined by w ∼ u′′ I N . Since all points are antiregular, the triad
(u, u′, u′′) has exactly two centers w and w′. If N I z I V ′, then the set {z} ∪ {w,w′}⊥ is contained in
a proper subquadrangle S ′ of order (s, t/s) = (s, 1). Clearly V , V ′, N are lines of this subquadrangle
S ′ of order (s, 1). Hence the pair (V, V ′) is regular. It follows that all lines of S are regular. From the
dual of 5.2.1 it follows that the GQ S is isomorphic to Q(4, s). 2

We now give a characterization due to F. Mazzocca and D. Olanda in terms of matroids.
A finite matroid [235] is an ordered pair (P,M) where P is a finite set, where elements are called

points, and M is a closure operator which associates to each subset X of P a subset X (the closure
of X) of P, such that the following conditions are satisfied:

(i) ∅ = ∅, and {x} = {x} for all x ∈ P.

(ii) X ⊂ X for all X ⊂ P.

(iii) X ⊂ Y ⇒ X ⊂ Y for all X, Y ⊂ P.

(iv) y ∈ X ∪ {x}, y 6∈ X ⇒ x ∈ X ∪ {y} for all x, y ∈ P and x ⊂ P.

The sets X are called the closed sets of the matroid (P,M). It is easy to prove that the intersection
of closed sets is always closed. A closed set C has dimension h if h + 1 is the minimum number of
points in any subset of C whose closure coincides with C. The closed sets of dimension one are the
lines of the matroid.

5.6.7. (F. Mazzocca and D. Olanda [107]). Suppose that S = (P,B, I) is a GQ of order (s, t), s > 1
and t > 1, and that P is the pointset and B∗ = {{x, y}⊥⊥ ‖ x, y ∈ P and x 6= y} is the lineset of some
matroid (P,M), then we have one of the following possibilities: S ∼= W (s), S ∼= Q(4, s), S ∼= H(4, s),
S ∼= Q(5, s), or all points of S are regular, s = t2 and S satisfies condition (ii)′ introduced in the proof
of Tallini’s characterization (5.4.1) of H(3, s).

Proof. First of all we prove that dim x⊥ = (dim P) − 1 for all x ∈ P, and that dim {x, y}⊥ =
(dim P) − 2 for all x, y ∈ P with x 6∼ y. Let Y = x⊥ ∪ {z}, with z a point of P \ x⊥. Clearly
Y contains x⊥ ∪ z⊥ and {x, y}⊥⊥. Choose a point u not contained in x⊥ ∪ z⊥ ∪ {x, z}⊥⊥. Since
u 6∈ {x, z}⊥⊥, we have {x, z}⊥ 6⊂ u⊥. Hence there is a line V incident with u for which the points u′

and u′′ defined respectively by x ∼ u′ I V and z ∼ u′′ I V are distinct. It follows that {u′, u′′}⊥⊥ ⊂ Y ,
implying u ∈ Y . Consequently Y = P, i.e. dim x⊥ = (dim P)−1. Now let x, y ∈ P with x 6∼ y. Since
x⊥ and y⊥ are closed, also the set x⊥ ∩ y⊥ = {x, y}⊥ is closed. Clearly we have x⊥ = {x, y}⊥ ∪ {x},
so that dim {x, y}⊥ = (dim x⊥)− 1 = (dim P)− 2. It is now immediate that dim P > 3.

Suppose that not all points of S are regular, and consider a set {x} ∪ {y, z}⊥, where (x, y, z) is a
centric triad with x 6∈ cl(y, z). By 2.3.1 the set {y, z}⊥ ∪ {x} is the pointset of a subquadrangle S ′ of
order (s, t′) of S. Since dim {y, z}⊥ ∪ {x} = (dim P) − 1, it follows that {y, z}⊥ ∪ {x} 6= P. Hence
S ′ is a proper subquadrangle of S. By 5.6.6 we have one of S ∼= Q(4, s) and s odd, S ∼= Q(5, s), or
S ∼= H(4, s).

Now we suppose that all points of S are regular. If s = t, then by 5.2.1 we have S ∼= W (s) (which
is equivalent to S ∼= Q(4, s) if s is even). So assume s 6= t. Let x, y, z be three points of S which
are not on one line of the matroid (P,M). Then dim {x, y, z} = 2 < dim P. Now it is clear that
{x, y, z} is a proper linear variety of the linear space S∗ = (P,B∗,∈). Hence S satisfies condition (ii)′
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introduced in Tallini’s characterization (5.4.1) of H(3, s). Finally, by 5.4.1 (b) the parameters of S
satisfy s = t2. 2

Note: The first paragraph of this proof is due to F. Mazzocca and D. Olanda. The remainder is due
to the authors and represents a considerable shortening of the original proof.

We conclude this section and this chapter with a fundamental characterization of all classical and
dual classical GQ with s > 1 and t > 1 due to J.A. Thas [205].

We remind the reader of properties (A) and (Â) introduced in the paragraph preceding 5.3.10. Let
B⊥⊥ be the set of all hyperbolic lines of the GQ S = (P,B, I), and let S⊥⊥ = (P,B⊥⊥,∈). We say
that S satisfies property (A) if for any M = {y, z}⊥⊥ ∈ B⊥⊥ and any u ∈ cl(y, z)\ ({y, z}⊥∪{y, z}⊥⊥)
the substructure of S⊥⊥ generated by M and u is a dual affine plane. The dual of (A) is denoted by
(Â).

5.6.8. (J.A. Thas [205]). Let S = (P,B, I) be a GQ of order (s, t), with s > 1 and t > 1. Then S is
a classical or dual classical GQ iff it satisfies one of the conditions (A) or (Â).

Proof. It is an exercise both interesting and not difficult to check that a classical or dual classical
GQ with s > 1 and t > 1 satisfies one of the conditions (A) or (Â).

Conversely, assume that the GQ S = (P,B, I) of order (s, t), s > 1 and t > 1, satisfies condition
(A). We shall first prove that also property (H) is satisfied. To that end, consider a triad (u, y, z) for
which u ∈ cl(y, z) \ {y, z}⊥⊥. Let π be the dual affine plane generated by {y, z}⊥⊥ and u in S⊥⊥.
Evidently {z, u}⊥⊥ is a line of π. In π the point y is not collinear with exactly one point of {z, u}⊥⊥,
i.e. in S the point y is collinear with exactly one point of {z, u}⊥⊥. Hence y ∈ cl(z, u), and (H) is
satisfied. By 5.6.2 we have one of the following: (i) each point is regular, (ii) each hyperbolic line has
exactly two points, or (iii) S ∼= H(4, s).

Now assume that S 6∼= H(4, s). If |{y, z}⊥⊥| = 2 for all y, z ∈ P with y 6∼ z, then for any
M = {y, z}⊥⊥ ∈ B⊥⊥ and any u ∈ cl(y, z) \ {y, z}⊥ with u 6∈ M (such a u exists since s > 1), the
substructure of S⊥⊥ generated by M and u has 3 points and consequently is not a dual affine plane,
a contradiction. Hence all points of S are regular. If s = t, then by 5.2.1 S ∼= W (s). If s 6= t, then by
dualizing 5.3.11 we obtain S ∼= H(3, s).

We have proved that if S satisfies (A), then S is isomorphic to one of W (s), H(3, s), H(4, s).
Hence if S (of order (s, t) with s > 1 and t > 1) satisfies one of the conditions (A) or (Â), then it is
isomorphic to one of H(4, s), the dual of H(4, s), W (s), Q(4, s), H(3, s), or Q(5, s). 2
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Chapter 6

Generalized quadrangles with small
parameters

6.1 s = 2

Let S = (P,B, I) be a GQ of order (2, t), 2 6 t. By 1.2.2 and 1.2.3 we know that t = 2 or t = 4.
In either case, by 1.3.4 (iv) it is immediate that all lines are regular, and in case t = 4 all points
are 3-regular. As was noted in 5.2.3 and 5.3.2 the GQ of order (2, 2) and (2, 4) are unique up to
isomorphism. Nevertheless it seems worthwhile to consider briefly an independent construction for
these examples, the first of which was apprarently first discovered by J.J. Sylvester [172].

A duad is an unordered pair ij = ji of distinct integers from among 1, 2, . . . , 6. A syntheme is a
set {ij, k`, mn} of three duads for which i, j, k, `,
m, n are distinct. It is routine to verify the following.

6.1.1. Sylvester’s syntheme-duad geometry with duads playing the role of points, synthemes playing
the role of lines, and containment as the incidence relation, is the (unique up to isomorphism) GQ of
order (2, 2), which is denoted W (2).

It is also routine to check the following.

6.1.2. For each integer i, 1 6 i 6 6, the five duads ij (j 6= i) form an ovoid of W (2). These are all
the ovoids of W (2) and any two have a unique point in common.

The symmetric group S6 acts naturally as a group of collineations of W (2). That S6 is the full
group of collineations also follows without too much effort. Since there is a unique GQ of order 2, it
is clear that W (2) is self-dual. In fact it is self-polar. For example, it is easy to construct a polarity
with the following absolute point-line pairs:
1j ←→ {1j, [j−1][j +1], [j−2][j +2]}, where 2 6 j 6 6, and [k] means k is to be reduced modulo 5 to
one of 2, 3, . . . , 6. A complete description of the polarity may then be worked out using the following
observation. Each point (resp., line) is regular, and the set of absolute points (resp., lines) form an
ovoid (resp., spread). Hence each nonabsolute point (resp., line) is the unique center of a triad of
absolute points (resp., lines). So if π is the polarity, and if u is the center of the triad (x, y, z) of
absolute points, then uπ must be the unique center of the triad (xπ, yπ, zπ) of absolute lines. For
example, the nonabsolute point 35 is the center of hte triad (12, 14, 16) of absolute points, whose
images under π are {12, 63, 54}, {14, 35, 26}, and {16, 52, 43}, respectively. This triad of absolute lines
has the unique center {63, 14, 52}, implying that π : 35←→ {63, 14, 52}.

Since W (2) ∼= Q(4, 2) is a subquadrangle of Q(5, 2), we may extend the above description of W (2)
to obtain the unique GQ of order (2, 4). In addition to the duads and synthemes given above for W (2),
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let 1, 2, . . . , 6 and 1′, 2′, . . . , 6′ denote the additional twelve points, and let {i, ij, j′}, 1 6 i, j 6 6, i 6= j,
denote the thirty additional lines. It is easy to verify the following.

6.1.3. The twenty-seven points and forty-five lines just constructed yield a representation of the unique
GQ of order (2, 4).

H. Freudenthal [63] has written an interesting essay that contains an elementary account of many
basic properties of these quadrangles, as well as references to their connections with classical objects
such as the twenty-seven lines of a general cubic surface over an algebraically closed field.

6.2 s = 3

Applying 1.2.2 and 1.2.3 to those t with 3 6 t 6 9, we find that t ∈ {3, 5, 6, 9}. After some general
considerations, each of these possibilities will be considered in turn.

Let x, y be fixed, noncollinear points of S, and let Ki be the set of points z for which (x, y, z) is a
triad with exactly i centers, 0 6 i 6 1 + t. Put Ni = |Ki|, so that Nt = 0 by 1.3.4 (iv), and by 1.4.1
we have

Ni = 0 for i > 6. (6.1)

Equations (1.6)-(1.8) of 1.3 become, respectively,

N0 = 6t− 3t2 + (t3 + t)/2−
1+t∑
i=3

(i− 1)(i− 2)Ni/2, (6.2)

N1 = (t2 − 1)(3− t) +
1+t∑
i=3

(i2 − 2i)Ni, (6.3)

N2 = (t3 − t)/2−
1+t∑
i=3

(i2 − i)Ni/2. (6.4)

If z ∈ Ki, 0 6 i 6 t − 1, then there are t + 1 − i lines through z incident with no point of {x, y}⊥,
and since s = 3 each of these lines is incident with a unique point of Kt−1−i \ {z}. This implies the
following two observations of S. Dixmier and F. Zara [54].

Ni 6= 0 =⇒ Nt−1−i > t + 1− i, for 0 6 i 6 t− 1 (6.5)

and
(t + 1− i)Ni = (2 + i)Nt−1−i (6.6)

(count pairs (z, z′), z ∈ Ki, z′ ∈ Kt−1−i, z ∼ z′, z 66= z′ and zz′ incident with no point of {x, y}⊥).
The cases t = 3, 6, 9 are now easily handled.

6.2.1. A GQ of order (3, 3) is isomorphic to W (3) or to its dual Q(4, 3).

Proof. Equations (6.3) and (6.4) yield N1 = 8N4, N2 = 12−6N4, and (6.6) with i = 0 says N2 = 2N0.
It is easy to check that N4 6= 1, hence either N4 = N1 = 0 and (x, y) is antiregular by 1.3.6 (iii), or
N4 = 2 so that N2 = N0 = 0 and (x, y) is regular. It follows that in any triad (x, y, z), each pair is
regular or each pair is antiregular. From this it follows that each point is regular or antiregular. If
some point is antiregular, S is isomorphic to Q(4, 3) by 5.2.8. Otherwise S is isomorphic to W (3) by
5.2.1. 2
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6.2.2. (S. Dixmier and F. Zara [54]).1 There is no GQ of order (3, 6).

Proof. Equations (6.1)-(6.6) with t = 6 yield N0 = N5 = 0, N1 = 4, N2 = 12, N3 = 15, N4 = 8.
Let z ∈ K1. The one line through z meeting a point of {x, y}⊥ necessarily is incident with two

points z1, z2 of K4. Hence each of the four points of K1 is collinear with each of the eight points of
K4. So if z′ ∈ K1 \ {z}, then z′ is collinear with z1 and z2, giving a triangle with vertices z′, z1, z2, a
contradiction. 2

6.2.3. (P.J. Cameron [143], S. Dixmier and F. Zara [54]). Any GQ of order (3, 9) must be isomorphic
to Q(5, 3).

Proof. This was proved, of course, in 5.3.2 (iii), using 1.7.2 to show that each point is 3-regular. We
offer here an alternative proof relying on the equations just preceding 1.7.2 to show that each point
is 3-regular. Let T = (x, y, z) be a triad of points in S, and recall the notation Mi of 1.7, 0 6 i 6 4,
with s = 3, t = 9. Then multiply eq. (1.21) by 8, eq. (1.22) by −8, eq. (1.23) by 4, eq. (1.24) by −1,
and sum to obtain

∑4
i=0(i − 1)(i − 2)(4 − i)Mi = 0. Since all terms on the left are nonnegative, in

fact they must be zero, implying M0 = M3 = 0. Hence T is 3-regular. 2

The remainder of this section is devoted to handling the final case t = 5, which requires several
steps.

6.2.4. (S. Dixmier and F. Zara [54]). Any GQ of order (3, 5) must be isomorphic to the GQ T ∗2 (O)
arising from a complete oval in PG(2, 4).

Proof. (a) From now on we assume s = 3 and t = 5. Then solving equations (6.2), (6.3), (6.4) and
(6.6) simultaneously we have N1 = 6(2 − N0), N2 = 12N0, N3 = 10(2 − N0), N4 = 3N0. Moreover,
by (6.5), if N0 6= 0, then N4 > 6. So either N0 = 0 or N0 = 2. First suppose N0 = 0, so that
N4 = N2 = 0, N1 = 12, N3 = 20. This says that each triad containing (x, y) has 1 or 3 centers. But
consider a line L passing through some point of {x, y}⊥ but not through x or y. For the three points
w of L not in {x, y}⊥ it is impossible to arrange all triads (x, y, w) having 1 or 3 centers. Hence we
must have the following

N0 = 2, N2 = 24, N4 = 6, N1 = N3 = 0. (6.7)

(b) Put {x, y}⊥ = {c1 . . . , c6}. The line through x and ci is denoted Ai, and a line through x is
of type A. The line through y and ci is denoted Bi and a line through y is of type B. If L is a line
incident with no point of {x, y} ∪ {x, y}⊥, it is of type AB. The remaining lines are of type C.

A line of type C has two points of K2 and one of K4. A line of type AB has one point of K0 and
one of K4, or it has two points of K2. Now it is clear that the two points of K0 are not collinear, and
that each of the two points of K0 is collinear with all six points of K4. Hence K⊥

0 = K4.
Let K0 = {x′, y′} and Lx,y = {x, y, x′, y′}. If z is a center of (y, x′, y′), then z ∈ K⊥

0 = K4, implying
z 6∼ y, a contradiction. So Lx′,y′ = Lx,y. Now it is also clear that Lx′,y = Lx′,x = Lx,y′ = Ly,y′ =
Lx,y = Lx′,y′ . Let us define an affine line to be a line of S or a set Lx,y. Then the points of S together
with the affine lines (and natural incidence) form a 2− (64, 4, 1) design.

(c) If (x, y, z) is a triad, then πz is the permutation of N6 = {1, 2, 3, 4, 5, 6} defined by: the line
through z meeting Ai also meets Bπz(i)

. So πz(i) = i iff z ∼ ci. And if z ∈ K4, then πz is a
transposition.

Put D = ∪4
i=0Ki = K0 ∪K2 ∪K4.

For i 6= j, 1 6 i, j 6 6, it is clear that there are precisely 4 points z of D such that πz(i) = j.
For z ∈ D, πz interchanges i and j iff there is a line Cji (resp., Cij) which is incident with z and

concurrent with Aj and Bi (resp., Ai and Bj). Then the lines Cij , Cji, Ai, Aj , Bi, Bj define a 3×3 grid

1We thank Jack van Lint for helping us to streamline the argument of [54]
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G (i.e. a grid consisting of 9 points and 6 lines). Let u1, u2, u3, v1, v2, v3 be the other points on the
respective lines Cji, Ai, Bj , Cij , Aj , Bi. Since s = 3, we have u1 ∼ u2 ∼ u3 ∼ u1 and v1 ∼ v2 ∼ v3 ∼ v1.
So u1, u2, u3 are on a line L and v1, v2, v3 are on a line M . Let u4 (resp., v4) be the fourth point on
L (resp., M). Since s = 3, we have u3 ∼ v4 ∼ u2, u1 ∼ v4, implying u4 = v4. So we have shown
that the grid G can completed in a unique way to a grid with 8 lines and 16 points. The four points
whose permutations map i to j (and j to i) are z, u1, u4, v1. It also follows that if z and z′ are distinct
collinear points of D for which both πz and πz′ interchange i and j, the line through z and z′ must be
of type AB.

(d) Consider a 4 × 4 grid (i.e. a grid consisting of 8 lines and 16 points) containing x, y, ci, cj ,
and with points z, z′, z′′, z′′′ as indicated on the diagram. Then the lines zz′, z′′z′, z′z′′′, z′′′z are of
type AB. Clearly z, z′, z′′, z′′′ are all in K2, or {z, z′} = K0 and z′′, z′′′ ∈ K4, or {z′′, z′′′} = K0 and
z, z′ ∈ K4. Assume we have the first case. Then each of the eight lines joining z, z′, z′′, z′′′ to a point
of {x, y}⊥ contains exactly one point of K4. Since N4 = 6, at least two of these lines, say L and M ,
contain a common point of K4, say u. Clearly L and M are incident with z and z′ or with z′′ and
z′′′. Without loss of generality we may assume that z I L and z′ I M . Let cm (resp., c`) be the point
of {x, y}⊥ on M (resp., L). Since cm ∼ x, cm ∼ y, cm 6∼ z′′, we have cm ∼ z, giving a triangle cmzu.
Hence the first case does not arise, and there is no 3× 3 grid containing x, y and a point z ∈ K2. As
a consequence we have: A 4× 4 grid defines a linear subspace of the 2− (64, 4, 1) design, i.e. a 4× 4
grid together with the affine lines on it is AG(2, 4).
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Figure 6.1: Diagram for (c)

(e) Let z ∈ K4, so πz is a transposition, say interchanging i and j, and z is collinear with
ck, c`, cm, cn. Let z′ be the other point of K4 on the 4 × 4 grid containing x, y, z (and ci and cj).
Clearly πz = πz′ . If K0 = {u, u′}, then u and u′ are on the grid and both πu and πu′ interchange i
and j. So we have proved that we may order i, j, k, `, m, n and z1, . . . , z6 in K4 in such a way that
πz1 = πz2 interchanges i and j, that πz3 = πz4 interchanges k and `, that πz5 = πz6 interchanges m
and n, and that πu = πu′ = (ij)(k`)(mn).

Let L be a line and y a point not on L. Choose x, x I L, x 6∼ y. If, for example, x ∼ ck ∼ y, then
by the preceding paragraph the 4× 4 grid containing x, y, z3, z4 is the unique 4× 4 grid containing L
and y.

(f) In the set of lines of S we define parallelism in the following way: L‖M iff L = M , or L 6∼M and
L and M belong to a same 4×4 grid (i.e. L‖M iff L = M or (L,M) is a regular pair of nonconcurrent
lines). By (e) all lines parallel to a given line form a spread of S. Now we show that parallelism is an
equivalence relation. Clearly the relation is reflexive and symmetric, and all that remains is to show
that it is transitive.

Let L‖M and M‖N , with L,M,N distinct. Let {L,M}⊥⊥ = {L,M,U,
V }. If N contains a point of the 4× 4 grid defined by L and M , then clearly N‖L.

So assume N contains no point of the grid. Let u I N , L I u1 ∼ u, M I u2 ∼ u, U I u3 ∼ u,
V I u4 ∼ u, and let R ∈ {L,M}⊥ and u1 I R. Clearly uui  ‖ R and uui  ‖ L. Hence the two lines
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through u and different from uui are parallel to L and R, respectively. So N‖L or N‖R. Since R
intersects M and M‖N , we have N‖L.

An equivalence class E contains 16 lines. If L,M ∈ E, L 6= M , then {L,M}⊥⊥ ⊂ E, and {L,M}⊥
belongs to another equivalence class. hence the elements of an equivalence class together with the line
spans contained in it form a 2− (16, 4, 1) design, i.e. AG(2, 4).
Note: If (L,M) is regular, L 6∼ M , and u is a point that does not belong to the grid defined by
{L,M}⊥, then u is on two lines having no point in common with the grid: one of these lines is parallel
to all elements of {L,M}⊥; the other line is parallel to all lines of {L,M}⊥⊥.

(g) Choose a distinguished equivalence class E. Define a new incidence structure S ′ = (P ′,B′, I′)
as follows: B′ = (B \ E) ∪ {E1, . . . , E5}, with E1, . . . , E5 the other equivalence classes. The elements
of P ′ are of three types: (i) the elements of P, (ii) the traces {L,M}⊥ with L,M ∈ E, L 6= M , (iii)
(∞). Incidence is defined in the following manner: if x ∈ P, L ∈ B \ E, then x I L′ iff x I L; If x ∈ P
and L = Ei, then x  I′ L; if x = {L,M}⊥, L,M ∈ E, N ∈ B \ E, then x I′ N iff N ∈ {L,M}⊥; if
x = {L,M}⊥, L,M ∈ E, N = Ei, then x I′ N iff {L,M}⊥ ⊂ Ei; (∞) I′ Ei, i = 1, . . . , 5. It is now
rather straightforward to check that S ′ is a GQ of order 4. There are correct numbers of points and
lines, each point is on five lines, each line is incident with five points, and there are no triangles. We
leave the somewhat tedious details to the reader.

(h) We prove that S ′ ∼= W (4). Let x, y ∈ P, with x and y not collinear in S ′. The lines of E
incident (in S) with x and y are denoted by L and M , respectively. If L 6= M , then {L,M}⊥ is a point
of S ′ which is collinear with (∞), x, y in S ′. Hence every triad containing (∞) is centric and (∞) is
regular in S ′. It follows from 1.3.6 (iv) and 5.2.1 that S ′ ∼= W (4) if all points z of S ′, (∞) 6= z ∈ (∞)⊥

′
,

are regular in S ′. Since (∞) is regular, it is sufficient to prove that each triad (x, y, z), with x, y of
type (i) and z of type (ii), is centric in S ′. Let z ∈ {L,M}⊥, L,M ∈ E, so x and y are not on the
4 × 4 grid defined by L and M in S. The elements of E containing x and y are denoted by U and
V , respectively. First suppose U = V . Let R and T be the lines containing x and y, respectively,
and parallel to the elements of {L,M}⊥. Then {R, T}⊥⊥ is a center of (x, y, z) in S ′. Now suppose
U 6= V . By (f) |{U, V }⊥⊥ ∩ {L,M}⊥⊥| ∈ {0, 1}. By the note in (f), if {U, V }⊥⊥ ∩ {L,M}⊥⊥ = ∅,
then the elements of {U, V }⊥ are parallel to the elements of {L,M}⊥. Hence {U, V }⊥ is a center of
(x, y, z). Finally, let {U, V }⊥⊥ ∩ {L,M}⊥⊥ = {N}. Then, with respect to (x, y), N contains a point
u ∈ K4. The line of {L,M}⊥ which contains u is denoted by H. The line Hx defined by x I Hx ∼ H
clearly does not belong to the 4× 4 grid defined by U and V . Hence on Hx is center of (x, y, u) in S.
Since S does not contain triangles, this center is the intersection of Hx and H. So H contains a point
n of {x, y}⊥. Clearly n is a center of (x, y, z) in S ′. We conclude that S ′ ∼= W (4).

(i) In S ′ the hyperbolic lines through (∞) are exactly the elements of E. Now it is clear that
S = P (S ′, (∞)). Since S ′ ∼= W (4) and W (4) is homogeneous in its points, the GQ S is unique up to
isomorphism. 2

6.3 s = 4

Using 1.2.2 and 1.2.3 it is easy to check that t ∈ {4, 6, 8, 11, 12, 16}. Nothing is known about t = 11
or t = 12. In the other cases unique examples are known, but the uniqueness question is settled only
in the case t = 4.

Let S = (P,B, I) be a GQ of order 4. The goal of this section is to prove that each pair of distinct
lines (or points) is regular, so that S must be isomorphic to W (4). The long proof is divided into a
fairly large number of steps.

Since s = t = 4 is even, no pair of points (respectively, lines) may be antiregular by 1.5.1 (i).
Hence each pair of noncollinear points (respectively, nonconcurrent lines) must belong to some triad
with at least three (and thus by 1.3.4 (iv) with exactly three of five) centers. Let (x, y, z) and (u, v, w)
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be triads of points of S. We say that (x, y, z) is orthogonal to (u, v, w) (written (x, y, z) ⊥ (u, v, w))
provided the following two conditions hold: {x, y, z}⊥ = {u, v, w} and {u, v, w}⊥ = {x, y, z}. Dually,
the same terminology and notation are used for lines. Our characterization of S begins with a study
of orthogonal pairs.

Until further notice let L = (L1, L2, L3) andM = (M1,M2,M3) be fixed, orthogonal triads of lines
of S. Let xij be the point at which Li meets Mj, 1 6 i, j 6 3, and put R = {xij ‖ 1 6 i, j 6 3}.
Let T denote the set of points incident with some Li or some Mj, but not both, and put V = R ∪ T ,
P ′ = P \ V .

|P| = 85; |V | = 21; |P ′| = 64. (6.8)

An Li or Mj will be called a line of R. A line incident with two points of T (but no point of R) will
be called a secant. A line incident with precisely one point of V (respectively, R, T ) will be called
tangent to V (respectively, R, T ). A line of S incident with no point of V will be called an exterior
line. A point of P ′ collinear with three points of R will be called a center of R. Let B′ denote the set
of exterior lines. An easy count reveals the following :

There are 6 lines of R, 12 secants, 27 tangents to R, 24 tangents to T , 16
exterior lines. (6.9)

For a point y ∈ P ′ there are precisely the following possibilities :
(i) y is collinear with three points of R (i.e. y is a center of R), with no point of T , and is on two

exterior lines; or
(ii) y is collinear with two points of R, with two points of T , is on two tangents to T and is on one

exterior line; or
(iii) y is collinear with one point of R, with four points of T , and is on zero, one or two exterior

lines, aero one or two secants, and four, two or zero tangents to T , respectively; or
(iv) y is collinear with no point of R, with six points of T , and is on zero or one exterior lines, one

or two secants, and four or two tangents to T , respectively. (6.10)

Let ni be the number of points of P ′ on i exterior lines, i = 0, 1, 2. Let ki be the number of points of
P ′ collinear with i points of R, i = 0, 1, 2, 3.

|P ′| = 64 =
3∑

1=0

ki =
2∑

i=0

ni. (6.11)

Count the pairs (x, y) with x ∈ R, y ∈ P ′ and x ∼ y, to obtain the following:

108 =
3∑

1=0

iki. (6.12)

Similarly, count the ordered triples (x, y, z), with x, y ∈ R, x 6= y, z ∈ P ′, and x ∼ z ∼ y :

108 = 2k2 + 6k3. (6.13)

Solving (6.11), (6.12) and (6.13) for ki, 0 6 i 6 2, we have

k0 = 10− k3 > 0,

k1 = 3k3, (6.14)
k2 = 54− 3k3. (6.15)
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Count pairs (x, L) with x ∈ P ′, L ∈ B′, x I L :

80 = n1 + 2n2. (6.16)

Using (6.11) and (6.16), solve for n0 :

n0 = n2 − 16 > 0. (6.17)

A point of P ′ is called special provided it lies on two secants. In general there are two possiblities.
Case (a). No secant is incident with two special points.
Case (b). Some secant is incident with two special points.
We say that the orthogonal pair (L,M) of triads of lines is of type (a) or of type (b) according as case
(a) ro case (b) occurs.

If y1 and y2 are distinct special points incident with a secant N , and
if the other secant through yi is Ki, i = 1, 2, then K1 and K2 do not
meet the same two lines of R. (6.18)

Proof. We may suppose that the two special points y1 and y2 lie on a secant N ∈ {M2,M3}⊥. Let
Ki be the other secant through yi, i = 1, 2, and suppose that both K1 and K2 are in {L1, L2}⊥.
As M2,M3,K1,K2 are all centers of the triad (L2, L3, N), this triad must have five centers, so that
M1 ∼ N . But then (M1,M2,M3) has four centers, contradicting the hypothesis that L ⊥M. 2

If (L,M is an orthogonal pair of triads of lines, then k3 = 10, k2 = 24, k1 = 30 and k0 = 0,
so that each point of P ′ is collinear with some point of R, and some triad of points of R has three
centers. If (L,M) is of type (a), then n2 = 16, n1 = 48 and n0 = 0. (6.19)

Proof. Suppose k0 > 0, so there is some point y ∈ P ′ collinear with no point of R. By (6.10) (iv) y
must lie on some secant; say y is on N ∈ {M2,M3}⊥. Then the secants meeting M1 and belonging to
the family opposite to that containing N make it impossible for y to be collinear with some point of
M1 lying in T . Hence y must be collinear with some point of R, implying k0 = 0, k3 = 10, k1 = 30,
k2 = 24. Now assume that the triad (x1, x2, x3) of points of R has centers y1 and y2. If xi I Ni,
i = 1, 2, 3, with Ni 6∈ {xi, y1, xiy2} and Ni not a line of R, then clearly N1 ∼ N2 ∼ N3 ∼ N1. Hence
there is a point y3 incident with Ni, i = 1, 2, 3, so that (x1, x2, x3) has three centers. Since there are
ten centers of R and six triads consisting of points of R, some triad of R must have three centers.

Suppose (L,M) is of type (a). Since there are six secants concurrent with a pair of Li’s and any
special point must lie on such a secant, there are at most six special points. So n2 6 6 + k3 = 16, and
by (6.17) n2 > 16. Hence n2 = 16, n0 = 0 and n1 = 48. 2

If a secant pases through two special points, it must be incident with three special points. The other
secants through these special points must be the secants of one family.

(6.20)

Proof. Let N be a secant incident with two special points y1 and y2. We may suppose N ∈
{M2,M3}⊥, and that if Ki is the other secant through yi, i = 1, 2, then K1 ∈ {L2, L3}⊥ and K2 ∈
{L1, L3}⊥. Clearly K1 and K2 must belong to the same family. By considering which points of N are
collinear with which points of L1, L2 and L3 we see easily that the third point y3 on N and on no Mj

must lie on the third secant of the family containing K1 and K2. 2

Let N1 be a secant incident with two special points y1 and y2, and let K1 be the other secant through
y1. If (N1, N2, N3) is the family of secants containing N1 and (K1,K2,K3) is the family of secants
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containing K1, then (K1,K2,K3) ⊥ (N1, N2, N3). Moreover, the nine intersection points Ni ∩Kj are
all special points. (6.21)

Proof. By (6.20) there must be a third special point y3 on N1. Let Ki be the other secant on yi,
i = 1, 2, 3, and suppose that the Kj ’s are incident with no special points other than y1, y2, y3. We may
suppose N1 ∈ {M2,M3}⊥. Let a, b, c be the points of M1 and M2 as indicated in Fig. 6.2.
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Figure 6.2:

As there are only two available lines through the point a to meet K1,K2, and K3, one of them
must hit two of the Ki’s, say K1 and K2. Let d and e be the remaining points of K1 and K2 as
indicated. The point b must be collinear with some point of K1 and some point of K2. It follows
readily that d ∼ b ∼ e. Similarly, c must be collinear with some point of K1 and some point of K2.
But the only available points are those at which the line through a meets K1 and K2, respectively. Of
course, c cannot be collinear with both of these. Hence at least one of K1,K2,K3 must pass through
some additional special point. For example, if K1 has an additional special point, then by (6.20) K1

must have three special points. Moreover, by relabeling we may assume that the points and lines are
related as in Fig. 6.3. But now the three points of N2 on M1,M3, and K1 must each be collinear with
some point of K2, but not with any point of K2 on L1, L3, or N1.

It follows that N2 ∼ K2. Similarly, N2 ∼ K3, N3 ∼ K2, and N3 ∼ K3. The proof of (6.21) is
essentially completed. 2

Each orthogonal pair (L,M) must have type (a). (6.22)

Proof. Suppose (L,M) is an orthogonal pair of triads of type (b), so that a family N = (N1, N2, N3)
of secants to the Mj ’s is orthogonal to a family K = (K1,K2,K3) of secants to the Li’s. Let R′ be
the set of points at which some Ni meets some Kj , 1 6 i, j 6 3. A point y of P ′ \ R′ will be called
an exterior point. The family of secants opposite to N meets the family of secants opposite to K in
somewhere between 0 and 9 special points, implying that there are between 9 and 18 exterior points
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Figure 6.3:

lying on at least one secant. As there are 55 exterior points, there must be at least 37 exterior points
lying on no secant. Let y be an exterior point lying on no secant. The argument used to prove (6.19)
may now be used to show that y must be collinear with some point of R′ (alternatively, by (6.10)(iv)
it is immediate that y is collinear with some point of R′).
Case 1. The point y is collinear with one point of R and lies on four tangents to T (since by assumption
y is on no secant). It follows that y is collinear with one point of R′, necessarily on the same line
joining it to a point of R.
Case 2. The point y is collinear with two points of R and lies on two tangents to T , one meeting some
Li and one meeting some Mj . It follows readily that y cannot be collinear with one or three points of
R′. Hence y is collinear with two points of R′. As y is on five lines, including two tangents to T , one
of the lines joining y to a point of R must join y to a point of R′.
Case 3. The point y is collinear with three points of R. It follows readily that y is collinear with three
points of R′, and y must be on some line joining a point of R to a point of R′.

Hence there must be at least 37 exterior points on line joining a point of R with a point of R′. But
each point of R is collinear wth a unique point of R′, so there are at most 9× 3 = 27 exterior points
lying on lines joining points of R to points of R′. This contradiction completes the proof of (6.22).
2

This completes our preliminary study of orthogonal pairs, with (6.19) and (6.22) being the main
results, and we drop the notation used so far.

Until further notice let S have a regular pair (L0, L1) of nonconcurrent lines. Let {L0, L1}⊥ =
{M0, . . . ,M4}, {L0, L1}⊥⊥ = {L0, . . . , L4}. Let xij be the point at which Li and Mj meet, and put
R = {xij ‖ 0 6 i, j 6 4}.

Each line of S is in {L0, L1}⊥ ∪ {L0, L1}⊥⊥ or meets R in a unique point.
(6.23)
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Proof. This accounts for all 85 lines. 2

Either each triad of R has a unique center, so S ∼= W (4) by 5.2.6, or each triad of R has exactly
0 or 3 centers.

(6.24)

Proof. Clearly no triad of R could have four or five centers. Suppose some triad, say (x00, x11, x22)
has two centers y0 and y1. Let Nij be the line through yi and xij , i = 0, 1, j = 0, 1, 2. Then
Lj ,Mj , Noj , N1j are four of the five lines through xij , j = 0, 1, 2. Moreover, for 0 6 j < k 6 2, each
one of Lj ,Mj , Noj , N1j meets one of Lk,Mk, N0k, N1k. Hence the fifth lines through x00, x11, and x22

all meet at some point y2, showing that no triad of R has exactly two centers. It follows that either
each of (x00, x11, x22), (x00, x11, x32), (x00, x11, x42) has a unique center, or one of them has three
centers and the other two have no center. It is easy to move around the grid R to complete the proof
of (6.24). 2

As mentioned in (6.24), if each triad of R has a unique center, then S ∼= W (4) by 5.2.6.Hence until
further notice we assume that each triad of R has exactly 0 or 3 centers.

If a triad (y0, y1, y2) has three centers in R, it must have five centers in R.
(6.25)

Proof. Suppose (x00, x11, x22) has three centers y0, y1, y2. Then for 0 6 j 6 2, yj is collinear with
both x33 and x44 or yj is collinear wtih both x34 and x43. By relabeling we may suppose that y0 and
y1 are both collinear with x33 and x44. If y2 were collinear with both x34 and x43, then the two lines
y2x43 and y2x34 must meet the lines yjx33 and yjx44 in some order, j = 0, 1. Any such possibility
quickly yields a triangle. Hence y2 must also be collinear with x33 and x44. This shows that if a triad
has three centers in R, it must have five centers in R. 2

It follows that each pair of noncollinear points of R belongs to a unique 5-tuple of noncollinear
points of R having three centers y0, y1, y2. Such a 5-tuple will be called a circle of R with centers
y0, y1, y2. For each y ∈ P \ R, the points of R collinear with y form a circle denoted Cy. Moreover,
given y ∈ P \R, there are two other points y′, y′′ ∈ P \R for which Cy = Cy′ = Cy′′ .

There are 25 points xij of R with eqach xij lying on Li and Mj and on 4 circles. Two distinct
points of R lie on a unique one of the ten lines Li,Mj , or on a unique circle. It follows readily that
the points of R together with the lines and circles of R are the points and lines, respectively, of the
affine plane AG(2, 5). The line of AG(2, 5) defined by distinct points x, y of R will be denoted (xy).

Our goal, of course, is to obtain a contradiction under the present hypotheses. At this point in
the published “proof” [131] the argument is incomplete, and the authors thank J. Tits for providing
the argument given here to finish off this case.

We continue to consider R as the pointset of the affine plane AG(2, 5) in which the two families
L0, . . . , L4 and M0, . . . ,M4 of lines are two distinguished sets of parallel lines called horizontal and
vertical, respectively. A path is a sequence xyz . . . of points of R which x 6∼ y 6∼ z 6∼ . . .. Let P denote
the set of all paths. Each x ∈ R is incident in S with three tangents to R, which are labeled [x, i],
i = 1, 2, 3, in a fixed but arbitrary manner. To each xy ∈ P we associate a permutation φxy of the
elements {1, 2, 3} as follows : iφxy = j iff [x, i] ∼ [y, j] in S. For any path x1x2 . . . xn we denote by
φx1...xn the composition φx1x2 ·φx2x3 · · · · ·φxn−1xn . If x1 = xn and if φx1...xn is the identity permutation,
we write x1x2 . . . xn ∼ 0.

By our construction, the following condition is seen to hold for all paths of the form xyzx.

For xyzx ∈ P, either x, y, z are collinear in AG(2, 5) and xyzx ∼ 0, or they are not collinear in
AG(2, 5) and φxyzx is fixed-point free (i.e. is a 3-cycle).

(6.26)

If xyztx ∈ P, if (xy) and (zt) are parallel in AG(2, 5), and if the ratio of the slopes of the lines
(yz) and (tx) (w.r.t. horizontals and verticals) is different from ±1, then xytzx ∼ 0. (6.27)
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Proof. Let a be the intersection of the lines (xt) and (yz). Note : a, x, y, z, t must all be distinct.
The points of the lines (axt) and (ayz) can be labeled, respectively, a, b0, b1, b2, b3 and a, c0, c1, c2, c3

in such a way that the lines (bici) are all parallel and neither horizontal nor vertical, and similarly
for the lines (bici+1), where subscripts run over the integers modulo 4. (For example, by exchanging
horizontals and verticals, if necessary, one may assume that the slopes of (axt) and (ayz) are 1 and 2,
respectively, and for a coordinate system centered at a take bi = (2i, wi), ci = (2i+1, 2i+2). Here the
coordinates for AG(2, 5) are taken from Z5.) Now

φab1c1b0a · φac1b1a · φab0c1a = φab1c1a · φac1b0a · φac1b1a · φab0c1a = id, (6.28)

since 3-cycles on {1, 2, 3} commute and φaxya = φ−1
axya.

As φab1c1b0a = φab1 · φb1c1b0b1 · φ−1
ab1

is a 3-cycle also, all three factors of the original product
must be equal. In particular, φab0c1a = φac1b1a. Repeating the argument we find that φab0c1a =
φac1b1a = φab1c2a = φac2b2a = . . .. (To derive the second equality, in (6.28) replace b0, c1, b1 by
c1, b1, c2, respectively.) Then from φabicia = φabjcja with j 6= i we have id = φabicia · φ

−1
abjcja =

φabicia ·φacjbja = φabi
·φbicicjbjbi

·φbia, from which it follows that bicicjbjbi ∼ 0. Similarly, starting with
φabici+1a = φabjcj+1a, j 6= i, we find bici+1cj+1bjbi ∼ 0. The relation xyztx ∼ 0 must be one of these
two, since the lines (bici) and (bici+1) are the only nonhorizontal and nonvertical lines connecting
points bj and ck. 2

We are now ready to obtain the desired contradiction.
If S has even one regular pair of nonconcurrent lines (respectively, points), then S ∼= W (4).

(6.29)

Proof. Continuing with the asumptions and notations just preceding (6.25), consider five distinct
points x, y, z, t, u such that u, t and z are collinear in AG(2, 5), (xy) is parallel to (utz), the lines (xy),
(yz), (xt), (xu) represent the four nonhorizontal and nonvertical directions, and the lines (xy) and
(yz) have opposite slopes. (For example, take x = (0, 0), y = (1, 1), z = (0, 2), t = (1, 3), u = (2, 4).)
By (6.27) xyztx ∼ 0 and xyzux ∼ 0. Combining these we obtain φzt ·φtx = φzu ·φux = (φzt ·φtu) ·φux,
and finally id = φtu · φux · φxt. But this says tuxt ∼ 0, which is impossible by (6.26). 2

If S is a GQ of order 4 not isomorphic to W (4), then any triad of points or lines having three
centers must have exactly three centers.

(6.30)

Proof. Let S be a GQ of order 4. Then by 1.5.1 (i) each pair (L1, L2) of non-concurrent lines must
belong to some triad L = (L1, L2, L3) with at leat three centers (M1,M2,M3) =M. If both L andM
have five centers, then (L1, L2) is regular. (For suppose L⊥ = {M1, . . . ,M5} andM⊥ = {L1, . . . , L5}.
Let j, k ∈ {4, 5} and consider which points of Lj are collinear with which points of Mk. It follows
readily that {L1, . . . , L5}⊥ = {M1, . . . ,M5}.) Hence S ∼= W (4) by (6.29). If L has five centers butM
has only three, it easily follows that the ten pints on the five centers of L but on no line of L may be
split into two sets of five, with one set being the perp (or trace) of the other. This would force S to
have a regular pair of points, contradicting (6.29). 2

For the remainder of this section we assume that S is a GQ of order 4, S 6∼= W (4), and let
L = (L1, L2, L3) and M = (M1,M2,M3) denote an orthogonal pair of triads of lines, necessarily of
type (a). The notation and terminology of the beginning of this section, up through the proof of (6.19),
will also be used throughout the rest of this section. From the proof of (6.19), N2 = 16 and k3 = 10.
By (6.10) this leaves exactly 6 special points, proving the following :

Each secant is incident with a unique special point. (6.31)

Let a and b denote distinct special points of the pair (L,M). Let Na and Ka be the secants
through a meeting lines of M and L, respectively. Similarly, Nb and Kb denote the secans through
b meeting lines of M and L, respectively. The pair (a, b) of special points is said to be homologous
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provided Na and Nb belong to the same family of secants and Ka and Kb belong to the same family
of secants.

If (a, b) is an homologous pair of special points, then a ∼ b. (6.32)

Proof. With no loss in generality we may suppose that (a, b) is a homologous pair of special points with
a I N1 ∈ {M2,M3}⊥ and a I K1 ∈ {L2, L3}⊥, and with b I N2 ∈ {M1,M3}⊥ and b I K2 ∈ {L1, L3}⊥.
Then a ∼ x11 = L1∩M1, and b ∼ x22 = L2∩M2. Let N3 and K3 be secants for whichN = (N1, N2, N3)
is one of the two families of secants meeting lines ofM and K = (K1,K2,K3) is one of the two families
of secants meeting lines of L. Let aij = Li ∩ Kj , i 6= j, 1 6 i, j 6 3, and let bij = Mi ∩ Nj , i 6= j,
1 6 i, j 6 3. Let c and d be the two remaining points of K1, e and f the two remaining points of
K2. Suppose c and d are labeled so that b13 ∼ c and b12 ∼ d. Then the “projection” from M1 onto
K1 is complete. Consider the projection from M2 onto K1. Clearly x12 = L1 ∩M2 and b23 must be
collinear, in some order, with c and d. It follows easily that b23 6∼ c (since the secant K1 may not pass
through two special points), so b23 ∼ d and x12 ∼ c.
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Figure 6.4:

Projecting from L1 onto K1 we find that s13 ∼ d. Projecting from M3 onto K1, we find b32 ∼ c.
In projecting from K2 onto K1, it is clear that b must be collinear with one of a, c, d. But b12 ∼ d
precludes b ∼ d, and b32 ∼ c, as no secant may have two special points. Hence b ∼ a. 2

An orthogonal pair (L,M) is called rigid provided that three special points lying on one family of
secants of (L,M) are pairwise homologous.
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No orthogonal pair is rigid. (6.33)

Proof. Suppose (L,M) is a rigid orthogonal pair. Hence the six special points are divided into
two sets of three, say S = {a, b, c} and S′ = {a′, b′, c′}, with each pair of points in one set being
homologous. By (6.32) and since S has no triangles, the points of S (respectively, S′) lie on some
exterior line L (respectively, L′). Let N = (N1, N2, N3) and K = (K1,K2,K3) be the two families of
secants on a, b, c, and suppose that the lines are labeled so that the incidences are as described in part
by Fig. 6.5.
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Let N ′ = (N ′
1, N

′
2, N

′
3) (resp. K′ = (K ′

1,K
′
2,K

′
3)) be the family of secants opposite to N (resp.,

to K) with Mi 6∼ N ′
i (resp., Li 6∼ K ′

i), i = 1, 2, 3. Finally, let aij = Li ∩ Kj , bij = Mi ∩ Nj , i 6= j,
q 6 i, j 6 3. It is easy to check that B1 = (b12, b23, b31) and B2 = (b21, b32, b13) are orthogonal traids of
points. The nine lines joining them are Mi, Ni, N

′
i , 1 6 i 6 3. the six triads formed by these lines are

M,N ,N ′, and (Mi, Ni, N
′
i), i = 1, 2, 3. By the dual of (6.19) there must be ten lines that are centers

of these six triads. Of courseM has three centers, and we claim that neither N nor N ′ can have three
centers. The two cases are entirely similar, so consider N . N has the center L. Suppose there were
two other centers K4 and K5 of N . For i 6= j, 1 6 i, j 6 3, the point aij is collinear with Kj ∩L on Nj ,
but must be collinear with a point of Nk lying on K4 or K5 if k 6= j, 1 6 k 6 3. Since no secant of the
family K′ opposite to K can meet a memeber of N , it is easy to reqach a contradiction by considering
which points aij are collinear with which points of Kt ∩Nk, i 6= j, k 6= j, 1 6 i, j, k 6 3, t = 4, 5. It is
also clear that if N has a second center K4, it also has a third center K5. It follows that the unique
center of N is L, the unique center of N ′ is L′, and one of (Mi, Ni, N

′
i), i = 1, 2, 3, must have three

centers while the other two each have just one center (by the proof of (6.19) (Mi, Ni, N
′
i) cannot have

exactly two centers). By relabeling we may suppose (M1, N1, N
′
1) has three centers. Let d, e, f be the

special points (w.r.t. (L,M)) lying on N ′
3, N

′
2, N

′
1, respectively ({d, e, f} = {a′, b′, c′}). The remainder

of the proof of (6.33) is divided into three cases according as f is collinear with x11, x21, or x31.
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Case 1. f ∼ x11 (cf. Fig 6.6).
As (M1, N1, N

′
1) is assumed to have three centers and a ∼ x11, it must be that x11, f, a all lie on one

line. Let p and q be the points of N1 collinear with a12 and a13, respectively. Then a23 ∼ p and
a32 ∼ q, so that p ∼ x31 and q ∼ x21. Let v = N ′

1 ∩ x31p and w = N ′
1 ∩ x21q. Let the points r, s of

N2 and t, u of N3 be labeled so that p ∼ r ∼ t ∼ q ∼ s ∼ u ∼ p. Of the three lines L1,K
′
3 and K2

through a12, none can meet N ′
1, N1 or N3. Moreover, a line through a12 cannot meet both N ′

1 and
one of N1, N3. Hence the line through a12 and p must be the line pu, and a12 ∼ w on the fifth line
through a12. A similar argument shows that a13, q, s lie on a line. This implies a23 6∼ s, so a23 ∼ r
and a21 ∼ s. Again, a similar argument shows that a21, s, u lie on a lien. Then a31 6∼ u, so q31 ∼ t.
And a31 6∼ s implies a31 ∼ r, so a31, r, t lie on a line. This implies a32 ∼ u. But as a12, p, u are on a
line and a12 ∼ a32, a contradiction has been reached.

TO BE DONE

Figure 6.6:

Case 2. f ∼ x21.
The three secants K ′

1,K
′
2,K

′
3 pass through the points d, e, f in some order, and in this case it is clear

that K ′
2 must pass through f . We then easily obtain a contradiction by considering the points of N ′

1

collinear with x11, x12, x21, x13, x31.
Case 3. f ∼ x31.
In this case K ′

3 must pass through f , and again we obtain a contradiction by considering the points
of N ′

1 collinear with x11, x12, x21, x13, x31. This completes the proof of (6.33). 2

From now on we may supose that each orthogonal pair is flexible, i.e., it is not rigid. Let (L,M)
be a (flexible) orthogonal pair. Let N and N ′ be the two opposite families of secants meeting lines
of M, and let K and K′ be the two opposite families of secants meeting lines of L. Then each of N ,
N ′ is paired with just one of K, K′, in the following sense : N is paired with K provided that two of
the secants of N meet two of the secants of K. If N is paired with K and if N ∈ N , K ′ ∈ K′, with
N ∼ K ′, we say N is the odd member of the family N . (Also in this case K ′ must be the odd member
of the family K′, since K′ is paired with N ′.) We may choose notation so that N = (N1, N2, N3) is
paired with K = (K1,K2,K3), with N1 ∼ K1, N3 ∼ K3. If the odd member N2 of N meets the secant
of K′ that belongs to {K1,K3}⊥ and the odd member K2 of K meets the secant of N ′ that belongs
to {N1, N3}⊥, then the pairing N ↔ K is strong and the pair (L,M) is strongly flexible. Clearly then
also the pairing N ′ ↔ K′ is strong.

Every orthogonal pair (L,M) is strongly flexible. (6.34)

Proof. Let (L,M) be an orthogonal pair that fails to be strongly flexible. By labeling appropriately
we may suppose that N and K are paired as in the preceding paragraph with the odd member N2

of N meeting the secant K ′
1 of K′ that belongs to {K2,K3}⊥ (cf. Fig. 6.7). Put a = N1 ∩ K1 and

b = N3 ∩K ′
3, so a ∼ b by (6.32) and ab is an exterior line. The unique point of R collinear with a is

x11, and the unique point of R collinear with b is x33. Let c = N2 ∩K ′
1. Put bij = Mi ∩ Nj , i 6= j,

1 6 i, j 6 3. Let d and e be the remaining two points of K1, say with b13 ∼ d and b12 ∼ e. Then
considering the projection from M2 onto K1, it follows that x12 ∼ d and b23 ∼ e. Projecting M3 onto
K1, we find that x13 ∼ e and b32 ∼ d. As b12 ∼ e and b32 ∼ d, clearly d 6∼ c 6∼ e. Projecting K ′

1 onto
K1, we find c ∼ a. At this point we know that ab21, ad, ac, ab, and ax11 are five distinct lines through
a. One of these lines must be the line through a meeting the secant N ′

1 through b32 and b23. The only
possibility is the line ax11. Say N ′

1 ∩ ax11 = y. Now y is collinear only with the point x11 of R, but
it must be collinear with some point of L2 and some point of L3. It is collinear with the point a of
K1, hence must be collinear with both a23 = K ′

1 ∩ L and a32 = K ′
1 ∩ L3. This forces y to lie on K ′

1.
Clearly y 6= c, so K ′

1 contains the two special points y and c. This completes the proof of (6.34). 2
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TO BE DONE

Figure 6.7:

We are now nearing the end of the proof of the main result of this section.

6.3.1. (S.E. Payne [131, 132]). A GQ S of order 4 must be isomorphic to W (4).

Proof. Continuing with the assumptions and notation adopted after the proof of (6.30), we may
suppose that relative to the stronly flexible orthogonal pair (L,M) the odd member N2 of N meets
the secant K ′

2 of K′ that belongs to {K1,K3}⊥; similarly, the odd member K2 of K meets teh secant
N ′

2 of N ′ that belongs to {N1, N3}⊥. This implies that N ′ and K′ are paired and have odd members
N ′

2 and K ′
2, respectively. So N ′

3 and N ′
1 meet K ′

1 and K ′
3 in some order. The remainder of the proof

is divided into two cases : Case 1. N ′
1 ∼ K ′

3 and N ′
3 ∼ K ′

1. Case 2. N ′
1 ∼ K ′

1 and N ′
3 ∼ K ′

3.
Case 1 is impossible. (6.35)

Assume that Case 1 holds for the strongly flexible orthogonal pair L,M), and label four of the special
points as follows : a = K1 ∩N1; b = K3 ∩N3; c = N ′

1 ∩K ′
3; d = N ′

3 ∩K ′
1. The situation is partially

depcited in Fig. ??. Note that the four lines through the point d of Fig. ?? must be distinct. Then
by considering the projections from K1 onto M1,M2,M3, the diagram may be filled in further, as
indicated by the solid lines in Fig. ??. Moreover, the line from d to K1 must be new and must hit
K1 at the point of the figure indicated. The triad (M2,M3,K1) is orthogonal to (L2, L3, N1). And
K ′

1 cannot hit N1, for otherwise K ′
1 would be a secant of (L,M) with two special points. So K ′

1 is
a secant of the pair ((M2,M3,K1), (L2, L3, N1)), and must have a unique special point with respect
to this orthogonal pair. Hence K ′

1 must meet exactly one of the six secants that hit two of the lines
M2,M3,K1. These six secants are already indicated in Fig. ??, and the only possibility is indicated
by the dotted extension of K ′

1, i.e. K ′
1 meets the line from b23 to K1. The points of N3 are b13, b23,

b, and two others, say e and f . And a12, a32 must be collinear in some order with e and f . Label e
and f so that a12 ∼ e and a32 ∼ f . Projecting K1 onto N3, we have a21 ∼ f and a31 ∼ e. Projecting
L1 onto N3, we find x13 ∼ f . It follows that d may not be collinear with any of b13, b23, b, f . On the
other hand, each of the five lines through d is clearly unsuitable as a line through d and e. Hence d is
collinear with no point of N3, an impossibility that proves (6.35).

Case 2 is impossible. (6.36)

Assume that Case 2 holds for the strongly flexible orthogonal pair (L,M), and label the special points
as indicated in Fig. ?? : a = K1 ∩N1; b = K3 ∩N3; c = N ′

3 ∩K ′
3; d = K ′

1 ∩N ′
1. Project N ′

2 onto K ′
2

to force their special points e and f to be collinear on a line M through x22. Project N ′
3 onto K3 to

find that c is collinear with b on a line through x33. Similarly, project N ′
1 onto K1 to find that d and

a lie on a line through x11.
Let p, q, g be the other three points on the line L through a and b. Notice that ab is an exterior

line and that each secant concurrent with L is one of N2, N
′
2,K2,K

′
2. If N ′

2 ∼ ab (resp., K ′
2 ∼ ab) we

have case (iii) in (6.10) and hence K ′
2, N

′
2 and ab are concurrent, a contradiction. Hence p, q, g are

incident with no secant. It follows that p, q, g are each collinear with two or three points of R. One
of p, q, g, say p, is collinear with a12 and with two points of R. One of g, q, say q, is collinear with a32

and with two points of R. By (ii) of (6.10) p and q, in some order, are collinear, respectively, with b12

and b32. As neither a nor b is collinear with the special points e = K2 ∩N ′
2 and f = K ′

2 ∩N2, it must
be that g ∼ e and f ∼ g. So g = L ∩M .

Let N = cd. Let N play the role of L in the above paragraph to find that N meets M at a point
h. So f, g, h, e, x22 are the five distinct points of M . The points x11, x13, x31, x33 of R must each be
collinear with a point of M . It follows that x11 and x33 are collinear with one of g, h, and x13 and x31
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are collinear with the other. But it is also easy to see that x11 (resp., x33) may not be collinear wth
g (resp., h). 2

6.3.2. (J.A. Thas [210]). If a GQ S = (P,B, I) of order (4, 16) contains a 3-regular triad, then it is
isomorphic to Q(5, 4).

Proof. Let (x, y, z) be a 3-regular triad of the GQ S of order (4, 16). Then by 2.6.2 {x, y, z}⊥ ∪
{x, y, z}⊥⊥ is contained in a subquadrangle S ′ = (P ′,B′, I′) of order 4. By 6.3.1 S ′ may be identified
with Q(4, 4) (∼= W (4)).

In Q(4, 4) all points are regular. It follows immediately that any three distinct points of an
hyperbolic line of Q(4, 4) form a 3-regular triad of S.

Let u be a point of P \A. The 17 points of Q which are collinear with u form an ovoid of Q(4, 4).
It is well known that each ovoid of Q(4, 4) belongs to a hyperplane PG(3, 4) of the space PG(4, 4)
containing Q (this easily follows from the uniqueness of the projective plane of order 4). So the number
of ovoids of Q(4, 4) equals 120. Since for any triad (u1, u2, u3) of S we have |{u1, u2, u3}⊥| = 5, clearly
any ovoid of Q(4, 4) corresponds to at most two points of P \ Q. Since |P \ Q| = 240, any ovoid of
Q(4, 4) corresponds to exactly two points of P \Q.

Consider a triad (v1, v2, v3) of S with vi ∈ Q, i = 1, 2, 3. We shall prove that (v1, v2, v3) is 3-
regular. We already noticed that this is the case if v1, v2, v3 are points of an hyperbolic line of Q(4, 4).
So assume that v1, v2, v3 do not belong to a common hyperbolic line. Since each point of Q(4, 4) is
regular, we have {v1, v2, v3}⊥

prime = {w} in Q(4, 4) (cf. 1.3.6 (ii)). Let C be the conic Q ∩ π, where
π is the plane v1v2v3. Clearly w is collinear with each point of C. In Q(4, 4) there are two ovoids
O,O′ which contain C. The points of P \Q which correspond to O,O′ are denoted by u1, u2, u

′
1, u

′
2.

Since u1, u2, u
′
1, u

′
2 are collinear with all points of C, we have {v1, v2, v3}⊥ = {w, u1, u2, u

′
1, u

′
2} and

{v1, v2, v3}⊥⊥ = C. Hence (v1, v2, v3) is 3-regular in S.
Now we shall show that any point v of Q is 3-regular. If (v, v′, v′′) is a triad consisting of points

of Q, then we have already shown that (v, v′, v′′) is 3-regular. Next, let (v, v′, v′′) be a triad with
v′ ∈ Q, v′′ ∈ P \ Q. Let w be a point of Q which is collinear with v and v′. If (v1, v2, v3) is a
triad with vi ∈ w⊥

′ ⊂ Q, i = 1, 2, 3, then by the preceding paragraph {v1, v2, v3}⊥⊥ is contained in a
subquadrangle S1 of order 4. If {v1, v2, v3}⊥⊥ is not an hyperbolic line of Q(4, 4), then S1 6= Q(4, 4).
If the intersection S ′′ of S1 and Q(4, 4) contains a point which is not in w⊥

′
, then by 2.3.1 S ′′ is a

subquadrangle of order 4 of Q(4, 4), i.e. Q(4, 4) = S1, a contradiction. Hence the intersection of the
pointsets of S1 and Q(4, 4) is w⊥

′
. Next, if (v′1, v

′
2, v

′
3) is another triad in w⊥

′
and if the corresponding

subquadrangle S ′1 is distinct from S1, then clearly w⊥
′

is the intersection of the pointsets of S1 and
S ′1. The number of subquadrangles arising from triads in w⊥

′
is equal to the quotient of the number

of irreducible conics in w⊥
P

and the number of hyperbolic lines in w⊥
′
of a given S1, hence is equal

to 64/16 = 4. The total number of points of these 4 quadrangles is 277. Clearly no one of these
subquadrangles contains points of w⊥ \ w⊥

′
. Since |w⊥ \ w⊥

′ | = 48 and |P| = 325, the union of the 4
subquadrangles and w⊥\w⊥′ is exactly P. Now suppose that each point w ∈ {v, v′} is collinear with v′′.
If w1, w2, w3 are distinct points of {v, v′}⊥′ , then v′′ ∈ {w1, w2, w3}⊥. But {w1, w2, w3}⊥ = {v, v′}⊥′⊥′ ,
and so v′′ ∈ {v, v′}⊥′⊥′ ⊂ Q, a contradiction. So we may assume that w 6∼ v′′. Then one of the 4
subquadrangles corresponding to w contains v′′, say S1. Interchanging the roles of Q(4, 4) and S1, we
see that each triad in S1 is 3-regular. Hence (v, v′, v′′) is 3-regular. Finally, let (v, v′, v′′) be a triad
with v′, v′′ ∈ P \ Q. Let v′′′ be a point of Q(4, 4) which is not collinear with v or v′. Let S1 be a
subquadrangle of the type described above containing v, v′, v′′′. Now, interchanging the roles of S1 and
Q(4, 4), we know by the preceding cases that (v, v′, v′′) is 3-regular. We conclude that v is 3-regular.

Next, let u ∈ P \Q. Choose a triad (u, u′, u′′) with u′, u′′ ∈ Q. Then there is a subquadrangle S1

of order 4 containing u, u′, u′′. Interchanging roles of S1 and Q(4, 4), we see that u is 3-regular.
Since all points of S are 3-regular, S ∼= Q(5, 4) by 5.3.3. 2



Chapter 7

Generalized Quadrangles in Finite
Affine Spaces

7.1 Introduction

By the beautiful theorem of F. Buekenhout and C. Lefèvre (cf. Chapter 4) we know that if a pointset
of PG(d, s) together with a lineset of PG(d, s) form a GQ S of order (s, t), then S is a classical GQ.
So all GQ of order (s, t) embedded in PG(d, s) are known.

In this chapter we solve the following analogous problem for affine spaces : find all GQ of order
(s, t) whose points are points for affine spaces AG(d, s + 1), whose lines are lines of AG(d, s + 1), and
where the incidence is that of AG(d, s + 1). In other words, we determine all GQ whose lines are lines
of a finite space AG(d, q), whose points are all the points of AG(d, q) on these lines, and where the
incidence is the natural one (here q = s + 1). Such GQ are said to be embedded in AG(d, q). This
embedding problem was completely solved by J.A. Thas [199]. The theorem on the embedding in
AG(3, q) was proved independently by A. Bichara [12].

Finally, we note that in contrast with the projective case, there arise five nontrivial “sporadic”
cases in the finite affine case.

7.2 Embedding in AG(2, s + 1)

7.2.1. If the GQ S of order (s, t) is embedded in AG(2, s + 1), then the lineset of S is the union of
two parallel classes of the plane and the pointset of S is the pointset of the plane.

Proof. Easy exercise. 2 .

7.3 Embedding in AG(3, s + 1)

7.3.1. Suppose that the GQ S = (P,B, I) of order (s, t) is embedded in AG(3, s + 1), and that P is
not contained in a plane of AG(3, s + 1). Then one of the following cases must occur :

(i) s = 1, t = 2 (trivial case);

(ii) t = 1 and the elements of S are the affine points and affine lines of an hyperbolic quadric of
PG(3, s + 1), the projective completion of AG(3, s + 1), which is tangent to the plane at infinity
of AG(3, s + 1);
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(iii) P is the pointset of AG(3, s+1) and B the set of all lines of AG(3, s+1) whose points at infinity
are the points of a complete oval O of the plane at infinity of AG(3, s+1), i.e. S = T ∗2 (O) (here
s + 1 = 2h and t = s + 2);

(iv) P is the pointset of AG(3, s + 1) and B = B1 ∪ B2, where B1 is the set of all affine totally
isotropic lines with respect to a symplectic polarity θ of the projective completion PG(3, s + 1)
of AG(3, s + 1) and where B2 is the class of parallel lines defined by the pole x (the image with
respect to θ) of the plane at infinity of AG(3, s + 1), i.e. S = P(W(s + 1), x) (here t = s + 2);

(v) s = t = 2 (an embedding of the GQ with 15 points and 15 lines in AG(3, 3)).

Proof. Suppose that x ∈ P, L ∈ B and x  I L. Then a substructure Sω = (Pω,Bω, Iω) is induced in
the plane xL = ω. By 2.3.1 Bω is the union of two parallel classes of lines in ω or Bω is a set of lines
with common point y, and in both cases Pω is the set of all points on the lines of Bω.

Assume that Bω is a set of lines with common point y, and that there exists a line M in B which
is incident with y and which is not contained in ω (hence t > 1). Let z I M , z 6= y. The lines of B
though z are necessarily the line M and t lines in a plane ω′ parallel to ω. We claim that Bω′ is a
set of t lines with common point z. For otherwise Bω′ would consist of two parallel classes of lines in
ω′. Then t = 2 and the number of lines of B which are incident with y and have a point in common
with Pω′ equals s + 1. So there are at least (s + 1) + 2 > 3 lines of B which are incident with y, a
contradiction which proves our claim. Analogously (interchange y and z) Bω is a set of t lines with
common point y.

It follows that if ω is a plane containing at least two lines of B, there are three possibilities for Sω

: If Sω is a net, we say ω is of type I; if Bω is a set of t lines having a common point y, we say ω is of
type II (if M is the line defined by y I M , M ∈ B−Bω, and if z I M , then the t+1 lines of B incident
with z are M and t lines in a plane ω′ parallel to ω and also of type II); if Bω is the set of t + 1 lines
having a common point y, we say ω is of type III.

The remainder of the proof is divided into three cases that depend on the value of t, beginning
with the most general case.
(a) t > 2.
Assume that ω is a plane which contains exactly one line L of B. Let L I y I M I x, with M ∈ B−{L},
x 6= y. The lines of B which are incident with x are M and t lines in a plane ω′ parallel to ω. Since
t > 2, the plane ω′ is of type II. Consequently the lines of B which are incident with y are M and t
lines in the plane ω, a contradiction. So any plane ω contains no line of B or at least two lines of B.

Now suppose that ω is a plane of type III, and let L be a line of Bω. The common point of the
t+1 lines of Bω is denoted by y. Assume that each plane through L is of type II or III. As there are
s + 2 planes though L and only s + 1 points on L, there is some point z on L which is incident with
at least 2t − 1 lines of B, a contradiction. So there must be a plane ω′ though L which is of type I.
In Sω′ there are two lines L, N which are incident with y, forcing y to be incident with at least t + 2
lines of B, a contradiction. It follows that there are no planes of type III.

Next assume that there is at least one plane ω of type II. The common point of the lines of Bω is
denoted y0, and M denotes the line of S which is incident with y0 but not contained in ω. Suppose
that y0, y1, . . ., ys are the points of M and that Li1, Li2, . . ., Lit, M are the t + 1 lines of B incident
with yi, i = 0, 1, . . ., s. Each plane ω′ which contains Lij but not M , and which is not parallel to
ω is of type II, since otherwise yi would be incident with at least t + 2 lines of B. Next let ω′′ be
a plane which is contains M , and suppose that ω′′ is of type II. If yi is the common point of the
lines Bω′′ , then yi is incident with the t lines of Bω′′ and also with the t lines Li1, Li2, . . ., Lit, an
impossibility. Hence any plane ω′′ through M is of type I. It follows that for any i ∈ {0, 1, . . . , s}
there is a unique one of the lines Lij which is contained in Bω′′ . So the number of planes ω′′ though
M is equal to |{Li1, Li2, . . . , Lit}| = t. Consequently t = s + 2 and v = (s + 1)3, i.e. P is the pointset
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of AG(3, s + 1). From the preceding there also follows that any line of AG(3, s + 1) which is parallel
to M is an element of B. It is now also clear that any parallel plane to M is of type I, and that any
plane not parallel to M contains a line Lij and consequently is of type II. Also it is easy to see that
the same conclusions hold if we replace M by any line parallel to M .

The plane at infinity of AG(3, s + 1) is denoted by π∞, and the point at infinity of M is denoted
by y∞. Let y′i be a point of M ′, where M ′ is parallel to M and let L′i1, L′i2, . . ., L′it, M ′ be the lines
of B which are incident with y′i. The lines L′i1, L′i2, . . ., L′it are contained in a plane ω′i, and the line
at infinity M ′

∞ of ω′i is independent of the choice of yi on M ′. We notice that y∞ is not on M ′
∞. If

the lines M ′ and M ′′, M ′ 6= M ′′, are both parallel to M , then we show that M ′
∞ 6= M ′′

∞. Suppose the
contrary. Then any plane with line at infinity M ′

∞ contains at least 2t− 1 lines of B, a contradiction.
Hence M ′

∞ 6= M ′′
∞. So with the (s + 1)2 lines parallel to M there correspond the (s + 1)2 lines of π∞

which do not contain y∞. Now consider a line N∞ of π∞ though y∞.
A plane ω′′ with line at infinity N∞ is of type I, and the lines of B in ω′′ define two points at

infinity, y∞ and z∞, on N∞. Consequently with the s + 1 lines of ω′′ which are parallel to M , there
correspond s + 1 lines of π∞ which contain z∞ but not y∞.

Now we define as follows an incidence structure S ′ = (P ′,B′, I′): P ′ = P∪P∞ with P∞ the pointset
of π∞; B′ = (B − BM ) ∪ B∞, where BM is the set of all lines parallel to M and where B∞ is the set
of all lines of π∞ which contain y∞; I′ is the natural incidence relation. From the considerations
in the preceding paragraph it follows readily the S ′ is a GQ of order s + 1, which is embedded in
the projective completion PG(3, s + 1) of AG(3, s + 1). By the theorem of F. Buekenhout and C.
Lefèvre (cf. Chapter 4) B′ is the set of totally isotropic lines with respect to a symplectic polarity θ
of PG(3, s+1). Hence B = B1 ∪B2, where B1 is the set of all affine totally isotropic lines with respect
to θ and B2 is the class of parallel lines defined by y∞, the pole of π∞ with respect to θ. An with the
notation of 3.1.4 we have S = P(W(s + 1), y∞). So in this case we have the situation described in
part (iv) of 7.3.1.

Finally, we assume that there are no planes of type II. Let L be a line of B, and let ω be a plane
containing L. Clearly ω is of type I. Consequently any point of ω is in P, and any line of ω parallel
to L belongs to B. Since ω is an arbitrary plane containing L, P is the pointset of AG(3, s + 1) and B
contains all lines parallel to L. Let π∞ be the plane at infinity of AG(3, s+1) and consider the points
at infinity of the lines of B. The set of these points intersects any line of π∞ in 2 points or none at all.
Consequently this set is a complete oval O of π∞. So with the notation of 3.1.3 we have S = T ∗2 (O),
i.e. we have case (iii) of 7.3.1.
(b) t = 1.
Suppose that B = {L0, . . . , Ls,M0, . . . ,Ms}, Li ∼Mj , and consider the projective completion PG(3, s+
1) of AG(3, s + 1). Since P is not contained in an AG(2, s + 1), the projective lines Mi and Mj (resp.,
Li and Lj), i 6= j, are not concurrent in PG(3, s + 1). If s > 2, then the s + 2 lines of PG(3, s + 1)
which are concurrent with the projective lines M0, M1, M2 constitute a regulus R, i.e. a family of
generating lines of an hyperbolic quadric Q. Consequently L0, L1, . . ., Ls are elements of R and M0,
M1, . . ., Ms are elements of the complementary regulus R′ of Q. It follows that Q contains two lines
at infinity. Hence we have case (ii) of 7.3.1. If s = 1 it is easy to see that case (ii) also arises.
(c) t = 2.
First of all we assume there is a plane ω of type I. If x is a point of P −Pω, then the number of lines
of B which are incident with x and a point of Sω equals s + 1. Hence s + 1 6 t + 1 = 3, or s ∈ {1, 2}.

Now we suppose that there is no plane of type I. Let L ∈ B and assume that there is a plane ω
which contains only the line L of B. If x is a point of P which is not in ω, then the lines of B which
are incident with x are the line M defined by x I M I y I L, and the two lines in a plane ω′ parallel
to ω. Clearly ω′ is of type II. Consequently, the lines of B which are incident with y are M and two
lines in ω, a contradiction. It follows that each plane containing L is of type II or III. Suppose that
each plane though L is of type III. Since there are s + 2 planes though L and only s + 1 points on
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L, there is a point on L which is incident with at least five lines of B, a contradiction. Consequently,
there is a plane ω of type II. Let ω be type II and suppose that L1, L2 ∈ Bω, L1 I x I L2, and x I M
with M ∈ B − Bω. If y I M , then the lines of B which are incident with y are M and two lines in a
plane ω′ parallel to ω. If a plane ω′′ though M is of type III, then there is a point on M which is
incident with at least four lines of B, a contradiction. Hence each plane ω′′ though M is of type II.
It follows that the number of lines of B having exactly one point in common with M is s + 2. This
number also equals (s + 1)t = 2(s + 1), a contradiction.

So there is at least one plane of type I and s ∈ {1, 2}. Consequently we have s = t = 2 or the
trivial case s = 1, t = 2, i.e. we have cases (i) or (v) of 7.3.1. 2

In the following theorem the “sporadic” case s = t = 2 is considered in detail.

7.3.2. Up to a collineation of the space AG(3, 3) there is just one embedding of a GQ of order 2 in
AG(3, 3).

Before proceeding with the proof we describe the embedding as follows. Let ω be a plane of
AG(3, 3) and let {L0, L1, L2} and {Mx,My,Mz} be two classes of parallel lines of ω. Suppose that
{xi} = Mx ∩ Li, {yi} = My ∩ Li, and {zi} = Mz ∩ Li, i = 0, 1, 2. Further let Nx, Ny, Nz be
three lines containing x0, y0, z0, respectively, such that Nx 6∈ {Mx, L0}, Ny 6∈ {My, L0}, Nz 6∈
{Mz, L0}, such that the planes NxMx, NyMy, NzMz are parallel, and such that the planes ω, L0Nx,
L0Ny, L0Nz are distinct. The points of Nx are x0, x3, x4; the points of Ny are y0, y3, y4; the
points of Nz are z0, z3, z4; where notation is chosen in such a way that x3,y3,z3 (resp. x4,y4,z4)
are collinear. Then the points of the GQ are x0, . . . , x4, y0, . . . , y4, z0, . . . , z4 and the lines are L0,L1,
L2,Mx,My,Mz,Nx,Ny,Nz,x3y4,x4y3,x3z4, x4z3,y3z4,y4z3. Proof. Let S = (P,B, I) be a GQ of order
2 which is embedded in AG(3, 3). By the final part of the proof of the preceding theorem there is at
least one plane ω of type I. Let Bω = {L0, L1, L2,Mx,My,Mz}, Pω = {x0, y0, z0, x1, y1, z1, x2, y2, z2}
with xi I Mx, yi I My, zi I Mz, xi I Li, yi I Li, zi I Li. Suppose that x0 I Nx, y0 I Ny, z0 I Nz,
with Nx 6∈ {Mx, L0}, Ny 6∈ {My, L0}, Nz 6∈ {Mz, L0}, that x0,x3,x4 are points of Nx, that y0,y3,y4

are points of Ny, and that z0,z3,z4 are points of Nz. Then P = {xi, yi, zi||i = 0, 1, 2, 3, 4}. Clearly the
plane NxMx is of type I or II. If NxMx is of type I, then the fifteen points of S are contained in
the planes NxMx and ω. Hence the points x3,x4,y3,y4,z3,z4 are in NxMx, so the points x0,y0,z0 are
in NxMx. Consequently NxMx = ω, a contradiction. It follows that NxMx is of type II, and also
that NxMx, NyMy, NzMz are parallel planes of type II. Now assume that the planes L0Nx, L0Ny,
L0Nz are not distinct, e.g. L0Nx = L0Ny. Then the plane L0Nx is of type I, and by a proceeding
argument ω is of type II, a contradiction. Hence the planes ω, L0Nx, L0Ny, L0Nz are exactly the
four planes that contain L0. Now it is clear that the lines Nx,Ny,Nz, together with the line at infinity
V∞ of ω, form a regulus. Consequently, notation may be chosen in such a way that x3,y3,z3 (resp.
x4,y4,z4) are on a line which is parallel to ω. As any line of B is incident with a point of Pω, the lines
x3y4,x4y3,x3z4,x4z3,y3z4,y4z3 are the remaining six lines of B.

¿From the preceding paragraph it follows that up to a collineation of AG(3, 3) there is at most one
GQ of order 2 which is embedded in AG(3, 3): If in PG(3, 3), the projective completion of AG(3, 3), the
coordinate system is chosen in such a way that x0(0, 0, 0, 1), m(0, 1, 0, 0) with m the point at infinity of
the lines Mx,My,Mz, l(0, 0, 1, 0) with l the point at infinity of the lines L0,L1,L2, z(1, 0, 0, 0) with z the
point at infinity of the line Nz, and y3(1, 1, 1, 1), then the affine coordinates of the points of the GQ are
given by x0(0, 0, 0), x1(0, 1, 0), x2(0,−1, 0), x3(1,−1, 0), x4(−1, 1, 0), y0(0, 0, 1), y1(0, 1, 1), y2(0,−1, 1),
y3(1, 1, 1), y4(−1,−1, 1), z0(0, 0,−1), z1(0, 1,−1), z2(0,−1,−1), z3(1, 0,−1), z4(−1, 0,−1). And now
it may be checked that the fifteen points with these coordinates together with the lines x0x1, y0y1,
z0z1, x0y0, x1y1, x2y2, x3x4, y3y4, z3z4, x3y4, x4y3, x3z4, x4z3, y3z4, y4z3 form indeed a GQ. 2 .
Remark : The existence of a GQ of order 2 which is embedded in AG(3, 3) is also show as follows.
Consider the GQ described in Part (iv) of 7.3.1 in the case where s = 2. There arises a GQ of order
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(2, 4) embedded in AG(3, 3). Up to isomorphism this GQ is unique (cf. 5.3.2(ii)). Hence it must have
a subquadrangle of order 2 (cf. 3.5), which is embedded in AG(3, 3).

7.4 Embedding in AG(4, s + 1)

7.4.1. Suppose that the GQ S = (P,B, I) of order (s, t) is embedded in AG(4, s + 1) and that P is not
contained in an AG(3, s + 1). Then one of the following cases must occur:

(i) s = 1, t ∈ {2, 3, 4, 5, 6, 7} (trivial case);
(ii) s = t = 2, i.e. an embedding of the GQ with 15 points and 15 lines in AG(4, 3). Moreover,

up to a collineation of the space AG(4, 3) there is just one embedding of a GQ of order 2 in AG(4, 3)
(so that the GQ is not contained in any subspace AG(3, 3)). This GQ may be described as follows.
Let PG(3, 3) be the hyperplane at infinity of AG(4, 3); let ω∞ be a plane of PG(3, 3), and let l be
a point of PG(3, 3) − ω∞. In ω∞ choose points m01, m02, m11, m12, m21, m22, in such a way that
m01, m21, m11 are collinear, that m11, m02, m22, are collinear, that m21, m02, m12, are collinear,
and that m01, m22, m12, are collinear. Let L be an affine line containing l, and let the affine points
of L be denoted by p0,p1, p2. The points of the GQ are the affine points of the lines p0m01, p0m02,
p1m11, p1m12, p2m21, p2m22. The lines of the GQ are the affine lines of the (2-dimensional) hyperbolic
quadric containing p0m01, p1m11, p2m21, resp. p0m02, p1m11, p2m22, resp. p0m02, p1m12, p2m21, and
resp. p0m01, p1m12, p2m22.

(iii) (s = t = 3) and S is isomorphic to the GQ Q(4, q). Moreover, up to a collineation (whose
companion automorphism is the identity) of the space AG(4, 4) there is just one embedding of a GQ of
order 3 in AG(4, 4). This GQ may be described as follows. Let PG(3, 4) be the hyperplane at infinity
of AG(4, 4), let ω∞ be a plane of PG(3, 4), let H be a hermitian curve [197] of ω∞, and let l be a
point of PG(3, 4)−ω∞. In ω∞ there are exactly four triangles mi1mi2mi3, i = 0, 1, 2, 3, whose vertices
are exterior points of H and whose sides are secants (non-tangents) of H [197]. Any line m0am1b,
a, b ∈ {1, 2, 3}, contains exactly one vertex m2c of m21m22m23 and one vertex m3d of m31m32m33, and
the cross ratio [197] {m0a,m1b;m2c,m3d} is independent of the choice of a, b ∈ {1, 2, 3}. Let L be an
affine line though l, and let p0,p1,p2,p3 be the affine points of L, where notation is chosen in such a
way that {p0, p1; p2, p3} = {m0a,m1b;m2c,m3d}. The points of the GQ are the 40 affine points of the
lines pimij , i = 0, 1, 2, 3, j = 1, 2, 3. The lines of the GQ are the affine lines of the (2-dimensional)
hyperbolic quadric containing p0m0a, p1m1b, p2m2c, p3m3d, a, b = 1, 2, 3.

(iv) s = 2, t = 4, i.e. an embedding of the GQ with 27 points and 45 lines in AG(4, 3). Moreover,
up to a collineation of the space AG(4, 3), there is just one embedding of the GQ of order (2, 4) in
AG(4, 3) (so that the GQ is contained in no subspace AG(3, 3))). This embedding may be described
as follows. Let PG(3, 3) be the hyperplane at infinity of AG(4, 3), let ω∞ be a plane of PG(3, 4), of ω∞,
and let l be a point of PG(3, 4)− ω∞. In ω∞ choose points m,nx,ny,nz, n′x,n′y,n

′
z,n

′′
x,n′′y,n

′′
z , in such a

way that m,nx,ny,nz (resp. m,n′x,n′y,n
′
z) (resp. m,n′′x,n′′y,n

′′
z) (resp. na,n′b,n

′′
c with {a, b, c} = {x, y, x})

are collinear. Let L be an affine line though l, and let x,y,z be the affine points of L. The plane
defined by L and m is denoted by ω. The points of the GQ are the 27 affine points of the lines am,
ana, an′a, an′′a, with a = x, y, z. The 45 lines of the GQ are the affine lines of ω with points at infinity
l and m, the affine lines of the (2-dimensional) hyperbolic quadric containing am, bnb, cnc (resp., am,
bn′b, cn′c) (resp., am, bn′′b , cn′′c ) (resp., ana, bn′b, cn′′c ) with {a, b, c} = {x, y, x}.

Proof. Suppose that s = 1. Let x0, x1, . . . , xt, y0, y1, . . . , yt, t ∈ {2, . . . , 7}, be distinct points of
AG(4, 2) which are not contained by a hyperplane. The the sets P = {xi, yj ||i, j ∈ {0, . . . , t}} and
B = {{xi, yj}||i, j ∈ {0, . . . , t}} define a GQ of order (1, t). From now on we suppose s > 2.

Let L,M be two nonconcurrent lines of S which are not parallel in AG(4, s + 1), and suppose
that AG(3, s + 1) is the affine subspace containing these lines. By 2.3.1 the points and lines of S in
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AG(3, s + 1) form a GQ S ′ = (P ′,B′, I′) of order (s, t′). This GQ S ′ is embedded in AG(3, s + 1) (and
is not contained in any subplane AG(2, s + 1))).

Suppose that S ′ is of type 7.3.1(iii) or 7.3.1(iv). Then t′ = s + 2. By 2.2.1 we have st′ 6 t.
Since s 6= 1, we also have t 6 s2. Hence s(s + 2) 6 s2, an impossibility.

Next we suppose that S ′ is of type 7.3.1(v). Then s = t′ = 2. Since st′ 6 t 6 s2, we have t = 4. So
S is the GQ with 27 points and 45 lines. For the points and lines of S ′ we use the notation introduced
in 7.3.2. Let Nx,N ′

x,N ′′
x ,Mx,L0 be the lines of B which contain x0. The hyperplane AG(3, 3) defined by

ω and Nx is denoted by H, the hyperplane ωN ′
x is denoted by H ′, and the hyperplane ωN ′′

x is denoted
by H ′′. It is clear that the subquadrangle S ′′ = (P ′′,B′′, I′′) (resp., S ′′′ = (P ′′′,B′′′, I′′′)) induced in H ′

(resp. H ′′) has order (2, 2). Suppose that L0,Ma,N ′
a (resp., L0,Ma,N ′′

a ) are the lines lines of S ′′ (resp.
S ′′′) which are incident with a0, a = y, z. Then each point of S is on one of the lines L0,Ma,Na,N ′

a,N
′′
a ,

with a = x, y, z.
The point at infinity of the lines L0,L1,L2 is denoted by l, of the lines Mx,My,Mz by m, of the lines

Na by na, of the lines N ′
a by n′a and of the lines N ′′

a by n′′a (a = x, y, z). Then the points nx,ny,nz,m
are on a line N∞, the points n′x,n′y,n

′
z,m are on a line N ′

∞, and the points n′′x,n′′y,n
′′
z ,m are on a line

N ′′
∞. Note that the lines N∞,N ′

∞,N ′′
∞ are distinct.

Consider the lines Na and N ′
b, a, b ∈ {x, y, z} and a 6= b. There are three lines L0,Labc,L′abc ∈ B,

{a, b, c} = {x, y, z}, concurrent with Na and N ′
b. Since all lines of S are regular (cf. 3.3.1), there

are also lines Na,N ′
b,T

′′
c , {a, b, c} = {x, y, z}, concurrent with each of L0,Labc,L′abc. Clearly we have

T ′′c = N ′′
c . Consequently the lines Na,N ′

b,N
′′
c , L0,Labc,L′abc form a GQ of order (s, 1) which is embedded

in the affine threespace defined by Na and N ′
b. So this GQ is of type 7.3.1(ii). It follows that na,n′b,nc′′

are on a line V∞, that l and the points at infinity labc and l′abc of the lines Labc and L′abc, respectively,
are on a line W∞, and that V∞ and W∞ intersect. Now it is also clear that the points na,n′a,n

′′
a,m,

with a = x, y, z, are in a plane ω∞. Since S is not contained in a subspace AG(3, 3) we have l 6∈ ω∞.
If L0,Dab,Eab (resp., L0,D′

ab,E
′
ab) (resp., L0,D′′

ab,E
′′
ab), a 6= b and a, b ∈ {x, y, z}, are the lines of S

which are concurrent with Na,Nb (resp., N ′
a,N

′
b) (resp., N ′′

a ,N ′′
b ), then the lines L0,L1,L2,Mx,My,Mz,Nx,Ny,Nz,N ′

x,N ′
y,N

′
z,

N ′′
x ,N ′′

y ,N ′′
z ,Dab,Eab,D′

ab,E
′
ab, D′′

ab,E
′′
ab,Labc,L′abc are the 45 lines of S.

Now show that up to a collineation of AG(4, 3) there is at most one GQ of this type. In ω∞ choose
a coordinate system as follows : m(1, 0, 0), nx(0, 1, 0), n′x(0, 0, 1), n′′z(1, 1, 1). Then we have n′′x(0, 1, 1),
ny(1, 1, 0),
nz(1,−1, 0), n′y(1, 0, 1), n′z(1, 0,−1), n′′y(1,−1,−1). Hence in the hyperplane at infinity PG(3, 3),
the configuration formed by the points m, nx, ny, nz, n′x, n′y, n′z, n′′x, n′′y, n′′z , l, is unique up to a
projectivity of PG(3, 3). Now it easily follows that in AG(4, 3) the configuration formed by the affine
points of the lines L0,Ma,Na, N ′

a,N
′′
a , with a = x, y, z, is unique up to a collineation of AG(4, 3).

Hence, up to a collineation of AG(4, 3) there is at most one GQ S for which S ′ is of type 7.3.1(v).
Finally it is not difficult, but tedious, to check that the described GQ S does indeed exist. So case

(iv) of 7.4.1 is completely handled.
Now suppose that every two noncoplanar lines of S define a subquadrangle of type 7.3.1(ii). Let

L and M be two concurrent lines of S. Choose a line N which is concurrent with L, but not coplanar
with M (such a line N exists). The points and lines of S in the threespace MN form a subquadrangle
of type 7.3.1(ii). Hence the plane LM contains only the lines L,M of S.

Next let L be a line of S, let p0, p1, . . . ps, be the points of L, and let L,Mi1, . . . ,Mit be the t + 1
lines of S though pi. Clearly the t2 + s + 1 hyperplanes M0kM1l, LMi1Mi2 are distinct. The number
of hyperplanes containing L equals (s + 1)2 + (s + 1) + 1, implying t2 6 (s + 1)2 + 1. Hence t 6 s + 1.
Since each pair of distinct lines of S is regular, we have t = 1 or t > s be 1.3.6. But t 6= 1, so
t ∈ {s, s + 1}. Since s 6= 1 and (s + t)|st(s + 1)(t + 1) (cf. 1.2), it follows that s = t. Now by dualising
5.2.1 we have S = Q(4, s).

Let W be the threespace defined by three concurrent lines L0, L1, L2 of S. The common point of
these lines is denoted p. By 2.3.1 all the lines of S in W contain p and any point of S in W is on one
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of these lines. The lines of S in W are denoted by L0, L1, . . . , Lt′ .

First suppose that t′ < t, and let Lt be a line of S though p which is not in W . Clearly then t > 2.
Let q I Lt, q 6= p. The t + 1 lines of S through q are Lt and t lines in the threespace W though q and
parallel to W . Analogously, the t + 1 lines of S though p are Lt and t lines in W . So t′ = t− 1. Now
consider the threespace W defined by L0,L1,Lt. Notice that the plane W ∩W contains only the lines
L0 and L1 of S. Hence Lt′ is not in W , implying W contains exactly t lines of S though p. Since
W and W both contain t lines of S though p, their intersection contains t − 1 lines of S though p.
Consequently, t − 1 = 2, implying s = t = 3. Let the points of Lt be denoted by p0,p1,p2,p3, and let
Lt,Mi1,Mi2, Mi3 be lines of S though pi. The lines Mi1,Mi2, Mi3 define a hyperplane which is parallel
to W . The plane at infinity of W is denoted ω∞, the point at infinity of Mij is denoted mij , and the
point at infinity of Lt is denoted l (l 6∈ ω∞). The points mi1,mi2,mi3 are not collinear, so they form a
triangle Vi in ω∞. If T is a line of ω∞ which contains a vertex of Vi and Vj , i 6= j, then, since any two
lines Mia and Mjb define a subquadrangle of type 7.3.1(ii), the line T also contains a vertex of Vk

and Vl, {i, j, k, l} = {0, 1, 2, 3}. If these vertices on T are denoted by mia,mjb,mkc,mld, respectively,
then clearly the cross-ratio {pi, pj ; pk, pl} equals the cross-ratio {mia,mjb;mkc,mld}. Further, a line
which contains two vertices of Vi contains no vertex of Vj , i 6= j. The total number of lines of these
two types equals 21, so that each line of ω∞ has 2 or 4 points in common with the set V of all vertices
of V0,V1,V2,V3. It follows that each line of ω∞ has 1 or 3 points in common with H = ω∞ − V . Since
|H| = 9, the set H is a hermitian curve [197] of ω∞. Clearly the triangles V0,V1,V2,V3 are exactly the
four triangles of ω∞ whose vertices are exterior points of H whose sides are secants (non-tangents)
of H. Note that the 40 points of S are the affine points of the lines Mij and that the 40 lines of S
are the affine lines of the 9 subquadrangles defined by the pairs {Mia,Mjb}, i 6= j. Moreover, the
lines at infinity on the quadrics corresponding to these subquadrangles are the 9 tangents of H and
the 9 lines which join l to points of H. From this detailed description of S it easily follows that up
to a collineation (whose companion automorphism is the identity) of AG(4, 4) there is at most one
embedding of this type. Finally it is not difficult to check that the GQ as described does exist. So
case (iii) of 7.4.1 is handled.

Finally, suppose that for each point p of S, the lines of S though p are contained in a hyperplane.
Our next goal is to show that s = 2. So assume s > 2. Let L and M be concurrent lines of S, and
consider the s+2 threespaces which contain the plane LM . If W is such a threespace, then W contains
only the lines L,M of S, or W contains each line of S though the common point p of L and M , or
the points and lines of S in W form a subquadrangle of type 7.3.1(ii). Clearly s of these hyperplanes
though LM are of the third type, one is of the second type, and consequently one is of the first type.
This hyperplane though LM which contains only the lines L,M of S is denoted by W ′. Let N be a
line of S though p which is not contained in W ′, and let q I N , q 6= p. The s + 1 lines of S though q
are N and s lines in the threespace W ′′ though q and parallel to W ′. Since s > 2, all the lines of S
in W ′′ contain q and any point of S in W ′′ is on one of these lines. Analogously, the s + 1 lines of S
though p are N and s lines in W ′, a contradiction since s > 2. It follows that s = t = 2.

Let L be a line of S, let p0,p1,p2 be the points of L, and let L, Mi1, Mi2 be the lines of S though
pi. Through the plane M01M02 there is exactly one hyperplane W0 which contains only the lines
M01,M02 of S. It is clear that the lines M11,M12,M21,M22 are parallel to W0. The plane at infinity
of W0 is denoted ω∞, the point at infinity of Mij by mij , and the point a infinity of L by l (l 6∈ ω∞).
In the threespace MiaMjb, i 6= j, the points and lines of S form a subquadrangle of type 7.3.1(ii),
so we may assume that m01,m11,m21 are on a line N1, that m02,m11,m22 are on a line N2, that
m02,m12,m21 are on a line N3, and that m01,m12,m22 are on a line N4. The fourth point on the line
Ni is denoted by ni. We notice that the lines N1,N2,N3,N4 are contained in the plane ω∞. Clearly the
15 points of S are the affine points of the lines Mij , and the 15 lines of S are the affine lines of the 4
(2-dimensional) hyperbolic quadrics containing p0m0a,p1m1b,p2m2c, with m0a,m1b, m2c collinear. The
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lines at infinity of these 4 subquadrangles are N1,N2,N3,N4 and the lines ln1,ln2,ln3,ln4. From this
detailed description of S it easily follows that up to a collineation of AG(4, 3) there is at most one GQ
of this type. Finally, it is not difficult to check that the GQ as described does indeed exist. So case
(ii) in the statement of 7.4.1 is handled, and this completes the embedding problem in AG(4, s + 1).
2 .

7.5 Embedding in AG(d, s + 1), d > 5

7.5.1. Suppose that the GQ S = (P,B, I) of order (s, t) is embedded in AG(d, s+1), d > 5. Then one
of the following must occur :

(i) s = 1 and t ∈ {[d/2], . . . , 2d−1 − 1}, with [d/2] the greatest integer less than or equal to d/2
(trivial case);

(ii) d = 5, s = 2, t = 4, i.e. an embedding of the GQ with 27 points and 45 lines of AG(5, 3).
Moreover, up to a collineation of the space AG(5, 3) there is just one embedding of a GQ of order (2, 4)
in AG(5, 3) so that it is contained in no subspace AG(4, 3). This embedding may be described as
follows. Let PG(4, 3) be the hyperplane at infinity of AG(5, 3), let H∞ be a hyperplane of PG(4, 3) and
let l be a point of PG(4, 3)−H∞. In H∞ choose points mx,my,mz,nx,ny,nz,n′x,n′y,n

′
z,n

′′
x,n′′y,n

′′
z in such a

way that mx,my,mz are collinear, that mx,my,mz,nx,ny,nz are in a plane ω∞, that mx,my,mz,n′x,n′y,n
′
z

are in a plane ω′∞, that mx,my,mz,n′′x,n′′y,n
′′
z are in a plane ω′′∞, that ma,nb,nc (resp., ma,n′b,n

′
c) (resp.,

ma,n′′b ,n
′′
c ) with {a, b, c} = {x, y, z}, are collinear, and that na,n′b,n

′′
c , with {a, b, c} = {x, y, z}, are

collinear. Let L be an affine line though l, and let x,y,z be the affine points of L. The points of
the GQ are the 27 affine points of the lines ama,ana,an′a,an′′a, with a = x, y, z. The 45 lines of the
GQ are the affine lines of the (2-dimensional) hyperbolic quadric containing xmx,ymy,zmz (resp.,
ama,bnb,cnc) (resp., ama,bn′b,cn

′
c) (resp., ama,bn′′b ,cn

′′
c ) (resp., ana,bn′b,cn

′′
c ), with {a, b, c} = {x, y, z}

Proof. Suppose that s = 1. Let x0, x2, . . . , xt,y0, y1, . . . , yt, with t ∈ {[d/2], . . . , 2d−1−1} and [d/2] the
greatest integer less than or equal to d/2, be the distinct points of AG(d, 2) which are not contained in
a hyperplane. Then the sets P = {xi, yj ||i, j ∈ {0, . . . , t}} and B = {{xi, yj}||i, j ∈ {0, . . . , t}} define
a GQ of order (1, t). ¿From now on we suppose s > 2.

Let L,M be two nonconcurrent lines of S which are not parallel in AG(d, s + 1), and suppose that
AG(3, s + 1) is the affine threespace containing these lines. Suppose that p is a point of S which
does not belong to AG(3, s + 1), and call AG(4, s + 1) the fourdimensional affine space defined by
AG(3, s + 1) and p. Assume that q is a point of S which does not belong to AG(4, s + 1) and call
AG(5, s + 1) the affine space defined by AG(4, s + 1) and q. By 2.3.1 the points and lines of S in
AG(3, s + 1) (resp., AG(4, s + 1), AG(5, s + 1)) form a GQ S ′ (resp., S ′′, S ′′′) of order (s, t′) (resp.,
(s, t′′), (s, t′′′)). We have t′ < t′′ < t′′′ 6 t 6 s2. From 2.2.2(iv) it follows that t′ = 1, t′′ = s, t′′′ = s2,
implying that t = t′′′ = s2 and d = 5. And from 7.4.1 it follows that t′′ = s = 2 or t′′ = s = 3.

Let us first assume that s = 2, t = 4, d = 5. By the preceding paragraph we know that there is
a subquadrangle S ′ of order (2, 2) of S which is embedded in a hyperplane H of AG(5, 3), and which
is not contained in a subspace AG(3, 3). Let L0 be a line of S ′, suppose that x0,y0,z0 are the points
of L0, and that Na,Ma,L0 are the lines of S ′ containing a0, a = x, y, z, and that Mx,My,Mz belong
to a threedimensional affine space T . Let Nx,N ′

x,N ′′
x , Mx,L0 be the lines of S which contain x0. The

hyperplane defined by T and N ′
x is denoted H ′, and the hyperplane defined by T and N ′′

x is denoted by
H ′′. The subquadrangle S ′′ = (P ′′,B′′, I′′) (resp., S ′′′ = (P ′′′,B′′′, I′′′)) formed by the points and lines
of S in H ′ (resp., H ′′) has order (2, 2). Suppose that N ′

y, N
′
z ∈ B′′, y0 I N ′

y, z0 I N ′
z, N ′

y 6∈ {My, L0},
N ′

z 6∈ {Mz, L0}, and that N ′′
y , N ′′

z ∈ B′′′, y0 I N ′′
y , z0 I N ′′

z , N ′′
y 6∈ {My, L0}, N ′′

z 6∈ {Mz, L0}. Any point
of S is on one of the lines L0,Ma,Na,N ′

a,N
′′
a , with a = x, y, z.

The point at infinity of the line L0 is denoted by l, that of the line Ma by ma, that of the line Na

by na, that of the line N ′
a by n′a, and that of the line N ′′

a by n′′a, for a = x, y, z. The mx,my,mz are on a
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line M∞. Moreover, the points mx,my,mz,nx,ny,nz are in a plane ω∞, the points mx,my,mz,n′x,n′y,n
′
z

are in a plane ω′∞, and the points mx,my,mz,n′′x,n′′y,n
′′
z are in a plane ω′′∞ (cf. 7.4.1(ii)). Note that

ω∞,ω′∞,ω′′∞ are distinct, and that l is in none of these planes. Moreover, if {a, b, c} = {x, y, z}, then
the points of ma,nb,nc (resp., ma,n′b,n

′
c) (resp., ma,n′′b ,n

′′
c ) are collinear. Further there are three lines

L0,Labc,L′abc of S, {a, b, c} = {x, y, z}, concurrent with Na and N ′
b, and since all the lines of S are

regular (cf. 3.3.1) there are also three lines Na,N ′
b,T

′′
c , {a, b, c} = {x, y, z}, concurrent with each of

L0,Labc,L′abc. Clearly we have T ′′c = N ′′
c , with {a, b, c} = {x, y, z}. It follows that na,n′b,n

′′
c are on a

line V∞, that l and the points at infinity labc and l′abc of the lines Labc and L′abc, respectively, are on a
line W∞, and that V∞ and W∞ intersect. Now it is also clear that the points ma,na,n′a,n

′′
a, are in a

threespace H∞. And since S is not contained in an AG(4, 3), we have l 6∈ H∞.
If L0,Dab,Eab (resp., L0,D′

ab,E
′
ab) (resp., L0,D′′

ab,E
′′
ab), a 6= b and a, b ∈ {x, y, z}, are the lines of

S which are concurrent with Na,Nb (resp., N ′
a,N

′
b) (resp., N ′′

a ,N ′′
b ), and if L0,L′0,L

′′
0 are the lines of

S concurrent with Mx,My,Mz, then the lines L0,L′0,L
′′
0,Mx,My,Mz,Nx,Ny,Nz, N ′

x,N ′
y,N

′
z,N

′′
x ,N ′′

y ,N ′′
z ,

Dab, Eab,D′
ab,E

′
ab,D

′′
ab,E

′′
ab, Labc,L′abc are the 45 lines of S.

Now we show that up to a collineation of AG(5, 3) there is at most one GQ of this type. In H∞
choose a coordinate system as follows :
mx(1, 0, 0, 0), my(0, 1, 0, 0), nx(0, 0, 1, 0), n′x(0, 0, 0, 1), n′′z(1, 1, 1, 1). Then necessarily we have ny(1, 1, 1, 0),
n′y(1, 1, 0, 1), nz(0, 1, 1, 0), n′z(0, 1, 0, 1),
n′′y(0, 1, 1, 1), n′′x(1,−1, 1, 1), mz(1, 1, 0, 0), Hence in the hyperplane at infinity PG(4, 3), the con-
figuration formed by the points l,ma,na,n′a,n

′′
a, with a = x, y, z, is unique up to a projectivity of

PG(4, 3). Now it easily follows that in AG(5, 3) the configuration formed by the affine points of the
lines L0,Ma,Na,N ′

a,N
′′
a , with a = x, y, z, is unique up to a collineation of AG(5, 3). Hence up to a

collineation of AG(5, 3) there is at most one embedding of this type. Finally, it is not difficult but
tedious, to check that the described GQ S does indeed exist. So case (ii) of 7.5.1 is completely
handled.

Finally, we assume that s = 3, t = 9, d = 5. By the second paragraph of the proof we know that
S has subquadrangles of order (3, 3) of the type described in 7.4.1(iii). So in S we may choose three
concurrent lines L,M ,N , with common point p, in such a way that L,M ,N are the only lines of S in
the threespace T defined by L,M ,N . Let x I L, x 6= p, and x I V , V 6= L. The points and lines of S in
the hyperplane defined by T and V form a subquadrangle S ′ of order (3, 3). Since there are 9 choices
for V , and since in the subquadrangle S ′ there are three such lines V , there are exactly 3 hyperplanes
containing T in which the points and lines of S form a subquadrangle of order (3, 3). Let H1,H2 be
the other hyperplanes though T . The lines of S in Hi all contain p, and the number of lines of S in
Hi equals 3 + ai with a1 + a2 = 4. let L1 be a line of S though p and not in H1, and let q I L1, q 6= p.
The 10 lines of S though q are L1 and 9 lines M1, . . . ,M9 in the hyperplane H3 though q and parallel
to H1. It is easy to see that any point of S in H3 is on one of the 9 lines M1, . . . ,M9. Now it is clear
that the 10 lines of S though p are L1 and 9 lines in the hyperplane H1. Consequently 3 + a1 = 9, an
impossibility. 2



104 Finite generalized quadrangles



Chapter 8

Elation Generalized Quadrangles and
Translation Generalized Quadrangles

8.1 Whorls, Elations and Symmetries

Let S = (P,B, I) be a GQ of order (s, t), s 6= 1, t 6= 1. A collineation θ of S is a whorl about the point
p provided θ fixes each line incident with p. The following is an immediate consequence of 2.4.1 and
1.2.3.

8.1.1. Let θ be a nonidentity whorl about p. Then one of the following must occur:

(i) yθ 6= y for each y ∈ P − p⊥

(ii) There is a point y, y � p, for which yθ = y. Put T = {p, y}⊥, U = {p, y}⊥⊥. Then T ∪ {p, y} ⊂
Pθ ⊂ T ⊂ U , and L ∈ Bθ iff L joins a point of T with a point of U ∩ Pθ.

(iii) The substructure of elements fixed by θ forms a subquadrangle Sθ of order (s′, t), where 2 6 s′ 6
s/t 6 t, so t < s

Let θ be a whorl about p. If θ = id or if θ fixes no point of P − p⊥, then θ is an elation about p. If
θ fixes each point of p⊥, then θ is a symmetry about p. It follows from 8.1.1 that any symmetry about
p is automatically an elation about p. The symmetries about p form a group. For each x I p, x 6= p,
this group acts semiregularly on the set {L ∈ B‖x I L, p  I L}, and therefore its order divides t. The
point p is called a center of symmetry provided its group of symmetries has order t. It follows readily
that every center of symmetry must be regular. Symmetries about lines are defined dually, and a line
whose symmetry group has maximal order s is called an axis of symmetry and must be regular. There
is an immediate corollary of 1.9.1.

8.1.2. If S has a nonidentity symmetry θ about some line, then st(1 + s) ≡ 0(mod s + t).

The following simple result is occasionaly useful.

8.1.3. Let σ, θ be nonidentity symmetries about distinct lines L, M , respectively. Then

(i) σθ = θσ iff L ∼M .

(ii) σθ is not a symmetry about any line (or point).

Proof. First suppose that L and M meet at a point x, and let y ∈ P −x⊥. Let L′ be the line through
y meeting L and M ′ the line through y meeting M . It follows readily that both yσθ and yθσ must be
the point at which (M ′)σ meets (L′θ). But if σθ and θσ have the same effect on points of P − x⊥,
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clearly σθ = θσ. Now suppose that L � M . Clearly Lθ � L, so that Lθσ 6= Lθ, but Lσθ = Lθ. This
proves (i).

For the proof of (ii) note that if L I x I M , then xσθ = x, yσθ ∼ y 6= yσθ, iff y ∈ x⊥ − {x}, and
yσθ � y iff y 6∈ x⊥. And if L � M , then yσθ � y for all y not incident with any line of {L,M}⊥. It
follows readily that σθ is not a symmetry about any line (or point). 2

8.2 Elation Generalized Quadrangles

In general it seems to be an open question as to whether or not the set of elations about a point must
be a group. One of our goals is to show that this is the case as generally as possible, and to study
those GQ for which it holds. If there is a group G of elations about p acting regularly on P − p⊥, we
say S is an elation generalized quadrangle (EGQ) with elation group G and base point p. Briefly, we
say that (S(p), G) or S(p) is an EGQ. Most known examples of GQ are EGQ, the notable exceptions
being those of order (s − 1, s + 1) and their duals. In this chapter we will be concerned primarily
with the following special kind of EGQ: if (S(p), G) is an EGQ for which G contains a full group of
s symmetries about each line through p, then S is a translation generalized quadrangle (TGQ) with
base point p and translation group G. Briefly, we say (S(p), G) or (S(p)) is a TGQ.

A TGQ of order (s, t) must have s 6 t since it has some regular line. At the opposite line of
the spectrum is the following kind of EGQ which will be studied in more detail in chapter 10: if
(S(p), G) is an EGQ fo which G contains a full group C of t symmetries about p, we say (S(p)) is
a skew-translation generalized quadrangle (STGQ) with base point p and skew-translation group G.
Briefly, we say (S(p), G) is a STGQ. Since a STGQ (S(p), G) has a regular point p, t 6 s. Until further
notice let (S(p), G) be a EGQ of order (s, t), and let y be a fixed point of P −p⊥. Let L0, . . . , Lt be the
lines incident with p, and define zi and Mi by Li I zi I Mi I y, 0 6 i 6 t. Put Si = {θ ∈ G||M θ

i = Mi},
S∗i = {θ ∈ G||zθ

i = zi}, and J = {Si||0 6 i 6 t}. Then |G| = s2t; J is a collection of 1 + t subgroups
of G, each of order s; for each i, 0 6 i 6 t, S∗i is a subgroup of order st containing Si as a subgroup.
Moreover the following two conditions are satisfied:

K1. SiSj ∩ Sk = 1, for distinct i,j,k.

K2. S∗i ∩ Sj = 1, for distinct i,j

Conversely, suppose that K1 and K2 are satisfied, along with the restrictions on the orders of the
groups G, Si, S∗i given above. Then it was first noted by W.M. Kantor [89] that the incidence
structure S(G, J) described below is an EGQ with base point (∞).
Points of S(G, J) are of three kinds:

(i) elements of G,

(ii) right cosets S∗i g, g ∈ G, i ∈ {0, . . . , t},

(iii) a symbol (∞)

Lines of S(G, J) are of two kinds:

(a) right cosets Sig, g ∈ G, i ∈ {0, . . . , t},

(b) symbols [Si], i ∈ {0, . . . , t}.

A point g of type (i) is incident with each line Sig, 0 6 i 6 t. A point S∗i g of type (ii) is incident with
[Si] and with each line Sih contained in S∗i g. The point (∞) is incident with each line [Si] of type (b).
There are no further incidences.

It is a worthwhile exercise to check that indeed S(G, J) is a GQ of order (s, t). Moreover, if we
start with an EGQ (S(p), G) to obtain the family J as above, then we have the following.
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8.2.1. (S(p), G) ∼= S(G, J)

Proof. Of course yg corresponds to g, zg
i corresponds to S∗i g, p corresponds to (∞), Mg

i corresponds
to Sig, and Li corresponds to [Si]. 2

Now start with a group G and families {Si} and {S∗i } as described above satisfying K1 and K2,
so that S(G, J) is a GQ. It follows rather easily (cf. 10.1) that S∗i = Si ∪ {g ∈ G‖Sig ∩Sj = φ for 0 6
j 6 t}, from which part (iii) of the following theorem follows immediately.

8.2.2. (i) G acts by right multiplication as a (maximal) group of elations about (∞)

(ii) Si is the subgroup of G fixing the line Si of S(G, J).

(iii) Any automorphism of G leaving J invariant induces a collineation of S(G, J) fixing (∞).

(iv) Si is a group of symmetries about [Si] iff Si � G (so that S(G, J) is a TGQ if Si � G for each
i) only if [Si] is a regular line iff SiSj = SjSi for all Sj ∈ J .

(v) C = ∩{S∗i ‖0 6 i 6 t} is a group of symmetries about (∞) iff C � G. Moreover if C � G and
|C| = t., then S(G, J) is an STGQ with base point (∞) and skew translation group.

Proof. The details are all straightforward, so we give a proof only of part (iv), assuming that the
first three parts have been proved. Then h ∈ G determines a symmetry about [Si] iff the collineation
it determines by right multiplication fixes each line of the form Sig iff Sigh = Sig for all g ∈ G iff
ghg−1 ∈ Si for all g ∈ G. Hence h is a symmetry about [Si] iff all conjugates of h lie in Si. It follows
that Si is a group of symmetries about [Si] iff Si � G, in which case [Si] is a regular line. Now let
g be an arbitrary point not collinear with (∞). The set SiSjg consists of those points not collinear
with (∞) which lie on lines of {[Si] , Sjg}⊥, i 6= j. Similarly, the set SjSig consists of those points not
collinear with (∞) which lie on lines of {[Sj ] , Sig}⊥. Hence ([Si] , Sjg) is regular iff SiSjg = SjSig iff
SiSj = SjSi. So [Si] is regular iff SiSj = SjSi for all j = 0, 1, . . . , t. 2 .

There is an immediate corollary.

8.2.3. If (S(p), G) is an EGQ with G abelian, then it is a TGQ.

8.2.4. Let S = (P,B, I) be a GQ of order (s, t) with s 6 t, and let p be a point for which {p, x}⊥⊥ =
{p, x} for all x ∈ P − p⊥. And let G be a group of whorls about p.

(i) If y ∼ p, y 6= p, and θ is a nonidentity whorl about both p and y, then all points fixed by θ lie on
py and all lines fixed by θ meet py.

(ii) If θ is a nonidentity whorl about p, then θ fixes at most one point of P − p⊥.

(iii) If G is generated by elations about p, then G is a group of elations, i.e. the set of elations about
p is a group.

(iv) If G is transitive on P − p⊥ and |G| > s2t, then G is a Frobenius group on P − p⊥, so that the
set of all elations about p is a normal subgroup of G of order s2t acting regularly on P − p⊥, i.e.
S(p) is an EGQ with some normal subgroup of G as elation group.

(v) If G is transitive on P − p⊥ and G is generated by elations about p, then (S(p), G) is an EGQ.

Proof. Both (i) and (ii) are easy consequences of 8.1.1. Suppose there is some point x ∈ P − p⊥ for
which |G| 6= |Gx| 6= 1. Then by (ii) G is a Frobenius group on xG (cf [87]). So the Frobenius kernel
of G acts regularly on xG. If G is generated by elations about p (so trivially |G| 6= |Gx| if |G| > 1),
Then G itself must act regularly on xG. Since this hold for each x ∈ P − p⊥, each element of G is an
elation about p. Parts (iii), (iv) of the theorem are now easy consequences. 2 .
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8.2.5. If S(p) is an EGQ of order (s, t) with elation group G, s 6 t and |{x, p}⊥⊥| = 2 for all
x ∈ P − p⊥, then G is the set of all elations about p.

Proof. Let θ be an elation about p, and put G1 =< G, θ >. Then G = G1 by 8.2.4, implying θ ∈ G.
2

TGQ were first introduced by J.A. Thas [188] only for the case s = t, and the definition was
eqivalent to but different from that given here. An EGQ (S(p), G) of order (s, s) was defined in
[188] to be a TGQ provided p is coregular, in which case it was shown that G is abelian, so the two
definitions are indeed equivalent. Moreover, if p is a coregular point of S, The set E of elations about
p was shown to be a group. Some of the technical details were isolated and sharpened slightly by S.E.
Payne in [129], from which we take the following.

8.2.6. Let (p, L) be an incident point-line pair of the GQ S of order s. Let E be the set of elations
about p, and let θ ∈ E. Then the following hold:

(i) The collineation θ̄ induced by θ on the projective plane πL (as in the dual of 1.3.1) is an elation
of πL with axis p, if L is regular.

(ii) E is a group if L is regular

(iii) If p is regular and E is a group, then the collineation θ̄ induced by θ on the projective plane πp

(as in 1.3.1) is an elation with center p.

Proof. Suppose L is regular. Then θ clearly induces a central collineation θ̄ on πL with axis p. The
problem is to show that the center of θ̄ must be incident with p in πL. Suppose otherwise, i.e. there
is a line M of S that as a point of πL is the center of θ̄, and meets L at a point y, y 6= p. Then
M θ = M θ̄, so θ permutes the points of M different from y, and hence by 8.1.1 must be the identity.
Hence θ splits points of M different from y into cycles of length n, where n is the order of θ. So n|s.
The same argument applies to the s−1 points of L different from p and y shows that n|(s−1). Hence
n = 1. Consequently, if θ̄ 6= id, then the center of θ̄ must be on p in πL, proving (i).

For the proof of (ii) it suffices to show that E is closed. Let θ1, θ2 ∈ E , and suppose that θ1θ2

fixes a point y, y � p. Let y I M I z I L, with L regular. Then θ1 and θ2 induce elations θ̄1 and θ̄2,
respectively, on πL, with axis p. Hence θ1θ2 induces an elation ¯θ1θ2 = θ̄1θ̄2 with axis p. But clearly
¯θ1θ2 = θ̄1θ̄2 fixes M , so must be the identity on piL. Hence ¯θ1θ2 fixes y, y � p, and also fixes every

line meeting L. By 8.1.1 θ1θ2 = id, completing the proof of (ii). 2

For the last theorem of this section we adopt the following notation.
(S(p), G) is an EGQ identified with S(G, J) as in 8.2.1, and 1 denotes the identity of G. Further, E
is the set of all elations about p = (∞), W the group of all whorls about (∞), H = W1 = the group
of whorls about (∞) fixing 1, and A the group of automorphisms of G for which Sα

i = Si for all
i = 0, 1, . . . , t. Finally, the elation group of S(G, J) which corresponds to G will also be denoted by
G.

8.2.7. (i) NW(G) ∩H = NH(G) = A ∈ H.

(ii) E = G iff E is a group, in which case A = H.

Proof. Here we are identifying an element g ∈ G with the elation θg defined by hθg = hg, (Sih)θg =
Sihg, etc. As mentioned above, S∗i is the union of Si together with those cosets of Si which are
disjoint from all Sj . Hence if α ∈ A, then Sα

i = Si implies (S∗i )α = S∗i , so that α defines a whorl
about (∞) with fixed point 1, with (Sjg)α = Sig

α and (S∗i g)α = S∗i gα. Hence A ⊂ H. Now suppose
α ∈ H and α−1Gα = G. We must show α ∈ A. Clearly α defines a permutation of the elements of
G, and since Sα

i = Si for all i = 0, . . . , t we need only show that α preserves the operation of G. By
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hypothesis, if g ∈ G, then α−1θgα ∈ G. But 1α−1θgα = gα, so α−1θgα = θgα (or, by identification of
g and θg, α−1gα = gα). Hence (gh)α = (1θgθh)α = 1α·α−1θgα·α−1θhα = 1θgα ·θhα = gαhα. This shows
that NH(G) ⊂ A. Now suppose α ∈ A. We claim α−1Gα = G. For g, h ∈ G, hα−1θgα = (hα−1

g)α =
hα−1αgα = hθgα , implying α−1θgα = θgα ∈ G. This essentially completes the proof of (i).

For the proof of (ii), clearly E is a group iff E = G. So suppose E = G and let α ∈ H. Then
α−1Gα ⊂ E = G, implying α ∈ NH(G) = A. 2

8.3 Recognizing TGQ

8.3.1. Let S = (P,B, I) be a GQ of order (s, t). Suppose each line through some point p is an axis of
symmetry, and let G be the group generated by the symmetries about the lines throught p. Then G is
abelian and (S(p), G) is a TGQ.

Proof. For s = t = 2, S ∼= W (2), so since s ≤ t we may assume t > 2. Let L0, . . . , Lt be the
lines through p, with Si the group of symmetries about Li, 0 ≤ i ≤ t, so that |Si| = s ≤ t. For
i 6= j, each element of Si commutes with each element of Sj (cf. 8.1.3). For each i, 0 ≤ i ≤ t, put
Gi =< Sj‖0 ≤ j ≤ t, j 6= i >. So [Si, Gi] = 1 and G = SiGi. One goal is to show that G = Gi, from
which it follows that Si is abelian and G is abelian.

The first step is to show that Gi is transitive on P −p⊥, and with no loss in generality we consider
i = 0. Let x1, . . . , xs be the points on L0 different from p. If a point y of P − p⊥ is collinear with xj ,
there is a symmetry about L1 moving y to a point collinear with x1. Hence we need only to show that
G0 is transitive on x⊥1 ∩ (P − p⊥). Let M1, M2 be two distinct lines through x1, L0 6= Mi, and let
yi I Mi, yi 6= x1, i = 1, 2. It suffices to show that y1 and y2 are in the same G0-orbit. First suppose
some point u ∈ {y1, y2}⊥, u 6= x1 is collinear with xj , 2 ≤ j ≤ s. Let Lji be the line through p meeting
the line yiu, i = 1, 2 (note ji 6= 0). As yi and u are in the same Sji-orbit, i = 1, 2, it follows that
y1 and y2 are in the same G0-orbit. On the other hand, if each point in {y1, y2}⊥ is in p⊥, let y3 be
a point of P − p⊥ for which (y1, y2, y3) is a triad with center x1 and y3 6∈ {y1, y2}⊥⊥. (Such a point
exists since t > 2 and s > 1.) Hence by the previous case y3 and yi are in the same G0-orbit, i = 1, 2.
It follows that G0 (and hence also G) is transitive on P − p⊥.

The next step is to show that G = Gi, where again we may take i = 0. As |P − p⊥| = s2t, if
y ∈ P − p⊥, |G| = s2tk, where k = |Gy|, and |G0| = s2tm, where m = |(G0)y|. Clearly m|k, say
mr = k. Then s2tk = |G| = |S0G0| = |S0|·|G0|

|S0∩G0| = s3tm
|S0∩G0| , implying r|S0 ∩G0| = s. Hence r|s and r|k.

Let q be a prime dividing r. Then there must be a collineation θ ∈ Gy having order q. Let M be the
line through y meeting L0 at xi. Clearly θ fixes L0 and M . The orbits of θ on M consist of cycles of
length q and fixed points including y and xi. As q|s, there are at least q + 1 points of M fixed by θ.
Moreover, each point of {y, p}⊥ is fixed by θ. Considering the possible substructures of fixed elements
allowed by 8.1.1 if θ 6= id, we have a contradiction. Hence r = 1, implying G = G0.

At this point we know that G is an abelian group transitive on P − p⊥, and hence by elementary
permutation group theory must be regular on P − p⊥. By 8.2.3 the proof is complete. 2

8.3.2. The translation group of a TGQ is uniquely defined and is abelian.

Proof. Let (S(p), G) be a TGQ. If G′ is the group generated by the symmetries about lines through
p, then by 8.3.1 we have s2t = |G′|. As also s2t = |G| and G′ ≤ G, clearly G = G′. 2

If (S(p), G) is a TGQ, the elements of G are called the translations about p.

8.3.3. (J.A. Thas [189]). If (S(p), G) is an EGQ with s = t and p coregular, then (S(p), G) is a TGQ.
Moreover, G = E.

Proof. By 8.2.6 (i) the elations in G fixing a line M not through p are symmetries about the line
through p meeting M . Hence each line through p is an axis of symmetry and all these symmetries
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are in G, implying (S(p), G) is a TGQ. By 8.2.6 (ii) and 8.2.7 (ii) we have G = E , which finishes the
proof. 2

8.4 Fixed Substructures of Translations

Let (S(p), G) be a TGQ, so that G is abelian and s ≤ t. As above let L0, . . . , Lt be the lines through p
and Si the group of symmetries about Li, 0 ≤ i ≤ t. With J = {S0, . . . , St}, recall the coset geometry
notation of 8.2. Then θ ∈ G fixes a point S∗i g of [Si] iff θ ∈ g−1S∗i g = S∗i iff θ fixes all points of Li,
and S∗i is the point stabilizer of Li.

8.4.1. The substructure Sθ = (Pθ, Bθ, Iθ) of the fixed elements of the nonidentity translation θ must
be given by one of the following:

(i) Pθ is the set of all points on r lines through p and Bθ is the set of all lines through p, 1 ≤ r ≤ 1+t.

(ii) Pθ = {p} and Bθ is the set of lines through p.

(iii) Pθ is the set of all points on one line Li through p and Bθ is the set of all lines concurrent with
Li, i.e. θ is a symmetry about Li.

Proof. By the remark preceding 8.4.1 and by 8.1.1 we have possibilities (i), (ii) or Pθ is the set of
all points on one line Li through p, and Bθ consists of at least t + 2 lines concurrent with Li. In the
last case let Lθ = L, p  I L, and assume xθ = y with x I L, x � p. Since the translation group acts
regularly on P − p⊥, θ must be the unique symmetry about Li with xθ = y. 2

There is an easy colrollary.

8.4.2. Let x ∈ P − p⊥. For each z ∈ P − p⊥ there is a unique θ ∈ G with xθ = z. Moreover, (p, x, z)
is a triad iff θ is not a symmetry about some line through p, in which case the number of centers of
(p, x, z) is the number r of lines of fixed points of θ.

8.4.3. (i) |S∗i ∩ S∗j | = t, if 0 ≤ i < j ≤ t.

(ii) |S∗i ∩ S∗j ∩ S∗k | ≥
t
s , if 0 ≤ i < j < k ≤ t.

Proof. With the notation of 8.2, S∗i ∩S∗j acts regularly on {zi, zj}⊥−{p}, proving (i). And for i, j, k

distinct, we have |(S∗i ∩ S∗j )S∗k | =
|S∗i ∩S∗j |·|S∗k |
|S∗i ∩S∗j ∩S∗k |

≤ |G|, implying (ii). 2

Part (ii) of the preceding result has the following corollary.

8.4.4. If S(p) is a TGQ, any triad of points with at least two centers and having p as center must
have at least 1 + t

s centers.

Proof. A triad having p as center and having g as center must be of the form (S∗i g, S∗j g, S∗kg). But
then g−1(S∗i ∩ S∗j ∩ S∗k)g is a subgroup fixing the triad and whose orbit containing g provides at least
t
s (6= p) of the triad. 2

8.5 The Kernel of a TGQ

Let (S(p), G) be a TGQ with Si, S
∗
i , J , etc. as above. The kernel K of S(p) (or of (S(p), G) or of J)

is the set of all endomorphisms α of G for which Sα
i ⊂ Si, 0 ≤ i ≤ t. With the usual addition and

multiplication of endomorphisms, K is a ring.
As the only GQ with s = 2 and t > 1 are W (2) and Q(5, 2), we may assume in this section that

2 < s.
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8.5.1. K is a field, so that Sα
i = Si, (S∗i )α = S∗i for all i = 0, 1, . . . , t and all α ∈ K0 = K − {0}.

Proof. If each α ∈ K0 is an automorphism of G, then clearly K is a field. So suppose some
α ∈ K0 is not an automorphism. Then < S0, . . . , St >= G ⊃ Gα =< Sα

0 , . . . , Sα
t >, implying

Sα
i 6= Si for some i. Let gα = 1, g ∈ Si − {1}. If i, j, k are mutually distinct and g′ ∈ Sj with
{g′} 6= Sj ∩ S∗kg−1, then gg′ = hh′ with h ∈ Sk, h′ ∈ Sl, for a uniquely defined l, l 6= k, j. (This holds
because S∗k , SkS0 − Sk, SkS1 − Sk, . . . , SkSt − Sk (omitting the term SkSk − Sk) is a partition of the
set G.) Hence hαh′α = g′α, implying that hα = h′α = g′α = 1 (by K1). Since g′ was any one of s− 1
elements of Sj , |ker(α) ∩ Sj | ≥ s − 1 > s

2 , implying Sj ⊂ ker(α). This implies Sj ⊂ ker(α) for each
j, j 6= i, so that G = Gi ⊂ ker(α), recalling Gi from the proof of 8.3.1. This says α = 0, a contradiction.
Hence we have shown that that K is a field and Sα

i = Si for i = 0, . . . , t and α ∈ K0. Since S∗i is the
set-theoretic union of Si together with all those cosets of Si disjoint from

⋃
{Si‖0 ≤ i ≤ t}. (cf. teh

remark preceding 8.2.2), we also have (S∗j )α = S∗i . 2

For each subfield F of K there is a vector space (G, F ) whose vectors are the elements of G,
and whose scalars are the elements of F . Vector addition is the group operation in G, and scalar
multiplication is defined by gα = gα, g ∈ G, α ∈ F . It is easy to verify that (G, F ) is indeed a vector
space. There is an interesting corollary.

8.5.2. G is an elementary abelian, and s and t must be powers of the same prime. If s < t, then there
is a prime power q and an odd integer a for which s = qa and t = qa+1.

Proof. Let |F | = q, so q is a prime power. Since G is the additive group of a vector space, it must be
elementary abelian. Moreover, Si and S∗i may be viewed as subspaces of (G, F ). Hence |Si| = s = qn

and |S∗i | = st = qn+m. By 8.1.2 qn+m(1 + qn) ≡ 0 (mod qn + qm) implying 1 + qn ≡ 0 (mod 1 + qm−n),
if s < t, i.e. m 6= n. Since n < m ≤ 2n we may write m = n + v, with 0 < v ≤ n, so (1 + qv)|(1 + qn).
Put n = av + r, 0 ≤ r < v. Then 1+ qn = 1+(qv)aqr ≡ 1+ (−1)aqr ≡ 0 (mod 1+ qv). This is possible
only if r = 0 and a is odd, in which case s = qn = (qv)a and t = qm = qn+v = (qv)a+1. 2

The kernel of a TGQ is useful in describing the given GQ in terms of an appropriate projectice
space. Before pursuing this idea, however, we obtain some additional combinatorial information.

8.6 The Structure of TGQ

Let (S(p), G) be a TGQ of order (s, t). If s = t, then p is regular when s is even, antiregular when s
is odd (cf. 1.5.2), so that a triad containing p has 1 or 1 + s centers when s is even and 0 or 2 centers
when s is odd. For the remainder of this section we suppose s = qa, t = qa+1, where q is a prime
power and q is odd. And we continue to use the notation Si, S∗i , J , etc. of the preceding sections.

8.6.1. Let x be a fixed point of P − p⊥, and let Ni be the number of triads (p, x, y) having exctly i
centers, 0 ≤ i ≤ 1 + t. Then the following hold:

(i) N0 = t(s−1)(s2−t)
(s+t)

(ii) N1+q = (t2−1)s2

(s+t)

(iii) Ni = 0 for i /∈ {0, 1 + q}

(iv) t = s2 if q is even

Proof. Suppose (p, x, y) is a triad with r centers, and let θ be the unique translation for which xθ = y.
Then using 8.4.2 and 1.9.1 with f = 1 + rs and g = (t + 1 − r)s, we have r ≡ 0(mod 1 + q). Hence
Ni 6= 0 implies i ≡ 0 (mod 1 + q). In particular Ni = 0 for 0 < i < 1 + q, so that by 1.7.1, (iii) must
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hold, as well as (i) and (ii). Finally, from 1.5.1 (iii), if t is even then N0 = 0, so (iv) follows from (i).
2

Of course from 1.7.1 (i) we also have the following.

8.6.2. Each triad of points in p⊥ has exactly 1 + q centers.

Interpreting these results for G, Si, S∗i , etc., we have

8.6.3. (i) If i, j, k are distinct, then |S∗i ∩ S∗j ∩ S∗k | = q (cf. 8.4.3 and 8.4.4).

(ii) If θ ∈ G belongs to no Si, then it belongs to S∗i for exactly 1 + q values of i or for no value of i,
with the latter actually occuring precisely when a > 1, i.e. when t < s2.

8.6.4. If (S(p), G) is a TGQ of order (s, t), s ≤ t, then G is the complete set of all elations about p.

Proof. . For s = t see 8.3.3. For s < t it follows from 8.6.1 that |{p, x}⊥⊥| = 2 for each x ∈ P − p⊥,
so the proof is complete by 8.2.5. 2

8.6.5. The multiplicative group K0 of the kernel is isomorphic to the group of all whorls about p fixing
a given y, y � p.

Proof. This is an immediate corollary of 8.6.4 and 8.2.7 2

8.7 T (n, m, q)

In PG(2n + m − 1, q) consider a set O(n, m, q) of qm + 1 (n − 1)-dimensional subspaces PG(0)(n −
1, q), . . . ,PG(qm)(n− 1, q), every three of which generate a PG(3n− 1, q), and such that each element
PG(i)(n − 1, q) of O(n, m, q) is contained in a PG(i)(n + m − 1, q) having no point in common with
any PG(j)(n − 1, q) for j 6= i. It is easy to check that PG(i)(n + m − 1, q) is uniquely determined,
i = 0, . . . , qm. The space PG(i)(n+m−1, q) is called the tangent space of O(n, m, q) at PG(i)(n−1, q).
Embed PG(2n+m−1, q) in a PG(2n+m, q), and construct a point-line geometry T (n, m, q) as follows.
Points are of three types:

(i) The points of PG(2n + m, q)− PG(2n + m− 1, q)

ii) The (n + m)-dimensional subspaces of PG(2n + m, q) which intersect PG(2n + m− 1, q) in one
of the PG(i)(n + m− 1, q).

(iii) The symbol (∞)

Lines are of two types:

(a) The n-dimensional subspaces of PG(2n+m, q) which intersect PG(2n+m−1, q) in a PG(i)(n−
1, q)

(b) the elements of O(n, m, q)

Incidence in T (n, m, q) is defined as follows: A point of type (i) is incident only with lines of type (a);
here the incidence is that of PG(2n + m, q). A point of type (ii) is incident with all lines of type (a)
contained in it and with the unique element of O(n, m, q) contained in it. The point (∞) is incident
with no line of type (a) and with all lines of type (b).

8.7.1. T (n, m, q) is a TGQ of order (qn, qm) with base point (∞) and for which GF(q) is a subfield
of the kernel. Moreover, the translations of T (n, m, q) induce the translations of the affine space
AG(2n + m, q) = PG(2n + m, q)− PG(2n + m− 1, q). Conversely, every TGQ for which GF(q) is a
subfield of the kernel is isomorphic to a T (n, m, q). It follows that the theory of TGQ is equivalent to
the theory of the sets O(n, m, q).
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Proof. It is routine to show that T (n, m, q) is a GQ of order (qn, qm). A translation of AG(2n+m, q)
defines in a natural way an elation about (∞) of T (n, m, q). It follows that T (n, m, q) is an EGQ with
abelian elation group G, where G is isomorphic to the translation group of AG(2n + m, q), and hence
T (n, m, q) is a TGQ. (With the qn translations of AG(2n+m, q) having center in PG(i)(n−1, q) there
correspond qn symmetries of T (n, m, q) about the line PG(i)(n− 1, q) of type (b).) It also follows that
GF(q) is a subfield of the kernel of T (n, m, q): with the group of all homologies of PG(2n + m, q)
having center y 6∈ PG(2n + m− 1, q) and axis PG(2n + m− 1, q) there corresponds in a natural way
the multiplicative group of a subfield of the kernel (cf. 8.6.5).

Conversely, consider a TGQ (S(p), G) for which GF(q) = F is a subfield of the kernel. If s =
qn and t = qm, then [(G, F ) : F ] = 2n + m. Hence with S(p) there corresponds an affine space
AG(2n + m, q). The cosets Sig of a fixed Si are the elements of a parallel class of n-dimensional
subspaces of AG(2n + m, q), and the cosets S∗i g of a fixed S∗i are the elements of a parallel class of
(n + m)-dimensional subspaces of AG(2n + m, q). The interpretation in PG(2n + m, q) together with
K1 and K2 prove the last part of the theorem. 2

8.7.2. The following hold for any O(n, m, q):

(i) n = m or n(a + 1) = ma with a odd.

(ii) If q is even, then n = m or m = 2n.

(iii) If n 6= m (resp., 2n = m), then each point of PG(2n + m − 1, q) which is not contained in
an element of O(n, m, q) belongs to 0 or 1 + qm−n (resp., to exactly 1 + qn) tangent spaces of
O(n, m, q).

(iv) If n 6= m, the qm + 1 tangent spaces of O(n, m, q) form an O∗(n, m, q) in the dual space of
PG(2n + m− 1, q). So in addition to T (n, m, q) there arises a TGQ T ∗(n, m, q).

(v) If n 6= m (resp., 2n = m), then each hyperplane of PG(2n + m− 1, q) which does not contain a
tangent space of O(n, m, q) contains 0 or 1 + qm−n (resp., contains exactly 1 + qn) elements of
O(n, m, q)

Proof. Since T (n, m, q) is a TGQ of order (qn, qm), by 8.5.2 n = m or ma = n(a + 1) with a odd,
which proves (i).

Let q be even. Then t = s2 by 8.6.1 (iv), i.e. m = 2n.
Next, let n 6= m and let x be a point of PG(2n + m − 1, q) which is not contained in an element

of O(n, m, q). Consider distinct points y, z of type (i) of T (n, m, q), chosen so that x, y, z are collinear
in PG(2n + m− 1, q). Then |{(∞), y, z}⊥| is the number of tangent spaces of O(n, m, q) that contain
x. By 8.6.1 (iii) |{(∞), y, z}⊥| ∈ {0, 1 + qm−n}. If 2n = m, i.e. t = s2, then clearly |{(∞), y, z}⊥| =
s + 1 = qn + 1, so that (iii) is completely proved.

Now consider the tangent spaces PG(i)(n+m−1, q) = πi, PG(j)(n+m−1, q) = πj , PG(k)(n+m−
1, q) = πk of O(n, m, q), with i, j, k distinct. If x is a point of type (i) of T (n, m, q), then the spaces
xπi, xπj , xπk are points of type (ii) of T (n, m, q). Clearly |{xπi, xπj , xπk}⊥| = qr + 1, with r − 1 the
dimension of πi ∩ πj ∩ πk. By 8.6.1 and 1.7.1 (i) qr = qm−n, i.e. r = m − n. Now (iv) easily follows.
(The tangent spaces of O∗(n, m, q) are the elements of O(n, m, q).)

Finally, by applying (iii) to O∗(n, m, q), (v) is obtained.

8.7.3. Let (S(p), G) be a TGQ of order (s, t).

(i) If s is prime, then S ∼= Q(4, s) or S ∼= Q(5, s).

(ii) If all lines are regular, then S ∼= Q(4, q) or t = s2.
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Proof. If s is a prime, then either n = 1 = a, m = 2, or n = m = 1. Moreover, T (1,m, s) is a
Tm+1(O) of J. Tits, m = 1, 2 (cf. 3.1.2). If s is prime, then the oval or ovoid, respectively, is a conic
or elliptic quadric, so that S ∼= Q(4, s) or S ∼= Q(5, s). (cf. 3.2.2 and 3.2.4).

Now assume all lines are regular. If s = t, then S ∼= Q(4, s) by 5.2.1. So suppose s < t. By 1.5.1
(iv) s + 1 divides (t2 − 1)t2, but with s = qn, t = qm, s + 1 must divide t2 − 1. Since ma = n(a + 1),
a odd, we have t2 − 1 = q2m − 1 = q

2n+2n
a

−1 = (qn)2q
2n
a
−1 ≡ q

2n
a (mod qn + 1), implying n < 2n

a , or
a < 2, i.e. a = 1 and t = s2. 2

The only known TGQ are T2(O) and T3(O) of J. Tits, and it is useful to have characterizations of
these among all TGQ.

8.7.4. Let (S(p), G) be a TGQ arising from the set O(n, 2n, q). Then S(p) ∼= T3(O) if and only if any
one of the following holds:

(i) For a fixed point y, y � p, the group of all whorls about p fixing y has order s− 1.

(ii) For each point z not contained in an element of O(n, 2n, q), the qn +1 tangent spaces containing
at least three elements of O(n, 2n, q) contains exactly qn + 1 elements of O(n, 2n, q).

Proof. In view of 8.6.5, the condition in (i) is just that the kernel has order s, which means S(p) is
a T (1, 2, qn), i.e. a T3(O). We now show that the condition in (ii) is equivalent to the 3-regularity of
the point p. Consider a triad (p, x, y). Then all points of {p, x, y}⊥, which clearly are s + 1 points
of the second type, are obtained as follows. Let z be the intersection of the line xy of PG(4n, q)
and the hyperplane PG(4n− 1, q). If PG(i1)(3n− 1, q), . . . ,PG(is+1)(3n− 1, q) are the tangent spaces
of O(n, 2n, q) through z, then {p, x, y}⊥ consists of the 3n-dimensional spaces zPG(ij)(3n − 1, q),
j = 1, . . . , s + 1. Notice that every point of the line xy which is not in PG(4n− 1, q) is in {p, x, y}⊥⊥,
so that |{p, x, y}⊥⊥| ≥ 1 + q. Finally, |{p, x, y}⊥⊥| = qn + 1 iff the qn + 1 spaces PG(ij)(3n− 1, q) have
an (n− 1)-dimensional space in common, which proves (ii).

Condition (iii) for O(n, 2n, q) is merely condition (ii) for O∗(n, 2n, q). Hence (iii) is satisfied
iff T ∗(n, 2n, q) ∼= T3(O∗) for some ovoid O∗ of PG(3, qn). If T ∗(n, 2n, q) ∼= T3(O∗) and O∗ is not
an elliptic quadric, then the point (∞) of T3(O∗) is the only coregular point of T3(O∗) (cf. 3.3.3
(iii)), and consequently the points (∞) of T ∗(n, 2n, q) and T3(O∗) correspond to each other under
any isomorphism between these GQ. On the other hand, if T ∗(n, 2n, q) ∼= T3(O∗) and O∗ is an elliptic
quadric, then there is always an isomorphism between these GQ mapping the point (∞) of T ∗(n, 2n, q)
onto the point (∞) of T3(O∗). Suppose that O(n, 2n, q) satisfies (iii). Since T3(O∗) has qn − 1 whorls
about (∞) fixing any given point y � (∞), also T ∗(n, 2n, q) has qn − 1 whorls about (∞) fixing
any given point z � (∞). As T ∗(n, 2n, q) is the interpretation of T3(O∗) in the 4n-dimensional
space over the subfield GF(q) of the kernel GF(qn), it is clear that O∗(n, 2n, q) satisfies (iii). Hence
O(n, 2n, q) satisfies (ii), and then by the preceding paragraph T (n, 2n, q) ∼= T3(O). Conversely, assume
that T (n, 2n, q) ∼= T3(O) for some ovoid of PG(3, qn). Again by the preceding argument O(n, 2n, q)
satisfies (iii). 2

8.7.5. Consider a T (n, 2n, q) with all lines regular. Then T (n, 2n, q) ∼= Q(5, qn) if the following
conjecture is true:
Conjecture: In PG(4n − 1, q) let PG(i)(n − 1, q), i = 0, 1, . . . , qn, be qn + 1 (n − 1)-dimensional
subspaces, any three of which generate a PG(3n− 1, q). Suppose that each PG(i)(n− 1, q) is contained
in a PG(i)(n, q), in such a way that PG(i)(n, q) ∩ PG(j)(n − 1, q) = ∅, that PG(i)(n, q) ∩ PG(j)(n, q)
is a point, and that the (2n − 1)-dimensional space spanned by PG(i)(n − 1, q) and PG(j)(n − 1, q)
contains a point of PG(k)(n, q) whenever i, j, k are distinct. Then the qn +1 spaces PG(i)(n− 1, q) are
contained in a PG(3n− 1, q).

Proof. Consider the TGQ T (n, 2n, q) arising from the set O(n, 2n, q) = {PG(0)(n−1, q), . . . ,PG(q2n)(n−
1, q)}, and assume that all lines of T (n, 2n, q) are regular. Let L0, L1 be two nonconcurrent lines of
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type (a), with L0 ∼ PG(i0)(n − 1, q), L1 ∼ PG(i1)(n − 1, q), and i0 6= i1. Further, let {L0, L1}⊥ =
{M0,M1, . . . ,Mqn} and {L0, L1}⊥⊥ = {L0, L1, . . . , Lqn}, with Lj ∼ PG(ij)(n − 1, q) ∼ Mj , j =
0, 1, . . . , qn. If PG(ij)(n+1, q) is the space spanned by Mj and Lj , then let PG(ij)(n+1, q)∩PG(4n−
1, q) = PG(ij)(n, q), with PG(4n − 1, q) the projective space containing the elements of O(n, 2n, q).
Clearly PG(ij)(n − 1, q) ⊂ PG(ij)(n, q) ⊂ PG(ij)(3n − 1, q), with PG(ij)(3n − 1, q) the tangent space
of O(n, 2n, q) at PG(ij)(n − 1, q). Since PG(ij)(n + 1, q) and PG(ik)(n + 1, q), j 6= k, have a line in
common, clearly PG(ij)(n, q) ∩ PG(ik)(n, q) is a point. Further, the 2n-dimensional space containing
Mj and PG(ik)(n− 1, q) (and hence also Lk), i 6= k, has a line in common with PG(ir)(n + 1, q), j, k, r
distinct. Hence the (2n − 1)-dimensional space spannend by PG(ij)(n − 1, q) and PG(ik)(n − 1, q)
contains a point of PG(ir)(n, q).

If the conjecture is true, then the qn + 1 spaces PG(ik)(n− 1, q), k = 0, 1, . . . , qn, are contained in
a PG(3n − 1, q). By 8.7.2 (v) PG(3n − 1, q) contains exactly qn + 1 elements of O(n, 2n, q). Now it
follows from 8.7.4 (iii) that T (n, 2n, q) ∼= Q(5, qn). 2

8.7.6. If s = qn = p2 with p prime, then any T (n, 2n, q) with all lines regular must be isomorphic to
Q(5, s).

Proof. Clearly n = 1 or n = 2. If n = 1, the resulting T (1, 2, p2) is clearly a Tits quadrangle T (O).
Since all lines are regular it must be isomorphic to Q(5, s) (cf. 3.3.3 (iii)). Now suppose n = 2, so
q = p, and let O(2, 4, p) = {PG(0)(1, p), . . . ,PG(p4)(1, p)}. Use the notation of the proof of 8.7.5.
Then, from PG(i0)(2, p) project the lines PG(ij)(1, p), j = 1, . . . , p2, onto a PG(4, p) ⊂ PG(7, p) skew
to PG(i0)(2, p). There arise p2 lines PG(tj)(1, p), j = 1, . . . , p2, having in pairs exactly one point in
common. So these lines either have a point in common or are contained in a plane. If PG(3, q)
contains PG(i0)(2, p) but is not contained in PG(i0)(5, p), then we know that PG(3, p) has a point in
common with p elements of O(2, 4, p) − {PG(i0)(1, p)} (every plane of PG(3, p) through PG(i0)(1, p),
but different from PG(i0)(2, p), contains exactly one point of some element of O(2, 4, p)). Hence each
point of PG(4, p) is contained in at most p of the lines PG(tj)(1, p), j = 1, . . . , p2. It follows that
the p2 lines PG(tj)(1, p), j = 1, . . . , p2, are contained in a plane. Hence the p2 + 1 lines PG(ij)(1, p),
j = 0, . . . , p2, are contained in a PG(5, p). By 8.7.2 (v) PG(5, p) contains exactly p2 + 1 lines of
O(2, 4, p). Now it follows from 8.7.4 (iii) that T (2, 4, p) ∼= Q(5, p2). 2

For the remainder of this section we assume n = m, i.e. s = t
Consider a line L = PG(i)(n−1, q) of type (b) of T (n, m, q). Then L is regular. So with L corresponds
a projectieve plane πL of order qn (cf. 1.3.1). By projection from PG(i)(n − 1, q) onto a PG(2n, q)
skew to it in PG(3n, q), it is seen that πl is isomorphic to the plane π described as follows: points
of π are the points of PG(2n, q) − PG(3n − 1, q), with PG(3n − 1, q) the (3n − 1)-dimensional space
containing O(n, m, q), and the (n − 1)-dimensional spaces PG(i)(2n − 1, q) ∩ PG(2n − 1, q) = ∆0,
< PG(i)(n − 1, q),PG(j)(n − 1, q) > ∩PG(2n − 1, q) = ∆j , for all j 6= i, with PG(2n − 1, q) =
PG(3n − 1, q) ∩ PG(2n, q); lines of π are PG(2n − 1, q) ant the n-dimensional spaces in PG(2n, q)
which contain a ∆k, k = 0, . . . , qn, and are not contained in PG(2n− 1, q); incidence is containment.
Hence up to an isomorphism πL is the projective completion of the affine translation plane defined by
the (n− 1)-spread [50] {∆0, . . . ,∆qn} = Vi of PG(2n− 1, q).

Let q be even. Then by 1.5.2 the coregular point (∞) is regular. It follows that all tangent
spaces of O(n, n, q) have a space PG(n − 1, q) in common (cf. also [182]). This space is called the
nucleus or kernel of O(n, n, q). By projection from PG(n − 1, q) onto a PG(2n, q) skew to it (in
PG(3n, q)), it is seen that the projective plane π(∞) arising from the regular point (∞) is isomorphic
to the plane π described as follows: point sof π are PG(2n − 1, q) = PG(2n, q) ∩ PG(3n − 1, q)
(with PG(3n− 1, q) the space containing O(n, n, q)) and the n-dimensional spaces in PG(2n, q) which
contain a Γk =< PG(n− 1, q),PG(k)(n− 1, q) > ∩PG(2n− 1, q), k = 0, . . . , qn, and are not contained
in PG(2n−1, q); lines of π are the points of PG(2n, q)−PG(2n−1, q) and the spaces Γ0, . . . ,Γqn ; and
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incidence is containment. Hence up to an isomorphism π(∞) is the dual of the projective completion
of the affine translation plane defined by the (n− 1) spread {Γ0, . . . ,Γqn} = V of PG(2n− 1, q).

Now let q be odd. Then by 1.5.2 the coregular point (∞) is antiregular. It follows that any
point of PG(3n − 1, q) which is not contained in O(n, n, q) is in exactly 0 or 2 tangent spaces of
O(n, n, q) (cf. also [142]). Let PG(2n, q) be a 2n-dimensional subspace of PG(3n, q) which contains
the tangent space PG(i)(2n − 1, q) of O(n, n, q) and is not contained in PG(3n − 1, q). Then the
affine plane π((∞),PG(2n, q)) (cf. 1.3.2) is easily seen to be isomorphic to the following structure
π: points of π are the n-dimensional spaces of PG(2n, q) intersecting PG(i)(2n − 1, q) in an element
PG[j](n − 1, q) = PG(i)(2n − 1, q) ∩ PG(j)(2n − 1, q), j 6= i; lines of π are the spaces PG[j](n − 1, q),
j 6= i, and the points in PG(2n, q) − PG(i)(2n − 1, q); incidence is containment. The projective
completion of π is the dual of the projective translation plane arising from the (n − 1)-spread V ∗

i =
{PG(i)(n− 1, q)} ∪ {PG[j](n− 1, q), j 6= i} of PG(i)(2n− 1, q).

It T (n, n, q) is isomorphic to a T2(O) of J. Tits, then all corresponding projective or affine planes
are desarguesian, and hence all corresponding (n− 1)-spreads are regular [50].

8.7.7. (L.R.A. Casse, J.A. Thas and P.R. Wild [37]). Consider an O(n, n, q) with q odd. Then at
least one of the (n− 1)-spreads V0, . . . , Vqn is regular iff at least one of the (n− 1)-spreads V ∗

0 , . . . , V ∗
qn

are regular. In such a case all (n − 1)-spreads V0, . . . , Vqn , V ∗
0 , . . . , V ∗

qn are regular and T (n, n, q) is
isomorphic to Q(4, qn).

Proof. Let V ∗
i , i ∈ {0, . . . , qn}, be regular. Then by 5.2.7 T (n, n, q) ∼= Q(4, qn). Consequently all

(n−1)-spreads V0, . . . , Vqn , V ∗
0 , . . . , V ∗

qn are regular. Next, let Vi, i ∈ {0, . . . , qn}, be regular. Since q is
odd, the set {PG(0)(2n−1, q), . . . ,PG(qn)(2n−1, q)} of all tangent spaces of O(n, n, q) is a set Ô(n, n, q)
relative to the dual space P̂G(3n− 1, q) of PG(3n− 1, q). The elements of O(n, n, q) are the tangent
spaces of Ô(n, n, q). Clearly the (n− 1)-spreads Vi and V̂ ∗

j (resp., V̂j and V̂ ∗
j ), j = 0, . . . , qn, may be

identified. Since V̂ ∗
i is regular, by the first part of the proof all (n−1)-spreads V̂0, . . . , V̂qn , V̂ ∗

0 , . . . , V̂ ∗
qn

are regular. Hence V ∗
0 , . . . , V ∗

qn , V0, . . . , Vqn are regular, and the theorem is completely proved. 2



Chapter 9

Moufang conditions

Most of the results and/or details of proofs in this chapter either came from or were directly inspired
by the following works of J.A. Thas and/or S.E. Payne: [144, 200, 215, 216].

9.1 Definitions and an easy theorem

Let S = (P,B, I) be a GQ of order (s, t). For a fixed point p define the following condition.

(M)p : For any two lines A and B of S incident with p, the group of collineations of S
fixing A and B pointwise and p linewise is transitive on the lines (6= A) incident with a
given point x on A (x 6= p).

S is said to satisfy condition (M) provided it satisfies (M)p for all points p ∈ P . For a fixed line L ∈ B
let (M̂L) be the condition that is the dual of (M)p, and let (M̂) be the dual of (M). If s 6= 1 6= t and S
satisfies both (M) and (M̂) it is said to be a Moufang GQ. A celebrated result of J. Tits [221] is that
all Moufang GQ are classical or dual classical. His proof uses deep results from algebra and group
theory, and it is one of our goals to approach this theorem using only rather elementary geometry
and algebra. At the same time we are able to study Moufang conditions locally and obtain fairly
strong results, and there are some intermediate Moufang conditions that have proved useful. We say
S satisfies (M̂)p provided it satisfies (M̂)L for all lines incident with p. The dual condition is denoted
(M)L. A somewhat weaker condition is the following:

(M)p : For each line L through p and each point x on L, x 6= p, the group Sx of collineations
of S fixing L pointwise and p and x linewise is transitive on the points (not p or x) of each
line (6= L) through p or x .

A main use of this condition is the following.

9.1.1. If S satisfies (M)p for some point p, then p has property (H).

Proof. We must show that if (x, y, z) is a triad of points in p⊥ with x ∈ cl(y, z), then y ∈ cl(x, z). So
suppose x ∼ w ∈ {y, z}⊥⊥. By (M)p there is a collineation θ which is a whorl about p, a whorl about
pz, and which maps w to x. It follows that yθ ∈ {x, z}⊥⊥, so that y ∈ cl(x, z).

An immediate corollary of this result and 5.6.2 is the following.

9.1.2. If S satisfies condition (M̂), then one of the following must occur:

(i) All points of S are regular (so s = 1 or s ≥ t).

(ii) |{x, y}⊥⊥| = 2 for all points x, y, with x 6∼ y.

(iii) S ∼= H(4, s).

117
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9.2 The Moufang conditions and property (H)

Let S = (P,B, I) be a GQ of order (s, t), s 6= 1 and t 6= 1.

9.2.1. Let θ be a nonidentity collineation of S for which θ is a whorl about each of A, p,B where A
and B are distinct lines through the point p. Then the following hold:

(i) θ is an elation about p.

(ii) A line L is fixed by θ iff L I p.

(iii) If x I A, y I B, x 6∼ y, and z ∈ {x, y}⊥⊥, then zθ = z.

(iv) If zθ = z for some z not on A or B, then there are points x, y on A,B respectively, for which
x, y, z are three centers of some triad containing p.

(v) If p is regular, then θ is a symmetry about p.

(vi) If p is antiregular, a point z is fixed by θ iff z is on A or B .

Proof. This is an easy exercise starting with 8.1.1 (and its dual).

There is an immediate corollary.

9.2.2. (i) A point p of S is a center of symmetry iff p is a regular point for which S satisfies (M)p.

(ii) S(p) is a TGQ iff p is a coregular point for which S satisfies (M̂)p.

9.2.3. Suppose S satisfies (M)p for some point p. Let A and B be distinct lines through p with x I A,
y I B, x 6∼ y. Let θ be a nonidentity collineation of S which is a whorl about each of A, p,B, and with
Pθ as its set of fixed points. Then the following hold:

(i) If z ∈ Pθ − {p}, so z ∈ p⊥, then each point on pz is in Pθ.

(ii) cl(x, y) ∩ p⊥ ⊂ Pθ.

(iii) For any x′, y′ with x′ I A, y′ I B, x′ ∼ y′, cl(x, y) ∩ p⊥ = cl(x′, y′) ∩ p⊥.

Proof. Let z be a point of Pθ not incident with A or B. Let L be any line through z different from
pz. By (Mp) there is a collineation θ′ which is a whorl about each of B, p, and pz, and for which
(Lθ)θ′ = L. Then θθ′ is a whorl about both B and p, and Lθθ′ = L, zθθ′ = z. Clearly each point of L
is fixed by θθ′, and by 8.1.1 we have θθ′ = id. Hence θ fixes each point of pz, proving (i). From 9.2.1
(iii) it follows that cl(x, y) ∩ p⊥ ⊂ Pθ, proving (ii).

Now suppose x, x′ are points of A, y, y′ are points of B, with x 6∼ y, x′ 6∼ y′. We claim cl(x′, y′) ∩
p⊥ ⊂ cl(x, y) ∩ p⊥. So let z′ ∈ cl(x′, y′) ∩ p⊥. Clearly we may assume that z′ is not on A or B. Let
v1, v2 be any two points of {x, y}⊥ − {p}, and let z be the point on pz′ collinear with v1. By (M)p

there is a collineation θ which is a whorl about A, p and B, and which maps yv1 to yv2. It follows
that vθ

1 = v2. Since z′ ∈ cl(x′, y′) ∩ p⊥, by the preceding paragraph θ fixes each point of pz′. Hence
(zv1)θ = zv2, implying that v2 ∼ z. It follows that z ∈ {x, y}⊥⊥, so that z′ ∈ cl(x, y)∩p⊥. This shows
that cl(x′, y′) ∩ p⊥ ⊂ cl(x, y) ∩ p⊥, and (iii) follows.

As an immediate corollary of part (iii) of 9.2.3 we have the following.

9.2.4. If S satisfies (M)p for some point p, then p has property (H).
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Hence if S satisfies condition (M), then each point has property (H). This result and its dual
along with 9.1.2 and its dual yield the following approximation to the result of J. Tits.

9.2.5. Let S be Moufang with 1 < s ≤ t. Then one of the following holds:

(i) Either S or its dual is isomorphic to W (s) and (s, t) = (q, q) for some prime power q.

(ii) S ∼= H(4, s) and (s, t) = (q2, q3) for some prime power q.

(iii) S(p) is a TGQ for each point p, and (s, t) = (q, q2) for some prime power q.

(iv) |{x, y}⊥⊥| = |{L,M}⊥⊥| = 2 for all x, y ∈ P , x 6∼ y, and all L,M ∈ B, L 6∼M . (In Section 9.5
we shall show that case (iv) cannot arise).

Proof. In listing the cases allowed by 9.1.2 and 9.2.4 and their duals, the cases that arise are (i), (ii),
(iv) and the following : All lines are regular, s < t, and |{x, y}⊥⊥| = 2 for all points x, y with x 6∼ y.
But in this case 9.2.2 implies S(p) is a TGQ for each point p, and t = s2 with s a prime power by 8.7.3
and 8.5.2.

9.3 Moufang conditions and TGQ

Let S = (P,B, I) be a GQ of order (s, t), s 6= 1 and t 6= 1.

9.3.1. If S(p) is a TGQ then S satisfies (M)p.

Proof. Let L0 I p I L1, L0 6= L1, p 6= x I L0, A I x I B, A 6= B 6= L0 6= A. On L1 choose a point y,
y 6= p, and define points z and u by AIz ∼ y, B I u ∼ y. If θ is the (unique) translation for which
zθ = u, then xθ = x, yθ = y, Aθ = B, and 8.4.1 implies that θ fixes L0 and L1 pointwise. It follows
that S satisfies (M)p.

At this point we know that if S(p) is a TGQ, then p is a coregular point for which S satisfies both
(M)p and (M̂)p. Conversely, we seek minimal Moufang type conditions on S at p that will force S(p)

to be a TGQ. Let Gp be a minimal group of whorls about p containing all the elations about p of
the type guaranteed by (M)p. Without some further hypothesis on S it is not possible to show even
that Gp is transitive on P − p⊥. For example, if p is regular then (M)p implies that p is a center of
symmetry so that Gp is just the group of symmetries about p. And there are examples (e.g. W (s)
with s odd) for which S(p) is not a TGQ and p is a center of symmetry. Moreover, notice that a GQ
with a regular point p and s 6= t has s > t, and hence is not a TGQ. As the regularity of p does not
seem to be helpful, we try something that gets away from regularity.

For the remainder of this section (with the exception of 9.3.6) we assume that p is a point of S for
which S satisfies (M)p with Gp defined as above, and that p belongs to no unicentric triad.
Then {p, x}⊥⊥ = {p, x} for all x ∈ P − p⊥.

9.3.2. The point p is coregular, so that s ≤ t.

Proof. Let L,M ∈ B, L 6∼M , p I L. Let N1, N2, N3 be distinct lines in {L,M}⊥ with pIN1. If there
were a line concurrent with N1 and N2 but not concurrent with N3, there would be points yi on Ni,
i = 1, 2, 3, with y1 ∼ y2, y1 ∼ y3, y2 6∼ y3. Then (p, y2, y3) would be a triad with center y1, and hence
by hypothesis would have an additional center u. Since S satisfies (M)p there must be a θ ∈ Gp fixing
p linewise, py1 and pu pointwise, and mapping y1y2 to y1y3. Define vi ∈ P by Ni I vi I M , i = 2, 3,
It follows that yθ

2 = y3, N θ
2 = N3, M θ = M , and vθ

2 = v3. Define w ∈ P by v2 ∼ w I pu. Then
(wv2)θ = wv3, giving a triangle with vertices w, v2, v3. This impossibility shows that the pair (L,M)
must be regular, and p must be coregular.
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9.3.3. (S(p), Gp) is an EGQ and Gp is the set of all elations about p.

Proof. By 8.2.4 and 8.2.5 we need only show that Gp is transitive on P − p⊥. First, let (p, x, y) be
a centric triad, hence with at least two centers u and v. By (M)p there is a θ ∈ Gp for which θ is a
whorl about each of pu, p, pv, and (ux)θ = uy. Clearly xθ = y. Second, let x, y ∈ P − p⊥ with x ∼ y.
Put M = xy, and let p I L, L 6∼ M . Define ui by p ∼ u1 I M , y ∼ u2 I M , and u3 is any element of
{u1, u2}⊥ − {p, y}. As (p, x, u3) and (p, y, u3) are centric triads, x and u3, respectively y and u3, are
in the same Gp-orbit. Hence x and y are in the same Gp orbit. Finally, suppose that (p, x, y) is an
acentric triad. Let u ∈ {x, y}⊥, so u 6∈ p⊥. Then x, u, y are all in the same Gp-orbit by the preceding
case. Hence Gp is transitive on P − p⊥.

9.3.4. If θ ∈ Gp fixes a line M not incident with p, then θ is a whorl about the point on M collinear
with p .

Proof. Let θ be any nonidentity elation about p. First suppose there is some point x ∈ P − p⊥ for
which (p, x, xθ) is a centric triad, and hence has at least two centers u and v. It follows that θ is the
unique element of Gp mapping x to xθ, i.e. θ is a whorl about each of pu, p, pv. By 9.2.1 θ fixes
no line not incident with p. Second, suppose no triad of the form (p, x, xθ) is centric. And suppose
M θ = M for some line M not through p. Let z be the point on M collinear with p. If some line N
through z is moved by θ, let y be any point on N , y 6= z. Then (p, y, yθ) would be a centric triad.
Hence θ must be a whorl about z.

9.3.5. (S(p), Gp) is a TGQ. If t is even, then t = s2.

Proof. By 9.3.3 (S(p), Gp) is an EGQ, so that we may shift to the coset geometry description S(Gp, J),
J = {S0, . . . , St}, etc., of Section 8.2. Since p is co- regular, by 8.2.2 we know that SiSj = SjSi for
0 ≤ i, j ≤ t, implying SiSj is a subgroup of order s2 if i 6= j. Moreover, the condition in 9.3.4,
when interpreted for Si and S∗i , says that SiS

∗
i , 0 ≤ i ≤ t. Put Tij = S∗i ∩ S∗j , i 6= j. Then

Gp = SiS
∗
j = SiSjTij , if i 6= j. Since Tij ⊂ NGp(Si) ∩NGp(Sj), clearly SiSj〈SiSj , Tij〉 = Gp, if i 6= j.

Hence each conjugate of Si is contained in SiSj , if i 6= j. But if i, j, k are distinct, SiSj ∩ SiSk = Si,
by K1. It follows that SiGp, 0 ≤ i ≤ t, and by 8.2.2 Si is a (full) group of symmetries about the line
[Si]. From 8.3.1 it follows that (S(p), Gp) is a TGQ. By 8.6.1, if t is even either t = s or t = s2. Clearly
t 6= s, because then p would be regular and hence belong to some unicentric triad.

9.3.6. Let S = (P,B, I) be a GQ of order (s, t), and suppose that S satisfies (M)p for some point p,
with Gp a minimal group of whorls about p containing all elations of the type guaranteed to exist by
(M)p.

(i) If p is coregular and t is odd, then (S(p), Gp) is a TGQ.

(ii) If each triad containing p has at least two centers, then (S(p), Gp) is a TGQ and t = s2.

(iii) If t = s2, then (S(p), Gp) is a TGQ.

Proof. In each case the hypotheses guarantee that p is in no unicentric triad, so that the results of
this section apply. To complete the proof of (ii), use part (i) of 8.6.1 if s < t. And if s = t, p must
belong either to an acentric or a unicentric triad according as t is odd or even (i.e. according as p is
antiregular or regular (cf. 1.5.2, (iv) and (v))).



Moufang conditions 121

9.4 An application of the Higman-Sims technique

For any GQ S = (P,B, I) of order (s, t), s 6= 1 6= t, let O be a set of points with |O| = q ≥ 2. A line
of S will be called a tangent, secant or exterior line according as it is incident with exactly 1, at least
2, or no point of O. Let ∆ be a set of tangent lines, and put ∆0 = B −∆ . Suppose {∆1, . . . ,∆f} is
a partition of ∆ satisfying the following:

A1. f ≥ 2.

A2. For 1 ≤ i ≤ f , each point of O is incident with θ lines of ∆i, θ a nonzero constant.

A3. If x and y are noncollinear points of O, then each line of ∆k through x meets a line of ∆k through
y, 1 ≤ k ≤ f .

Put δi = |∆i|, 0 ≤ i ≤ f . Then the following is clear:

qθ = δi, 1 ≤ i ≤ f, so δ0 = (1 + t)(1 + st)− qfθ. (9.1)

Put δij = |{(L,M) ∈ ∆i ×∆j ‖ L 6∼M}|, 0 ≤ i, j ≤ f . For 0 6= i 6= j 6= 0, each line of ∆i meets θ
lines of ∆j , so that each line of ∆i misses (q − 1)θ lines of ∆j . Hence

δij/δi = (q − 1)θ, 1 ≤ i, j ≤ f, i 6= j. (9.2)

Let O = {x1, . . . , xq} and suppose xi is collinear with bi points (6= xi) of O (necessarily on
secants through xi), 1 ≤ i ≤ q. Let L be a fixed line of ∆j meeting O at xi (1 ≤ j ≤ f, 1 ≤ i ≤ q).
There are q − 1− bi points of O lying on at least one line ( 6= L) of ∆j that meets L at a point not in
O. So L meets θ + q − 1− bi lines of ∆j and misses qθ − (θ + q − 1− bi) = (q − 1)(θ − 1) + bi lines of
∆i. It follows that δjj =

∑q
i=1 θ((q − 1)(θ − 1) + bi) = qθ(q − 1)(θ − 1) +

∑q
i=1 bi.

Put b =
∑q

i=1 bi/q. Then

δjj/δj = (q − 1)(θ − 1) + b, 1 ≤ j ≤ f. (9.3)

Since
∑f

j=0 δjj/δi = st2, we may calculate

δi0/δi = st2 − b− (q − 1)(θf − 1), 1 ≤ i ≤ f. (9.4)

Since δi0/δi is independent of i for 1 ≤ i ≤ f , so is δ0i/δ0 = (δi0/δi)(δi/δ0) . Write e = δ00/δ0,
a = δi0/δi, b = δ0i/δ0, 1 ≤ i ≤ f ; c = δij/δi, 1 ≤ i, j ≤ f, i 6= j; d = δjj/δj , 1 ≤ j ≤ f . Put
B∆ = (δij/δi)0≤i,j≤f . It follows that

B∆ =


e b . . . b
a
... cJ + (d− c)I
a

 , (9.5)

where J is the f × f matrix of 1’s, and I is the f × f identity matrix.
For each j, 2 ≤ j ≤ f , define vf = (v0, v1, . . . , vf )T by v1 = 1, vj = −1, vk = 0 otherwise. Then vj

is an eigenvector of B∆ associated with the eigenvalue d− c = b− q + 1. By the theorem of Sims as
applied in Section 1.4 (but dualized so as to use lines instead of points, and interchanging s and t),
we have −t ≤ b− q + 1, or

q ≤ 1 + t + b. (9.6)
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Moreover, if equality in (9.6) holds, vj may be extended to an eigenvector of the matrix B (dually
defined in Section 1.4) associated with the eigenvalue −t, by repeating vi δi times, 0 ≤ i ≤ f .

Suppose in fact that equality does hold in (6). Then writing out the inner product of a row of
B indexed by a line of ∆1 meeting O at xi and the extension of vj , 1 ≤ i ≤ q, 2 ≤ j ≤ f , we find that
bi = b.

If q = 1 + t + b, then bi = b = q − 1− t, 1 ≤ i ≤ q. (9.7)

The following theorem gives a general version of the setting in which the basic inequality (9.6)
is to be applied.

9.4.1. Let O and Ω be disjoint sets of points of S for which there is a group G of collineations of S
satisfying the following:

(i) |O| ≥ 2; ΩG = Ω; G is not transitive on Ω.

(ii) |Gy| is idependent of y for y ∈ Ω.

(iii) Each element of Ω is collinear with a constant number r (r > 0) of points of O.

(iv) If x ∼ y, x ∈ O, y ∈ Ω, and z is any point of the line xy different from x, then z ∈ yG.

(v) If x, y ∈ O, x 6= y, there is a sequence x = x0, x1, . . . , xn = y of points of O for which xi−1 6∼
xi, 1 ≤ i ≤ n.

Then |O| ≤ 1 + t + b, where b is the average number of points ( 6= x) of O collinear with a given point
x of O.

Proof. Let O = {x1, . . . , xq} , and let bi be the number of points ( 6= xi) of O collinear with xi,
1 ≤ i ≤ q. If y ∈ Ω and L is a line through y meeting O in a point xi, then L has s points of Ω
and is tangent to O by (i) and (iv). Let ∆ be the set of all tangents to O containing points of Ω.
By hypothesis G splits Ω into orbits Ω1, . . . ,Ωf , f ≥ 2. Put ∆i equal to the set of tangents to O
containing points of Ωi, 1 ≤ i ≤ f . By (iv) ∆i consists of tangents each of whose points outside O is
in Ωi. Then {∆1, . . . ,∆I} is a partition of ∆, and we claim (O,∆1, . . . ,∆f ) satisfies the conditions
A1,A2,A3. Clearly A1 holds by (i) and A3 holds by (iv).

Let x ∈ O and suppose ∆i has θi lines L
(i)
1 , . . . , L

(i)
θi

, incident with x. Next let x′ ∈ O with

x 6∼ x′, and suppose ∆i has θ′i lines through x′. The θi lines through x′ meeting L
(i)
1 , . . . , L

(i)
θi

must
lie in ∆i by A3, so θi ≤ θ′i. Similarly, θ′i ≤ θi, so by (v) θi is independent of x in O. Then for any
y ∈ Ω, |G| = |Ωi||Gy| = qθisr

−1|Gy| (making use of (iii) and (iv)), implying that θi = r|G|/qs|Gy| is
independent of i. Hence A2 is satisfied. Then (9.6) finishes the proof.

Remark: If |O| = 1 + t + b, then (9.7) has an obvious consequence in the context of 9.4.1.

We now specialize the setting of 9.4.1.

9.4.2. Let L0, L1, . . . , Lr be r+1 lines (r ≥ 1) incident with a point p of S . Let O be the set of points
different from p on the lines L0, . . . , Lr, and put Ω = P − p⊥. Suppose G is a group of elations about
p with the property that G is transitive on the set of points of Ω incident with a line tangent to O. If
r > t/s, then G must be transitive (and hence regular) on Ω.

Proof. Suppose G has f orbits on Ω with f ≥ 2. Since r ≥ 1, the hypotheses of 9.4.1 are all satisfied
with b = bi = s− 1. Hence q = |O| = s(r + 1) ≤ 1 + t(s− 1), i.e. r ≤ t/s.

There are two corollaries.
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9.4.3. Let S be a GQ of order (s, t), t ≥ s, with a point p for which |{p, x}⊥⊥| = 2 for all x ∈ P − p⊥.
If S satisfies (M)p and Gp is the group generated by all the elations guaranteed to exist by (M)p, then
(S(p), Gp) is an EGQ with Gp consisting of all elations about p. If G is the complete group of whorls
about p, either G = Gp or G is a Frobenius group on P − p⊥.

Proof. Use 8.2.4, 8.2.5 and 9.4.2.

9.4.4. If (S(p), G) is a TGQ and r > t/s, then G is generated by the symmetries about any 1+ r lines
through p.

Proof. Immediate.

9.5 The case (iv) of 9.2.5

The fact that case (iv) of 9.2.5 cannot arise is an immediate corollary of the theorem of this section.
Hence to complete a proof of the theorem of J. Tits it would be sufficient to show that if S(p) is a
TGQ of order (s, s2), s 6= 1, for each point p of S, then S ∼= Q(5, s).

9.5.1. There is no GQ S = (P,B, I) of order (s, t), 1 < s ≤ t, with a point p for which the following
hold:

(i) S satisfies (M)p.

(ii) |{p, x}⊥⊥| = 2 whenever x ∈ P − p⊥.

(iii) S satisfies (M)p.

(iv) |{L,M}⊥⊥| = 2 whenever pIL and M ∈ B − L⊥.

Proof. From hypotheses (i) and (ii) and 9.4.3 we know (S(p), Gp) is an EGQ, where Gp is the set
of all elations about p. Hence we recall the group coset geometry description S ∼= (Gp, J), with
J = {S0, . . . , St}, S∗0 , . . . , S∗t , etc. (cf. 8.2). Suppose some θ ∈ Gp fixes a line M not through p, and
define the point y by p ∼ yIM . If zIM , z 6= y, then θ must be the unique element of Gp mapping z
to zθ. Hence θ must be the collineation guaranteed by (M)p to map z to zθ and is therefore a whorl
about y (and also about p and py). In terms of J , this means that Si / S∗i for each i = 0, . . . , t.
Now suppose p 6= y = yθ for some θ ∈ Gp. If θ fixes some line M through y, p  I M , then θ is a
whorl about py as in the preceding case. If M θ 6= M for some M through y, use (M)p to obtain
a φ in Gp which is a whorl about py and maps M θ to M . Hence θφ ∈ Gp is a whorl about py
and about y, forcing θ to be a whorl about py. The fact that any θ ∈ Gp fixing a point y, y 6= p,
must be a whorl about py, may be interpreted for J to say that S∗i / Gp for all i. We claim that
NGp(Si) = S∗i . For suppose g ∈ NGp(Si) − S∗i . Any coset of Si not in S∗i must meet some member
of J , since {S∗i , SiS0 − Si, SiS1 − Si, . . . , SiSt − Si} (omitting SiSi − Si) is a partition of the set Gp.
Hence there is a j (6= i) for which there is a σj ∈ Sj ∩ Sig, say σj = σjg for some σj ∈ Si. Then
σj = σjg ∈ NGp(Si). For any σ ∈ Si, (Siσj)σ = Siσj , since σ ∈ Si = σ−1

j Siσj . But as σ fixes the line
Siσj through S∗i σj , it must be a whorl about S∗i σj . Hence each element of Si fixes each line meeting
any one of p, S∗i , S∗i σj , and it follows that the lines Si, Siσj , and [Sj ] are all concurrent with [Si]
and with the s images of Sj under the action of Si. This says that |{[Sj ], Si}⊥⊥| > 2, contradicting
hypothesis (iv) of the theorem. This shows that NGp(Si) = S∗i . For convenience, specialize i = 0,
j = 1. As S∗0 / Gp, S∗1 / Gp, clearly S∗0 ∩ S∗1 / S∗0 . And S∗0 = S0(S∗0 ∩ S∗1) with S0 / S∗0 . Hence S∗0 is the
direct product of S0 and S∗0 ∩S∗1 , implying that each element of S∗0 ∩S∗1 commutes with each element
of S0 (and also with each element of S1). Put H = 〈S0, S1〉 ∩ (S∗0 ∩ S∗1). Clearly each element of H
commutes with each element of 〈S0, S1〉 and with each element of S∗0∩S∗1 , hence also with each element
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of Gp = S0S
∗
1 = S0S1(S∗0 ∩ S∗1) ⊂ 〈S0, S1〉(S∗0 ∩ S∗1). So H ⊂ Z(Gp) ⊂ ∩iNGp(Si) = ∩iS

∗
i = {e},

where this last equality holds since any nonidentity element of ∩iS
∗
i would be a symmetry about p

(cf. 8.2.2) and force a contradiction of hypothesis (ii). Then H = {e} and Gp = 〈S0, S1〉(S∗0 ∩ S∗1)
imply |〈S0, S1〉| = s2, i.e. 〈S0, S1〉 = S0S1. Similarly, SiSj is a group whenever i 6= j, so SiSj = SjSi,
implying each line through p (or (∞)) is regular (by 8.2.2), contradicting hypothesis (iv). This
completes the proof.

9.6 The extremal case q = 1 + s2 + b

Recall the setting and notation of Section 9.4 and let (O,∆1, . . . ,∆f ) be a system satisfying A1, A2,
and A3. Moreover, suppose that |O| = q = 1 + s2 + b (t > 1, s > 1). As t ≤ s2 by D.G. Higman’s
inequality, it follows from (9.6) that t = s2 and bi = b for 1 ≤ i ≤ q. By 1.10.1 applied to the set O,
b + 1 ≤ s + q/(1 + s). By b + 1 = q − s2 ≤ s + q/(1 + s), which is equivalent to q ≤ (1 + s)2. And of
course q = 1 + b + s2 implies q ≥ 1 + s2. Hence

1 + s2 ≤ q ≤ (1 + s)2. (9.8)

Let L ∈ ∆j , 1 ≤ j ≤ f . Let PL be the set of points in O, together with the points on lines of
∆j meeting L and the points off O lying on at least two secant lines. The number of such points is
v′ = sθ + 1 + b + s(q − 1 − b) + δ, where δ is the number of points off O but lying on at least two
secants. Hence

|PL| = v′ = sθ + q − s2 + s3 + δ. (9.9)

9.6.1. Suppose that PL is the pointset of a subquadrangle S ′. Then S ′ has order (s, s) and one of the
following three cases must occur:

(i) q = 1 + s2, θ = 1 + s, δ = 0, b = 0, and O is an ovoid of S ′ (i.e. each line of S ′ is incident with
a unique point of O).

(ii) q = s(1 + s), θ = s, δ = 1, b = s− 1, and O is the set of all points different from a given point x
but incident with one of a set of 1 + s lines all concurrent at x.

(iii) q = (1 + s)2, θ = s− 1, δ = 0, b = 2s, and O is the set of points on a grid.

Moreover, each of the above cases does arise.

Proof. Since each point on a line of ∆j meeting L is in PL by definition, S ′ has order (s, t′) for some
t′. Since f ≥ 2, S ′ must be a proper subquadrangle, so t′ < t, implying t′ ≤ s by 2.2.2. We claim each
line of ∆j is a line of S ′. Let L meet O at xi and suppose M ∈ ∆j . If xi is on M , then M is a line of
S ′. So suppose M is incident with xr ∈ O, xr 6= xi. If xi 6∼ xr, let y be the point on M collinear with
xi. By A3 xiy ∈ ∆j , and as both y and xr belong to S ′ so does M . So suppose xi ∼ xr. Each point
off O on M is collinear with -on average- 1 + (q − 1 − b)/s = 1 + s points of O. Hence some point
z of M , z 6∈ O (i.e. z 6= xr) is collinear with at least s points of O different from xr, say u1, . . . , us.
If u1, . . . , us are all collinear with xi , then u1xi, . . . , usxi, xrxi would be s + 1 lines of S ′ through xi,
giving a total of at least 1 + θ + s lines of S ′ through xi, an impossibility since 1 + θ + s > 1 + s ≥
1+ t′. Hence we may suppose that us 6∼ xi. Then usz belongs to S ′ by a previous argument, implying
zxr = M belongs to S ′. Thus each line of ∆j belongs to S ′. Let M ∈ ∆j and recall that the points
off O on M are collinear with -on average- 1 + s points of O. But no such point is collinear with more
than 1 + s points of O since t′ ≤ s. Hence each point off O on M is collinear with exactly 1 + s points
of O, and t′ = s. Hence |PL| = v′ = 1 + s + s2 + s3, and from (9.9) we have

θ = 2s + 1− (q + δ − 1)/s. (9.10)
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From (9.8) we have that q ≥ 1 + s2 , so that (9.10) implies

θ ≤ 1 + s. (9.11)

Since each point of O is on θ lines of ∆j , and each point off O on some line of ∆j is collinear
with 1 + s points of O, it follows that v′ = qθs/(1 + s) + q + δ = sθ + q− s2 + s3 + δ. Solving for θ we
find

θ = s(s− 1)(s + 1)/(q − s− 1). (9.12)

As q ≤ (1 + s)2 from (8), q − s− 1 ≤ (1 + s)s, and θ ≥ s− 1. This proves

s− 1 ≤ θ ≤ s + 1. (9.13)

Setting θ = s+1, s, s−1, respectively, in (9.12) and solving for q, yields q = 1+s2, s(1+s), (1+s)2,
respectively. Then (9.9) may be used to solve for δ in each case, since v′ = 1 + s + s2 + s3, and (9.7)
may be used to determine b as stated in the theorem.

In case (i), b = 0 and q = 1 + s2 force O to be an ovoid of S ′.
In case (ii), b = s − 1 and δ = 1. Since θ = s and S ′ has order (s, s), the s − 1 points xj ∈ O

different from but collinear with a fixed point xi of O must all lie on the only line Mk of S ′ through
xi and not tangent to O. So there arise 1 + s lines M0, . . . ,Ms, each incident with s points of O, no
two having a point of O in common, and no point of Mi in O being collinear with a point of Mj in
O, i 6= j. Hence each point of Mi in O must be collinear with that point of Mj not in O. It follows
that M0, . . . ,Ms all meet at a point x not in O, which is evidently the unique point lying on two (or
more) intersecting secants.

In case (iii), b = 2s. Since θ = s − 1 and S ′ has order (s, s), the 2s points xj ∈ O for which
xj is collinear with but distinct from a given point xi in O must lie on two lines through xi. From
q = (1 + s)2 it follows readily that O is the pointset of a grid.

To complete the proof of 9.6.1 we give several examples to show that each of the above cases does
arise.
Examples 1.
Let S be the GQ Q(5, s) of order (s, s2) obtained from an elliptic quadric Q in PG(5, s). Let P3 be a
fixed PG(3, s) contained in PG(5, s).
(i) If Q ∩ P3 is an elliptic quadric O, let P 1

4 , . . . , P f
4 be f (≥ 2) PG(4, s)’s containing O and not

containing an intersection of Q and the polar line of P3 with respect to Q (i.e. P i
4 ∩Q is not a cone).

Then the linesets ∆1, . . . ,∆f of P 1
4 ∩Q, . . . , P f

4 ∩Q, respectively, yield an example with |O| = 1 + s2.
(ii) If P3 ∩Q is a cone O′ with vertex x0, then f (≥ 2) PG(4, s)’s containing O′ and intersecting Q in
a nonsingular quadric yield an example with O = O′ − {x0}, |O| = s(1 + s).
(iii) If P3 ∩Q is an hyperbolic quadric O, then f (≥ 2) PG(4, s)’s containing O will yield an example
with |O| = (1 + s)2.
Examples 2.
Consider the GQ T3(Ω) with Ω an ovoid of PG(3, q) = P3 and P3 an hyperplane of PG(4, q) = P4.
(i) q = 1 + s2. Let L be a line of P3 containing no point of Ω. Let π be a plane of P4 meeting P3 in
L. Let π1, . . . , πf (2 ≤ f ≤ s− 1) be distinct planes of P3 containing L and meeting Ω in an oval. Put
P i

3 = 〈π, πi〉 . Let O = (π−P3)∪{(∞)}. Then ∆i is to be the set of lines of P i
3 meeting P3 in a point

of π ∩Ω together with the points of π ∩Ω considered as lines of type (b) of T3(Ω). Here θ = s + 1 and
O is an ovoid in the subquadrangle whose lineset is ∆i.
(ii) q = s(1 + s). (a) Let π be a plane of P3 meeting Ω in an oval Ω′. Let O be the set consisting of
the s(1 + s) points of type (ii) or T3(Ω) that are incident with the 1 + s elements of Ω′ considered as
lines of type (b) of T3(Ω). Let P 1

3 , . . . , P f
3 be distinct PG(3, s)’s meeting P3 in π, 2 ≤ f ≤ s. Then

∆i is the set of lines of P i
3 meeting P3 in a point of Ω′. (b) Let L be a line of P3 which is tangent
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to Ω at the point x. Let π be a plane of P4 meeting P3 in L. Let π1, . . . , πf be distinct planes of P3

containing L and meeting Ω in an oval, 2 ≤ f ≤ s, and put P i
3 = 〈π, πi〉. There is one point P ∗

3 of type
(ii) containing the plane π . Set O = (π−P3)∪ { points of type (ii) distinct from P ∗

3 and incident with
the point x considered as a line of T3(Ω)} ∪ {(∞)}. Then ∆i is the set of lines of P i

3 not contained in
π and meeting P3 in a point of πi ∩ Ω, together with the points of (π ∩ Ω) − {x} considered as lines
of T3(Ω).
(iii) q = (1 + s)2. Let L be a line of P3 containing two points of Ω . Let π1, . . . , πf be distinct planes
of P3 containing L, 2 ≤ f ≤ s + 1, so necessarily πi meets Ω in an oval Ωi. Let x0 be a fixed point
of P4 − P3, and put P i

3 = 〈x0, πi〉. So P i
3 ∩ P j

3 = 〈x0, L〉 if i 6= j. Put O = (〈x0, L〉 − L) ∪ {(∞)}∪
{P ′

3 ‖ P ′
3 is a hyperplane of P4 meeting P3 in a plane tangent to Ω at one of the two points of L∩Ω}.

Then ∆i is the set of lines of P i
3 meeting P3 in a point of Ωi but not contained in π = 〈x0, L〉, together

with the points of Ωi − L considered as lines of T3(Ω).
Notice that in all these examples the line L may be chosen arbitrarily in ∆1 ∪ . . . ∪ ∆f . This

completes the proof of 9.6.1.

Remark : Suppose that f = 4 in Example 2 (i). Put ∆′
i = ∆1 ∪∆2,∆′

2 = ∆3 ∪∆4, and let O be
the same as in that example. Then we have q − 1− b = s2 = t and each set ∆′

i of tangents is a union
of linesets of subquadrangles of order (s, s) containing O, and θ′ = 2(1 + s). For f = mk ≤ s− 1 it is
easy to see how to generalize this example so as to obtain θ′ = k(1 + s).

Moreover, there is a kind of converse of the preceding theorem which is obtained as an application
of the theory (1)-(6) : In a situation sufficiently similar to one of the cases (i), (ii), (iii) considered
above, a GQ S ′ of order (s, s) must arise in the manner hypothesized in 9.6.1. We make this precise
as follows.

Let O and ∆1, . . . ,∆f be given with A1, A2, A3 satisfied, assuming as always that |O| ≥ 2 and
s > 1, t > 1.

(i)’ Suppose O consists of pairwise noncollinear points, so b = 0. Then |O| = q ≤ 1 + t by (6).
Suppose |O| = 1 + s2 , implying t = s2. For each L ∈ ∆j and each z on L, z 6∈ O, suppose that
z is on at most (or at least) s + 1 lines of ∆j , so that in fact z is on exactly 1 + s lines of ∆j .
The number of points on lines of ∆j is v′ = (s2 + 1)θs/(s + 1) + s2 + 1, so that s + 1 divides θ.
Fix a line L ∈ ∆j and consider all lines of ∆j concurrent with L. Counting points on these lines
we have s3 + θs + 1, which equals v′ iff θ = s + 1. If θ = s + 1, then v′ = (1 + s)(1 + s2) and
each of the v′ points is incident with 1 + s lines of ∆j . It follows that there is a subquadrangle
S ′ of order (s, s) whose lines are just those of ∆j . If θ = k(s + 1) with k > 1, it is tempting to
conjecture that ∆j must be the union of linesets of k subquadrangles having O as an ovoid, as
is the case in the first paragraph of this remark.

(ii)’ Suppose O consists of those points different from a point x incident with r lines L1, . . . , Lr

concurrent at x. From (6) it follows that r ≤ 1 + t/s. Now suppose r = 1 + t/s = 1 + s. Fix
a line L ∈ ∆j . For each point z on L, z 6∈ O, z is collinear with exactly 1 + s points of O on
1 + s lines of ∆j . The number of points on lines of ∆j together with x is v′ = 1 + s(s + 1)+
s(s + 1)θs/(s + 1) = 1 + s + s2 + θs2. And the number of points on lines of ∆j concurrent with
L, together with the points on the line Li meeting L, is 1 + s + θs + s3, which must be at most
v′. Then 1 + s + θs + s3 ≤ 1 + s + s2 + θs2 implies s ≤ θ. If θ = s, there arises a subquadrangle
S ′ of order (s, s).

(iii)’ Let L1, . . . , Lm (resp., M1, . . . ,Mn), 2 ≤ m,n, be pairwise nonconcurrent lines with Li ∼ Mj ,
1 ≤ i ≤ m, 1 ≤ j ≤ n. Suppose O consists of the q = mn points at which an Li meets an
Mj . Then (6) implies (m − 1)(n − 1) ≤ t. Suppose that m = n = s + 1, implying t = s2 and
q = (1 + s)2. Fix a line L ∈ ∆j . For each point z on L, z 6∈ O, z is collinear with 1 + s points of
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O. The number of points on lines of ∆j is v′ = (1+ s)2θs/(1+ s)+ (1+ s)2 = (1+ s)(1+ s+ θs).
And the number of points on lines of ∆j concurrent with L, together with the points of O, is
1 + 2s + θs + s3. As this number cannot exceed v′, it follows that s− 1 ≤ θ. If θ = s− 1, there
arises a subquadrangle S ′ of order (s, s).

9.7 A theorem of M. Ronan

M.A. Ronan [151] gives a characterization of Q(4, q) and Q(5, q) which utilizes the work of J. Tits
[221, 223] on Moufang GQ. M.A. Ronan’s treatment includes infinite GQ and relies on topological
methods. We offer here an “elementary” treatment which, although it still depends on the theorem
of J. Tits, is combinatorial rather than topological, and which corrects a slight oversight in the case
t = 2.

Let S be a GQ of order (s, t), s > 1 and t > 1. A quadrilateral of S is just a subquadrangle of
order (1, 1). A quadrilateral Σ is said to be opposite a line L if the lines of Σ are not concurrent with
L. If Σ is opposite L, the four lines incident with the points of Σ and concurrent with L are called
the lines of perspectivity of Σ from L. Two quadrilaterals Σ and Σ′ are in perspective from L if either
Σ = Σ′ is opposite L, or Σ 6= Σ′ and Σ, Σ′ are both opposite L and the lines of perspectivity of Σ
from L are the same as the lines of perspectivity of Σ′ from L.

9.7.1. Let L be a given line of the GQ S = (P,B, I) of order (s, t), s > 1 and t > 2. Then L is
an axis of symmetry iff the following condition holds: Given any quadrilateral Σ opposite the line L
and any point x′, x′  I L, incident with a line of perspectivity of Σ from L, there is a quadrilateral Σ′

containing x′ and in perspective with Σ from L.

Proof. Let L be an axis of symmetry. Suppose that Σ is a quadrilateral opposite L and that x′, x′  I L,
is incident with a line of perspectivity of Σ from L. Let x′ I X ∼ L and x I X with x in Σ. By
hypothesis there is a symmetry θ of S with axis L and mapping x onto x′. Clearly θ maps Σ onto a
quadrilateral Σ′ containing x and in perspective with Σ from L.

Conversely, suppose that given any quadrilateral Σ opposite L and any point x′, x′  I L, incident
with a line of perspectivity of Σ from L, there is always a quadrilateral Σ′ containing x′ and in
perspective with Σ from L. We shall prove that L is an axis of symmetry of S.

First of all we show that L is regular. Let L1 6∼ L, let M0,M1,M2 be distinct lines of {L,L1}⊥, and
let L2 ∈ {M0,M1}⊥ − {L,L1}. We must show that L2 ∼ M2. So suppose L2 6∼ M2. If L2 I y I M1,
then let V be defined by y I V and V ∼ M2. Further, let V I z I M2 and L2 I u I M0. Since
t > 2, there is a quadrilateral Σ containing u, y, z, L2, V and which is opposite L. Clearly there is
no quadrilateral Σ′ containing M0 ∩ L1 and which is in perspective with Σ from L, a contradiction.
Hence L2 ∼M2 and L must be regular.

We introduce the following notation : If x (resp., y, z, u, . . .) is not incident with L, then the line
which is incident with x (resp., y, z, u, . . .) and concurrent with L is denoted by X (resp., Y, Z, U, . . .).
Let z ∼ z′, z 6= z′, z  I L  I z′ and Z = zz′ ∼ L. Then we define as follows a permutation θ(z, z′) of
P ∪B. First, put xθ(z,z′) = x for all x I L and zθ(z,z′) = z′. Now let y ∼ z, y  I Z. Then yθ(z,z′) = y′ is
defined by y′ ∼ z′ and y′ I Y . Next, let d 6∼ z and d  I L. If u ∈ {z, d}⊥, with u  I Z and u  I D, then
d′ = dθ(z,z′) is defined by d′ I D and d′ ∼ u′ where u′ = uθ(z,z′). We show that d′ is independent of
the choice of u. For let w ∈ {z, d}⊥, with w 6= u and Z  I w  I D. Then the quadrilateral Σ containing
z, u, d, w, is opposite the line L. Hence there is a quadrilateral Σ′ containing z′ and in perspecttive
with Σ from L. It follows immediately that w defines the same point d′. (Note : Since t ≥ 2, d′ is
uniquely defined.)

Let d  I L, d  I Z and d′ = dθ(z,z′). Then clearly z′ = zθ(d,d′). Now we show that for any point u,
with u  I Z, u  I D, u  I L, we have that uθ(z,z′) = uθ(d,d′).
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First let z ∼ d. If u ∈ zd, then by the regularity of L it is clear that uθ(z,z′) = uθ(d,d′). Now suppose
that u ∈ z⊥ ∪ d⊥, u 6∈ zd, e.g. assume u ∈ d⊥. Then d ∈ {z, u}⊥, implying that uθ(z,z′) is incident
with U and is collinear with d′. Hence uθ(z,z′) = uθ(d,d′). Finally, let u 6∈ z⊥ ∪ d⊥. Suppose that w is
the point which is incident with zd and collinear with u. Since L is regular, the line W is concurrent
with the line z′d′. If U 6= W , then uθ(z,z′) as well as uθ(d,d′) is the point which is incident with U and
collinear with w′ = W ∩z′d′. So assume U = W . Let D ∼ R ∼ L, R 6= L and R 6= D, let r be incident
with R and collinear with z, and let h ∈ {r, d}⊥ with rh 6∈ {R, rz} and rh 6∼ U . (This is possible
since t > 2.) By preceding cases we have : uθ(z,z′) = uθ(r,r′), with r′ = rθ(z,z′); uθ(r,r′) = uθ(h,h′),
with h′ = hθ(r,r′) = hθ(z,z′); uθ(h,h′) = uθ(d,d′′), with d′′ = dθ(h,h′) = dθ(r,r′) = dθ(z,z′) = d′. Hence
uθ(z,z′) = uθ(d,d′).

Now suppose that z 6∼ d. If u ∈ z⊥ ∪ d⊥, e.g. u ∈ d⊥, then zθ(d,d′) = zθ(u,u′) with u′ = uθ(d,d′).
Hence z′ = zθ(d,d′) = zθ(u,u′), and u′ = uθ(z,z′), proving that uθ(z,z′) = uθ(d,d′). So assume now that
u 6∈ z⊥ ∪ d⊥. Let w ∈ {z, d}⊥, w  I Z and w  I D, and let w′ = wθ(z,z′) = wθ(d,d′). Since t ≥ 3 we may
assume that w  I U . Then uθ(z,z′) = uθ(w,w′) = uθ(d,d′). Hence again uθ(z,z′) = uθ(d,d′).

At this point the action of θ(z, z′) is defined on all points except those of Z different from z and
not on L. So let c I Z and c  I L. If d  I Z and d  I L, then define c′ = cθ(z,z′) by c′ = cθ(d,d′),
with d′ = dθ(z,z′). We show that c′ is independent of the choice of d. Let u  I Z, u  I L, u 6= d, and
u′ = uθ(z,z′). If U 6= D, then u′ = uθ(z,z′) = uθ(d,d′), and cθ(d,d′) = cθ(u,u′). If U = D, then choose a
point w with w  I Z, w  I L, W 6= D. We have cθ(d,d′) = cθ(w,w′), with w′ = wθ(z,z′), and cθ(u,u′) =
cθ(w,w′). Hence cθ(d,d′) = cθ(u,u′).

It is now clear that θ(z, z′) defines a permutation of the pointset P of S. We next define the action
of θ(z, z′) on the lineset B of S.

For all M ∼ L we define M θ(z,z′) = M . Now let N 6∼ L and N 6∼ Z. The point which is incident
with N and collinear with z is denoted by d. Further, let u I N with u 6= d. If d′ = dθ(z,z′) and
u′ = uθ(z,z′), then since d ∈ {z, u}⊥, we have d′ ∼ u′. We define N θ(z,z′) = N ′ to be the line d′u′, and
we show that N ′ is independent of the choice of u. To this end, let w I N , d 6= w 6= u, and w′ = wθ(z,z′).
By the regularity of L there holds W ∼ d′u′. Since d ∈ {z, w}⊥, we have w′ = W ∩ d′u′. Hence it is
now clear that N ′ is independent of the choice of u. Finally, let N 6∼ L and N ∼ Z. If c = Z ∩ N
and d I N , d 6= c, then cθ(z,z′) = cθ(d,d′) = c′, with d′ = dθ(z,z′). Hence c′ ∼ d′. Define N θ(z,z′) = N ′

to be the line c′d′. We show that N ′ is independent of the choice of d. Let u I N , c 6= u 6= d, and
u′ = uθ(z,z′). By the regularity of L we have U ∼ c′d′. Clearly u′ = uθ(z,z′) = uθ(d,d′) = U ∩ c′d′.
Consequently N ′ is independent of the choice of d.

In this way θ(z, z′) defines a permutation of the lineset B of S. It is also clear that for all h ∈ P
and R ∈ B, h I R is equivalent to hθ(z,z′) I Rθ(z,z′). Hence θ(z, z′) is an automorphism of S. Since
M θ(z,z′) = M for all M ∼ L, θ(z, z′) is a symmetry with axis L and mapping z onto z′. It follows that
L is an axis of symmetry.

9.7.2. (M.A. Ronan [151]). The GQ S = (P,B, I) of order (s, t), s > 1 and t > 2, is isomorphic to
Q(4, q) or Q(5, q) iff given a quadrilateral Σ opposite a line L and a point x′, x′  I L, incident with a
line of perspectivity of Σ from L, there is a quadrilateral Σ′ containing x′ and in perspective with Σ
from L.

Proof. Let S ∼= Q(4, q) or S ∼= Q(5, q), so S has order (q, q) or (q, q2), respectively. Each line is an
axis of symmetry (recall that S is a TGQ with base point any point of S (cf. 8.7)), and the conclusion
follows from 9.7.1.

Conversely, suppose the quadrilateral condition holds, with t > 2, s > 1. Then by 9.7.1 each line of
S is an axis of symmetry. By 8.3.1 S(p) is a TGQ for each point p. Now by 9.2.2 and 9.3.1 S satisfies
(M̂)L and (M)p for each line L and each point p, i.e. S is a Moufang GQ. By the theorem of J. Tits
[221] S is classical or dual classical. Since all lines of S are regular S ∼= Q(4, q) or S ∼= Q(5, q).
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Remark : The case t = 2. If t = 2 and s > 1, then S ∼= Q(4, 2) or S ∼= H(3, 4) (cf. 5.2.3 and
5.3.2). Let L be a line of S and assume the quadrilateral Σ is opposite the line L. The points of Σ are
denoted by x, y, z, u, with x ∼ y ∼ z ∼ u ∼ x. Since t = 2, it is easy to show that X ∩L = Z ∩L and
Y ∩ L = U ∩ L. Also, it is easy to verify that given a line L there is always at least one quadrilateral
Σ opposite L. Now let x′ I X, x′  I L and x 6= x′. Since S is Moufang, there is an automorphism θ
of S fixing L point- wise, X ∩ L and Y ∩ L linewise, and mapping x onto x′. Then θ maps Σ onto a
quadrilateral Σ′ containing x′ and in perspective with Σ from L. Hence for t = 2 and s > 1, i.e. for
Q(4, 2) and H(3, 4), M.A. Ronan’s quadrilateral condition of the preceding theorem is satisfied.

9.8 Other classifications using collineations

In this section we state three results that are in the spirit of this chap- ter but for whose proofs we
direct the reader elsewhere.

Let S = (P,B, I) be a finite GQ of order (s, t), 1 < s, 1 < t. The first result, which has appeared
so far only in [55], answers affirmatively a conjecture of E.E. Shult.

9.8.1. (C.E. Ealy,Jr. [55]). Let the group of symmetries about each point of S have even order.
Then s is a power of 2 and one of the following must hold : (i) S ∼= W (s), (ii) S ∼= H(3, s), (iii)
S ∼= H(4, s).

9.8.2. (M. Walker [230]). Let G be a group of collineations of S leaving no point or line of S fixed.
Suppose that S has a point p and a line L for which the group of symmetries about p (respectively,
about L) has order at least 3 and is a subgroup of G. Then S contains a G-invariant subquadrangle
S ′ isomorphic to W (2n) (for some integer n ≥ 2) such that the restriction of G to this subquadrangle
contains PSp(4, 2n).

For the third result we need a couple definitions. Let x, y ∈ P , x 6∼ y. A generalized homology
with centers x, y is a collineation θ of S which is a whorl about x and a whorl about y. The group of
all generalized homologies with centers x, y is denoted H(x, y). S is said to be (x, y)-transitive if for
each z ∈ {x, y}⊥ the group H(x, y) is transitive on {x, z}⊥⊥ − {x, z} and on {y, z}⊥⊥ − {y, z}.

9.8.3. (J.A. Thas [211]). Let S be (x, y)-transitive for all x, y ∈ P with x 6∼ y. Then one of the
following must hold : (i) S ∼= W (s), (ii) S ∼= Q(4, s), (iii) S ∼= Q(5, s), (iv) S ∼= H(3, s), (v)
S ∼= H(4, s).
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Chapter 10

Generalized Quadrangles as Group
Coset Geometries

10.1 4-gonal Families

Let G be a group of order s2t, 1 < s, 1 < t. Let J = {S0, . . . , St} be a family of t + 1 subgroups
of G, each of order s. We say J is a weak 4-gonal family for G provided J satisfies condition K1 of
Section 8.2.

K1. SiSj ∩ Sk = 1 for distinct i, j, k.

Given a weak 4-gonal family J , we seek conditions on J that will guarantee the existence of an
associated family J∗ = {S∗0 , . . . , S∗t } of subgroups, each of order st, with Si ⊂ S∗i , and for which
condition K2 is satisfied.

K2. S∗i ∩ Sj = 1 for distinct i, j.

Clearly the family J∗ is desired so that W.M. Kantor’s construction of the GQ S(G, J) is possible.
So suppose J is a weak 4-gonal family for G. Put Ω =

⋃t
i=0 Si. In the t members of J −{Si} there

are t(s − 1) nonidentity elements, no two of which may belong to the same coset of Si by condition
K1. Hence there are st− t(s− 1)− 1 = t− 1 cosets of Si disjoint from Ω. Let S∗i be the union of these
t − 1 cosets together with Si, i.e. S∗i =

⋃
{Sig‖g ∈ G and Sig ∩ Ω ⊂ Si}. It is clear that if there is

a subgroup A∗i of order st containing Si and for which A∗i ∩ Sj = 1 whenever j 6= i, then necessarily
A∗i = S∗i . Put J∗ = {S∗i ‖0 6 i 6 t}.

If a construction similar to that given by W.M. Kantor actually yields a GQ, it follows that S∗i
must be a group for each i. Hence we make the following definition: the weak 4-gonal family J for G
is called a 4-gonal family for G provided S∗i is a subgroup for each i. In any case the set S∗i is called
the tangent space of Ω at Si.

10.1.1. (S.E. Payne [136] and J.A. Thas [191]). Let J = {S0, . . . , St} be a weak 4-gonal family for
the group G, |G| = s2t, |Si| = s, 1 < s, 1 < t, 0 6 i 6 t.

(i) If there is a subgroup C of order t for which C � G and SiC ∩ Sj = 1 for i 6= j, then S∗i = SiC;
hence S∗i is a subgroup for each i and J is a 4-gonal family. If S = S(G, J) is the corresponding
GQ of order (s, t), then S(∞) is a STGQ.

(ii) If s = t and each member of J is normal in G, then J is a 4-gonal family. If S = S(G, J) is the
corresponding GQ of order (s, s), then S(∞) is a TGQ.

Proof. First suppose there is a subgroup C satisfying the hypothesis of part (i). As SiC contains t
cosets of Si whose union meets Ω in Si, clearly S∗i = SiC, so that S∗i is a group. As C acts as a full
group of symmetries about (∞), S(∞) must be a STGQ (implying s > t).

131
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Now suppose that each member of J is normal in G and that s = t. Suppose that φ : G→ G/S0

is the natural homomorphism, and put S̄0 = φ(S∗0) = {ḡ1, . . . , ḡs}, with ḡ1 = S0, and S̄i = φ(Si),
1 6 i 6 s. Clearly S̄i

∼= Si, 1 6 i 6 s. As {S∗0 , S0S1 − S0, . . . , S0Ss − S0} is a partition of G,
{S̄0, S̄1, . . . , S̄s} is a partition of G/S0. We will show that S̄0 is closed under multiplication and hence
is a group, forcing S∗0 = φ−1(S̄0) to be a group. Similarly, each S∗i is a group, forcing J to be a 4-gonal
family.

So suppose ḡi, ḡj are arbitrary nonidentity elements of S̄0 for which ḡiḡj 6∈ S̄0. Hence ḡi, ḡj ∈ S̄k

for some k > 0. For m 6= n, 1 6 m, n 6 s, S̄m.S̄n = G/S0. In particular, for m 6= 0, k, S̄m.S̄k = G/S0.
Hence for each m ∈ {1, . . . , s} − {k}, ḡi = umvm, with um ∈ S̄m − {ḡ1}, vm ∈ S̄k − {ḡ1}. Suppose
vm = vm′ with m 6= m′. Then um = ḡiv

−1
m = ḡiv

−1
m′ = um′ ∈ (S̄m ∩ S̄m′) − {ḡ1}, an impossibility.

Hence each of the nonidentity elements of S̄k serves as a unique vm. In particular, ḡiḡj = vm for some
m 6= 0, k. So ḡi = umvm = um(ḡiḡj), implying ḡj = ḡ−1

i u−1
m ḡi ∈ S̄m (Sm � G implies S̄m � G/S0),

i.e. ḡj ∈ S̄0 ∩ S̄m − {ḡ1}, an impossibility. Hence S̄0 must be closed, completing the proof that J is
a 4-gonal family for G. Then because Si � G, Si is a full group of symmetries about the line [Si] of
S = S(G, J), and S(∞) is a TGQ by Section 8.2 (cf. 8.3 also). 2

It is frustrating that for s < t we have no satisfactory criterion for deciding just when a weak
4-gonal family is in fact a 4-gonal family.

10.2 4-gonal Partitions

Let J be a family of s + 2 subgroups of the group G, each of order s, |G| = s3, with AB ∩ C = 1 for
distinct A,B, C ∈ J . Then J is called a 4-gonal partition of G.

10.2.1. (S.E. Payne [129]) Let J be a 4-gonal partition of the group G with order s3 > 1.

(i) A GQ S = S(G,J ) of order (s − 1, s + 1) is constructed as follows: the points of S are the
elements of G; the lines of S are the right cosets of members of J ; incidence is containment.

(ii) If J = {C,S0, . . . , Ss} with C � G, then J = {S0, . . . , Ss} is a 4-gonal family for G. Moreover,
S(G, J) is a STGQ of order s with base point (∞), and S(G,J ) is the GQ P(S(G, J), (∞))
(cf 3.1.4).

(iii) If two members of J are normal in G, say C � G, S0 � G, then G is elementary abelian and s
is a power of 2.

Proof. S(G, J) is readily seen as a tactical configuration with s points on each line, s+2 lines through
each point, and for which any two distinct points are incident with at most one common line. The
condition AB ∩ C = 1 for distinct A,B, C ∈ J says there are no triangles. Hence a given point x is
on s + 2 lines and collinear with unique points on each of (s + 2)(s− 1)(s + 1) other lines, accounting
for all lines of S(G,J ). It follows that S(G,J ) is a GQ of order (s− 1, s + 1), completing the proof
of (i). Part (ii) is an immediate corollary of 11.1.1(i) and 3.1.4.

For part (iii), suppose J = {C,S0, . . . , Ss} with C � G, S0 � G. So J = {S0, . . . , Ss} is a 4-gonal
family with S∗i = SiC, 0 6 i 6 s. Since S0 � G, [S0] is an axis of symmetry with symmetry group
S0. Moreover, if θg is the collineation of S(G,J ) derived from right multiplication by g, g ∈ G, then
by 8.2.6(i) θg induces an elation θ̄g (with axis (∞)) of the plane π0 derived from the regularity of [S0].
The map θg 7→ θ̄g into the group of elations of π0 with axis (∞) has kernel {θg‖g ∈ S0} and image
of order s2. Hence the plane π0 is a translation plane with elementary abelian translation group.
By 8.2.6(ii) and (iii) the collineations θg are mapped to elations ¯̄θg of the plane π∞ derived from the
regularity of the point (∞) of S(G,J ). The map θg 7→ ¯̄θg into the group of elations of π∞ with center
(∞) has kernel {θg‖g ∈ C} and image of size s2. Hence the plane π∞ is a dual translation plane, so
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the corresponding (dual) translation group is elementary abelian. Let g1, g2 be distinct elements of
G, and put g = g1g2g

−1
1 g−1

2 . By the previous remarks, θg must fix all points of (∞)⊥ and all lines of
[S0]⊥, i.e. g ∈ C ∩ S0. Hence g must be the identity, implying that G is abelian. Hence each [Sj ] is
an axis of symmetry and S(G, J) is a TGQ with (∞) a regular base point, forcing s to be a power of
2 (cf. 1.5.2(iv) and 8.5.2). 2

10.3 Explicit Description of 4-gonal Families for
TGQ

10.3.1. T2(O)

Let s = t = q = pe, p a prime. Let F = GF(q), G = {(a, b, c)‖a, b, c ∈ F} with the usual
vector (pointwise) addition. Put A(∞) = {(0, 0, c)‖c ∈ F}. Let α : F → F be a function, and
for t ∈ F put A(t) = {(λ, λt, λtα)‖λ ∈ F}. Put J = {A(∞)} ∪ {A(t)‖t ∈ F}. As A(∞) is just
the set of all scalar multiples of (0, 0, 1) and A(t) is the set of all scalar multiples of (1, t, tα), it
follows readily that J is a weak 4-gonal family (and hence a 4-gonal family by 10.1.1) provided the

matrix

 1 t tα

1 u uα

1 v vα

 is nonsingular for distinct t, u, v ∈ F . The determinant ∆ of this matrix is

∆ = (u − t)(vα − tα) − (v − t)(uα − tα), which is nonzero iff tα−vα

t−v 6= tα−uα

t−u for distinct t, u, v ∈ F .
In this case J is an oval O in PG(2, q), and S(G, J) is isomorphic to T2(O). It is easy to see that
each T2(O) can be obtained in such a way. By B. Segre’s result [158] we may assume α : x 7→ x2 if
q is odd. When q is even it is necessary that α be a permutation. Then C = {(0, b, 0)‖b ∈ F} is the
subgroup (the nucleus of the oval J) for which {C} ∪ J is a 4-gonal partition of G (i.e. a (q + 2)-arc
of PG(2, q)). In this case several examples in additon to α : x 7→ x2 are known, and much more will
be said on the subject in Chapter 12.

10.3.2. T3(O)

(i) s2 = t = q2, q a power of an odd prime.
Let c be a nonsquare in F = GF(q). Put G = {(x0, x1, x2, x3)‖xi ∈ F )}, with the usual pointwise
addition. Put A(∞) = {(0, λ, 0, 0)‖λ ∈ F}. For a, b ∈ F , put A(a, b) = {(λ,−λ(a2 − b2c), λa, λb)‖λ ∈
F}. Then J = {A(∞)} ∪ {A(a, b)‖a, b ∈ F} is a 4-gonal family for G. Clearly J is an ovoid O of
PG(3, q), in fact an elliptic quadric, and S(G, J) ∼= T3(O) ∼= Q(5, q).
(ii) s2 = t = q2, q a power of 2.
Let δ be an element of F for which x2 +x+δ is irreducible over F . Put G = {(x0, x1, x2, x3)‖xi ∈ F )},
with the usual addition. Put A(∞) = {(0, λ, 0, 0)‖λ ∈ F}. For a, b ∈ F put A(a, b) = {(λ, λ(a2 + ab +
δb2), λa, λb)‖
λ ∈ F}. Then J = {A(∞)} ∪ {A(a, b)‖a, b ∈ F} is a 4-gonal family of G. Clearly J is an ovoid O of
PG(3, q), in fact an elliptic quadric, and S(G, J) ∼= T3(O) ∼= Q(5, q).
(iii) s2 = t = q2, q = 22e+1, and e > 1.
For F = GF(q) let σ be the automorphism of F defined by σ : x 7→ x2e+1

. Put A(∞) = {(0, λ, 0, 0)‖λ ∈
F}. For a, b ∈ F , put A(a, b) = {(λ, λ(ab + a2σ + b2σ+2), λa, λb)‖λ ∈ F}. Put J = {A(∞)} ∪
{A(a, b)‖a, b ∈ F}. As in the preceding examples G = F 4 with pointwise addition. Then J is a
4-gonal family for G. In fact, J is a Tits ovoid O in PG(3, 22e+1), the only known type of ovoid in
PG(3, q) not a quadric, and S(G, J) ∼= T3(O).
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10.4 A Model for STGQ

Let F = GF(q), q = pe, p prime. For m and n positive integers, let f : Fm × Fm → Fn be a fixed
biadditive map. Put G = {(α, c, β)‖α, β ∈ Fm, c ∈ Fn}. Define a binary operation on G by

(α, c, β).(α′, c′, β′) = (α + α′, c + c′ + f(β, α′), β + β′). (10.1)

This makes G into a group that is abelian if f is trivial and whose center is C = {(0, c, 0) ∈ G‖c ∈ Fn}
is if? f is nonsingular. Suppose that for each t ∈ Fn there is an additive map δt : Fm → Fm and a
map gt : Fm → Fn. Put A(∞) = {(0, 0, β) ∈ G‖β ∈ Fm}. For t ∈ Fn put A(t) = {(α, gt(α), αδt) ∈
G‖α ∈ Fm}. We want A(t) to be closed under the product in G, so that it will be a subgroup of order
qm. Writing out the product of two elements of A(t) we find that A(t) is a subgroup of G iff

gt(α + β)− gt(α)− gt(β) = f(αδt , β) for all α, β ∈ Fm, t ∈ Fn. (10.2)

Put β = 0 in (10.2) to obtain
gt(0) = 0 for all t ∈ Fn. (10.3)

From now on we suppose that condition (10.2) holds, and put J = {A(∞)}∪{A(t)‖t ∈ Fn}. With
A∗ = AC for A ∈ J , we seek conditions on J and J∗ = {A∗‖A ∈ J} that will force K1 and K2 to
hold, i.e. that will force J to be a 4-gonal family. Clearly A∗ is a group of order qn+m containing A
as a subgroup. We note that

A∗(∞) = {(0, c, β) ∈ G‖c ∈ Fn, β ∈ Fm},
A∗(t) = {(α, c, αδt) ∈ G‖α ∈ Fm, c ∈ Fn}, t ∈ Fn. (10.4)

It is easy to check that A∗(∞) ∩A(t) = 1 = A∗(t) ∩A∗(∞) for all t ∈ Fn.
An element of A∗(t) ∩ A(u) has the form (α, c, αδt) = (α, gu(α), αδu). For t 6= u this must force

α = 0, so A∗(t) ∩A(u) = 1 iff

δ(t, u) : α 7→ αδt − αδu is nonsingular if t 6= u. (10.5)

From now on we assume that (10.5) holds. Then J will be a 4-gonal family for G iff AB ∩D = 1
for distinct A,B, D ∈ J . Before investigating this condition we need a little more information about
gt.

Put β = −α in (10.2) to obtain −gt(α)− gt(−α) = f(αδt ,−α) = −f(αδt ,
α) = −(gt(2α)− 2gt(α)), implying

gt(2α) = 3gt(α) + gt(−α). (10.6)

Using (10.2) and (10.6) we obtain gt((n + 1)α) = (n + 1)gt(α) + gt(nα) + ngt(−α), from which an
induction argument may be used to show that

gt(nα) =
(

n + 1
2

)
gt(α) +

(
n

2

)
gt(−α). (10.7)

Note: If gt(−α) = −gt(α), then gt(nα) = ngt(α).
If gt(−α) = gt(α), then gt(nα) = n2gt(α).

Let g ∈ A(∞).A(t) ∩A(u), t 6= u, so g has the form g = (0, 0, β).(α, gt(α),
αδt) = (α, gt(α) + f(β, α), β + αδt) = (α, gu(α), αδu). So gt(α) − gu(α) = −f(β, α), with β = αδ(u,t),
should imply α = 0. That is: gu(α) − gt(α) = f(αδu , α) − f(αδt , α) = (gu(2α) − 2gu(α)) − (gt(2α) −
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2gt(α)) = (gu(α) + gu(−α))− (gt(α) + gt(−α)) should imply α = 0. Hence A(∞).A(t)∩A(u) = 1 (for
t 6= u) iff

gt(α) = gu(α), t 6= u, implies α = 0. (10.8)

It is routine to check that, for t 6= u, also A(t).A(∞)∩A(u) = 1 iff A(t).A(u)∩A(∞) = 1 iff (10.8)
holds. Hence we assume (10.8) holds and proceed to the hard case: What does A(t).A(u) ∩A(v) = 1
mean when t, u, v are distinct? An element of this intersection would be of the form (α + β, gt(α) +
gu(β) + f(αδt , β), αδt + βδu) = (α + β, gv(α + β), (α + β)δv). Hence the intersection is trivial provided

gt(α) + gu(β) + f(αδt , β) = gv(α + β)
αδt + βδu = (α + β)δv

t, u, v distinct

⇒ α = β = 0. (10.9)

Solving for β in (10.9) we find β = αδ(t,v)δ−1(v,u). Put γ = αδ(t,v) = βδ(v,u). The first equality
of (10.9) becomes

0 = gt(α) + gu(β) + f(αδt , β)− gv(α)− gv(β)− f(αδv , β)
= gt(α)− gv(α) + gu(β)− gv(β) + f(αδ(t,v), β)
= gt(α)− gv(α) + gu(β)− gv(β) + f(βδ(v,u), β)
= gt(α)− gv(α) + gu(β)− gv(β) + (gv(β) + gv(−β))− (gu(β) +

gu(−β))
= gt(α)− gv(α) + gv(−β)− gu(−β).

Hence (10.9) is equivalent to:

gt(γδ−1(t,v))− gv(γδ−1(t,v)) + gv(−γδ−1(v,u))− gu(−γδ−1(v,u)) = 0
implies γ = 0 if t, u, v are distinct.

}
(10.10)

We summarize these results as follows.

10.4.1. (S.E. Payne [135]). J is a 4-gonal family for G provided the following hold:

(i) gt(α + β)− gt(α)− gt(β) = f(αδt , β) = f(βδt , α) for all α, β ∈ Fm, t ∈ Fn.

(ii) δ(t, u) : α 7→ αδt − αδu is nonsingular for t 6= u.

(iii) gt(α) = gu(α), t 6= u, implies α = 0.

(iv) (10.10) holds.

If J is a 4-gonal family, the resulting GQ S = S(G, J) has order (s, t) = (qm, qn). As C is a
group of t symmetries about (∞) (cf. 8.2.2), it follows that (S(∞), G) is a STGQ and m > n. By 8.1.2
qm+n(1+qn) ≡ 0 (mod qm+qn). Then exactly the same argument as the one used in the proof of 8.5.2
shows that either s = t or there is an odd integer a and a prime power qv for which s = qm = (qv)a+1,
t = qn = (qv)a. Hence s = t or sa = ta+1 with a odd. It may be that there is a theory of the kernel of
a STGQ analogous to that for TGQ which will lead to s = t or sa = ta+1 with a odd for all STGQ,
but we have been unable to show this. In any case the known examples of STGQ have s = t or s = t2.
Hence we complete this section with the known examples of STGQ having s = t and devote the next
section to the case s = t2.

10.4.2. Examples of STGQ of order (s, s)
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First note that if (S(p), G) is any TGQ of order s with s even, then p must be regular and G
induces a group of elations of the plane πp with center p. The kernel of this representation of G must
have order s and hence be a full group of symmetries about p. Therefore (S(p), G) is also a STGQ.

The known GQ of odd order s also provide examples as follows.
In the notation of this section let m = n = 1, q odd or even. Put f(a, b) = −2ab, aδt = −at,

and gt(a) = a2t for all a, b, t ∈ F . It is easy to check that the first three conditions of 10.4.1
are satisfied. We have gt(a) = gt(−a) and δ−1(t, v) : a 7→ −a/(t − v). Hence (10.10) becomes:
(−a/(t− v))2(t− v) = (−a/(v − u))2(u− v) implies a = 0 if t, u, v are distinct. As this clearly holds,
we have a STGQ which, in fact, turns out to be the dual of the example of 10.3.1 where α is defined
by α : x 7→ x2 (i.e., turns out to be isomorphic to W (q)). That these two examples are duals of each
other may be seen as follows.

Let S be the STGQ described in the preceding paragraph. Since the point (∞) is regular, it is
clear that S ∼= W (q) if all points of S not in (∞)⊥ are regular. Since S is an EGQ with base point
(∞) it is sufficient to show that the point (0, 0, 0) is regular. By 1.3.6(ii) the point (0, 0, 0) is regular
iff each triad containing (0, 0, 0) is centric. Before proving this we note that (a, c, b) ∼ (a′, c′, b′) iff
c− c′ − a′b′ + ab + a′b− ab′ = 0.

Consider a triad ((0, 0, 0), (a, c, b), (a1, c1, b1)). This triad has a center of the form (a′, c′, b′) iff
−c′− a′b′ = 0, c− c′− a′b′ + ab + a′b− ab′ = 0, and c1− c′− a′b′ + a1b1 + a′b1− a1b

′ = 0. So the triad
has a unique center of the form (a′, c′, b′) if ba1 6= ab1. Now assume ba1 = ab1. If a = a1 = 0, then
A∗(∞) is a center of the triad. If a = 0 = b (resp., a1 = 0 = b1), then each A∗(t), t ∈ F ∪ {∞}, is a
center of the triad ((∞), (0, 0, 0), (a, c, b)) (resp. ((∞), (0, 0, 0), (a1, c1, b1))), hence (((0, 0, 0), (a, c, b))
(resp. ((0, 0, 0), (a1, c1, b1))) is regular and ((0, 0, 0), (a, c,
b), (a1, c1, b1)) is centric. If a 6= 0 6= a1, then A∗(−b/a) is a center of the triad.

Next consider a triad ((0, 0, 0), (a, c, b), A∗(∞).(a1, c1, b1)). This triad has a center (a′, c′, b′) iff
a′ = a1, −c′ − a′b′ = 0 and c − c′ − a′b′ + ab + a′b − ab′ = 0. If a 6= 0, there is a unique solution in
a′, c′, b′. If a = 0, then A∗(∞) is a center of the triad.

Now consider a triad ((0, 0, 0), (a, c, b), A∗(t).(a1, c1, b1)), t ∈ F . This triad has a center (a′, c′, b′)
iff −c′ − a′b′ = 0, c− c′ − a′b′ + ab + a′b− ab′ = 0 and (a′, c′, b′) ∈ A∗(t)(a1, c1, b1). If b + at 6= 0 there
is a unique center of this type. If b + at = 0, then the triad has center A∗(t).

Since (∞) is regular, any triad ((0, 0, 0), x, y) with x, y ∈ (∞)⊥ is centric. Hence each triad
containing (0, 0, 0) is centric, i.e. (0, 0, 0) is regular, which proves that S ∼= W (q).

10.5 A Model for Certain STGQ with (s, t) = (q2, q)

Throughout this section [f ] will denote a certain 2× 2 matrix over F = GF(q) subject to appropriate
restrictions to be developed below. Put f(α, β) = α[f ]βT , for α, β ∈ F 2. For each t ∈ F let Kt be a
2 × 2 matrix over F and put αδt = αKt, for α ∈ F 2. Then f(αδt , β) = αKt[f ]βT is symmetric in α
and β iff Kt[f ] is symmetric. Hence from now on we require the following:

Kt[f ] is symmetric for each t ∈ F. (10.11)

Then for part (i) of 10.4.1 to be satisfied it is sufficient that gt(α) = αAtα
T , where At is an upper

triangular matrix for which
At + AT

t = Kt[f ]. (10.12)

And part (ii) of 10.4.1 is equivalent to

Kt −Ku is nonsingular for t 6= u. (10.13)
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We say B ∈M2(F ) is definite provided αBαT = 0 implies α = 0 (for α ∈ F 2). If B =
(

a b
c d

)
,

then B is definite iff the polynomial ax2 + (b + c)x + d is irreducible over F . In case q is odd, B is
definite precisely when (b + c)2 − 4ad is a nonsquare in F . Hence if B is symmetric and q is odd,
then B is definite iff −detB is a nonsquare in F . In either case (q odd or even) B is definite iff cB is
definite (0 6= c ∈ F ) iff PBP T is definite (P nonsingular).

It is easy to check that (iii) of 10.4.1 is equivalent to

At −Au is definite for t 6= u. (10.14)

Now γδ−1(t,v) = γ(Kt −Kv)−1, and (iv) of 10.4.1 is equivalent to

(Kt −Kv)−1(At −Av)((Kt −Kv)−1)T + (10.15)
(Kv −Ku)−1(Av −Au)((Kv −Ku)−1)T is definite.

When q is odd, B ∈ M2(F ) is definite iff B + BT is definite. And if B is the matrix displayed
in (10.15), then M = B + BT = [f ]((Kt−Kv)−1 + (Kv −Ku)−1)T = [f ]((Kt−Kv)−1(Kt−Ku)(Kv −
Ku)−1)T . This completes the proof of the following theorem.

10.5.1. The family J (as given in 10.4 but using [f ], δt, etc., as given in this section) is a 4-gonal
family for G provided the following conditions (i),. . .,(v) hold:

(i) Kt[f ] is symmetric for each t ∈ F .

(ii) gt(α) = αAtα
T , where At is an upper triangular matrix for which At + AT

t = Kt[f ], for t ∈ F .

(iii) Kt −Ku is nonsingular for t, u ∈ F , t 6= u.

(iv) At −Au is definite for t, u ∈ F , t 6= u.

(v) (Kt −Kv)−1(At − Av)((Kt −Kv)−1)T + (Kv −Ku)−1(Av − Au)((Kv −Ku)−1)T is definite for
distinct t, u, v ∈ F .

Moreover, if q is odd, then (v), (vi) and (vii) are equivalent.

(vi) [f ]((Kt − Kv)−1 − (Kv − Ku)−1)T = [f ]((Kt − Kv)−1(Kt − Ku)(Kv − Ku)−1)T is definite for
distinct t, u, v ∈ F .

(vii) −det[f ]det(Kt −Kv)det(Kt −Ku)det(Kv −Ku) is a nonsquare in F .

Define θ : G → G by (α, c, β)θ = (α, c − gt(α), β − αδt), for some fixed t ∈ F . It is routine
to check that θ is an automorphism of G fixing A(∞) elementwise and mapping A(x) to Ā(x) =
{(α, ḡx(α), αδ̄x)‖α ∈ F}, where ḡx(α) = gx(α) − gt(α) and αδ̄x = αδ(x,t). Moreover, ḡt(α) = 0 and
αδ̄t = 0. Hence putting t = 0 we may change coordinates so as to assume that g0(α) = 0 and δ0 = 0.
From now on we assume

g0(α) = 0 and αδ0 = 0 for all α ∈ F 2(and so we assume A0 = K0 = 0). (10.16)

10.5.2. Let A,B, C, D, E,K, M ∈ M2(F ), x ∈ F . Define θ : G → G by (α, c, β)θ = (αA + βB, cx +
αCαT + αDβT + βEβT , αK + βM). Then θ is a group homomorphism iff the following hold:

(i) x[f ] + DT = M [f ]AT .

(ii) C + CT = K[f ]AT .
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(iii) E + ET = M [f ]BT .

(iv) D = K[f ]BT .

Proof. ((α, c, β).(α′, c′, β′))θ = (α, c, β)θ.(α′, c′, β′)θ iff xβ[f ](α′)T +
αC(α′)T + α′CαT + αD(β′)T + α′DβT + βE(β′)T + β′EβT = αK[f ]AT (α′)T + αK[f ]BT (β′)T +
βM [f ]AT (α′)T + βM [f ]BT (β′)T . This must hold for all α, β, α′, β′ ∈ F 2. Collecting terms involving
the pairs (β, α′), (α, α′), (β, β′), (α, β′), respectively, gives conditions (i), (ii), (iii), (iv), in that order.
2

In 10.5.2 put A = M = aI, B = C = D = E = K = 0, for 0 6= a ∈ F . Then an isomorphism θa of
G which leaves invariant each member of J is defined by

θa : (α, c, β) 7→ (aα, a2c, aβ). (10.17)

Clearly {θa‖a ∈ F} may be considered to be a group of whorls about the point (∞) which is
isomorphic to the multiplicative group F ◦ of F and which fixes the point (0, 0, 0) of S(G, J). It seems
likely that an appropriate definition of kernel of S(G, J) should lead to the field F .

Suppose an automorphism θ of the type described in 10.5.2 were to interchange A(∞) and A(0).
Then by (10.16) A = M = 0, and C and E are skewsymmetric (with zero diagonal). Hence we may
assume C = E = 0. For any choice of B ∈ GL(2, F ) put D = −x[f ]T and K = −x[f ]T (B−1)T [f ]−1,
so that the conditions of 10.5.2 are satisfied. Then if x 6= 0, θ is an automorphism of G interchanging
A(∞) and A(0) and appearing as

(α, c, β)θ = (βB, x(c− α[f ]T βT ),−xα[f ]T (B−1)T [f ]−1). (10.18)

Here we tacitly assumed that B and [f ] are invertible, which is indeed the case in the examples to
be discussed below. Of course, we would like for θ to preserve J . So suppose there is a permutation
t 7→ t′ of the nonzero elements of F for which θ : A(t) 7→ A(t′). Direct calculation shows that
(α, αAtα

T , αKt)θ = (αKtB, x(αAtα
T − α[f ]T KT

t αT ),−xα[f ]T (B−1)T [f ]−1)
= (αKtB,−xαAtα

T ,−xα[f ]T (B−1)T [f ]−1). Writing out what it means for this last element to be in
A(t′) completes the proof of the following.

10.5.3. An automorphism θ of G as decribed in 10.5.2 (with x 6= 0, B and [f ] in GL(2, F )) in-
terchanges A(∞) and A(0) and leaves J invariant iff there is a permutation t 7→ t′ of the nonzero
elements of F for which the following hold:

(i) KtBKt′ = −x[f ]T (B−1)T [f ]−1 (is independent of t), and

(ii) KtBAt′B
T KT

t + xAt is skewsymmetric (with zero diagonal).

(Note: In these calculations we use freely the observation that αAαT = αAT αT , since these matrices
are 1× 1 matrices.)

Now suppose that some θ as described in 10.5.2 fixes A(∞), so B = D = 0 and we may assume
E = 0. The conditions of 10.5.2 become x[f ] = M [f ]AT and C + CT = K[f ]AT . Then for any choice
of C and nonsingular A we must put K = (C + CT )(AT )−1[f ]−1 and M = x[f ](AT )−1[f ]−1. Hence θ
appears as

(α, c, β)θ = (αA, xc + αCαT , α(C + CT )(AT )−1[f ]−1 + xβ[f ](AT )−1[f ]−1). (10.19)

Note that θ is an automorphism of G iff 0 6= x.
Suppose in addition that the θ of (10.19) leaves J invariant, so that there is a permutation t 7→ t′ of

the elements of F for which θ : A(t) 7→ A(t′). Then (α, αAtα
T , αKt)θ = (αA, xαAtα

T + αCαT , αK +
αKtM) = (αA, αAAt′A

T αT , αAKt′). From this equality the following is easily deduced.



Generalized Quadrangles as Group Coset Geometries 139

Figure 10.1

10.5.4. An automorphism θ as described in 10.5.2 (with x 6= 0, A and [f ] in GL(2, F )) fixes A(∞)
and leaves J invariant iff there is a permutation t 7→ t′ of the elements of F for which the following
hold for all t ∈ F :

(i) Kt′ [f ] = A−1(C + CT + xKt[f ])(A−1)T , and

(ii) xAt + C −AAt′ At is skewsymmetric (with zero diagonal).

To close this section we seek conditions related to the regularity of the point A∗(∞) in the GQ
S(G, J). In particular, consider the noncollinear pair (A∗(∞), (α, 0, 0)), α 6= 0. With the help of
Figure 10.1 it is routine to check that

{A∗(∞), (α, 0, 0)}⊥ = {A∗(∞).(α, 0, 0), (0, 0, 0)} ∪ (10.20)
{(0,−gu(α),−αδu)‖0 6= u ∈ F},

{(0, 0, 0), A∗(∞).(α, 0, 0)}⊥ = {(α, 0, 0), A∗(∞)} ∪ (10.21)
{(α, gt(α), αδt)‖0 6= t ∈ F}.

Hence the pair (A∗(∞), (α, 0, 0)) is regular iff (α, gt(α), αδt) and
(0,−gu(α),−αδu) are collinear for all t, u ∈ F ◦. This is the case precisely when there is some v ∈ F
for which (α, gt(α), αδt).(0,−gu(α),−αδu)−1 = (α, gt(α) + gu(α), αδt + αδu) ∈ A(v). This holds iff
gt(α) + gu(α) = gv(α) and αδt + αδu = αδv . This essentialy completes a proof of the following.

10.5.5. For the 4-gonal family J of this section, the pair (A∗(∞), (α, 0, 0)) (α 6= 0) of noncollinear
points of S(G, J) is regular iff for each choice of t, u ∈ F ◦ there is a v ∈ F for which both the following
hold:

(i) α(Kv −Kt −Ku) = 0,

(ii) α(Av −At −Au)αT = 0.

10.6 Examples of STGQ with Order (q2, q)

10.6.1. H(3, q2) has a STGQ (adapted from W.M. Kantor [89])
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In the notation of the two preceding sections put [f ] =
(

2 x1

x1 −2x0

)
, where x2 − x1x − x0 is

irreducible over F = GF(q). It is easy to see that [f ] is definite iff q is odd and is nonsingular in any

case. Put Kt = tI, so Kt[f ] = t

(
2 x1

x1 −2x0

)
is symmetric regardless of the characteristic of F .

Then Kt−Ku = (t− u)I is clearly nonsingular for t 6= u. Put D =
(

1 x1

0 −x0

)
, and At = tD. Then

At + AT
t = Kt[f ] and At − Au = (t − u)D, t 6= u, is definite iff D is definite. When q is even, D is

definite provided x2 +x1x+x0 is irreducible. When q is odd, D is definite iff D +DT = [f ] is definite.
Hence in either case At−Au is definite for t 6= u. The matrix of 10.5.1(v) is ((t− v)−1 + (v− u)−1)D,
which is definite since D is. Hence we at least have that S = S(G, J) is a STGQ of order (q2, q). Here
the group of automorphisms of G leaving J invariant is doubly transitive on the elements of J (put
A = M = C = E = 0, D = −[f ]T , K = −I, B = I, x = 1 for a θ (as in 10.5.3) that interchanges
A(∞) and A(0) and maps A(t) to A(−t−1); put A = M = I, B = D = E = 0, C = Au, K = uI,
x = 1 for a θ (as in 10.5.4) fixing A(θ) and mapping A(t) to A(t + u)).

Now we show that all lines incident with (∞) are 3-regular. By the preceding paragraph and
since S is a STGQ, it is sufficient to prove that any triple of the form ([A(∞)], A(0), A(t)(α, c, β)), for
t ∈ GF(q) and A(0) 6∼ A(t)(α, c, β) is 3-regular.

The points not belonging to (∞)⊥ and incident with a line L ∈ {[A(∞)],
A(0)}⊥, are of the form (α1, f(β1, α1), β1), with α1, β1 ∈ F 2. A point (α1, f(β1, α1), β1) is incident
with the line A(t)(α, c, β) if there is an α0 ∈ F 2 for which (α0, gt(α0), αδt

0 )(α, c, β) = (α1, f(β1, α1), β1),
or equivalently α0 + α = α1, gt(α0) + c + f(αδt

0 , α) = f(β1, α1), and αδt
0 + β = β1. Hence the point

(α0, gt(α0), αδt
0 )(α, c, β) is incident with a line of {[A(∞)], A(0)}⊥ iff

f(β, α0 + α) + f(αδt
0 , α0) = gt(α0) + c. (10.22)

These lines of {[A(∞)], A(0)}⊥ are incident with the points (α0 + α, 0, 0) of A(0), with α0 + α
determined by (10.22). Let α0 + α = (r1, r2), α = (a1, a2) and β = (b1, b2), with r1, r2, a1, a2, b1, b2 ∈
GF(q). Then (10.22) is equivalent to

(
b1 b2

) (
2 x1

x1 −2x0

) (
r1

r2

)
+ (10.23)

t
(

r1 − a1 r2 − a2

) (
2 x1

x1 −2x0

) (
r1 − a1

r2 − a2

)
=

t
(

r1 − a1 r2 − a2

) (
1 x1

0 −x0

) (
r1 − a1

r2 − a2

)
+ c,

or

(2b1 + b2x1)r1 + (b1x1 − 2b2x0)r2+ (10.24)
t((r1 − a1)2 + (r2 − a2)(r1 − a1)x1 − x0(r2 − a2)2) = c.

First, let t 6= 0. Then, since S has order (q2, q), we know that (10.24) has exactly q + 1 solutions
(r1, r2). Clearly the same solutions are obtained by replacing b1, b2, t, c, respectively, by `b1, `b2, `t, `c,
` ∈ F ◦. Note that A(0) 6∼ A(t)(α, c, β) is equivalent to b2

1 + b1b2x1 − b2
2x0 + tc − t(2b1a1 + x1(a2b1 +

a1b2) − 2x0a2b2) 6= 0, which clearly shows that also A(0) 6∼ A(`t)(α, `c, `β) for any ` ∈ F ◦. Since
{A(0), [A(∞)], A(`t)(α, `c, `β)}⊥ is independent of ` ∈ F ◦, the triple (A(0), [A(∞)], A(t)(α, c, β)) is
3-regular.

Now let t = 0. Then, since S has order (q2, q), we know that (10.24) has exactly q solutions
(r1, r2). Clearly the same solutions are obtained by replacing b1, b2, c, respectively, by `b1, `b2, `c,
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` ∈ F ◦. Note that A(0) 6∼ A(0)(α, c, β) is equivalent to β 6= 0, which clearly shows that also A(0) 6∼
A(0)(α, `c, `β) for any ` ∈ F ◦. Since {A(0), [A(∞)], A(0)(α, `c, `β)}⊥ is independent of ` ∈ F ◦, the
triple (A(0), [A(∞)], A(0)(α, c, β)) is 3-regular.

Hence all lines incident with (∞) are 3-regular. By 5.3.1 the GQ S is isomorphic to the dual of a
T3(O). Moreover, by Step 3 of the proof of 5.3.1 all points of (∞)⊥ are regular. So in T3(O) all lines
concurrent with some line w of type (b) are regular. Now by 3.3.3(iii) we have T3(O) ∼= Q(5, q) i.e.
S ∼= H(3, q2).

10.6.2. W.M. Kantor’s examples K∗(q)

The description given in 3.1.6 of W.M. Kantor’s examples K(q) was of a GQ of order (q, q2). In
this section we give a description of the dual GQ K∗(q) as a STGQ of order (q2, q). This construciton
is adapted directly from [89] (cf. [135]).

Let q ≡ 2 (mod 3), q a prime power, F = GF(q). Put [f ] =
(

0 −3
1 0

)
. Kt =

(
−t2 −2t3

2t 3t2

)
,

so Kt[f ] =
(
−2t3 3t2

3t2 −6t

)
is symmetric, and put At =

(
−t3 3t2

0 −3t

)
. It is easy to check that

det(Kt −Ku) = (t− u)4 6= 0 for t 6= u, so that Kt −Ku is nonsingular.
Before checking conditions (iv) and (v) of 10.5.1 it is expedient to consider some automorphisms

of G. To obtain a θ as described in 10.5.2 and 10.5.4, put B = D = E = 0, x = 1, A =
(

1 y
0 1

)
,

C =
(
−y3 −3y2

0 −3y

)
, M =

(
1 3y
0 1

)
, K =

(
y2 y3

2y 3y2

)
. Then θ fixes A(∞) and maps A(t) to

A(t + y). To obtain a θ as described in 10.5.2 and 10.5.3, put A = C = E = M = 0, B =
(

0 −1
1 0

)
,

D =
(

0 −1
3 0

)
, K =

(
0 −1
1 0

)
, x = 1. Then θ interchanges A(∞) and A(0) and maps A(t) to

A(−t−1) for t 6= 0. Hence the group of automorphisms of G leaving J invariant is doubly transitive
on the elements of J .

From Section 10.4 (cf. (10.5)) and the nonsingularity of Kt−Ku for t 6= u we know that condition
K2 holds for the family J . And by the previous paragraph, to show that K1 holds it suffices to show
that A(∞).A(0)∩A(u) = 1 if u 6= 0. But this is the case provided (10.8) holds with t = 0, which holds

iff B = A0−Au =
(

u3 −3u2

0 3u

)
is definite for u 6= 0. If q is odd, B is definite iff −det(B + BT ) is a

nonsquare in F iff −3 is a nonsquare in F iff q ≡ 2 (mod 3). If q is even, B = u

(
u2 u
0 1

)
is definite

iff x2 + x + 1 is irreducible over F iff q ≡ 2 (mod 3).
Hence K∗(q) really is a STGQ of order (q2, q) for each prime power q, q ≡ 2 (mod 3). The

point (∞) of K∗(q) = S(G, J) is regular, in fact a center of symmetry. Moreover, we claim that
for q > 2 the point (∞) is the unique regular point of K∗(q). Since the group of collineations of
K∗(q) fixing (∞) is (doubly) transitive on the lines through (∞) and transitive on the points not
collinear with (∞), we need only find some α ∈ F 2, α 6= 0, for which the pair (A∗(∞), (α, 0, 0)) is
not regular. By 10.5.5 we need an α such that for some nonzero t, u ∈ F there is no v ∈ F for
which α(Kv − Kt − Ku) = 0 and α(Av − At − Au)αT = 0. For q odd, put α = (0,−1). Then
α(Kv − Kt − Ku) = (2(t + u − v), 3(t2 + u2 − v2)), which cannot be zero for any choice of nonzero
t and u. For q even, put α = (1, 0). Then α(Kv −Kt −Ku) = 0 holds iff v = t + u, in which case
α(Av − At − Au)αT = tu(t + u). So for q > 2, choose t and u to be any distinct nonzero elements of
F .

Of course, when q = 2, K∗(q) is the unique GQ of order (4, 2) and hence must have all points
regular. The above paragraph shows that W.M. Kantor’s examples are indeed new, since the previously
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Figure 10.2

known examples of GQ of order (q2, q) are just the dual of the TGQ T3(O), and T3(O) has a coregular
point.

As was indicated in 3.1.6, W.M. Kantor [89] gave a geometrical construction of K(q) in terms of
the classical generalized hexagon H(q). To complete this section we sketch this approach to K(q).

By J. Tits [221] the generalized hexagon H(q) can be constructed as follows. Let U1 = {(x, 0, 0, 0, 0, 0)‖x ∈
GF(q)}, . . . , U6 = {(0, 0, 0, 0, 0, x)‖x ∈ GF(q)} be six groups isomorphic to the additive group of GF(q).
The representative of x ∈ GF(q) in Ui is denoted by xi. Further, let U+ = U1.U2.U3.U4.U5.U6 =
{(x, y, z, u, v, w)‖x, . . . , w ∈ GF(q)} be defined by the commutation relations (we may assume (a, b) =
a−1b−1ab):

(x1, y4) = (x1, y3) = (x1, y2) = (x2, y5) = (x2, y3) =
(x3, y5) = (x3, y4) = (x4, y5) = (x3, y6) = (x5, y6) = 1;
(x1, y5) = (−xy)3;
(x2, y4) = (3xy)3;
(x1, y6) = (xy)2(−x2y3)3(xy2)4(xy3)5;
(x2, y6) = (−3x2y)3(2xy)4(3xy2)5;
(x4, y6) = (3xy)5.

The generalized hexagon H(q) may now be described in terms of the group U+.
Let T ∗i , 0 6 i 6 11, be defined by

T ∗i = Ti+7 and Ti = T ∗i+7 if 1 6 i 6 5 and T ∗6 = T ∗7 = U+.
(Here subscripts are taken modulo 12.)

Points (resp., lines) of the generalized hexagon are the pairs (si, u) with i ∈ {0, . . . , 11} and i odd
(resp., even), and u an element of the group Ti above si in Figure 10.2. Incidence is defined as follows:
(si, u) I (sj , u

′) ⇔ i ∈ {j − 1, j + 1} (mod 12) and the intersection of the cosets of T ∗i and T ∗j in U+

containing u and u′, respectively, is nonempty.
Let q ≡ 2 (mod 3) and define as follows the incidence structure S∗ = (P∗,B∗, I∗), with pointset

P∗ and lineset B∗.
The elements of P∗ are:
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(a) The points of H(q) on the line L = (s6, 1), i.e. the points (s7, 1) and (s5, u), u ∈ U6.

(b) The lines of H(q) at distance 4 from L, i.e. the lines (s10, u), u ∈ U1U2U3, and (s2, u), u ∈
U3U4U5U6.

The elements of B∗ are:

(i) The line L = (s6, 1).

(ii) The points of H(q) at distance 3 from L, i.e. the point (s9, u), u ∈ U1U2, and (s3, u), u ∈ U4U5U6.

(iii) The lines of H(q) at distance 6 from L, i.e. the lines (s0, u), u ∈ U1U2U3U4U5.

Incidence (I∗) is defined by:

A point of type (a) is defined to be incident with L and with all the lines of type (ii) at distance
2 (in H(q)) from it; a point of type (b) is defined to be incident with the lines of type (ii) and
(iii), respectively, at distance 1 or 2 (in H(q)) from it. Hence: (s7, 1) I∗ (s6, 1); (s7, 1) I∗ (s9, u),
u ∈ U1U2; (s5, u) I∗ (s6, 1), u ∈ U6; (s5, u) I∗ (s3, u

′), u ∈ U6, u′ ∈ U4U5U6 with U1U2U3u
′ ⊂

U1U2U3U4U5u; (s10, u) I∗ (s9, u
′), u ∈ U1U2U3, u′ ∈ U1U2, with U4U5U6u ⊂ U3U4U5U6u

′;
(s10, u) I∗ (s0, u

′), u ∈ U1U2U3, u′ ∈ U1U2U3U4U5 with U6u
′ ⊂ U4U5U6u; (s2, u) I∗ (s3, u

′),
u ∈ U3U4U5U6, u′ ∈ U4U5U6, with U1U2u ⊂ U1U2U3u

′; (s2, u) I∗ (s0, u
′), u ∈ U3U4U5U6,

u′ ∈ U1U2U3U4U5, with U6u
′ ∩ U1U2u 6= ∅.

This description os S∗ may be interpreted as follows.
The elements of P∗ are:

(a) (s7, 1) = [∞] and the cosets of U1U2U3U4U5.

(b) The cosets of U4U5U6 and U1U2.

The elements of B∗ are:

(i) L = (∞).

(ii) The cosets of U3U4U5U6 and U1U2U3.

(iii) The cosets of U6.

Incidence (I∗) is given by:

(∞) is incident with all points of type (a); a coset of U3U4U5U6 is incident with [∞] and with
each coset of U4U5U6 contained in it; a coset of U1U2U3 is incident with the coset of U1U2U3U4U5

containing it and the cosets of U1U2 contained in it; a coset of U6 is incident with the coset of
U4U5U6 containing it and with the cosets of U1U2 having a nonempty intersection with it.

Let G be the group U1U2U3U4U5 (= T0). The elements of G are of the form (a, b, c, d, e, 0) =
(a, b, c, d, e). It can be shown that (a, b, c, d, e).(a′, b′, c′,
d′, e′) = (a + a′, b + b′, c + c′ + a′e− 3b′d, d + d′, e + e′) and that x−1

6 (a, b, c, d, e)x6

= (a, b + ax, c− 3b2x− 3abx2 − a2x3, d + 2bx + ax2, e + 3dx + 3bx2 + ax3), with x6 the representative
of x in U6.

Now let us make the following identifications:
Each coset of G in U+ is identified with its intersection with U6; each coset of U4U5U6 is identified

with its intersection with G; the coset
U1U2u6u1u2u3u4u5, ui ∈ Ui, of U1U2 is identified with the coset
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u−1
6 U1U2u6u1u2u3u4u5 of u−1

6 U1U2u6 in G; each coset of U3U4U5U6 is identified with with its in-
tersection with G; the coset U1U2U3u6u1u2u3u4u5, ui ∈ Ui, of U1U2U3 is identified with the coset
u−1

6 U1U2U3u6u1u2u3u4u5 of u−1
6 U1U2U3u6 in G; each coset of U6 is identified with its intersection

with G.
The description of S∗ may be reinterpreted once more as follows.

The elements of P∗ are:

(a) [∞] and the elements [u] with u ∈ GF(q).

(b) The cosets of A(∞) = U4U5 in G, and the cosets of A(u) = u−1
6 U1U2u6, u ∈ GF(q), in G.

The elements of B∗ are:

(i) (∞).

(ii) The cosets of A∗(∞) = U3U4U5 in G, and the cosets of A∗(u) = u−1
6 U1U2U3u6, u ∈ GF(q), in G.

(iii) The elements of G.

Incidence (I∗) is defined by:

(∞) is incident with all points of type (a); a coset of A∗(∞) is incident with [∞] and all cosets of
A(∞) contained in it; a coset of A∗(u) is incident with [u] and with the cosets of A(u) contained
in it; an element of G is incident with the cosets of A(∞) and A(u) (for each u ∈ GF(q))
containing it. Since

A(∞) = {(0, 0, 0, d, e)‖d, e ∈ GF(q)},
A(u) = {(a, au + b,−a2u3 − 3abu2 − 3b2u, au2 + 2bu,

au3 + 3bu2)‖a, b ∈ GF(q)},
A∗(∞) = {(0, 0, c, d, e)‖c, d, e ∈ GF(q)},
A∗(u) = {(a, au + b,−a2u3 − 3abu2 − 3b2u + c, au2 + 2bu,

au3 + 3bu2)‖a, b, c ∈ GF(q)},

or

A(∞) = {(0, 0, 0, d, e)‖d, e ∈ GF(q)},
A(u) = {(a, b,−a2u3 + 3abu2 − 3b2u,−au2 + 2bu,

−2au3 + 3bu2)‖a, b ∈ GF(q)},
A∗(∞) = {(0, 0, c, d, e)‖c, d, e ∈ GF(q)},
A∗(u) = {(a, b, c,−au2 + 2bu,−2au3 + 3bu2)‖a, b, c ∈ GF(q)},

S∗ clearly is isomorphic to the dual K(q) of K∗(q).

Thus we have a purely geometrical description of K(q) in terms of the generalized hexagon H(q).
It was this description which was given in 3.1.6 as the definition of K(q).

10.7 4-gonal Bases: Span-Symmetric GQ

Let S = (P,B, I) be a GQ of order (s, t) with a regular pair (L0, L1) of nonconcurrent lines, so that
1 < s 6 t 6 s2. Put {L0, L1}⊥ = {M0, . . . ,Ms}, {L0, L1}⊥⊥ = {L0, . . . , Ls}. Let Si be a group of
symmetries about Li, 0 6 i 6 s. Suppose that at least two (and hence all) of the Si’s have order s (if
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θ ∈ S0 sends L1 to Lj , j 6= 0, then θ−1S1θ = Sj). It follows that each Li is an axis of symmetry, and
we say that S is span-symmetric with base span {L0, L1}⊥⊥. The general problem which this section
just begins to attack is the determination of all span-symmetric GQ. However, in this section we begin
to consider the general problem, with special emphasis on the case s = t. In that case S may be
described as a kind of group coset geometry.

Put G =< S0, . . . , Ss >=< Si, Sj >, 0 6 i, j 6 s, i 6= j. Using 2.4 and 2.2.2 it is routine to verify
the following result.

10.7.1. If id 6= θ ∈ G, then the substructure Sθ = (Pθ,Bθ, Iθ) of elements fixed by θ must be given by
one of the following:

(i) Pθ = ∅ and Bθ is a partial spread containing {L0, L1}⊥.

(ii) There is a line L ∈ {L0, L1}⊥⊥ for which Pθ is the set of points incident with L, and M ∼ L for
each M ∈ Bθ ({L0, L1}⊥ ⊂ Bθ).

(iii) Bθ consists of {L0, L1}⊥ together with a subset B′ of {L0, L1}⊥⊥; Pθ consists of those points
incident with lines of B′.

(iv) Sθ is a subquadrangle of order (s, t′) with s 6 t′ < t. This forces t′ = s and t = s2.

10.7.2. If t < s2 then G acts regularly on the set Ω of s(s + 1)(t − 1) points of S not incident with
any line of {L0, L1}⊥⊥.

Proof. That G acts semiregularly on Ω is immediate from 10.7.1. That G is transitive on Ω follows
from 9.4.1, as we now show. For suppose G is not transitive on Ω. Put O = P − Ω. It is easy to
check that conditions (i) through (v) of 9.4.1 are satisfied, with |O| = (1 + s)2, b̄ = 2s. Hence s2 6 t,
contradicting the hypothesis of 10.7.2. 2

Note that S0, . . . , Ss form a complete conjugacy class of subgroups of order s in the group G. Put
S∗i = NG(Si), 0 6 i 6 s. It is routine to coplete a proof of the following, assuming that t < s2.

10.7.3. (i) |G| = s(s + 1)(t− 1).

(ii) S∗i = GLi, 0 6 i 6 s.

(iii) |S∗i | = s(t− 1), 0 6 i 6 s.

(iv) |S∗i ∩ S∗j | = t− 1, if i 6= j, 0 6 i, j 6 s.

(v) |S∗i ∩ Sj | = 1, if i 6= j, 0 6 i, j 6 s.

(vi) |SiSj ∩ Sk| = 1, if 0 6 i, j, k 6 s with i, j, k distinct.

Put Σ = {L0, . . . , Ls}. Then G is doubly transitive on Σ, and S∗ =
⋂

i S
∗
i is the kernel of this

action. W.M. Kantor [88] has used results of C. Hering - W.M. Kantor - G. Seitz - E.E. Shult on
doubly transitive permutation groups to give a group-theoretical proof of the following.

10.7.4. (W.M. Kantor [88]). If s < t < s2, then no span-symmetric GQ of order (s, t) exists.

We would like to see a more elementary proof of this result. And in the case t = s2 we have seen
no proof that S ∼= Q(5, s) even using heavy group theory.
For the remainder of this section we assume s = t.
Thus G is a group of order s3 − s, s > 2, having a collection T = {S0, . . . , Ss} of 1 + s subgroups,
each of order s. T is a comlete conjugacy class in G; Si ∩ NG(Sj) = 1 if i 6= j, 0 6 i, j 6 s; and
SiSj ∩ Sk = 1 for distinct i, j, k, 0 6 i, j, k 6 s. Under these conditions we say that T is a 4-gonal
basis for G. Conversely, our main goal in this section is to show how to recover a span-symmetric GQ
from a 4-gonal basis T . First we offer a simple lemma.



146 Finite generalized quadrangles

10.7.5. Let S be a GQ of order (s, s) with a fixed regular pair {L0, L1} of nonconcurrent lines. If
each line of {L0, L1}⊥⊥ is regular, then each line of {L0, L1}⊥ is regular.

Proof. We use the same notation as above: {L0, L1}⊥⊥ = {L0, . . . , Ls}, {L0, L1}⊥ = {M0, . . . ,Ms}.
Let M be any line not concurrent with Mi for some fixed i, 0 6 i 6 s. Then M must be a line not
concurrent with Mi for some fixed i, 0 6 i 6 s. Then M must be incident with a point x = Lj ∩Mk

for some j and k (s = t implies each line meets some Mk). Since Lj is regular, it follows that the pair
(Mi,M) is regular, and hence Mi must be regular. 2

Return now to the case where S is span-symmetric with G, Si, Ω, etc., as above. Let x0 be a
fixed point of Ω. For each y ∈ Ω there is a unique element g ∈ G for which xg

0 = y. In this way
each point of Ω is identified with a unique element of G. Let Ni be the line through x0 meeting Li.
Points of Ni in Ω correspond to elements of Si. Let zi be the point of Li on Ni, 0 6 i 6 s. For i 6= j,
S∗i ∩ S∗j acts regularly on the points of {zi, zj}⊥ ∩ Ω. It follows that S∗i = Si(S∗i ∩ S∗j ) = (S∗i ∩ S∗j )Si

((S∗i ∩ S∗j )Si ⊂ S∗i and |(S∗i ∩ S∗j )Si| = |S∗i | = s(t− 1)) acts reularly on the points of z⊥i ∩ Ω, so that
the elements of a given coset gSi = Sig of Si in S∗i correspond to the points of a fixed line through
zi. Hence we may identify S∗i with zi. Suppose that lines of {L0, L1}⊥ are labeled so that S∗i = zi

is a point of Mi. Let g ∈ G map x0 to a point collinear with Lj ∩Mi (keep in mind that g fixes
Mi). Then each point of x

S∗i g
0 is collinear with Lj ∩Mi, so we may identify Lj ∩Mi with S∗i g. In this

way the points of Mi are identified with the right cosets of S∗i in G, and a line through S∗i G (not in
{L0, L1}⊥ ∪ {L0, L1}⊥⊥) is a coset of Si contained in S∗i g. Hence the points of Li consist of one coset
of S∗j for each j = 0, 1, . . . , s. If S∗i ∩ S∗j g (with S∗i 6= S∗j g) contains a point y = xh

0 , then Sih is the
line joining S∗i and y, and Sjh is the line joining S∗j g and y. Hence if S∗j g is a point of Li (and hence
collinear with S∗i ), i 6= j, it must be that S∗i ∩ S∗j g = ∅. We show later that for each j, j 6= i, S∗i is
disjoint from a unique right coset of S∗j , so that the points of Li are uniquely determined as S∗i and
the unique right coset of S∗j disjoint from S∗i for j = 0, 1, . . . , s, j 6= i.

Conversely, now let G be an abstract group of order s3 − s with 4-gonal basis T = {S0, . . . , Ss}.
Put S∗i = NG(Si). Clearly s + 1 = (G : S∗i ), so |S∗i | = s(s − 1). Since Si ∩ S∗j = 1 for i 6= j,
Si acts regularly (by conjugation) on T − {Si}, and hence S∗i acts transitively on T − {Si}. Since
any inner automorphism of G moving Sj to Sk also moves S∗j to S∗k , S∗i also acts transitively on
{S∗0 , . . . , S∗s}−{S∗i }, and {S∗0 , . . . , S∗s} is a complete conjugacy class in G. As the number of conjugates
of S∗i in G is 1 + s = (G : NG(S∗i )), and 1 + s = (G : S∗i ), it follows that S∗i = NG(S∗i ). As S∗i
acts transitively on T − {Si}, the subgroup of S∗i fixing Sj , i 6= j, has order |S∗i |/s = s − 1, i.e.
|S∗i ∩ S∗j | = s− 1, and S∗i is a semidirect product of Si and S∗i ∩ S∗j .

10.7.6. Let S∗i gi and S∗j gj be arbitrary cosets of S∗i and S∗j , i 6= j. Then S∗i gi ∩ S∗j gj = ∅ iff gjg
−1
i

sends S∗j to S∗i under conjugation. Moreover, if S∗i gi ∩ S∗j gj 6= ∅, then |S∗i gi ∩ S∗j gj | = s− 1.

Proof. If x ∈ S∗i ∩S∗j g, a standard argument shows that S∗i ∩S∗j g = {tx‖t ∈ S∗i ∩S∗j }, so |S∗i ∩S∗j g| =
s− 1. Since |S∗i | = s(s− 1), S∗i meets s cosets of S∗j and is disjoint to from the one remaining. Two
elements x, y ∈ G send S∗j to the same S∗k iff they belong to the same right coset of NG(S∗j ) = S∗j ,
i.e. iff xy−1 ∈ S∗j . Suppose g maps S∗j to S∗i : S∗i = g−1S∗j g, i 6= j. Then g 6∈ S∗j , so ∅ = g−1S∗j ∩ S∗j ,
implying ∅ = g−1S∗j g ∩S∗j g = S∗i ∩S∗j g. Hence S∗i ∩S∗j g = ∅ for all g in that coset of S∗j mapping S∗j
to S∗i . Translating by gi, we have S∗i gi ∩ S∗j ggi = ∅ iff (ggi)g−1

i = g maps S∗j to S∗i . 2

10.7.7. Let i, j, k be distinct, and S∗i gi, S
∗
j gj , S

∗
kgk be any three cosets of S∗i , S∗j , S∗k. If S∗i gi∩S∗j gj = ∅

and S∗i gi ∩ S∗kgk = ∅, then S∗j gj ∩ S∗kgk = ∅.

Proof. If S∗i gi ∩S∗j gj = ∅ and S∗kgk ∩S∗i gi = ∅, then gjg
−1
i maps S∗j to S∗i and gig

−1
k maps S∗i to S∗k .

Hence (gjg
−1
i )(gig

−1
k ) = gjg

−1
k maps S∗j to S∗k , implying S∗j gj ∩ S∗kgk = ∅. 2

We are now ready to state the following main result.
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10.7.8. (S.E. Payne [136]). A span-symmetric GQ of order (s, s) with given base span {L0, L1}⊥⊥ is
canonically equivalent to a group G of order s3 − s with a 4-gonal basis T .

Proof. We show that for each group G with 4-gonal basis T there is a span-symmetric GQ of order
(s, s), denoted S(G, T ). However, we leave to the reader the details of showing that starting with a
span-symmetric GQ S of order (s, s), with base span {L0, L1}⊥⊥, deriving the 4-gonal basis T of the
group G generated by symmetries about lines in {L0, L1}⊥⊥, and then constructing S(G, T ) insures
that S and S(G, T ) are isomorphic.

So suppose G and T are given, |G| = s3 − s. Then S(G, T ) = (PT ,BT ,
IT ) is constructed as follows.
PT consists of two kinds of points:

(a) Elements of G (s3 − s of these).

(b) Right cosets of the S∗i ’s ((s + 1)2 of these).

BT consists of three kinds of lines:

(i) Right cosets of Si, 0 6 i 6 s ((s + 1)(s2 − 1) of these).

(ii) Sets Mi = {S∗i g‖g ∈ G}, 0 6 i 6 s (s + 1 of these).

(iii) Sets Li = {S∗j g‖S∗i ∩ S∗j g = ∅, 0 6 j 6 s, j 6= i} ∪ {S∗i }, 0 6 i 6 s (1 + s of these).

IT is the natural incidence relation: a line Sig of type (i) is incident with the s points of type (a)
contained in it, together with that point S∗i g of type (b) containing it. The lines of types (ii) and (iii)
are already described as sets of those points with which they are to be incident. By 10.7.7 two cosets
of distinct S∗j ’s are collinear (on a line of type (iii)) only if they are disjoint. In such a way there arise
(s + 1)2s/2 pairs of disjoint cosets of distinct S∗j ’s. Since for a given coset S∗j g and given k, k 6= j,
there is just one coset S∗kh disjoint from S∗j g, the total number of pairs of disjoint cosets of distinct
S∗j ’s also equals (s + 1)2s/2. Hence two cosets of distinct S∗j ’s are collinear iff they are disjoint.

It is now relativley straightforward to check S(G, T ) is a tactical configuration with 1 + s points
on a line, 1 + s lines through each point, at most one common line incident with two given points,
1 + s + s2 + s3 points and also that many lines, and having no triangles. Hence S(G, T ) is a GQ of
order (s, s) (having {Li, Lj}⊥ = {M0, . . . ,Ms}, i 6= j).

In the construction just given, G acts on S(G, T ) by right multiplication (leaving all lines Mi

invariant) so that Si is the full group of symmetries about Li, 0 6 i 6 s, and S∗i is the stabilizer of
Li in G. This can be seen as follows. For x ∈ G, let x̀ denote the collineation determined by right
multiplication by x. Clearly x̀ fixes Li provided S∗j g ∩ S∗i = ∅ implies S∗j gx ∩ S∗i = ∅, which occurs
iff S∗i x = S∗i iff x ∈ S∗i . Moreover, if x ∈ S∗i , then x̀ fixes each point of Li. Let L be some line of
(i) meeting Li at, say S∗j g for some j 6= i, where g−1S∗j g = S∗i (implying g−1Sjg = Si). Then L is
some coset of Sj contained in S∗j g, say L = Sjtjg where tj ∈ S∗j . And x̀ : L 7→ L iff Sjtjgx = Sjtjg iff
g−1(t−1

j Sjtj)gx = g−1(t−1
j Sjtj)g iff g−1Sjgx = g−1Sjg iff Six = Si. Hence Si is the set of all s ∈ G for

which g̀ fixes each line of S(G, T ) meeting Li. Now it is immediate that S(G, T ) is span-symmetric
with base span {L0, L1}⊥⊥. 2

Any automorphism of G leaving T invariant must induce a collineation of S(G, T ). In particular,
for each g ∈ G, conjugation by g yields a collineation ĝ of S(G, T ). But conjugation by g followed by
right multiplication by g−1 yields a collineation ǵ given by left multiplication by g−1. Then g 7→ ǵ is
a representation of G as a group of collineations of S(G, T ) in which Si is a full group of symmetries
about Mi, and S∗i is the stabilizer of Mi. This is easily checked, so that we have proved the following.

10.7.9. If S is a span-symmetric GQ of order (s, s) with base span {L0, L1}⊥⊥, then each line of
{L0, L1}⊥ is also an axis of symmetry.
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It is natural to conjecture that a span-symmetric GQ of order (s, s) is isomorphic to Q(4, s) and
G ∼= SL(2, s).

We bring this section to a close with the observation that the unique GQ of order (4, 4) (cf. 6.3) has
an easy description as a span-symmetric GQ S = S(G, T ), where G = SL(2, 4) ∼= A5, the alternating
group on {1, 2, 3, 4, 5}. Let Si be the Klein 4-group on the symbols {1, 2, 3, 4, 5} − {i}, 1 6 i 6 5. For
example, S1 = {e, (23)(45), (24)(35), (25)(34)}. Then S∗i = NG(Si) is the alternating group on the
symbols {1, 2, 3, 4, 5} − {i}. It follows that T = {S1, . . . , S5} is a 4-gonal basis for A5.



Chapter 11

Coordinatization of Generalized
Quadrangles with s = t

11.1 One Axis of Symmetry

The modern theory of projective planes depends to a very great extent upon the theory of planar
ternary rings, either as introduced by M. Hall, Jr. (cf.[69]) or as modified in some relatively modest
way (e.g., compare the system used by D.R. Hughes and F. Piper [86]). An analogous general coor-
dinatization theory for GQ has yet to be worked out, and indeed seems likely to be too complicated
to be useful. In this chapter a preliminary version of such a theory is worked out for a special class
of GQ of order (s, s), starting with those having an axis of symmetry. Throughout this chapter we
assume s > 1.

Let S = (P,B, I) be a GQ of order (s, s) having a line L∞ that is an axis of symmetry. Then L∞
is regular, so by 1.3.1 there is a projective plane based at L∞ whose dual is denoted by π∞. The lines
of π∞ are the lines of S in L⊥∞, and the points of π∞ are the spans of the form {M,N}⊥⊥ where M,N
are distinct lines in L⊥∞. Clearly the points of the form {M,N}⊥⊥ with M and N concurrent in L⊥∞
may be identified with the points of S incident with L∞. The coordinatization of S begins with a
coordinatization of π∞.

To begin, choose L∞ and some three lines of S meeting L∞ at distinct points and not lying in a
same span as the coordinatizing quadrangle of π∞. Then there is a planar ternary ring R = (R, F )
with underlying set R, |R| = s, and ternary operation F , so that R coordinatizes π∞ as follows.
There are two distinguished elements of R denoted 0 and 1, respectively. The ternary operation F is
a function from R×R×R into R satisfying five conditions (cf.[86]) :

F (a, 0, c) = F (0, b, c) = c for all a, b, c ∈ R. (11.1)
F (1, a, 0) = F (a, 1, 0) = a for all a ∈ R. (11.2)
Given a, b, c, d ∈ R with a 6= c, there is a unique x ∈ R
for which F (x, a, b) = F (x, c, d). (11.3)
Given a, b, c ∈ R, there is a unique x ∈ R
for which F (a, b, x) = c. (11.4)
For a, b, c, d ∈ R with a 6= c, there is a unique pair of elements
x, y ∈ R for which F (a, x, y) = b and F (c, x, y) = d (11.5)

The line L∞ of π∞ is assigned the coordinate [∞] and the other three lines in the coordinatizing
quadrangle have coordinates [0], [0, 0], and [1, 1], respectively. More generally, π∞ has lines [∞], [m],
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[a, b], for a, b, m ∈ R, and π∞ has points (∞), (a), ((m, k)), a, k, m ∈ R. Here [∞], [m], [a, b] are the
lines of S in L⊥∞ (= [∞]⊥); (∞) and (a) are the points of S on [∞], and ((m, k)) is a set of lines of
the form {M,N}⊥⊥ with M and N concurrent lines in L⊥∞. Incidence in π∞ is given by (11.6).

[a, b] is incident with (a) and with ((m, k)) provided b = F (a,m, k).
[m] is incident with ((m, k)) and with (∞).
[∞] is incident with (a) and with (∞).
This is for all a, b, m, k ∈ R.

(11.6)

As [∞] is an axis of symmetry as a line of S, there is an additively written (but not known to be
abelian) group G of order s acting as the group of symmetries of S about [∞]. If M is any line of π∞
different from [∞], then G acts sharply transitively on the points of M (in S) not on [∞]. Hence each
point x of S not on [∞] will somehow be identified by means of the line of π∞ through x and some
element of G.

Let x be an arbitrary point of S on [0] but not on [∞], and let y be the point on [0, 0] collinear
with x. Give x the coordinates (0, 0), where the lefthand 0 is the zero element of R and the right
hand 0 is the zero (i.e.identity) of G. Then for g ∈ G, give xg the coordinates (0, g). Similarly, let
the point on [m] collinear with yg have coordinates (m, g). Then each point of S in (∞)⊥ has been
assigned coordinates. Moreover, if g ∈ G, then (∞)g = (∞), (a)g = (a), and (m, g1)g2 = (m, g1 + g2).

Now let z be any point of S not collinear with (∞). On [0] and [∞] there are unique points, say
(0, g) and (a), respectively, collinear with z. If the points (a) and z lie on the line [a, b], we assign to
z the coordinates (a, b, g). So (a, b, g) is the unique point on [a, b] collinear with (0, g).

Given a point (m, g) and a line [a, b], there is a unique point z on [a, b] collinear with (m, g). Then z
must have coordinates of the form (a, b, g′), where g′ = U(a, b, m, g) for some function U : R3×G→ G.
By construction it has been arranged so that

U(0, 0,m, g) = g = U(a, b, 0, g). (11.7)

It is also clear that if a, b, m ∈ R are fixed, the map

Ua,b,m : g 7→ U(a, b, m, g) permutes the elements of G. (11.8)

It now remains to assign coordinates to those lines of S not concurrent with [∞]. Let L be such
a line. Then L is incident with a unique point having coordinates of the form (m, g). Moreover,
{L, [∞]}⊥ consists of those lines through a unique point ((m, k)) of the plane π∞. Assign to L the
coordinates [m, g, k]. Then g′ in G acts as follows.

(a, b, g)g′ = (a, b, g + g′), and [m, g, k]g
′
= [m, g + g′, k]. (11.9)

For a,m, k ∈ R, g ∈ G, the following must hold :

(a, F (a,m, k), U(a, F (a,m, k),m, g)) is on [m, g, k]. (11.10)

Acting on the incident pair in (11.10) by a symmetry g′, we have

(a, F (a,m, k), U(a, F (a,m, k),m, g) + g′) is on [m, g + g′, k]. (11.11)

But (a, F (a,m, k), U(a, F (a,m, k),m, g + g′)) is on [m, g + g′, k] and must be the only point of
[a, F (a,m, k)] on [m, g + g′, k]. Hence

U(a, F (a,m, k),m, g + g′) = U(a, F (a,m, k),m, g) + g′. (11.12)

So we may define U0 : R3 → G by U0(a, b, m) = U(a, b, m, 0), giving
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U(a, b, m, g) = U0(a, b, m) + g. (11.13)

Then (11.7) becomes

U0(0, 0,m) = U0(a, b, 0) = 0 (11.14)

and (11.8) is automatically satisfied.
At this point we have established the following.

11.1.1. Let S be a GQ or order s having a line that is an axis of symmetry. Then S may be realized
in the following manner. There is a planar ternary ring R = (R, F ) with |R| = s. There is a group
G (written additively but not shown to be commutative) with |G| = s. Finally, there is a function
U0 : R3 → G satisfying (11.14). The points and lines of S have coordinates as follows :

Type I Type II Type III Type IV
points (a, b, g) (m, g) (a) (∞) k, a, b,m ∈ R
lines [m, g, k] [a, b] [m] [∞] g ∈ G.

Incidence in S is described as follows :

(∞) is on [∞] and on [m], m ∈ R.
(a) is on [∞] and on [a, b], a, b ∈ R.
(m, g) is on [m] and on [m, g, k], m, k ∈ R, g ∈ G.
(a, b, g′) is on [a, b], and on [m, g, k] provided b = F (a,m, k)

(11.15)

and g′ = U0(a, b, m) + g, a, b, m, k ∈ R, g, g′ ∈ G.

Conversely, given R = (R, F ), G and U0, we would like to construct a GQ S with points and lines
described above and satisfying the incidence relation given in (11.15). Using just the properties of
R, F, U0 described so far a routine check shows that S is at least an incidence structure with 1 + s
points on each line, 1 + s lines through each point, two points on at most one common line, and
allowing (possibly) only triangles each of whose sides is a line of type I. Hence S is indeed a GQ
iff it has no triangles whose sides are lines of type I, and we now determine necessary and sufficient
conditions on U0 for this to be the case.

Consider a hypothetical triangle of S with sides of type I. There are just two cases : one vertex of
the triangle is a point of type II and the other two are of type I, or all three vertices are of type I.
Case (i). One vertex is of type II.
In this case the triangle is as indicated in Fig.11.1, where

xi = (ai, F (ai,m, ki), U0(ai, F (ai,m, ki),m) + g)
= (ai, F (ai,m

′, k′), U0(ai, F (ai,m
′, k′),m′) + g′), for i = 1, 2.

Furthermore, each g ∈ G acts as a collineation of the resulting incidence structure (whether or not
it is a GQ) in the following manner.

(∞)g = (∞) (a)g = (a) [∞]g = [∞] [m]g = [m]
(m, g′)g = (m, g′ + g) [a, b]g = [a, b]
(a, b, g′)g = (a, b, g′ + g) [m, g′, k]g = [m, g′ + g, k].

(11.16)

Hence the triangle of Case (i) may be replaced (with a slight change of notation) with the triangle of
Fig.11.1.

The condition that this kind of triangle does not appear is precisely the following : If F (ai,m, ki) =
F (ai,m

′, k′) for i = 1, 2, and if
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Figure 11.1:

Figure 11.2:
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Figure 11.3:

U0(ai, F (ai,m, ki),m) = U0(ai, F (ai,m
′, k′),m′) + g, i = 1, 2, then m = m′ or a1 = a2. Notice that

k1 = k2 iff m = m′ or a1 = a2. We restate this as :

If bi = F (ai,m, ki) = F (ai,m
′, k′) for i = 1, 2, and if

−U0(a1, b1,m
′) + U0(a1, b1,m) = −U0(a2, b2,m

′) + U0(a2, b2,m),
then m = m′ or a1 = a2.

(11.17)

Case (ii). All three vertices are of type I.
In this case the triangle is as indicated in Fig.11.1, where bj = F (aj ,mi, ki) and gj = U0(aj , bj ,mi)+gi,
for i 6= j. Hence this triangle is impossible iff the following holds.

If bj = F (aj ,mj−1, kj−1) = F (aj ,mj+1, kj+1), and if
U0(aj , bj ,mj−1) + gj−1 = U0(aj , bj ,mj+1) + gj+1, for j = 1, 2, 3,
subscripts taken modulo 3, (ai, bi, ki,mi ∈ R, gi ∈ G), then it
must follow that the mi’s are not distinct or
the ai’s are not distinct.

(11.18)

Let R = (R, F ) be a planar ternary ring as above, G a group with |G| = |R| = s. Let U0 : R3 → G
be a function satisfying (11.14), (11.17) and (11.18). Then U0 is called a 4-gonal function, and the
triple (R, G, U0) is a 4-gonal set up. We have established the following theorem.

11.1.2. The existence of a GQ S or order s with an axis of symmetry is equivalent to the existence
of a 4-gonal set up (R, G, U0) with |R| = s.

It seems very difficult to study 4-gonal set ups in general. Hence in the next few sections we
investigate conditions on (R, G, U0) that correspond to the existence of additional collineations of the
associated GQ, beginning with (essentially) a pair of concurrent axes of summetry.
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Figure 11.4:

11.2 Two concurrent axes of symmetry

Let S be a GQ of order s with a line that is an axis of symmetry. Moreover, let S be coordinatized
as in the preceding section, so that [∞] is the hypothesized axis of symmetry. If there is a second line
through (∞) that is an axis of symmetry, we may assume without any loss in generality that it is [0].
Our next step is to determine necessary and sufficient conditions in terms of the coordinate system
for [0] to be an axis of symmetry.

Let θ be a symmetry about [0] moving (0) to (a), 0 6= a ∈ R. Then the point (0, k, g) on [0, k]
and on [m,−U0(0, k, m) + g, k] for each m ∈ R must be mapped by θ to the point (a, k, g) on [0, k, g]
collinear with (a). The points and lines involved are indicated in the incidence diagram of Fig.11.2.
Here a, k, m ∈ R, 0 6= a,m, and g ∈ G are arbitrary. Then g′ ∈ G and k′ ∈ R are determined by
k = F (a,m, k′) and g′ = −U0(a, k, m) + g. This determines the effect of θ on all points of [m]

(m, g)θ = (m,−U0(a, k, m) + U0(0, k,m) + g). (11.19)

Hence −U0(a, k, m)+U0(0, k,m) must be independent of k for fixed nonzero a,m ∈ R. Putting k = 0
yields the following

(m, g)θ = (m,−U0(a, 0,m) + g). (11.20)
[m, g, k]θ = [m,−U0(a, 0,m) + g, k′],where k = F (a,m, k′). (11.21)
U0(a, k, m) = U0(0, k,m) + U0(a, 0,m), for a, k, m ∈ R. (11.22)

For t, m, k ∈ R, m 6= 0, g ∈ G, consider the incidences indicated in Fig.11.2.
The image of (t, F (t, m, k), U0(t, F (t, m, k),m) + g) under θ must be on [0, U0(t, F (t, m, k),m) +

g, F (t, m, k)] and on [m,−U0(a, 0,m) + g, k′], where by (11.21) we have k = F (a,m, k′). Hence the
image must be of the form
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Figure 11.5:

(t, F (t, m, k), U0(t, F (t, m, k),m) + g), where (t) = (t)θand
F (t, m, k) = F (t, m, k′), and (11.23)
U0(t, F (t, m, k),m) + g = U0(t, F (t, m, k′),m)− U0(a, 0,m) + g.

(11.24)

Hence

F (t, m, F (a,m, k)) = F (t, m, k), where (t)θ = (t). (11.25)

Put m = 1 and k = 0 to obtain

t = F (t, 1, a), so F (t, m, F (a,m, k)) = F (F (t, 1, a),m, k) for m, t, k ∈ R. (11.26)

For a, b ∈ R, define a binary operation “+” on R by

a + b = F (a, 1, b). (11.27)

It is easy to show that (R,+) is a loop with identity 0.
By (11.26) with m = 1 we know “+” is associative. Hence (R,+) is a group. Then by (11.24) with k
chosen so that F (t, m, k) = 0, we have

U0(t, 0,m) + U0(a, 0,m) = U0(F (t, 1, a), 0,m) = U0(t + a, 0,m). (11.28)

Hence for each m 6= 0, a 7→ U0(a, 0,m) is a homomorphism from (R,+) to G.
If [0] is an axis of symmetry, the symmetries about [0] are transitive on the points (m, g) for fixed

m 6= 0. In that case it is clear by (11.20) that a 7→ U0(a, 0,m) is 1-1 and onto. The information
obtained so far is collected in the following theorem.

11.2.1. Let [0] be an axis of symmetry (in addition to [∞]). Then the following are true for all
a, t, m, k ∈ R



156 Finite generalized quadrangles

(i) U0(a, k, m) = U0(0, k,m) + U0(a, 0,m).

(ii) F (t, m, F (a,m, k)) = F (F (t, 1, a),m, k) = F (t + a,m, k).

(iii) U0(t, 0,m) + U0(a, 0,m) = U0(F (t, 1, a), 0,m) = U0(t + a, 0,m).

(iv) For fixed m ∈ R, 0 6= m, the map a 7→ U0(a, 0,m) is an isomorphism from (R,+) onto G.

Conversely, it is straightforward to verify that if (i), (ii) and (iii) hold, then the map θ given below
is a symmetry about [0] moving (0) to (a).

(∞)θ = (∞) (t)θ = (F (t, 1, a)) = (t + a)
(m, g)θ = (m,−U0(a, 0,m) + g)
(t, b, g)θ = (F (t, 1, a), b, g) = (t + a, b, g)
[∞]θ = [∞] [m]θ = [m]
[t, k]θ = [F(t, 1, a), k] = [t + a, k]
[m, g, k]θ = [m,−U0(a, 0,m) + g, k′],where k = F(a,m, k′).

(11.29)

For the remainder of this section we assume that [0] is an axis of symmetry.

11.2.2. The point (∞) is regular iff U0(a, b, m) is independent of b. In that case put U0(a, b, m) =
U0(a,m). Then U0(a,m) = U0(a,m′) implies either a = 0 or m = m′.

Proof. Since the group generated by all symmetries about [∞] and [0] fixes (∞) and any of its
orbits consisting of points not collinear with (∞) contains an element of the form (0, k, 0), the point
(∞) is regular iff the pair ((∞), (0, k, 0)) is regular. But {(∞), (0, 0, 0)}⊥ = {(0)} ∪ {(m, 0)|m ∈ R},
and {(0), (0, 0)}⊥ = {(∞)} ∪ {(0, k, 0)|k ∈ R}. Hence ((∞), (0, k, 0)) is regular for all k ∈ R iff
((∞), (0, 0, 0)) is regular iff (0, k, 0) and (m, 0) are collinear for all k and m iff 0 = U0(0, k,m) for all
k and m. By part (i) of 11.2.1 this is iff U0(a, b, m) is independent of b.

Now let (∞) be regular and put U0(a,m) = U0(a, 0,m). Let a,m,m′ be given. Choose k1 so that
b1 = F (a,m, k1) = F (a,m′, 0), and choose k2 so that b2 = F (0,m, k2) = F (0,m′, 0), i.e. b2 = k2 = 0.
By (11.17), if −U0(a,m′) + U0(a,m) = 0, then a = 0 or m = m′. 2

Let τ be any nonidentity symmetry about [0] and θg′ any nonidentity symmetry about [∞] as
given in (11.16). Since S has no triangles, the only fixed lines of τ ◦ θg′ = θ are the lines through (∞).
Then the result 1.9.1 applies to θ with f + g = 1 + s + s2, implying that f is odd. If (0)τ = (a), the
fixed points of θ must lie on lines of the form [m], m 6= 0, and are determined as follows :

(m, g)θ = (m,−U0(a, 0,m) + g + g′) = (m, g) iff
U0(a, 0,m) = g + g′ − g.

(11.30)

The number of fixed points of θ = τ ◦ θg′ is 1 plus the number of pairs (m, g) satisfying (11.30).
If for some m there is a g satisfying (11.30), then there are |CG(g′)| such g (here CG(h) denotes the
centralizer of h in G). So each line that has a fixed point in addition to (∞) has precisely 1+ |CG(g′)|
fixed points. If there are k such lines having fixed points other than (∞), then f = 1 + k|CG(g′)|. If
s is odd, then |G| is odd, so f being odd implies k is even.

In the known examples (∞) is coregular and hence is regular when s is even and antiregular when
s is odd. Under these conditions it is possible to say a bit more about the fixed points of θ.

11.2.3. Let θ = τ ◦ θg′ as above. Then (still under the hypothesis that both [∞] and [0] are axes of
symmetry) we have the following :

(i) If (∞) is regular, the fixed points of θ are the points of a unique line L through (∞) and the fixed
lines of θ are precisely the lines through (∞). Moreover, s is a power of 2 and G is elementary
abelian.
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(ii) If (∞) is antiregular, then either (∞) is the unique fixed point of θ, or the fixed points of θ are
precisely the points on two lines through (∞). The fixed lines are just the lines through (∞).

Proof. (i) First suppose that (∞) is regular and let θ = τ ◦ θg′ as above. The projective plane based
at (∞) is denoted by π. Clearly θ induces a central collineation θ on π with center (∞). Since (∞) is
the only fixed point of θ on [0], respectively [∞], the collineation θ is an elation with axis some line
L through (∞). It follows readily that the points of L are the fixed points of θ. We already noticed
that, since S has no triangles, the only fixed lines of θ are the lines through (∞).

Since [∞] and [0] are axes of symmetry in S, clearly the plane π is ((∞), [∞])- and ((∞), [0])-
transitive. By a well-known theorem [86] the group H of elations of π with center (∞) is an elementary
abelian p-group of order s2. Since the number of fixed points of θ is f = 1 + s, which must be odd,
s is even. Hence p = 2. As G is (isomorphic to) a subgroup of H, G is also an elementary abelian
2-group. This completes the proof of (i).

(ii) Suppose that ∞ is antiregular. By 1.5.1 s is odd. Assume that some line L through (∞) has
a second point y fixed by θ. Let π0 be the affine plane whose points are the points of (∞)⊥ − y⊥,
and whose lines are the lines through (∞) different from L and sets of the form z = {z, (∞)}⊥ − {y},
for z ∈ y⊥ − (∞)⊥. Let π denote the projective completion of π0. It follows that θ induces a central
collineation θ of π with center (∞). Since θ fixes no point of P − (∞)⊥, the only lines of π fixed by θ
must be incident with (∞). Hence (θ) is an elation and must have as axis some line A of π through
(∞). If A is a line of S through (∞) and distinct from L, i.e. A is not the line at infinity of π0, then
the points of A are the only fixed points of θ other than points on L. Then interchanging the roles of
y and some point different from (∞) on A shows that each point of L is fixed. Hence the fixed points
of θ are precisely the points of A and L. Finally, let A be the line at infinity of π0. Then θ fixes each
line through y, a contradiciton since θ = τ ◦ θg′ fixes only the lines through (∞). 2

11.3 Three concurrent axes of symmetry

11.3.1. Let L0, L1, L2 be three distinct lines through a point p in a GQ of order s. Let L0 be regular,
and suppose that the group Hi of symmetries about Li is nontrivial for both i = 1 and i = 2. Then
the group Hi is elementary abelian.

Proof. Let π be the plane based at L0. Elements of Hi induce elations of π with center Li and axis the
set of lines through p, i = 1, 2. Let σ 7→ σ be this “induction” homomorphism. Put H = 〈σ|σ ∈ H1H2〉.
Then H is elementary abelian by a well-known theorem [86]. Moreover, Hi is isomorphic to its image
in H, since the kernel of the map σ 7→ σ has only the identity in common with Hi. Hence Hi is
elementary abelian. 2

We now return to the case where S is a GQ (with [∞] and [0] as axes of symmetry) coordinatized
by (R, G, U0). It there is some m 6= 0 for which the group of symmetries about [m] is nontrivial, we
may suppose that m = 1. Our major goal in this section is to determine just when [1] is an axis of
symmetry.

11.3.2. Let 0 6= a ∈ R. If there is a symmetry about [1] moving (0) to (a), then

(i) G and (R,+) are elementary abelian.

(ii) U0(0, a + k,m) = U0(0, a,m) + U0(0, k,m), for all k, m ∈ R.

(iii) F (t, m, k) + a = F (t, m, k + a).
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Figure 11.6:

Proof. Let θ be a symmetry about [1] moving (0) to (a). By 11.3.1 we know G is elementary abelian,
and then by part (iv) of 11.2.1 (R,+) is elementary abelian. The incidence indicated in Fig 11.3 must
be valid, where

g = −U0(0, k,m) + U0(0, k, 1) + g, and
g′ = −U0(a, a + k, m) + U0(a, a + k, 1) + g, and
a + k = F (a,m, k′).

(11.31)

It follows that

(m, g)θ = (m,−U0(0, k,m) + U0(0, k, 1) + g)θ =
(m, g′) = (m,−U0(a, a + k, m) + U0(a, a + k, 1) + g).

(11.32)

For k = 0 this says

(m, g)θ = (m,−U0(a, a,m) + U0(a, a, 1) + g). (11.33)

Using (11.31), (11.32) and (11.33) we obtain

−U0(a, a + k,m) + U0(a, a + k, 1) = −U0(a, a,m) + U0(a, a, 1)
−U0(0, k,m) + U0(0, k, 1). (11.34)

This is for fixed a 6= 0, all k ∈ R, and 1 6= m ∈ R. But of course it clearly holds for m = 1. Put
m = 0 in (11.34) and use (11.22) to obtain

U0(0, a + k, 1) = U0(0, a, 1) + U0(0, k, 1). (11.35)

Then use (11.35) in (11.34)

U0(0, a + k, m) = U0(0, a, m) + U0(0, k,m). (11.36)

This proves part (ii) of 11.3.2, and along with 11.2.1 (i) and (iii) and the fact that G is abelian shows
the following.
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For each m ∈ R, the map (a, b) 7→ U0(a, b, m) is an additive
homomorphism from R⊕R to G. (11.37)

Since [m, g, k]θ = [m, g′, k′] in Fig.11.3, where a is fixed, a 6= 0, m 6= 1, a,m, k ∈ R, and g ∈ G,
and (11.31) holds, and using (11.37), we find that

[m, g, k]θ = [m,−U0(a, a,m) + U0(a, a, 1) + g, k′],
for all m, k ∈ R, g ∈ G, with a + k = F (a,m, k′).

(11.38)

Now for arbitrary t, k ∈ R, g ∈ G, x = (t, t + k, U0(t, t + k, 1) + g) is incident with [1, g, k]
and also with [0, U0(t, t + k, 1) + g, t + k]. Applying θ (and using (11.37) freely) we find that xθ =
(t+a, t+k+a, U0(t+a, t+k+a, 1)+g). It is now easy to check that θ has been completely determined
as follows.

(∞)θ = (∞) (t)θ = (t + a) [∞]θ = [∞] [m]θ = [m]
(m, g)θ = (m,−U0(a, a,m) + U0(a, a, 1) + g)
(t, b, g)θ = (t + a, b + a, U0(a, a, 1) + g)
[t, k]θ = [t + a, k + a]
[m, g, k]θ = [m,−U0(a, a,m) + U0(a, a, 1) + g, k′],
where a + k = F (a,m, k′).

(11.39)

But then since (t, F (t, m, k), U0(t, F (t, m, k),m)+ g) is on [m, g, k], it must be that (t+a, F (t, m, k)+
a, U0(a, a, 1) + U0(t, F (t, m, k),m) + g) is on [m,−U0(a, a,m) + U0(a, a, 1) + g, k′], where a + k =
F (a,m, k′). This last incidence implies the following.

F (t, m, k) + a = F (t + a,m, k′),where a + k = F (a,m, k′). (11.40)

By (11.26), F (t + a,m, k′) = F (t, m, F (a,m, k′)) = F (t, m, a + k), and the proof of 11.3.2 is complete.
2

It is easy to check that the conditions of 11.3.2 are also sufficient for there to be a symmetry about
[1] moving (0) to (a).

11.3.3. If [1] is an axis of symmetry (in addition to [∞] and [0]), then

(i) G is elementary abelian.

(ii) For each m ∈ R, the map (a, b) 7→ U0(a, b, m) is an additive homomorphism from R⊕R to G.

(iii) Define a multiplication “◦” on R by a ◦m = F (a,m, 0). Then F (a,m, k) = (a ◦m) + k for all
a,m, k ∈ R, and (R,+, ◦) is a right quasifield.

(iv) Each line [m], m ∈ R, is an axis of symmetry.

Proof. Parts (i), (ii) and (iii) follow from 11.3.2 and 11.2.1. In view of part (iv) of 11.2.1 we may view
(R,+) as G, so that U0 : R3 → R. Then for any σ1, σ2, σ3 ∈ R, consider the map θ = θ(σ1, σ2, σ3)
from S to S defined as follows.

(x, y, z)θ = (x + σ1, y + σ2, z + σ3) [∞]θ = [∞]
(x, y)θ = (x, y + σ3 − U0(σ1, σ2, x)) [u]θ = [u]
(x)θ = (x + σ1) [u, v]θ = [u + σ1, v + σ2]
(∞)θ = (∞) [u, v, w]θ = [u, v + σ3 − U0(σ1, σ2, u), w + σ2 − σ1 ◦ u].

(11.41)
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Using the first three parts of 11.3.3 a routine check shows that θ is a collineation of S. For each
i ∈ R ∪ {∞}, let Hi denote the group of symmetries about [i]. An easy check yiels the following

H∞ = {θ(0, 0, σ)|σ ∈ R} (11.42)
Hm = {θ(σ, σ ◦m,U0(σ, σ ◦m,m))|σ ∈ R},m ∈ R. (11.43)

Hence each line through (∞) is an axis of symmetry. 2

11.3.4. Let S satisfy the hypothesis of 11.3.3. Then

(i) condition (11.17) is equivalent to (11.44), and

(ii) condition (11.18) is equivalent to (11.45).

U0(a, a ◦m, m) = U0(a, a ◦m,m′) implies that either a = 0 or m = m′.
(11.44)

If m0,m1,m2 are distinct elements of R, and if for a0, a1, a2 ∈ R,
0 =

∑2
i=0 ai =

∑2
i=0 ai ◦mi =

∑2
i=0 U0(ai, ai ◦mi,mi), then

a0 = a1 = a2 = 0. (11.45)

Proof. The proof of (i) is an easy exercise. For the proof of (ii) first note that

(a, b, g) is on [m, g, k] iff b = a ◦m + k and g = U0(a, b, m) + g. (11.46)

Then reconsider the Case (ii) of 11.1 that led to (11.18), i.e. assume there is a triangle whose vertices
and sides are all of type I. We may assume one of the sides is [m0, 0, k0]. Then the two vertices on
this side are
yi = (ai, ai ◦ m0 + k0, U0(ai, ai ◦ m0 + k0,m0)), i = 1, 2, a1 6= a2. The other side on yi is Li =
[mi, U0(ai, ai◦m0+k0,m0)−U0(ai, ai◦m0+k0,mi), ai◦m0+k0−ai◦mi], i = 1, 2. If the sides L1 and L2

meet at a point with first coordinate a3, this point must be (a3, a3◦mi+ai◦m0+k0−ai◦mi, U0(a3, (a3−
ai)◦mi+ai◦m0+k0,mi)+U0(ai, ai◦m0+k0,m0)−U0(ai, ai◦m0+k0,mi)) = (a3, (a3−ai)◦mi+ai◦m0+
k0, U0(a3−ai, (a3−ai)◦mi,mi)+U0(ai, ai ◦m0 +k0,m0)), i = 1, 2. Since the coordinates of this point
must be the same whether i = 1 or i = 2, it follows that (a3−a1)◦m1+(a2−a3)◦m2+(a1−a2)◦m0 = 0,
and U0(a3−a1, (a3−a1)◦m1,m1)+U0(a1−a2, (a1−a2)◦m0,m0)+U0(a2−a3, (a2−a3)◦m2,m2) = 0.

For the triangle to be impossible it must be that either a1, a2, a3 are not distinct and/or the
m0,m1,m2 are not distinct. Geometrically it is clear that if the m1,m2,m3 are distinct, then neces-
sarily a1 = a2 = a3. This is easily restated as condition (11.45). 2

Let R = (R,+, ◦) be a right quasifield with |R| = s = pe, p prime. Let U0 : R3 → R be a function
satisfying the following :

(i) U0(a, b, 0) = 0 for all a, b ∈ R.

(ii) The map (a, b) 7→ U0(a, b, m) is an additive homomorphism from R⊕R to R, for each m ∈ R.

(iii) U0(a, a ◦m,m) = U0(a, a ◦m,m′) implies a = 0 or m = m′, for a,m, m′ ∈ R.

(iv) If 0 =
∑3

1 ai =
∑3

1 ai ◦ mi =
∑3

1 U0(ai, ai ◦ mi,mi), for ai,mi ∈ R, i = 1, 2, 3, then either
a1 = a2 = a3 = 0 or the mi’s are not distinct.
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Then the pair (R, U0) is called a T -set up and U0 is a T -function on R.
The following theorem summarizes the main results of this section.

11.3.5. Let S be a GQ of order s. Then S has a point p∞ = (∞) for which some three lines through
p∞ are axes of symmetry iff each line through p∞ is an axis of symmetry iff S is coordinatized by a
T -set up (R, U0) in the following manner. Points and lines of S are as in 11.1.1. Then incidence in
S is defined by :

(∞) is on [∞] and on [a], a ∈ R.
(m) is on [∞] and on [m, b], m, b ∈ R.
(a, b) is on [a] and on [a, b, c], a, b, c ∈ R.
(x, y, z) is on [x, y] and on [u, v, w] iff y = x ◦ u + w and
z = U0(x, y, u) + v, x, y, z, u, v, w ∈ R.

For convenience in computing with collineations, etc., all collinearities and concurrencies are listed
in the following table.

(∞) ∼ (x) on [∞] [∞] ∼ [u] at (∞)
(∞) ∼ (u, v) on [u] [∞] ∼ [u, v] at (u)
(x) ∼ (y) on [∞] [u] ∼ [v] on (∞)
(x) ∼ (x, y, z) on [x, y] [u] ∼ [u, v, w] at (u, v)
(u, v) ∼ (u, w) on [u] [u, v] ∼ [u, w] at (u)
(u, v) ∼ (x, y, z) on [u, v, y − x ◦ u] [x, y] ∼ [u, v, w] at (x, y, v + U0(x, y, u))
provided z = U0(x, y, u) + v provided y = x ◦ u + w
(x, y, z1) ∼ (x, y, z2) on [x, y] [u, v, w1] ∼ [u, v, w2] at (u, v)
(x1, y1, z1) ∼ (x2, y2, z2) on [u1, v1, w1] ∼ [u2, v2, w2] at
[u, zi − U0(xi, yi, u), yi − xi ◦ u] (x, x ◦ ui + wi, vi + U0(x, x ◦ ui + wi, ui))
i = 1 or 2, provided x1 6= x2, i = 1 or 2, provided u1 6= u2,
y1 − y2 = (x1 − x2) ◦ u, and w1 − w2 = −x ◦ u1 + x ◦ u2, and
z1 − z2 = U0(x1 − x2, y1 − y2, u) v1 − v2 = −U0(x, x ◦ u1 + w1, u1)

+U0(x, x ◦ u2 + w2, u2).
Note that a GQ S or order s coordinatized by a T -set up as above is a TGQ with base point (∞) and
the group of s3 collineations given in (11.41) is the group of all translations (elations) about (∞).

11.4 The kernel of a T-set up

Let S(∞) be a TGQ coordinatized by a T -set up (R, U0) as in 11.3.5. By 8.6.5 we know that the
multiplicative group K◦ of the kernel is isomorphic to the group H of whorls about (∞) fixing (0, 0, 0).
We now study H in terms of the coordinate system.

Let θ ∈ H, θ 6= id. Then the following points and lines are fixed by θ : (∞), (0, 0, 0), (0), (m, 0),
for all m ∈ R; [∞], [m], [0, 0], [m, 0, 0], for all m ∈ R. There must be a permutation π1 of the elements
of R fixing 0 and for which

(a)θ = (π1(a)), a ∈ R. (11.47)

Similarly, there are functions π2 : R3 → R, π3 : R3 → R and π4 : R2 → R, such that θ has the
following partial description

(x, y, z)θ = (π1(x), π2(x, y, z), π3(x, y, z)) (11.48)

(use (a) ∼ (x, y, z) iff a = x),
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(m, g)θ = (m, π4(m, g)). (11.49)

As (x, y, z) ∼ (m, g) iff z = U0(x, y, m) + g, it follows that
(π1(x), π2(x, y, U0(x, y, m) + g), π3(x, y, U0(x, y, m) + g) ∼ (m, π4(m, g)), implying

π3(x, y, U0(x, y, m) + g) = U0(π1(x), π2(x, y, U0(x, y, m) + g),m) + π4(m, g). (11.50)

Putting m = 0 in (11.50) yields

π3(x, y, g) = π4(0, g) = π3(g), i.e. π3 is a function of one variable. (11.51)

So (11.50) simplifies to

π3(U0(x, y, m) + g) = U0(π1(x), π2(x, y, U0(x, y, m) + g),m) + π4(m, g). (11.52)

Now (x, y1, z1) ∼ (x, y2, z2) iff y1 = y2. Put y = y1 = y2 and apply θ to obtain (π1(x), π2(x, y, z1), π3(z1)) ∼
(π1(x), π2(x, y, z2), π3(z2)), so that

π2(x, y, z) = π2(x, y), i.e. π2 is a function of its first two variables only. (11.53)

As (0, 0, 0) is fixed, π2(0, 0) must be 0. Putting x = y = 0 in (11.52) yields

π3(g) = π4(m, g). (11.54)

Hence we drop π4 altogether, and (11.52) may be rewritten as

π3(U0(x, y, m) + g) = U0(π1(x), π2(x, y),m) + π3(g). (11.55)

Put g = 0 in (11.55) and note that π3(0) = 0 since (0, 0, 0) is fixed, to obtain

π3(U0(x, y, m)) = U0(π1(x), π2(x, y),m). (11.56)

Putting this back in (11.55) easily yields (using e.g.11.2.1 (iv)) that π3 is additive. Also, the line [m, 0, 0]
is fixed. It is incident with the fixed point (m, 0) and with the points (x, x◦m,U0(x, x◦m,m)), which
must be permuted by θ. It follows that (π1(x), π2(x, x ◦ m), π3(U0(x, x ◦ m,m)) = (π1(x), π1(x) ◦
m,U0(π1(x), π1(x) ◦m,m)), which implies

π2(x, x ◦m) = π1(x) ◦m (11.57)

and

π3(U0(x, x ◦m,m)) = U0(π1(x), π1(x) ◦m,m). (11.58)

Now (0, g)θ = (0, π3(g)) implies [0, g, k]θ = [0, π3(g), π5(0, g, k)] where π5 : R3 → R is defined by
[m, g, k]θ = [m,π3(g), π5(m, g, k)]. The line [0, g, k] is incident with the points (x, k, g), x ∈ R, in
addition to (0, g). So (x, k, g)θ = (π1(x), π2(x, k), π3(g)) must lie on [0, π3(g), π5(0, g, k)], implying

π2(x, k) = π5(0, g, k), i.e. π2(x, y) = π2(y). (11.59)

So (11.57) becomes

π2(x ◦m) = π1(x) ◦m. (11.60)

With x = 1, this is
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π2(m) = π1(1) ◦m. (11.61)

Put m = 1 in (11.60) and use (11.61)

π2(x) = π1(x) = π1(1) ◦ x. (11.62)

At the present time we know θ has the following description as a permutation of the points

(x, y, z) θ7→ (π1(1) ◦ x, π1(1) ◦ y, π3(z))

(x, y) θ7→ (x, π3(y))

(x) θ7→ (π1(1) ◦ x)

(∞) θ7→ (∞).

(11.63)

Here we also know π3 is additive and (11.56) may be written as

π3(U0(x, y, m)) = U0(π1(1) ◦ x, π1(1) ◦ y, m). (11.64)

Let t = π1(1), and denote θ by θt. The effect of θt on the lines of S is as follows :

[m, g, k] θt7→ (m,π3(g), π5(m, g, k)]

[a, k] θt7→ [t ◦ a, t ◦ k]

[m] θt7→ [m]

[∞] θt7→ [∞].

(11.65)

As (0, k, U0(0, k,m)+g) is on [m, g, k], it must be that (0, t◦k, π3(U0(0, k,m)+g)) is on [m,π3(g), π5(m, g, k)],
implying

π5(m, g, k) = t ◦ k, i.e.[m, g, k]θt = [m,π3(g), t ◦ k]. (11.66)

Then more generally, (a, a ◦m + k, U0(a, a ◦m + k, m) + g) on [m, g, k] implies that (t ◦ a, t ◦ (a ◦m +
k), π3(U0(a, a ◦m + k, m) + g)) is on [m,π3(g), t ◦ k]. But this proves the following :

t ◦ (a ◦m + k) = (t ◦ a) ◦m + t ◦ k. (11.67)

Then (11.67) provides an associative and a distributive law :

(t ◦ a) ◦m = t ◦ (a ◦m) and t ◦ (a + k) = t ◦ a + t ◦ k. (11.68)

The equalities (11.64) and (11.68) essentially characterize those t for which θt ∈ H.
Let K denote the set of t in R satisfying the following conditions :

(i) t ◦ (a + b) = t ◦ a + t ◦ b for all a, b ∈ R.

(ii) t ◦ (a ◦ b) = (t ◦ a) ◦ b for all a, b ∈ R.

(iii) If U0(a, b, m) = U0(a′, b′,m′), then U0(t◦a, t◦b, m) = U0(t◦a′, t◦b′,m′), for all a, b, m, a′, b′,m′ ∈
R.

Then K is called the kernel of the T -set up. By (i) and (ii) K is a subset of the kernel of the right
quasifield (R,+, ◦), and hence any two elements of K commute under multiplication. If θt is an element
of H, we have seen that t ∈ K \ {0}. It is easy to see that distinct elements of H determine distinct
elements of K \ {0}. Conversely, for each t ∈ K \ {0} there is a θt ∈ H defined by the following :
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(x, y, z) θt7→ (t ◦ x, t ◦ y, π3(z)) [∞] θt7→ [∞]

(x, y) θt7→ (x, π3(y)) [m] θt7→ [m]

(a) θt7→ (t ◦ a) [a, k] θt7→ [t ◦ a, t ◦ k]

(∞) θt7→ (∞) [m, g, k] θt7→ [m,π3(g), t ◦ k].

(11.69)

Here π3 : R → R is the map determined by π3(U0(a, b, m)) = U0(t ◦ a, t ◦ b, m). Note that π3 is
well-defined by the definition of K and by 11.2.1 (iv). Further, for fixed m 6= 0, π3(U0(a, 0,m)) =
U0(t ◦ a, 0,m) shows that π3 is a permutation. Also, using the properties of U0, the definition of K,
and the fact that a 7→ U0(a, 0,m) is a permutation if m 6= 0, it is easy to show that π3 is additive.

Hence θt 7→ t, θt ∈ H, defines a bijection from H onto K \ {0}.
As θtθt′ 7→ t′ ◦ t = t ◦ t′, with θt, θt′ ∈ H, it is clear that K \ {0} is a commutative (cyclic!) group
under the multiplication of R. And by 11.3.3 (ii) it follows that for any t, t′ ∈ K the sum t+ t′ satisfies
the condition (iii) in the definition of K. Hence K is a subfield of the kernel of (R,+, ◦). Since H is
isomorphic to the multiplicative group of the kernel of the TGQ S(∞), the following result has been
established :

11.4.1. The kernel of a TGQ of order s is isomorphic to the kernel of a corresponding coordinatizing
T -set up.



Chapter 12

Generalized quadrangles as
amalgamations of Desarguesian planes

12.1 Admissible Pairs

If pe is an odd prime power, there is (up to duality) just one known example of a GQ of order pe. In
the case of GQ of order 2e a quite different situation prevails. There are known at least 2(ϕ(e) − 1)
pairwise nonisomorphic GQ of order 2e, with ϕ the Euler function. Each of these has a regular point
x∞ incident with a regular line L∞. S.E. Payne [122] showed that a GQ S of order s contains a regular
point x∞ incident with a regular line L∞ if and only if it may be constructed as an “amalgamation
of a pair of compatible projective planes”, which of course turn out to be the planes based at x∞
and L∞, respectively. Moreover, in [133] it was shown that the two planes are desarguesian iff S
may be “coordinatized” by means of an “admissible” pair (α, β) of permutations of the elements of
F = GF(s), and in that case x∞ is a center of symmetry, L∞ is an axis of symmetry, and s is a power
of 2. All the known GQ of order 2e are of this type, and in this chapter we wish to proceed directly
to the construction and study of such examples.

Let α and β be permutations of the elements of F = GF(s), with s = 2e and e ≥ 1. For convenience
we assume throughout that

0α = 0 and 1α = 1. (12.1)

Define an incidence structure S(α, β) = (P,B, I) as follows. The pointset P has the following elements:

(i) (∞),

(ii) (a), a ∈ F ,

(iii) (u, v), u, v ∈ F ,

(iv) (a, b, c), a, b, c,∈ F .

The lineset B has the following elements:

(a) [∞],

(b) [u], u ∈ F ,

(c) [a, b], a, b ∈ F ,

(c) [u, v, w], u, v, w ∈ F .

165
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Incidence I is defined as follows: the point (∞) is incident with [∞] and with [u] for all u ∈ F ; the
point (a) is incident with [∞] and with [a, b] for all a, b ∈ F ; the point (u, v) is incident with [u] and
with [u, v, w] for all u, v, w ∈ F ; the point (a, b, c) is incident with [a, b] and with [u, v, w] iff b+w = au
and c + v = aαuβ .

It is straightforward to check that S(α, β) is a tactical configuration with s+1 points on each line,
s + 1 lines on each point, 1 + s + s2 + s3 points (respectively, lines) and having two points incident
with at most one line. Hence a counting argument shows that S(α, β) is a GQ of order s iff S(α, β)
has no triangles.

For convenience we note the following:

(x, xu + w, xαuβ + v) is on [u, v, w] for all x ∈ F ;
(x, y, z) is on [u, xαuβ + z, xu + y] for all u ∈ F ;
(x1, y1, z1) ∼ (x2, y2, z2) iff (i) x1 = x2 and y1 = y2 or (12.2)
(ii) x1 6= x2 and ((y1 + y2)/(x1 + x2))β = (z1 + z2)/(xα

1 + xα
2 );

(x1, y1, z1) ∼ (x2, y2) iff z1 = xα
1 xβ

2 + y2.

12.1.1. S(α, β) = (P,B, I) is a GQ of order s = 2e iff the following conditions on α and β hold: For
distinct ui ∈ F and distinct xi ∈ F , i = 1, 2, 3,

3∑
1

ui(xi+1 + xi−1) = 0 and
3∑
1

uβ
i (xα

i+1 + xα
i−1) = 0 (12.3)

(subscripts being taken modulo 3) never hold simultaneously.

Proof. The proof amounts to showing that there are no triangles precisely when (12.3) holds and is
rather tedious. We give the details only for the main case of a hypothetical triangle in which all three
vertices are points of type (iv) and all three sides are lines of type (d).

So suppose [u3, v3, w3] is one side of the triangle having two of the vertices (x1, x1u3+w3, x
α
1 uβ

3 +v3)
and (x2, x2u3 + w3, x

α
2 uβ

3 + v3) with x1 6= x2, which in turn lie, respectively, on the sides [u2, x
α
1 uβ

2 +
xα

1 uβ
3 + v3, x1u2 + x1u3 + w3] and [u1, x

α
2 uβ

1 + xα
2 uβ

3 + v3, x2u1 + x2u3 + w3] with u2 6= u3 6= u1. Then
the third vertex of the triangle must be (x3, x3u2 + x1u2 + x1u3 + w3, x

α
3 uβ

2 + xα
1 uβ

2 + xα
1 uβ

3 + v3)=
(x3, x3u1 + x2u1 + x2u3 + w3, x

α
3 uβ

1 + xα
2 uβ

1 + xα
2 uβ

3 + v3) with x1 6= x3 6= x2. Setting equal these two
representations of the third vertex yields the two equations of (12.3). All other triangles may be ruled
out without any additional conditions being introduced. 2

The pair (α, β) of permutations of the elements of F = GF(2e) is said to be admissible provided it
satisfies both (12.1) and (12.3), in which case there arises a GQ S(α, β).

12.1.2. Let γ be an automorphism of F an let α an dβ be permutations of the elements of F . Then
(α, β) is admissible iff (αγ, βγ) is admissible iff (γα, γβ) is admissible, in which case S(α, β) ∼=
S(αγ, βγ) ∼= S(γα, γβ). Also, (α, β) is admissible iff (β, α) is admissible, in which case S(α, β) is
isomorphic to the dual of S(β, α). Finally, (α, β) is admissible iff (α−1, β−1) is admissible, but in
general it is not true that S(α, β) ∼= S(α−1, β−1).

Proof. All parts of this result are easily checked except the last claim concerning S(α, β) 6∼=
S(α−1, β−1). However, we postpone a discussion of this until later. 2

12.1.3. If (α, β) is admissible, then in S(α, β) the point (∞) is a center of symmetry and the line
[∞] is an axis of symmetry. Specifically, for σ2, σ3 ∈ F there is a collineation θ of S(α, β) defined as
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follows:

[u, v, w] θ7→ [u, v + σ3, w + σ2] (∞) θ7→ (∞)

[a, b] θ7→ [a, b + σ2] (a) θ7→ (a)

[u] θ7→ [u] (u, v) θ7→ (u, v + σ3)

[∞] θ7→ [∞] (a, b, c) θ7→ (a, b + σ2, c + σ3)

(12.4)

The symmetries about (∞) are obtained by setting σ3 = 0; those about [∞] are abtained by setting
σ2 = 0.

Proof. Easily checked. 2

It also follows readily that the planes based at (∞) and [∞], respectively, are both desarguesian,
but we will not prove that here.

12.1.4. Let (α, β) be admissible. Then in S(α, β) the following are equivalent:

(i) The pair ((a0), (a, b, c)) is regular for some a0, a, b, c ∈ F with a0 6= a.

(ii) β is additive (i.e. (x + y)β = xβ + yβ for all x, y ∈ F ).

(iii) (a) is regular for all a ∈ F .

(iv) (a) is a center of symmetry for all a ∈ F .

Dually, ([u0], [u, v, w]) is regular for some u0, u, v, winF with u0 6= u iff α is additive iff [u] is regular
for all u ∈ F iff [u] is an axis of symmetry for each u ∈ F .

Proof. Because (∞) is regular, each point (a0) of [∞] forms a regular pair with each point (u, v)
collinear with (∞). So suppose some point (a0) forms a regular pair with some point (a, b, c) not
collinear with (∞), and with a0 6= a so that (a0) and (a, b, c) are not collinear. Using a collineation of
the type given by (12.4), we see this is equivalent to saying that ((a0), (a, 0, 0)) is regular, a 6= a0.
{(a), (a0, 0, 0)}⊥ = {(a0)} ∪ {(a, x(a + a0), xβ(aα + aα

0 )) ‖ x ∈ F},
{(a0), (a, 0, 0)}⊥ = {(a)} ∪ {(a0, y(a + a0), yβ(aα + aα

0 )) ‖ y ∈ F}.
Hence ((a0), (a, 0, 0)) is regular iff (a0, y(a + a0), yβ(aα + aα

0 )) ∼ (a, x(a + a0), xβ(aα + aα
0 )) for all

x, y ∈ F . This is iff (cf (12.2) ((x+ y)(a+a0)/(a+a0))β = (x+ y)β = ((xβ + yβ)(aα +aα
0 ))/(aα +aα

0 ),
which holds iff xβ + yβ for all x, y ∈ F .

At this point we clearly have (i) ⇔ (ii) ⇔ (iii) ⇐ (iv). Hence to complete the proof we assume β
is additive and exhibit 2e symmetries about (t), t ∈ F . Rather, for t, σ ∈ F , we let the reader check
that the map φ given below is a symmetry about the point (t).

(a, b, c)
ϕ7→ (a, σ(t + a) + b, σβ(tα + aα) + c) (∞)

ϕ7→ (∞)
(u, v)

ϕ7→ (u + σ, σβtα + v) (a)
ϕ7→ (a)

[u, v, w]
varφ7→ [u + σ, σβtα + v, σt + w] [∞]

ϕ7→ [∞]
[a, b]

ϕ7→ [a, σ(t + a) + b] [u]
ϕ7→ [u + σ]

(12.5)

This completes the proof of the first half of the result. The dual result follows similarly. 2

Note: If (α, β) is admissible and S = S(α, β), then α (respectively, β), is additive iff S(∞) (respectively,
S [∞]) is a TGQ.
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12.2 Admissible pairs of additive permutations

The goal of this section is to determine all admissible pairs (α, β) in which both α and β are additive.
For elements a0, . . . , ae−1 of F = GF(2e) define the e × e matrix [a0, . . . , ae−1] = (aij), where aij =
a2i−1

[j−i], 1 ≤ i, j ≤ e, where in a[k], [k] indicates that [k] is to be reduced modulo e to one of 0, 1, . . . , e−1.
Put

D = det([a0, . . . , ae−1]).

12.2.1. (B. Segre and U. Bartocci [163]). D2 = D, so that D = 0 or D = 1. Moreover, if α is the
additive map defined by xα =

∑e−1
i=0 aix

2i
, then α is a permutation iff D = 1.

Proof. Since x 7→ x2 is an automorphism of F , it follows that for any square matrix (bij), (det(bij))2 =
det(b2

ij). Hence D2 is the determinant of a matrix whose rows are obtained by permuting cyclically
the rows and columns of the matrix [a0, . . . , ae−1]. It follows that D2 = D, implying D = 0 or 1.

Suppose that α is not bijective, so that for some x 6= 0, 0 =
∑e−1

i=0 aix
2i

. Hence the following
equalities hold:

0 = a0x + a1x
2 + . . . + ae−1x

2e−1

0 = a2
e−1 + a2

0x
2 + . . . + a2

e−2x
2e−1

...
0 = a2e−1

1 x + a2e−1

2 x2 + . . . + a2e−1

0 x2e−1
.

It follows that the matrix [a0, . . . , ae−1] has the characteristic vector (x, x2, . . . , x2e−1
)T associated

with the characteristic root 0, i.e. D = 0.
Conversely, suppose D = 0. It suffices to show that α is not onto. Let y be an arbitrary image

under α, say

y = a0x + a1x
2 + . . . + ae−1x

2e−1
. Hence

y2 = a2
e−1 + a2

0x
2 + . . . + a2

e−2x
2e−1

,

...
y2e−1

= a2e−1

1 x + a2e−1

2 + . . . + a2e−1

0 x2e−1
.

Since D = 0, there are scalars λ0, . . . , λe−1, at least one of which is nonzero, such that

(0, . . . , 0) = (λ0, . . . , λe−1)


a0 a1 . . . ae−1

a2
e−1 a2

0 . . . a2
e−2

...
...

...
a2e−1

1 a2e−1

2 . . . a2e−1

0

 .

Hence

(0, . . . , 0) = (λ0, . . . , λe−1)[a0, . . . , ae−1]

 x
...
x2e−1



= (λ0, . . . , λe−1)


y
y2

...
y2e−1

 .
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This says that the homomorphism T : y 7→
∑e−1

i=0 λiy
2i

of the additive group of F (which is not
the zero map) must have all elements y of the form y = xα in its kernel. Hence aaa is not onto. 2

12.2.2. (S.E. Payne [133]). Let α and eta be additive permutations of the elements of F = GF(2e) that
fix 1 and for which x 7→ xα/xβ permutes the non-zero elements of F . Then α−1β is an automorphism
of F of maximal order e.

Proof. For e ∈ {1, 2} the theorem is easy to check. So assume that e > 3. Since α and β are
additive maps on F there must be scalars ai, bi ∈ F , 0 6 i 6 e− 1, for which α : x 7→

∑e−1
i=0 aix

2i
and

β :7→
∑e−1

i=0 bix
2i

[80]. Let A = [a0, . . . , ae−1] = (aij), so aij = a2i−1

[j−i], and B = [b0, . . . , be−1] = (bij), so

bij = b2i−1

[j−i], 1 6 i, j 6 e. Since α and β are permutations, by (12.2.1) both A and B are nonsingular.
Since x 7→ xα/xβ is a permutation of the elements of F 0 = F − {0}, for each λ ∈ F 0 there must be
a unique nonzero solution x to xα + λxβ = 0. Hence

∑e−1
i=0 (ai + λbi)x2i

= 0 has a unique nonzero
solution x for each λ ∈ F 0. By (12.2.1) the matrix Cλ = ((a[j−i] + λb[j−i])2(i− 1), 1 6 i, j 6 e, has
zero determinant for each λ ∈ F 0. And 0 6= detA . . .detB, so detA = detB = 1.

It follows that detCλ is a polynomial in λ of degree 2e− 1 with constant term 1, leading coefficient
1, and having each nonzero element of F as a root. This implies

detCλ = λ2e−1 + 1. (12.6)

For 1 6 t 6 2e − 2 we now calculate the coefficient of λt in detCλ and set it equal to zero. Let
ti1 , ti2 , . . . , tir be the nonzero coefficients in the binary expansion

∑e−1
i=0 ti2i of t. Then the coefficient

of λt in detCλ is easily seen to be the determinant of the matrix obtained by replacing rows ti1 . . . , tir
of A with rows ti1 , . . . , tir of B. Hence we know the following: the rows of A are independent, the rows
of B are independent, and any set of rows formed by taking some r rows of A and the complementary
e − r rows of B is a linearly dependent set, 1 6 r 6 e − 1. In particular, the first row of B is a
linear combination of rows 2, 3, . . . , e of A. Let βi be the ith row of B, so βi = (b2i−1

[1−i], . . . , b
2i−1

[ e− i]).
Then there are scalars d1, . . . , de−1 (at least one of which is nonzero) such that β1 = (0, d1, . . . , de−1)A.
Apply the automorphism x 7→ x2 to this latter identity to obtain

(b2
0, . . . , b

2
e−1) = (0, d2

1, . . . , d
2
e−1)(a

2k

[j−k])1 6 k, j 6 e. (12.7)

On the left hand side of 12.2 permute the columns cyclically, moving column j to position j + 1,
j = 1, . . . , e− 1, and column e to position 1. There arises

β2 = (d2
e−1, 0, d2

1, . . . , d
2
e−2)A. (12.8)

Doing this i times, i 6 e− 1, we obtain

βi+1 = (d2i

e−i, . . . , d
2i

e−1, 0, d2i

1 , . . . , d2i

e−i−1)A, (12.9)

where the dj ’s are unique.
Let αi denote the ith row of A. For some λ1, lambda2, not both zero, we have

λ1β1 + lambda2β2 =
e∑

j=3

= (λ2d
2
e−1, λ1d2 + λ2d

2
1, . . . , λ1dj + λ2d

2
j−1, . . .)A. (12.10)

Hence, as the rows of A are independent, λ2d
2
e−1 = 0 = λ1d1. If λ1 6= 0, then d1 = 0. If λ2 6= 0, then

de−1 = 0.



170 Finite generalized quadrangles

Now suppose that

d1 = d2 = . . . = dj−1 = 0 and de−1 = de−2 = . . . = de−(k−j) = 0 (12.11)

with k ∈ {2, . . . , e− 2} and j ∈ {1, . . . , k} (notice that j − 1 < e− (k − j) and that (12.11) holds for
k = 2 and some j ∈ {1, 2} by d1de−1 = 0). We wish to show that djde−(k−j+1) = 0, i.e. we wish to
show that (12.11) holds for k replaced by k + 1 and j replaced by at least one of j, j + 1.

So assume that djde−(k−j+1) 6= 0. We have the following:

β1 = (0, . . . , 0, dj , . . . , de−(k−j+1), 0, . . . , 0)A,

β2 = (0, . . . , 0, d2
j , . . . , d

2
e−(k−j+1), 0, . . . , 0)A (12.12)

↖
position j + 2

β2 = (d2
e−1, 0, . . . , 0, d2

j , . . . , d
2
e−2)A if j = k,

↗
position j + 2

etc.

Since 0 < k + 1 < e, there are scalars λ1, . . . , λk+1, at least one of which is not zero, for which∑k+1
r=1 λrβr is some linear combination of αk+2, . . . , αe. Use (12.12) to calculate the coefficients of

α1, . . . , αk+1 (which must be zero) in
∑k+1

r=1 λrβr. The coefficient of αj is λk+1d
2k

e−(k−j+1). Hence

λk+1 = 0. If j > 1, the coefficient of αj−1 is λkd
2k−1

e−(k−j+1), implying λk = 0. Continuing, we obtain
λk+1 = λk = . . . = λk−j+2 = 0. The coefficient of αj+1 is λ1dj . Hence λ1 = 0. The coefficient of αj+2

is λ2d
2
j . Hence λ2 = 0. Continuing, we obtain λ1 = λ2 = . . . = λk−j+1 = 0, so that in fact λr = 0 for

1 6 r 6 k + 1. This impossibility implies that djde−(k−j+1) = 0 as desired. Hence by induction on k
(12.11) holds also for k = e− 1 and some j ∈ {1, . . . , k}.

It follows that only one di can be nonzero, say d = dm 6= 0, 1 6 m 6 e− 1. This says that

bj = da2m

[j−m], 0 6 j 6 e− 1. (12.13)

Our assumption that 1 = 1α = 1β implies that d = 1. So

bj = a2m

[j−m], 0 6 j 6 e− 1. (12.14)

Clearly (12.14) is equivalent to xβ = (xα)2
m

, i.e. β = α · 2m. Since x 7→ xα/xβ permutes the nonzero
elements of F , also x 7→ (xα)(2

m−1) permutes the nonzero elements of F . Hence y 7→ y2m−1 permutes
the nonzero elements of F , implying that (m, e) = 1. Consequently α−1β is an automorphism of F of
maximal order e. 2

The following immediate corollary is equivalent to the determination of all translation ovals in the
desarguesian plane over F = GF(2e) and was the main result of S.E. Payne [119].

12.2.3. If β is an additive permutation of the elements of F = GF(2e) for which x 7→ x/xβ permutes
the nonzero elements of F , then β has the form xβ = dx2u

for fixed d ∈ F ◦, (u, e) = 1.

The next result is the main goal of this section.

12.2.4. (S.E. Payne [133]). Let (α, β) be a pair of additive permutations of the elements of F =
GF(2e) fixing 1. Then the following are equivalent:

(i) The pair (α, β) is admissible.

(ii) 0 =
∑2

1 vizi =
∑2

1 vα
i zα

i for distinct, nonzero v1, v2 implies z1 = z2 = 0.
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(iii) For each c ∈ F ◦, the map µc : v 7→ vα(c/v)β permutes the elements of F ◦.

(iv) For each c ∈ F ◦, the map λc : mapsto(cz)α/zβ permutes the elements of F ◦.

(v) α and β are automorphisms of F for which α−1β is an automorphism of maximal order e.

Proof. Since β is additive, in (12.3) ui+1 + ui−1 may be replaced by zi, so that the condition for
admissibility becomes

3∑
1

xizi = 0,

3∑
1

xα
i zβ

i = 0,

3∑
1

zi = 0 (12.15)

cannot hold for distinct xi ∈ F and for distinct nonzero zi’s ∈ F . Now, using the additivity of α and
β add

∑3
1 x3zi = 0 to the first equation in (12.15) and

∑3
1 xα

3 zβ
i = 0 to the second equation of (12.15),

and replace xi + x3 = vi, so that v3 = 0, to obtain condition (ii). In (ii) put zi = c/vi to obtain (iii).
In (ii) put v1 = cz2, v2 = cz1 to obtain (iv). It follows readily that (i)-(iv) are equivalent. The crux
of the proof is to show that (iv) implies (v).

So let (α, β) be a pair of additive permutations of the elements of F fixing 1 and satisfying (iv).
Putting c = 1 in (iv) we see that α−1β is an automorphism of F of maximal order e by 12.2.2.
For 0 =6= inF , let αc denote the additive permutation αc : x 7→ (cx)α for all x ∈ F . Then
β = αcγc = δcαc for unique additive permutations γc and δc. For λc as in (iv), λc = αc · (1 − γc),
implying that 1− γc : w 7→ w/wγc is also a permutation of the elements of F ◦. By 12.2.3 it follows
that γc : x 7→ dcx

βc for some nonzero scalar dc and some automorphism βc : x 7→ x2tc , (tc, e) = 1,
1 6 tc 6 e. As 1 = 1β = 1αcγc = (cα)γc = dc(cα)2

tc , dc is easily calculated, and

xβ = xαcγc = ((cx)α/cα)2
tc for x, c ∈ F, c 6= 0 (12.16)

In particular, let t = t1, so (12.16) implies the following:

β = α · 2t. (12.17)

It is easy to check that (α, β) is an admissible pair of additive permutations iff (α−1, β−1) is. Hence
β−1 = α−1

c · δ−1
c implies that δ−1

c (and hence δc) has the same form as γc, i.e. δc : x 7→ d̄cx
2gc for

some nonzero scalar d̄c, and (gc, e) = 1, 1 6 gc 6 e. Then 1 = 1β = 1δcαc = (d̄c)αc = (cd̄c)α implies
d̄c = c−1, from which it follows that xβ = xδcαc = (c−1x2gc )αc = x2gc , i.e. βα−1 = 2gc = 2g for all c.

Hence we have
β = 2g · α = α · 2t, and α = 2gα2−t. (12.18)

Now we have xβ = ((cx)α)2
tc (by (12.16))

= ((c2g
x2g

)α2−t
/(c2g

)α2−t
)2

tc (by (12.18))
= ((dx2g

)α/dα)2
td ·2−t+tc−td (where d = c2g

)
= (x2g ·β)2

−t+tc−td (by (12.16)).
This proves the following:

β = 2g · β · 2−t+tc−td . (12.19)

And so by (12.18)
α = β2−t+tc−td . (12.20)

From (12.18) and (12.20) it follows that β−1α = 2−t = 2−t+t−c−td , i.e.

tc = td if d = c2g
. (12.21)
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Since x 7→ x2g
is an automorphism of maximal order, it follows that if c and d are nonzero conjugates

then tc = td. Now suppose that c and d are distinct nonzero elements of F for which tc = td. We
claim tc+d = tc.

xβ = ((cx)α/cα)2
tc = ((dx)α/dα)2

td with tc = td implies
(dx)α = dα(cx)α/cα. (12.22)

Then xβ = (((c + d)x)α/(c + d)α)2
tc+d

= (((cx)α + (dx)α)/(cα + dα))2
tc+d

= (((cx)α + dα(cx)α/cα)/(cα + dα))2
tc+d

(by (12.22))
= ((cx)α/cα)2

tc+d
.

Since this string of equal-

ities holds for all x ∈ F , we have (using (12.16))

tc+d = tc. (12.23)

By the Normal Basis Theorem for cyclic extensions (cf. [92]) there is an element c ∈ F for which the
conjugates of c (i.e. c, c2, c4, . . .) form a linear basis over the prime subfield {0, 1}. As tc = td for d
any conjugate of c and then for d equal to any nonzero sum of conjugates, it follows that there is only
one t : t = tc for all c ∈ F ◦. Put c = 1 in (12.22) to see that α preserves multiplication. Hence α
is an automorphism of F . By (12.18) also β is an automorphism of F . This completes the proof that
(iv) implies (v). The converse is easy. 2

12.3 Collineations

Let (α, β) be an admissible pair giving rise to the GQ S(α, β) of order 2e.

12.3.1. (S.E. Payne [133]). Let G denote the full collineation group of S = S(α, β). Then at least
one of the following must occur:

(i) All points and lines of S are regular and S ∼= Q(4, 2e).
(ii) Each element of G fixes (∞).
(iii) Each element of G fixes [∞].

Proof. Suppose that neither (ii) nor (iii) holds. Let θ be a collineation moving (∞). First suppose
that (∞)θ 6∼ (∞). As (∞)θ is regular, by 12.1.4 it follows that S [∞] is a TGQ, so that G is transitive
on the set of lines not meeting [∞]. In this case [∞]θ 6= [∞]. If [∞]θ 6∼ [∞], then every line not
meeting [∞] is regular, so all lines are regular and S ∼= Q(4, 2e). So suppose [∞]θ meets [∞] at (m),
where (m) 6= (∞) since (∞)θ 6∼ (∞). As S [∞]θ must also be a TGQ, in particular (∞)θ is a center of
symmetry, so G must be transitive on the lines through (m) but different from [∞]θ. It follows that
each point collinear with (m) is regular, implying that each point of S is regular (by 1.3.6 (iv)). Hence
if (∞)θ 6∼ (∞), then S ∼= Q(4, 2e). Dually, if [∞]θ 6∼ [∞], then S ∼= Q(4, 2e).

Now suppose that (∞)θ is a point different from (∞) on a line [a], a ∈ F . Then we may suppose
[∞]θ = [a], in which case S(∞) is a TGQ. It follows that each line through (∞)θ is regular. But as
S(∞) is a TGQ, G is transitive on lines meeting [a] at points different from (∞). This implies that all
lines meeting [a] and hence all lines of S are regular.

Finally suppose each θ ∈ G maps (∞) to a point of [∞], and dually, each θ ∈ G maps [∞] to a line
through (∞). It follows that each θ moving (∞) fixes [∞], and vice versa. But by hypothesis there is
a θ moving (∞) and a φ moving [∞]. Then θφ must move both (∞) and [∞], completing the proof.
2
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Let π denote the projective plane based at (∞), and let f denote the isomorphism from π to
PG(2, 2e) with homogeneous coordinates as follows:

(∞)
f7→ (0, 1, 0) [∞]

f7→ [0, 0, 1]T

(a)
f7→ (1, aα, 0) [m]

f7→ [1, 0,mβ]T

(m, v)
f7→ (mβ , v, 1) {(a), (0, b)}⊥⊥ f7→ [aα, 1, b]T .

(12.24)

Here (x, y, z) is incident in PG(2, 2e) with [u, v, w]T iff xu + yv + zw = 0.
Let θ be a collineation of S fixing (∞), so that θ induces a collineation θ̄ of π. Then f−1θ̄f must

be a collineation of PG(2, 2e) and hence given by a semi-linear map. This means there must be a 3×3
nonsingular matrix B over F and an automorphism δ of F for which f−1θ̄f is defined by

f−1θ̄f : (x, y, z) 7→ (xδ, yδ, zδ)B
and

f−1θ̄f : [u, v, w]T 7→ B−1[uδ, vδ, wδ].
(12.25)

As θ̄ fixes (∞), we may assume that

B =

 b11 b12 b13

0 1 0
b31 b32 b33

 . (12.26)

Dually, let π′ denote the projective plane based at [∞], and let g denote the isomorphism from π′ to
PG(2, 2e) defined as follows:

(∞)
g7→ (0, 1, 0) [∞]

g7→ [0, 0, 1]T

[m]
g7→ (1,m, 0) (a)

g7→ [1, 0, a]T

[a, b]
g7→ (a, b, 1) {[m], [0, b]}⊥⊥ g7→ [m, 1, b]T .

(12.27)

Now let θ be a collineation of S fixing [∞], so that θ induces a collineation θ̂ of π′. Then g−1θ̂g must
be a collineation of PG(2, 2e) and hence given by a semi-linear map. This means there must be a 3×3
nonsingular matrix A over F and an automorphism γ of F for which g−1θ̂g is defined by

g−1θ̂g : (x, y, z) 7→ (xγ , yγ , zγ)A
g−1θ̂g : [u, v, w]T 7→ A−1[uγ , vγ , wγ ]T .

(12.28)

As θ̂ fixes [∞], we may assume that

A =

 a11 a12 a13

0 1 0
a31 a32 a33

 . (12.29)

For the remainder of this section we assume that θ is a collineation fixing both (∞) and [∞], so that
it simultaneously induces θ̄ and θ̂ as described above.

Using the fact that θ̄ fixes [∞] and θ̂ fixes (∞), we find that

a13 = 0 6= a11a33; b13 = 0 6= b11b33. (12.30)

A−1 =

 1
a11

a12
a11

0
0 1 0

a31
a11a33

a12a31
a11a33

+ a32
a33

1
a33

 , (12.31)
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B−1 =

 1
b11

b12
b11

0
0 1 0

b31
b11b33

b12b31
b11b33

+ b32
b33

1
b33

 .

Then calculate as follows:

(a)θ =(a)f(f−1θ̄f)f−1
= ((

b12 + aαδ

b11
)α−1) and

(a)θ = (a)g(g−1θ̂g)g−1
= (

a31 + a11a
γ

a33
) for all a ∈ F.

(12.32)

Also

[m]θ = [m]f(f−1θ̄f)f−1
= [(

b31 + b11m
βδ

b33
)β−1] and

[m]θ = [m]g(g−1θ̂g)g−1
= [

a12 + mγ

a11
] for all m ∈ F.

(12.33)

Hence we have the following necessary conditions for θ to be well defined.

((a31 + a11a
γ)α = (b12 + aαδ)/b11 for all a ∈ F. (12.34)

((a12 + mγ)/(a11)β = (b31 + b11m
βδ)/b33 for all m ∈ F. (12.35)

Conversely, if (12.34) and (12.35) can hold it can be shown that θ is well defined and is a collineation.
We shall not need this general a θ, however, and content ourselves with the following special case.

12.3.2. Every possible whorl of S(α, β) about (∞) fixing (0, 0, 0) exists iff α is multiplicative. Dually,
every possible whorl of S(α, β) about [∞] fixing [0, 0, 0] exists iff β is multiplicative.

Proof. Let θ be a whorl about (∞) fixing (0, 0, 0), so θ fixes each [m], m ∈ F . With m = 0 in
(12.33), we find b31 = a12 = 0. Then m = 1 yields a11 = 1 and b11 = b33, so that m = mγ =
mβγβ−1

for all m ∈ F implies γ = δ =id. As the point (0, 0, 0) is fixed, so is the line [0, 0, 0]. But
[0, 0]θ = [0, 0]g(g−1θ̂g)g−1

= (a31, a32, a33)g−1
= (a31/a33, a32/a33, 1)g−1

= [a31/a33, a32/a33]. Hence
a31 = a32 = 0. Since (0)θ = (0) we have b12 = 0 by (12.32). Since (m, 0)θ = (m, 0), we have b32 = 0.
It is easily checked that (12.35) is now satisfied and that (12.34) says (a/a33)α = aα/b11 for all a ∈ F .
Putting a = 1, we obtain (1/a33)α = 1/b11, and (a/a33)α = aα(a/a33)α. It follows that the whorl θ
exists for each nonzero a33 iff α is multiplicative. Moreover, in that case a complete description of θ
is easily worked out to be as follows, where t = a−1

33 .

(∞) θ7→ (∞) [∞] θ7→ [∞]

(a) θ7→ (ta) [m] θ7→ [m]

(a, b) θ7→ (a, tαb) [m, v] θ7→ [tm, tv]

(a, b, c) θ7→ (ta, tb, tαc) [m, v, w] θ7→ [m, tαv, tw]

(12.36)

The dual result for multiplicative β is proved analogously. 2

We conjecture that when α and β are both multiplicative, then α and β must be automorphisms.
This has been verified for 2e 6 128 with the aid of a computer (cf. [141]), but nothing else seems to
have been done on the problem.

12.4 Generalized quadrangles T2(O)

In this section we assume that S(∞) is a TGQ whose kernel has maximal order 2e, where S = S(α, β).
Hence S(α, β) is a T2(O) of J. Tits (cf. 8.7.1). From 12.3.2, 12.1.4 and 8.6.5 this is equivalent to
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assuming that α is an automorphism, in which case S(α, β) ∼= S(1, βα−1). Hence throughout this
section we assume that α = 1 and denote S(1, β) by Sβ when it is necessary to indicate a specific β.

By (12.3) the set O = {(0, 0, 1)}∪{(1, x, xβ) ‖ x ∈ F} is an oval of PG(2, 2e). Embed PG(2, 2e) as
the plane x0 = 0 in PG(3, 2e) and consider the GQ T2(O). Then we have the following isomorphism
of Sβ onto T2(O).

(∞) 7→ (∞),
(a) 7→ plane of PG(3, 2e) which is tangent to O at (0, 0, 0, 1) and which
contains the point (1, a, 0, 0),
(u, v) 7→ plane of PG(3, 2e) which is tangent to O at (0, 1, u, uβ) and
which contains the point (1, 0, 0, v),
(a, b, c) 7→ point (1, a, b, c) of type (i) of T2(O), (12.37)
[∞] 7→ (0, 0, 0, 1) ∈ O,

[u] 7→ (0, 1, u, uβ) ∈ O,

[a, b] 7→ line of type (a) of T2(O) consisting of the
points (1, a, b, c), c ∈ F and (0, 0, 0, 1) of PG(3, 2e),
[u, v, w] 7→ line of type (a) of T2(O) consisting of the
points (1, a, b, c), b + w = au and c + v = auβ, and
(0, 1, u, uβ) of PG(3, 2e)

Then for each triple (σ1, σ2, σ3) of elements of F there is a translation τ(σ1, σ2, σ3) about (∞) given
by the following, where τ = τ(σ1, σ2, σ3):

(x, y, z) τ7→ (x + σ1, y + σ2, z + σ3) (∞) τ7→ (∞)
(x, y) τ7→ (x, y + σ1x

β + σ3) (x) τ7→ (x + σ1)
[u, v, w] τ7→ [u, v + σ1u

β + σ3, w + σ1u + σ2] [∞] τ7→ [∞]
[u, v] τ7→ [u + σ1, v + σ2] [u] τ7→ [u].

(12.38)

For each t ∈ F , t 6= 0, there is a whorl about (∞) fixing (0, 0, 0) given as follows:

(x, y, z) θt7→ (tx, ty, tz) (∞) θt7→ (∞)

(x, y) θt7→ (x, ty) (x) θt7→ (tx)

[u, v, w] θt7→ [u, tv, tw] [∞] θt7→ [∞]

[u, v] θt7→ [tu, tv] [u] θt7→ [u].

(12.39)

If θ is an arbitrary collineation of S fixing (∞) and [∞], so that (12.24) and (12.35) are valid, we
may follow θ by a suitable translation about (∞) and then a whorl about (∞) fixing (0, 0, 0) so as to
obtain a collineation fixing (0, 0, 0) and (1). So we assume θ is a collineation of S fixing (∞), (1), [∞]
and (0, 0, 0). Then the corresponding matrices A and B are determined as follows:

A =

 a11 a12 0
0 1 0
0 0 a33

 , B =

 1 0 0
0 1 0
b31 0 b33

 . (12.40)

In this case (12.34) is equivalent to
γ = δ and a11 = a33. (12.41)
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In (12.35) put m = 0 to obtain
b31 = b33(a12/a11)β. (12.42)

In (12.35) put m = 1 to obtain

b−1
33 = ((a12 + 1)/a11)β + (a12/a11)β. (12.43)

Then using (12.41) - (12.43), (12.35) may be rewritten as follows:

((a12 + mγ)/a11)β = (a12/a11)β + (((a12 + 1)/a11)β

+(a12/a11)β)mβγ , m ∈ F. (12.44)

It follows that for each choice of a12, a11, γ, where γ ∈ Aut(F ), a11, a12 ∈ F , a11 6= 0, there is a
collineation θ determined uniquely in 12.3 if and only if (12.44) holds. Put d = b−1

33 and σ = b31/b33 =
(a12/a11)β . It is now possible to work out the effect of θ on points and lines.

(x, y, z) θ7→ (xγ , (σ + dyβγ)β−1
+ (1 + xγ)σβ−1

, σxγ + dzγ)

(x, y) θ7→ ((σ + dxβγ)β−1
, dyγ)

(x) θ7→ (xγ) [∞] θ7→ [∞]

(∞) θ7→ (∞) [u] θ7→ [(σ + duβγ)β−1]

[u, v] θ7→ [uγ , (σ + dvβγ)β−1
+ (1 + uγ)σβ−1

]

[u, v, w] θ7→ [(σ + duβγ)β−1
, dvγ , (σ + dwβγ)β−1

+ σβ−1
].

(12.45)

For ease of reference, the collineation θ described by (12.45) will be denoted π(σ, d, γ), where (12.44)
is satisfied by a11, a12, γ, and c = b−1

33 is defined by (12.43), and σ = (a12/a11)β .

12.4.1. If β is multiplicative, there is a collineation π(0, d, γ) of S for each d ∈ F ◦ and each γ ∈
Aut(F ). If β is multiplicative, there is a collineation π(σ, d, γ) for some σ 6= 0 iff β is an automorphism
iff π(σ, d, γ) is a collineation for each choice of σ ∈ F , d ∈ F ◦, γ ∈ Aut(F ).

Proof. Since σ = (a12/a11)β, σ = 0 iff a12 = 0. And it is easy to check that (12.44) holds if σ = 0
and β is multiplicative. We note that since β is multiplicative there is an integer i, 1 6 i 6 2e − 1,
with (i, 2e − 1) = 1, for which β : x 7→ xi for all x ∈ F , so that β and γ commute. Now suppose
that there is a collineation π(σ, d, γ) for some σ 6= 0 and that β is multiplicative. Hence (12.44) holds
for some a12, a11 ∈ F ◦ and γ ∈ Aut(F ). Using the multiplicativity of β, multiply through by aβ

11 in
(12.44) to obtain

(a12 + mγ)β = aβ
12 + ((a12 + 1)β + aβ

12)m
βγ for all m ∈ F. (12.46)

Putting m = aγ−1

12 we obtain (a12 + 1)β + aβ
12 = 1. So (12.46) becomes

(a12 + mγ)β = aβ
12 + mβγ . (12.47)

Wrote mγ = a12x and use the multiplicativity of β to rewrite (12.47) as

(1 + x)β = 1 + xβ, for all x ∈ F. (12.48)

It now follows readily that β is also additive and hence an automorphism.
Conversely, if β is an automorphism (and hence an automorphism of order e), it is easy to check

that (12.44) is satisfied for all a12,m ∈ F , a11 ∈ F ◦, γ ∈ Aut(F ). 2
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12.4.2. (i) S = S(α, β) has a collineation moving (∞) iff β = 2 and S ∼= Q(4, 2e).
(ii) Let β be multiplicative and fix z ∈ P \ (∞)⊥. Let G((∞),[∞]) be the group of collineations of S

fixing (∞) and [∞], and let Gz be the stabilizer of z in G((∞),[∞]). Then Gz is transitive on the lines
of B \ [∞]⊥ through z if and only if β is an automorphism.

Proof. If S has a collineation moving (∞) then by 4.3.3 (i) S ∼= Q(4, 2e). HenceO is a conic and β = 2.
Suppose β is multiplicative. As G((∞),[∞]) is transitive on P \ (∞)⊥, we may assume z = (0, 0, 0). If β

is an automorphism, π(σ, 1, id) maps [u, 0, 0] to [u+σβ−1
, 0, 0] for each σ ∈ F . On the other hand, let θ

be any collineation in Gz with z = (0, 0, 0). There is a θt as in (12.39) for which θ · θ−1
t = π(σ, d, γ) for

some choice of σ ∈ F , d ∈ F ◦, γ ∈ Aut(F ). Then [u, 0, 0]θ = [u, 0, 0]π(σ,d,γ)·θt = [(σ + duβγ)β−1
, 0, 0].

Since β is multiplicative, {π(0, d, γ ‖ d ∈ F ◦, γ ∈ Aut(F )} is transitive on the set of lines of the form
[u, 0, 0], u 6= 0. But [0, 0, 0] is moved by some π(σ, d, γ) iff σ 6= 0, so the proof of (ii) is complete by
12.4.1. 2

12.4.3. If c ∈ F satisfies (cβ)β 6= (cβ)2, then (∞) is the unique regular point on the line [c].

Proof. Let (cβ)β 6= (cβ)2, so that 0 6= c 6= 1. As the translations about (∞) are transitive on the
points of [c] different from (∞), it suffices to show that the pair ((c, 0), (0, 0, 1)) is not regular. Use
(12.2) to check the following.

{(c, 1), (0, 0, 0)}⊥ = {(c, 0), (0, 0, 1)} ∪ {( 1
mβ + cβ

,
m

mβ + cβ
,

mβ

mβ + cβ
) ‖ m ∈ F, m 6= c}.

{(c, 0), (0, 0, 0)}⊥ = {(c, 1), (0, 0, 1)} ∪ {( 1
uβ + cβ

,
u

uβ + cβ
,

cβ

uβ + cβ
) ‖ u ∈ F, u 6= c}.

Hence ((c, 0), (0, 0, 1)) is regular iff (
1

mβ + cβ
,

m

mβ + cβ
,

mβ

mβ + cβ
) ∼

(
1

uβ + cβ
,

u

uβ + cβ
,

cβ

uβ + cβ
) whenever u 6= c 6= m. Put m = 0 and u = 1 and use (12.2) to obtain

(cβ)β = (cβ)2 if (c, 0) regular. 2

Put A = {β ‖ (1, β) is admissible}. Using (12.3) with α = id, u3 = x3 = 0, u1 = x1, u2 = x2, it is
easy to show that the map x 7→ xβ/x permutes the elements of F ◦. Since β−1 is a permutation of F ◦

as well as the map x 7→ x−1, it follows that the map λ : x 7→ x(x−1)β−1 permutes the elements of
F ◦. Let β∗ be the inverse of λ. With a little juggling it can be seen that for x, y, z ∈ F ◦, the following
holds

(y/x)β = z/x iff (y, z)β∗ = x/z. (12.49)

12.4.4. If β ∈ A, then β∗ ∈ A and there is an isomorphism τ∗ : Sβ → Sβ∗ in which (∞)β
τ∗7→ (∞)β∗,

[∞]β
τ∗7→ [0]β∗, [0]β

τ∗7→ [∞]β∗. (Subscripts β, β∗ are used to indicate to which structure, S(1, β) or
S(1, β∗), the given object belongs.)

Proof. β∗ ∈ A iff S(1, β∗) is a GQ, and it suffices to exhibit an isomorphism τ∗ : Sbeta → S∗β.
In fact, it suffices to exhibit τ∗ as a collinearity preserving bijective mapping on point. Then using
(12.2) and (12.49) it is routine to check that the τ∗ exhibited in (12.50) satisfies x ∼ y in S(1, β) iff
xτ∗ ∼ yτ∗ in S(1, β∗).

(x, y, z)β
τ∗7→ (z, y, x)β∗

(x0, x1)β
τ∗7→ ((1/xβ

0 )(β
∗)−1

, x1/xβ
0 )β∗ , if x0 6= 0

(0, x1)β
τ∗7→ (x1)β∗

(x0)β
τ∗7→ (0, x0)β∗

(∞)β
τ∗7→ (∞)β∗ .

(12.50)
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We leave the details to the reader. 2

Put M = {β ‖ β is a multiplicative permutation of the elements of F for which β : x 7→ xβ/x
permutes the elements of F ◦}.
Put D =M∩A. For β ∈ D, it follows that β∗ = β/(β−1), using exponential notation, and (β∗)∗ = β.
(In fact (β∗)∗ = β for all β ∈ A.) Hence we can extend the definition of the map ∗ : β 7→ β∗ to A∪M
be defining β∗ = β/(β − 1) for all β ∈ M. It still follows that (β∗)∗ = β. Moreover, for β ∈ M it
follwos that β ∈ D iff β−1 ∈ D iff β∗ ∈ D. Hence for β ∈M each of the following elements ofM is in
D or none of them is in D:

β, beta∗ = β/(β − 1), (β − 1)/β, 1− β. (1− β)−1, β−1. (12.51)

12.4.5. Let β ∈ D. Then one of the following must occur: (i) β = 2 and Sβ
∼= Q(4, 2e); (ii) β 6= 2

and Sβ has 2e + 1 = s + 1 collinear regular points, either on [∞]β or [0]β according as β or β∗ is an
automorphism of F ; (iii) β 6= 2 and (∞)β is the unique regular point of Sβ.

Proof. Suppose β ∈ D and that some point x (x 6= (∞)β) is regular. if x ∈ P \ (∞)⊥, clearly all
points are regular, Sβ

∼= Q(4, 2e), and β = 2. So suppose Sβ 6∼= Q(4, 2e). First consider the case where
x is incident with [∞]β. In this case β is an automorphism of F by 12.1.4 adn the group G((∞),[∞])β

is transitive on the 2e lines [m]β, m ∈ F , by 12.4.1. Since S(∞)
β is a TGQ, the group G((∞),[∞])β

acts
transitively on the 2e points incident with the line [∞]β (resp., [m]β, m ∈ F ) and distinct from (∞)β.
If Sβ has a regular point not incident with the line [∞]β , then it follows readily that all points of
(∞)⊥β are regular. By 1.3.6 (iv) all points of Sβ are regular, a contradiction. It follows that a point
is regular iff it is incident with [∞]β . Now suppose x is incident with [0]β. Using the isomorphism
τ∗ : Sβ → Sβ∗ , we see that β∗ is an automorphism and [0]β is the unique line of regular points of
Sβ. Finally, suppose x is incident with some line [c]β, 0 6= c ∈ F . Since G((∞),[∞])β

is transitive on the
lines of the form [c]β, 0 6= c ∈ F , it follows from 12.4.3 that mβ = m2 for all m 6= 0, and hence that
β = 2, i.e. Sβ

∼= T2(O) ∼= Q(4, 2e), a contradiction. 2

12.4.6. For β ∈ A, if Sβ has a regular point other than (∞)β, then Sβ
∼= Sγ for some γ ∈ Aut(F ).

Proof. If x 6∈ (∞)⊥β is regular, then Sβ
∼= Q(4, 2e) and β = 2. So suppose x ∈ (∞)⊥β \ {(∞)} is

regular. If x I [∞]β , then by 12.1.4 β is additive, and so by 12.2.4 β is an automorphism. Finally,
assume x I [u]β, u ∈ F . In the plane PG(2, 2e) of the oval O = {(0, 0, 1)}∪ {(1, x, xβ) ‖ x ∈ F} a new
coordinate system is chose in such a way that the point (1, u, uβ) is the new point (0, 0, 1), that the
new points (1, 0, 0), (1, 1, 1) are new on O, and that the nucleus of O is again the point (0, 1, 0). Then
in the new system O = {(0, 0, 1)} ∪ {(1, x, xγ) ‖ x ∈ F} with γ ∈ A. We have Sβ

∼= T2(O) ∼= Sγ .
Since there is a regular point other than (∞)γ and incident with [∞]γ , γ is an automorphism. 2

12.5 Isomorhpisms

Let (α1, β1) and (α2, β2) be admissible pairs. We begin this section by seeking necessary and sufficient
conditions for the existence of a type-preserving isomorphism θ from S(α1, β1) to S(α2, β2). Let
(∞)i, (a)i, (a, b)i, (a, b, c)i denote the points of S(αi, βi), i = 1, 2. Use analogous notation for lines.
Let πi denote the plane based at (∞)i and π′i the plane based at [∞]i, i = 1, 2. Functions fi : πi →
PG(2, 2e), i = 1, 2, are defined as in (12.24). Similarly, functions gi : π′i → PG(2, 2e) are defined
as in (12.27). Let θ : S(αa, β1) → S(α2, β2) be an isomorphism for which θ : (∞)1 7→ (∞)2 and
θ : [∞]1 7→ [∞]2, i.e. θ is type-preserving on points and lines. Then θ induces an isomorphism
θ̄ : π1 → π2 and an isomorphism θ̂ : π′1 → π′2. Just as in Section 12.3, f−1

1 θ̄f2 is a semi-linear
map of PG(2, 2e) as in (12.25) and g−1

1 θ̂g2 is a semi-linear map as in (12.28). Using symmetries about
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(∞)2 and about [∞]2 we may assume that the image of (0, 0)1 under θ is of the form [d, 0]2 for some
d ∈ F . Hence there are nonsingular matrices A,B and automorphisms δ, γ of F for which

f−1
1 θ̂f2 : (x, y, z) 7→ (xδ, yδ, zδ)B; [u, v, w]T 7→ B−1[uδ, vδ, wδ]T

g−1
1 θ̂g2 : (x, y, z) 7→ (xγ , yγ , zγ)A; [u, v, w]T 7→ A−1[uγ , vγ , wγ ]T .

(12.52)

The specific assumptions on θ allow us to write

A =

 a11 a12 0
0 1 0
a31 0 a33

 , A−1 =


1

a11

a12

a11
0

0 1 0
a31

a11a33

a12a31

a11a33

1
a33

 ,

(12.53)

B =

 b11 b12 0
0 1 0
b31 0 b33

 , B−1 =


1

b11

b12

b11
0

0 1 0
b31

b11b33

b12b31

b11b33

1
b33

 .

And θ : (a)1 7→ (a)g1(g−1
1 θ̂g2)g−1

2
1 = ([1, 0, a]T )(g

−1
1 θ̂g2)g−1

2 = (A−1[1, 0, aγ ]T )g−1
2 =

= ([
1

a11
, 0,

a31 + a11a
γ

a11a33
]T )g−1

2 = ([1, 0,
a31 + a11a

γ

a33
]T )g−1

2 = (
a31 + a11a

γ

a33
)2.

Also θ : (a)1 7→ (a)f1(f−1
1 θ̄f2)f−1

2
1 = (1, aα1 , 0)(f

−1
1 θ̄f2)f−1

2 = ((1, aα1δ, 0)B)f−1
2 =

= (b11, b12 + aα1δ, 0)f−1
2 = (1,

b12 + aα1δ

b11
, 0)f−1

2 = ((
b12 + aα1δ

b11
)α−1

2 )2.

Equating these two values of the image of (a)1 under θ yields

b12 + aα1δ

b11
= ((

a31 + a11a
γ

a33
)α2 for all a ∈ F. (12.54)

Similarly, equating the two values for the image of [m]1 under θ yields

(b31 + b11m
β1δ)/b33 = ((a12 + mγ)/a11)β2 for all m ∈ F. (12.55)

This proves the following:

12.5.1. If there is an isomorphism θ : S(α1, β1) → S(α2, β2) with θ : (∞)1 7→ (∞)2 and θ :
[∞]1 7→ [∞]2, then there are automorphisms γ, δ of F and scalars b12, b11, b31, b33, a11, a12, a31, a33 in
F with a11a33b11b33 6= 0 for which (12.54) and (12.55) both hold.

A converse holds, but we won’t need it here. We now restrict our attention to Sβ, β ∈ A.
Let δ ∈ Aut(F ), and let πδ be the permutation of points and lines of Sβ obtained by replacing

each coordinate by its image under δ. Hence for β ∈ D, πδ is just the collineation π(0, 1, δ) of 12.4.1.

12.5.2. Let α, β ∈ A and suppose that θ is an isomorphism from Sα to the dual of Sβ. Then Sβ

is self-dual and is isomorphic to Sγ for some γ ∈ Aut(F ). Moreover, for β ∈ D, Sβ is self-dual iff
β ∈ Aut(F ) or β∗ ∈ Aut(F ), in which case Sβ is self-polar iff e is odd.

Proof. Let α, β ∈ A and suppose that θ is an isomorphism from Sα to the dual of Sβ . If β = 2,
then Sβ

∼= Q(4, 2e) is self-dual. Suppose β 6= 2. Suppose θ : (∞)α 7→ L. As β 6= 2 and L is
coregular, L must be incident with (∞)β which is an axis of symmetry with desarguesian plane at L
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when coordinates were set up, perhaps with a permutation γ different from β. So Sβ
∼= Sγ with [∞]γ

coregular and hence γ is an automorphism by 12.1.4 and 12.2.4. We have already seen that if β ∈ D,
β 6= 2, then Sβ has a line of regular point iff β or β∗ is an automorphism. So we must now exhibit a
duality of Sβ when β is an automorphism.

Let β be an automorphism of F of order e. Then θ defined by (12.56) is a duality

(x, y, z) θ7→ [x, yβ, z] [u, v, w] θ7→ (uβ, v, wβ)

(u, v) θ7→ [uβ , v] [x, y] θ7→ (x, yβ)

(x) θ7→ [x] [u] θ7→ (uβ)

(∞) θ7→ [∞] [∞] θ7→ (∞).

(12.56)

It is easy to check that θ preserves incidence and θ2 = πβ. If e is even then Sβ is not self-polar by
1.8.2. If e is odd, there is a σ ∈ Aut(F ) for which βσ2 =id. Then γ = θπσ = πσθ is easily seen to be
a polarity. 2

12.5.3. Let α, β ∈ D. Then
(i) Sα is isomorphic to the dual of Sβ iff α or α∗ is an automorphism and α = β or α = β∗.
(ii) Sα

∼= Sβ iff α = β or α = β∗.

Proof. If α or α∗ is an automorphism and α = β or α = β∗, then clearly Sα is isomorphic to the
dual of Sβ . Then as Sα and Sβ have coregular lines, by 12.4.5 either α or α∗ is an automorphism and
either β or β∗ is an automorphism. As Sα

∼= Sα∗ and Sβ
∼= Sβ∗ , using the duality of (12.56) we see

that all four of these GQ and their duals are isomorphic. Hence the result will follows from (ii), which
we now prove.

If α = β or α = β∗, then clearly Sα
∼= Sβ. Let α, β ∈ D and suppose θ : Sα → Sβ is an

isomorphism. We may suppose also that α 6= 2 6= β, since otherwise the conclusion is clear. In this
case it is also clear that θ : (∞)α 7→ (∞)β .

First suppose that either α or α∗ is an automorphism. If α is an automorphism, then Sα is self-
dual, hence Sβ is self-dual, implying that β or β∗ is an automorphism; if α∗ is an automorphism, then
Sα∗ is self-dual, hence Sα and Sβ are self-dual, implying that β or β∗ is an automorphism. By 12.1.4
and 12.4.4 each point incident with the line [∞]α or [0]α (resp. [∞]β or [0]β) is regular. By 12.4.5 θ
maps at least one of the lines [∞]α, [0]α to at least one of the lines [∞]β, [0]β . By means of τ∗ (cf.
(12.50)) we may replace α and α∗ and/or β and β∗ if necessary and assume that θ : [∞]α 7→ [∞]β
(i.e. we assume that α and β are automorphisms). Now we apply 12.5.1 with α1 = α2 =id, β1 = α,
β2 = β. Then in the notation of (12.54) and (12.55), (12.54) becomes

b12

b11
+

aδ

b11
=

a31

a33
+ (

a11

a33
)aγ for all a ∈ F. (12.57)

It follows readily that
b12

b11
=

a31

a33
, b11a11 = a33, and δ = γ.

Then (12.55) becomes

b31

b33
+ (

b11

b33
)mαδ =

aβ
12

aβ
11

+
mδβ

aβ
11

for all m ∈ F. (12.58)

Putting m = 0, we obtain
b31

b33
=

aβ
12

aβ
11

, and then putting m = 1 we have
b11

b33
=

1

aβ
11

. Hence mαδ = mδβ

for all m ∈ F . As δβ = βδ, clearly α = β.
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Now suppose that no one of α, α∗, β, β∗ is an automorphism. We show that θ maps the two lines
[∞]α, [0]α to the two lines [∞]β, [0]β . Since α (resp., β) is not an automorphism, each collineation of
Sα (resp., Sbeta) fixing (∞)α and [∞]α (resp., (∞)β and [∞]β) also fixes [0]α (resp., [0]β) by 12.2.1.
Since α∗ (resp., β∗) is not an automorphism, each collineation of Sα∗ (resp., Sβ∗) fixing (∞)α∗ and
[∞]α∗ (resp., (∞)β∗ and [∞]β∗) also fixes [0]α∗ (resp., [0]β∗). Hence each collineation of Sα (resp., Sβ)
fixing (∞)α and [0]α (resp., (∞)β and [0]β) also fixes [∞]α (resp., [∞]β). suppose that [∞]θα (resp.,
[0]θα) is [u]β, with u 6= 0,∞. Then each collineation of Sβ fixing [u]β and (∞)β also fixes some line [v]β,
u 6= v, and each collineation of Sβ fixing [v]β and (∞)β also fixes [u]β. Since β is multiplicative there is

a collineation π(0, u−1, 2). Since [u]π(0,u−1,2)
β = [u]β, also [v]π(0,u−1,2)

β = [v]β, i.e. u−1v2 = v, or v = 0.
It follows that a collineation of Sβ fixing (∞)β will fix [∞]β iff it fixes [0]β iff it fixes [u]β . Consequently
[u]π(0,d,γ)

β = [u]β , i.e. u = duγ , for all d ∈ F ◦ and each γ ∈ Aut(F ). Hence F = GF(2), implying α and
β are automorphisms contrary to hypothesis. This shows that {[∞]θα, [0]θα} = {[∞]β, [0]β}. By means
of τ∗ (cf. (12.50) we may represent β with β∗ if necessary so as to assume that θ : [∞]α 7→ [∞]β .

Now we apply 12.5.1 with α1 = α2 =id, β1 = α, β2 = β. Then in the notation of (12.54) and
(12.55), (12.54) becomes

b12/b11 + aδ/b11 = a31/a33 + (a11/a33)aγ for all a ∈ F. (12.59)

It follows readily that b12/b11 = a31/a33, b11a11 = a33, and δ = γ.
Then (12.55) becomes

(b31 + b11m
αδ)/b33 = ((a12 + mδ)/a11)β for all m ∈ F. (12.60)

(12.60) came from the fact that θ : [m]α 7→ [
a12 + mδ

a11
]β = [(

b31 + b11m
αδ

b33
)β−1]. Since [0]α

θ7→ [0]β,

it follows that a12 = b31 = 0. Hence (12.60) says (using β ∈ D) that mαδ
(b11a

β
11/b33) = mδβ, for all

m ∈ F . Put m = 1 and use δβ = βδ to see that α = β. This completes the proof. 2

12.6 Nonisomorphic GQ

For α =id, condition (12.3) may be rewritten to say that

β ∈ A iff y 7→ (xβ + yβ)/(x + y), y 6= x, is an injection for
each x ∈ F. (Compare with 10.3.1)

(12.61)

Since the determination of all β ∈ A is equivalent to the determination of all ovals in PG(2, 2e), it
is unlikely that such a project will be completed in the near future. However, all known complete
ovals, except the one in PG(2, 16) not arising from a conic (cf. D. Glynn [65], M. Hall, Jr. [71] and
S.E. Payne and J.E. Conklin [139]), do arise from an oval O = {(0, 0, 1)} ∪ {(1, x, xβ) ‖ x ∈ F} with
β ∈ D. Hence we consider the known examples arising from β ∈ D.

It is an easy exercise to prove the following:

For β ∈M, /β ∈ D iff u 7→ (1 + (1 + u)β)/u permutes the
elements of F ◦.

(12.62)

For e = 1 and e = 2 there is a unique GQ of order 2e. For e = 3 it is not too difficult to show that
there are exactly two TGQ, both self-polar, given by β = 2 and β = 4 (cf. S.E. Payne [130]). For
e = 4, there are exactly three T2(O)’s: S2 and S8 are self-dual (and distinct by 12.5.3), and there is one
other complete nonself-dual example arising from the unique nonconical complete oval in PG(2, 16)
(cf. [71, 139]). Now let e > 5. Let β1 = 2, β2 = 2−1 = 2e−1, β3, β4 = β−1

3 , . . . , β2t−1, β2t = β−1
2t−1 be
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the 2t = ϕ(e) automorphisms of F of order e arranged in pairs so that β1 = 2 and β2i = β−1
2i−1. Then

Sβj
is self-dual for 1 6 j 6 ϕ(e). Moreover, for t − 1 > i > 1, β̄i = 1 − β2i+1 yields an additional,

nonself-dual example. This give a total of 2(ϕ(e) − 1) pairwise nonisomorphic GQ of order 2e with
ϕ(e) of them being self-dual. If e is odd, there are some additional examples arising from ovals in
PG(2, 2e) discovered by B. Segre and U. Bartocci [163] and D. Glynn [65].

12.6.1. For e odd, 6 ∈ D.

Proof. Since e is odd, z 7→ z6 and z 7→ z5 permute the elements of F ◦. Hence we need to show that
z 7→ (1 + (1 + z)6)/z = z + z3 + z5 permutes the elements of F ◦. So suppose 0 = (x + x3 + x5) + (y +
y3 + y5) = (x + y)((x2 + y2 + 1)2 + (x2 + y2 + 1)(xy + 1) + (xy + 1)2), with x 6= y. Since e is odd,
z2 + z + 1 = 0 has no solution in F . It follows that if xy + 1 = 0, then (x2 + y2 + 1)2 = 0 has no
solution. An if xy 6= 1, then for T = (x2 + y2 + 1)/(xy + 1), T 2 + t + 1 = 0 has no solution. Hence
6 ∈ D. 2

If e = 5, then 6−1 = −5, so that (6∗)−1 = (6 − 1)/6 = 1 − 6−1 = 1 + 5 = 6. It can be shown (by
hand calculations) that all the distinct S arising from D are the following: S2,S16,S4,S8,S28 and its
dual, S6 and its dual.

Now suppose e > 7. Then for e odd, let 6−1 denote the multiplicative inverse of 6 modulo 2e − 1.
Then S6,S6−1 ,S−5 and their duals provide six additional examples. This proves the following.

12.6.2. If e is odd, e > 7, there are at least 2(ϕ(e) + 2) pairwise nonisomorphic GQ of order 2e.

M. Eich and S.E. Payne [56], and J.W.P. Hirschfeld [79, 80], have independently verified that for
e = 7 there are precisely two additional examples arising from D: S20 and its dual. Also, for e = 8, it
follows from computations in J.W.P. Hirschfeld [80] that the only distinct GQ arising from D are the
2(ϕ(8)− 1) = 6 mentioned just preceeding the statement of 12.6.1.

12.7 The ovals of D. Glynn

Let F = GF(q), q = 2e, e odd. Define two automorphisms x 7→ xσ and x 7→ xγ of F as follows:

σ = 2(e+1)/2, (12.63)

γ =
{

2n, if e = 4n − 1
23n+1, if e = 4n + 1

(12.64)

It follows that γ2 ≡ σ and γ4 ≡ σ2 ≡ 2 (mod q− 1). The goal of this section is to prove the following.

12.7.1. (D. Glynn [65]). (i) σ + γ ∈ D; (ii) 3σ + 4 ∈ D.

Before beginning the proof of this result we review certain facts about F .
Let α be an automorphism of F of maximal order e, say α : x 7→ x2t

, (t, e) = 1. Define
Lα : F → F by Lα(ξ) = ξα + ξ. Then Lα is an additive automorphism of (F,+) with kernel {0, 1},
so that the image of Lα is a subgroup of order 2e−1. Suppose δ ∈ Im(Lα), say ξα = ξ + δ. Then a
finite induction shows that ξαr

= ξ + δ + δα + δα2
+ . . . + δαr−1

. Since ξαe
= ξ and α has maximal

order e, there holds 0 = δ + δα + δα2
+ . . . + δαe−1

=
e−1∑
i=0

δ2i
. The map δ →

e−1∑
i=0

δ2i
is an additive map

of F whose kernel contains the image of Lα. It is well known that such a map is never the zero map,

but of course with e odd it is clear that 1 is not in the kernel. Moreover, since
e−1∑
i=0

δ2i
is invariant

under the map λ 7→ λ2, its value is always 0 or 1. This completes a proof of the following lemma.
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12.7.2. The elements of F are partitioned into two sets, an additive subgroup C1 of order 2e−1 whose
elements are said to be of first category, and its coset C2 = 1 + C1 whose elements are said to be of
second category. For δ ∈ F , and for any automorphism α of maximal order

e−1∑
i=0

δ2i
=

{
0 iff δ ∈ C1 iff δ ∈ Im(Lα),
1 iff δ ∈ C2 iff δ 6∈ Im(Lα).

(12.65)

Moreover Cθ
i = Ci, i = 1, 2, for any automorphism θ of F .

Of course, since the kernel of Lα has order 2, each element of first category is the image under Lα

of exactly two elemetns of F .

12.7.3. Let α be an automorphism of F of maximal order e. Then

xα + ax + b = 0 has


one solution iff a = 0,

two solutions iff a 6= 0 and b/aα/(α−1) ∈ C1,

no solutions iff a 6= 0 and b/aα/(α−1) ∈ C2.

Proof. This is an easy corollary of 12.7.2.
For an integer k, q 6 k, put D(k) = {(0, 1, 0), (0, 0, 1)} ∪ {(1, λ, λk) ‖ λ ∈ F}. Then we know that

D(k) is a (q + 2)-arc of PG(2, q) iff ρ : x 7→ xk is in D iff (k, q − 1) = 1 and y 7→ (xk + yk)/(x + y)
is a bijection from F \ {x} to F \ {0} = F ◦ (for each x ∈ F ) iff (k, q − 1) = (k − 1, q − 1) = 1 and
t 7→ ((1 + t)k + 1)/t permutes the elements of F ◦.

We are now ready for the proof of 12.7.1.
Proof. (i) (σ + γ)(−γ−1 + σ − γ + 1) ≡ 1 (mod q − 1) (use γ2 ≡ σ and σ2 ≡ 2 (mod q − 1)), so that
(σ + γ, q− 1) = 1. Further, (σ + γ− 1)(σγ + γ− 1)3−1 ≡ 1 (mod q− 1), so that (σ + γ− 1, q− 1) = 1.
Hence it remains to show that t 7→ ((1 + t)σ+δ + 1)/t = tσ+γ−1 + tσ−1 + tγ−1 = f(t) permutes the
elements of F ◦. If f(t) = 0 and t 6= 0, then (1 + t)σ+γ = 1. Since (σ + γ, q− 1) = 1, we have 1 + t = 1
and t = 0, a contradiction. It follows that f(t) = 0 iff t = 0. Hence it suffices to show that f(t) 6= f(s)
if st(s + t) 6= 0.

From now on we assume st(s + t) 6= 0, and put Y = st(s + t)−2. For each non-negative integer a,
put αa = (sa+ta)/(s+t) and βa = stαa(s+t)−(a+1). Then f(t)+f(s) 6= 0 iff ασ+γ−1+ασ−1+αγ−1 6= 0
iff βσ+γ−1 +βσ−1(s+ t)−γ +βγ−1(s+ t)−σ 6= 0 iff Xγβγ−1 +Xβσ−1 +βσ+γ−1 6= 0, where X = (s+ t)−γ ,
so that (s + t)−σ = Xγ . Hence it suffices to show that

Xγβγ−1 + Xβσ−1 + βσ+γ−1 6= 0 (12.66)

(for s, t ∈ F with st(s + t) 6= 0).

β0 = stα0/(s + t) = 0; β1 = st/(s + t)2 = Y. (12.67)

If θ = sk, 1 6 k, then
βθ = st(s + 1)θ−1/(s + t)θ+1 = Y. (12.68)

Now notice that if 1 6 r 6 a, (sr + tr)(sa−r+1 + ta−r+1)+st(sr−1 + tr−1)(sa−r + ta−r) = (s+ t)(sa + ta).
Multiply this equation by st(s + t)−(a+3) to obtain

βa = Y −1βrβa−r+1 + βr−1βa−r for 1 6 r 6 a. (12.69)

Thus βa is a polynomial in Y for each nonnegative integer a. With a = 2m+1− 1, r = 2m, m > 0, and
using (12.68) and (12.69), a finite induction shows

β2m+1−1 =
m∑

i=0

Y 2i
. (12.70)
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From (12.70) it follows that

βγ−1 = Y + Y 2 + Y 4 + . . . + Y γ/2 and
βσ−1 = Y + Y 2 + Y 4 + . . . + Y σ/2.

(12.71)

Also from (12.68) and (12.69) we have

βσ+γ−1 = Y + βσ−1βγ−1. (12.72)

Furthermore, since Y = st(s + t)−2 = s/(s + t) + (s/(s + t))2 is of first category, it must be that

e−1∑
i=0

Y 2i
= 0. (12.73)

Using (12.71) and γ2 ≡ σ (mod q − 1) we have

βγ−1 + (βγ−1)γ = βσ−1. (12.74)

Put K = βγ−1, so βσ−1 = K + Kγ and βσ+γ−1 = Y + K2 + Kγ+1 (by (12.72). Since K = Y + Y 2 +

Y 4 + . . . + Y γ/2 and (12.73) holds, it follows that K + Kγ + Kγ2
+ Kγ3

=
e−1∑
i=0

Y 2i
+ Y = Y . Hence

from (12.66) we know that σ +γ ∈ D iff XγK +X(K +Kγ)+K +K2 +Kγ +Kγ2
+Kγ3

+Kγ+1 6= 0,
which we write as

XγK + X(K + Kγ) + K + K2 + Kγ + Kγ+1 + Kσ + Kσγ 6= 0 (12.75)

for all X 6= 0 and for all K = βγ−1 (st(s + t) 6= 0).
Since st(s + t) 6= 0 we have both K = βγ−1 6= 0 and βσ−1 6= 0. Since βσ−1 6= 0, we have

K + Kγ = βσ−1 6= 0, and hence Kγ−1 6= 1. Then divide (12.75) by K and use 12.7.3 to obtain

σ + γ ∈ D iff W =
1 + K + Kγ−1 + Kγ + Kσ−1 + Kσγ−1

(1 + Kγ−1)g+1
∈ C2 (12.76)

where g ≡ (γ − 1)−1 ≡ (σ + 1)(γ + 1) (mod q − 1), so that γ/(γ − 1) ≡ g + 1 (mod q − 1).
Now put A = 1 + kγ−1, so K = (A + 1)g; Kσ−1Aσ = Kσ−1 + Kσγ−1; Kσ−1 = (A + 1)g(σ−1) =

(A+1)g/(σ+1) = (A+1)γ+1. Then substituting into (12.76) we have W = (A+KA+Kσ−1Aσ)/Ag+1 =
A−g(1 + (A + 1)g + (A + 1)γ+1Aσ−1) = A−σγ−σ−γ−1(1 + (Aσγ + 1)(Aσ + 1)(Aγ + 1)(A + 1) + (Aγ +
1)(A + 1)Aσ−1). After expanding and regrouping, this becomes

W = (1 + (A−1 + A−γ) + (A−γ−1 + (A−γ−1)σ) + (A−σ + (A−σ)γ)+
(A−σ−1 + (A−σ−1)γ) + (A−σ−γ + (A−σ−γ)σ + (A−σ−γ−1+
(A−σ−γ−1)γ) + (A−σγ−σ−1 + (A−σγ−1)γ).

(12.77)

It follows by 12.7.2 that W ∈ C2, completing the proof of (i).
(ii) Since (3σ+3, q−1) = 1, then by 12.4.4 we have 3σ+4 ∈ D iff (σ+2)/3 = (3σ+4)(3σ+3)−1 ∈ D.

Let h ≡ (σ + 2)/3 (mod q − 1) with h a positive integer. Our strategy is to show that each line of
PG(2, q) intersects D(h) in at most two points.

a) `x0 + x1 = 0 intersects D(h) in {(0, 0, 1), (1, `, `h)}.
b) `x0 + x2 = 0 intersects D(h) in {(0, 1, 0), (1, `′, `)}, with `′h = `.
c) If k, ` ∈ F with k 6= 0, `x0+dx1+x2 = 0 intersects D(h) in {(1, x, xh) ‖ `+kx+xh = 0}. Define

m and y by the substitutions x = k3(σ+1)y3 and m = `k−3σ−4. Then `+kx+xh = `+kx+x(σ+2)/3 =
` + K3σ+4y3 + k3σ+4yσ+2 = k3σ+4(m + y3 + yσ+2). Hence we have

(σ + 2)/3 ∈ D iff 0 = m + y3 + yσ+2 has at most two solutions y. (12.78)
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We may suppose (12.78) has at least two solutions α, β ∈ F . Then (y+α)(y+β) = y2+(α+β)y+αβ = 0
for y ∈ {α, β}. Consequently y4 = (α+β)2y2 +α2β2 = (α+β)2((α+β)y +αβ)+α2β2 = (α+β)3y +
αβ(α + β)2 + α2β2. Proceeding in this way we obtain

yσ = ay + b (12.79)

for some a, b (functions of α and β) if y ∈ {α, β}. Hence yσ2
= y2 = aσyσ + bσ = aσ+1y + aσb + bσ,

then α + β = aσ+1 and αβ = aσb + bσ. Now substitute yσ = ay + b and y2 = aσ+1y + aσb + bσ into
(12.78) to obtain (after some simplification):

0 = y2(yσ + y) + m = (a2σ+2(a + 1) + (aσb + bσ)(a + 1) + aσ+1b)y+
(aσb + bσ)(aσ+1(a + 1) + b) + m,

(12.80)

for y ∈ {α, β}. But since the equation in (12.80) is linear and has two distinct roots, it must be trivial.
In particular

a2σ+2(a + 1) = bσ(a + 1) + baσ. (12.81)

If a = 0, then yσ = ay + b has only one solution, an impossibility. So a 6= 0. Multiply (12.81) by
(a + 1)2σ+2/a2σ+2 to obtain

(a + 1)σ+2 = (
(a + 1)σ+1b

aσ+2
) + (

(a + 1)σ+1b

aσ+2
)σ ∈ C1. (12.82)

Then aσ+2 = (aσ +1)(a2 +1)+aσ +a2 +1 = (a+1)σ+2 +(aσ/2 +a)2 +1 ∈ C1 +C1 +C2 = C2. Hence

α + β = aσ+1 = (aσ+2)σ/2 ∈ C2. (12.83)

The essence of (12.83) is that the sum of any two roots of (12.78) must be in C2. Hence if there were a
third root ρ, it would follow that each of α+β, α+ρ, β+ρ would be in C2, a blatant impossibility. This
shows that the equation in (12.78) has at most two solutions and completes the proof that 3σ+4 ∈ D.
2
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Chapter 13

Generalizations and Related Topics

13.1 Partial Geometries, Partial Quadrangles and Semi Partial Ge-
ometries

A (finite) partial geometry is an incidence structure S = (P,B, I) in which P and B are disjoint
(nonempty) sets of objects called points and lines, respectively, and for which I is a symmetric point-
line incidence relation satisfying the following axioms :

(i) Each point is incident with 1 + t lines (t > 1) and two distinct points are incident with at most
one line.

(ii) Each line is incident with 1 + s points (s > 1) and two distinct lines are incident with at most
one point.

(iii) If x is a point and L is a line not incident with x, then there are exactly α (α ≥ 1) points
x1, x2, . . . , xα and α lines L1, L2, . . . , Lα such that x I Li I xi I L, i = 1, 2, . . . α.

Partial geometries were introduced by R.C. Bose [16]. Clearly the partial geometries with α = 1 are
the generalized quadrangles.

It is easy to show that |P| = v = (1 + s)(st + α)/α and |B| = b = (1 + t)(st + α)/α. Further, the
following hold: α(s + t + 1− α)|st(s + 1)(t + 1) [17, 77], (t + 1− 2α)s ≤ (t + 1− α)2(t− 1) [34], and
dually (s + 1− 2α)t ≤ (s + 1− α)2(s− 1).

For a survey on the subject we refer to F. De Clerck [41, 42], J.A. Thas [195], and A.E. Brouwer
and J.H. van Lint [22].

A (finite) partial quadrangle is an incidence structure S = (P,B, I) of points and lines satisfying
(i) and (ii) above and also:

(iii)′ If x is a point and L is a line not incident with x, then there is at most one pair (y, M) ∈ P ×B
for which x I M I y I L.

(iv)′ If two points are not collinear, then there are exactly µ (µ > 0) points collinear with both.

Partial quadrangles were introduced and studied by P.J. Cameron [31]. A quadrangle is a generalized
quadrangle iff µ = t + 1.

We have |P| = v = 1 + (t + 1)s(1 + st/µ), and v(t + 1) = b(s + 1) with |B| = b [31]. The following
hold: µ ≤ t + 1, µ|s2t(t + 1), and b ≥ v if µ 6= t + 1 [31]. Moreover D = (s− 1− µ)2 + 4((t + 1)s− µ)
is a square (except in the case µ = s = t = 1, where D = 5 (and then S is a pentagon)) and
((t + 1)s + (v − 1)(s− 1− µ +

√
D)/2)/

√
D is an integer [31].

A (finite) semi partial geometry is an incidence structure S = (P,B, I) of points and lines satisfying
(i) and (ii) above and also satisfying:

187
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(iii)′′ If x is a point and L is a line not incident with x, then there are 0 or α (α ≥ 1) points which
are collinear with x and incident with L.

(iv)′′ If two points are not collinear, then there are µ (µ > 0) points collinear with both.

Semi partial geometries were introduced by I. Debroey and J.A. Thas [47]. A semi partial geometry
is a partial geometry iff µ = (t + 1)α; it is a generalized quadrangle iff α = 1 and µ = t + 1.

We have |P| = v = 1 + (t + 1)s(1 + t(s − α + 1)/µ), and v(t + 1) = b(s + 1) with |B| = b [47].
The following also hold: α2 ≤ µ ≤ (t + 1)α, (s + 1)|t(t + 1)(αt + α − µ), µ|(t + 1)st(s + 1 − α),
α|st(t + 1), α|st(s + 1), α|µ, α2|µst, α2|t((t + 1)α − µ), and b ≥ v if µ 6= (t + 1)α [47]. Moreover
D = (t(α− 1) + s− 1− µ)2 + 4((t + 1)s− µ) is a square (except in the case µ = s = t = α = 1, where
D = 5 (here S is a pentagon)) and ((t + 1)s + (v− 1)(t(α− 1) + s− 1−µ +

√
D)/2)/

√
D is an integer

[47].
For a survey on the subject we refer to I. Debroey [45, 46] and I. Debroey and J.A. Thas [47].

If we write “−→” for “generalizes to” then we have the following scheme:

generalized quadrangle −→ partial geometry
↓ ↓

partial quadrangle −→ semi partial geometry

13.2 Partial 3-Spaces

Partial 3-spaces (involving points, lines and planes) have been defined as follows by R. Laskar and J.
Dunbar [93].

A partial 3-space S is a system of points, lines and planes, together with an incidence relation for
which the following conditions are satisfied:

(i) If a point p is incident with a line L, and L is incident with a plane π, then p is incident with π.

(ii) (a) A pair of distinct planes is incident with at most one line.

(b) A pair of distinct planes not incident with a line is incident with at most one point.

(iii) The set of points and lines incident with a plane forms a partial geometry with parameters s, t
and α.

(iv) The set of lines and planes incident with a point p forms a parital geometry with parameters
s∗, t and α∗, where the points and lines of the geometry are the planes and lines through p,
respectively, and incidence is that of S.

(v) Given a plane π and a line L not incident with π, π and L not intersecting in a point, there
exist exactly u planes through L intersecting π in a line and exactly w − u planes through L
intersecting π in a point but not in a line.

(vi) Given a point p and a line L, p and L not incident with a common plane, there exist exactly u∗

points on L which are collinear with p, and w∗− u∗ points on L coplanar but not collinear with
p.

(vii) Given a point p and a plane π not containing p, there exist exactly x planes through p intersecting
π in a line.
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Many properties of S are deduced in R. Laskar and J. Dunbar [93], and several examples are described
in R. Laskar and J.A. Thas [94]. In J. A. Thas [202] all partial 3-spaces for which the lines are lines of
PG(n, q), for which the points are all the (projective) points on these projective lines, and for which the
incidence of points and lines is that of PG(n, q), are determined. Among these “embeddable” partial
3-spaces there are several examples for which the partial geometries of axiom (iii) (resp., axiom (iv))
are classical generalized quadrangles.

13.3 Partial Geometric Designs

A “non-linear” generalization of parital geometries is due to R.C. Bose, S.S. Shrikhande and N.M.
Singhi [20].

A (finite) partial geometric design is an incidence structure S = (P,B, I) of points and blocks for
which the following properties are satisfied:

(i) Each point is incident with 1 + t (t > 1) blocks, and each block is incident with 1 + s (s ≥ 1)
points.

(ii) For a given point-block pair (x, L), x  I L (resp., x I L), we have
∑

yIL[x, y] = α (resp., β), where
[x, y] denotes the number of blocks incident with x and y.

For the structure S we also use the notation D(s, t, α, β). A D(s, t, α, s + t + 1) is just a partial
geometry; a D(s, t, 1, s + t + 1) is just a generalized quadrangle.

13.4 Generalized Polygons

Let S = (P,B, I) be an arbitrary incidence structure of points and blocks. A chain in S is a finite
sequence X = (x0, . . . , xh) of elements in P ∪ B such that xi−1 I xi for i = 1, . . . , h. The integer
h is the length of the chain, and the chain X is said to join the elements x0 and xh of S. If S is
connected, in the obvious sense that any two of its elements can be joined by some chain, then d(x, y) =
min{h‖ some chain of length h joins x and y} is a well-defined positive integer for all distinct x, y ∈
P ∪ B. Put d(x, x) = 0 for any element x of S.

We now define a generalized n-gon, n ≥ 3, as a connected incidence structure S = (P,B, I)
satisfying the following conditions:

(i) d(x, y) ≤ n for all x, y ∈ P ∪ B.

(ii) If d(x, y) = h < n, there is a unique chain of length h joining x and y.

(iii) For each x ∈ P ∪ B there is a y ∈ P ∪ B such that d(x, y) = n,

Generalized n-gons were introduced by J. Tits [217] in 1959, in connection with certain group theo-
retical problem.

A generalized polygon is an incidnece structure which is a generalized n-gon for some integer n.
Clearly any two distinct points (resp., blocks) of a generalized polygon are incident with at most one
block (resp., point). From now on the blocks of a generalized n-gon will be called lines. A finite
generalized n-gon has order (s, t), s ≥ 1 and t ≥ 1, if there are exactly s + 1 points incident with each
line and exactly t + 1 lines incident with each point. A generalized polygon of order (s, t) is called
thick if s > 1 and t > 1. Notice that the generalized n-gons of order (1, 1) are just the polygons with
n vertices and n sides in the usual sense.

If S is a generalized n-gon of order (s, t), then by a celebrated theorem of W. Feit and G. Higman
[57, 91, 153] we have (s, t) = (1, 1) or n ∈ {3, 4, 6, 8, 12}. Further, they prove that there are no thick
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generalized 12-gons of order (s, t) and they show that if a thick generalized n-gon of order (s, t) exists,
then 2st is a square if n = 8 and st is a square if n = 6.

The thick generalized 3-gons of order (s, t) have s = t and are just the projective planes of order
s. The generalized 4-gons of order (s, t) are just the generalized quadrangles of order (s, t).

In [67] W. Haemers and C. Roos prove that s ≤ t3 ≤ s9 for thick generalized 6-gons of order (s, t),
and in [78] D.G. Higman shows that s ≤ t2 ≤ s4 for thick generalized 8-gons of order (s, t).

For more information about generalized polygons we refer to P. Dembowski [50], W. Feit and G.
Higman [57], W. Haemers [66], M.A. Ronan [148, 149, 150, 152], J. Tits [217, 221, 222, 224, 225], A.
Yanushka [237, 238].

13.5 Polar Spaces and Shult Spaces

A polar space of rank n, n ≥ 2, is a pointset P together with a family of subsets of P called subspaces,
satisfying:

(i) A subspace, together with the subspaces it contains, is a d-dimensional projective space with
−1 ≤ d ≤ n− 1 (d is called the dimension of the subspace).

(ii) The intersection of two subspaces is a subspace.

(iii) Given a subspace V of dimension n − 1 and a point p ∈ P − V , there is a unique subspace W
such that p ∈W and V ∩W has dimension n− 2; W contains all points of V that are joined to
p by a line ( a line is a subspace of dimension 1).

(iv) There exist two disjoint subspaces of dimension n− 1.

This definition is due to J. Tits [220]. Notice that the polar spaces of rank 2 which are not grids or
dual grids (cf. 1.1) are just the generalized quadrangles of order (s, t) with s > 1 and t > 1.

By a deep theorem due to F.D. Veldkamp [227, 228, 229] and J. Tits [220] all polar spaces of finite
rank ≥ 3 have been classified. In particular, if P is finite, then the subspaces of the polar space (of
rank ≥ 3) are just the totally isotropic subspaces [50] with respect to a polarity of a finite projective
space, or the projective spaces on a nonsingular quadric of a finite projective space.

In [30] F. Buekenhout and E.E. Shult reformulate the polar space axioms in terms of points and
lines. Let P be a pointset from which distinguished subsets of cardinality ≥ 2 are called lines (we
assume that the lineset is nonempty). Then P together with its lines is a Shult space if and only if for
each line L of P and each point p ∈ P − L, the point p is collinear with either one or all points of L.

A Shult space is nondegenerate if no point is collinear with all other points, and is linear if two
distinct lines have at most one common point. A subspace X of the Shult space is a nonempty set of
pairwise collinear points such that any line meeting X in more than one point is contained in X. If
there exists an integer n such that every chain of distinct subspaces X1 ⊂ X2 ⊂ · · · ⊂ Xl has at most
n members, then S is of finite rank.

F. Buekenhout and E.E. Shult [30] prove the following fundamental theorem:

(a) Every nondegenerate Shult space is linear.

(b) If P together with its lines is a nondegenerate Shult space of finite rank, and if all lines contain
at least three points, then the Shult space together with its subspaces is a polar space.
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13.6 Pseudo-geometric and Geometric Graphs

A graph constists of a finite set of vertices together with a set of edges, where each edge is a subset
of order 2 of the vertex sets. The two elements of an edge are called adjacent. A graph is complete if
every two vertices are adjacent, and null if it has no edges at all. If p is a vertex of a graph Γ, the
valency of p is the number of edges containing p, i.e. the number of vertices adjacent to p. If every
vertex has the same valency, the graph is called regular, and the common valency is the valency of the
graph. A strongly regular graph is a graph which is regular, but not complete or null, and which has
the property that the number of vertices adjacent to p1 and p2 (p1 6= p2) depends only on whether
or not p1 and p2 are adjacent. Its parameters are v, k, λ, µ, where v is the number of vertices, k is
the valency, and λ (resp., µ) is the number of vertices adjacent to two adjacent (resp., nonadjacent)
vertices.

Let S = (P,B, I) be a partial geometry (cf. 13.1) with parameters s, t and α. Then a graph is
defined as follows: vertices are the points of S and two vertices are adjacent if they are collinear as
points of S. This graph is called the point graph of the partial geometry. Clearly, for α 6= s + 1,
this point graph is strongly regular with parameters v = |P| = (s + 1)(st + α)/α, k = s(t + 1),
λ = s − 1 + (α − 1)t and µ = (t + 1)α. For a generalized quadrangle, v = (s + 1)(st + 1), k =
s(t + 1), λ = s− 1, µ = t + 1. The point graph of a partial geometry is called a geometric graph, and
a strongly regular graph which has the parameters of a geometric graph is called a pseudo-geometric
graph [17]. An interesting but difficult problem is the following: for which values of s, t, α are pseudo-
geometric graphs always geometric?

In this context we mention the following theorem due to P.J. Cameron, J.-M. Goethals and J.J.
Seidel [34] (see also W. Haemers [66, p. 61]).

Every pseudo-geometric graph with parameters v = (q + 1)(q3 + 1), k = q(q2 + 1), λ = q − 1 and
µ = q2 + 1, is geometric, i.e. it is the point graph of a generalized quadrangle of order (q, q2).
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preprint, 1976.

[55] Jr. Ealy, C.E. Generalized quadrangles and odd transpositions. PhD thesis, The University of
Chicago, 1977.

[56] M.M. Eich and S.E. Payne. Nonisomorphic symmetric block designs derived from generalized
quadrangles. Rend. Accad. Naz. Lincei, 52:893–902, 1972.

[57] W. Feit and G Higman. The nonexistence of certain generalized polygons. J. Algebra, 1:114–131,
1964.

[58] J.C. Fisher and J.A. Thas. Flocks in PG(3, q). Math. Z., 169:1–11, 1979.

[59] P. Fong and G. Seitz. Groups with a (b, n)-pair of rank 2, i. Invent. Math., 21:1–57, 1973.



196 Finite generalized quadrangles

[60] P. Fong and G. Seitz. Groups with a (b, n)-pair of rank 2, ii. Invent. Math., 24:191–239, 1974.

[61] M. Forst. Topolohische 4-gone. PhD thesis, Christian-Albrechts-Universität Kiel, 1979.
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editors, The Geometric Vein, pages 231–242. Springer Verlag, 1981.



200 Finite generalized quadrangles

[137] S.E. Payne. Collineations of finite generalized quadrangles. In N.L. Johnson, M.J. Kallaher,
and C.T. Long, editors, Finite geometries, volume 82 of Lecture Notes in Pure and Appl. Math.,
pages 361–390. Marcel Dekker AG Verlag, 1983.

[138] S.E. Payne. On the structure of translation generalized quadrangles. Ann. Discrete Math.,
18:661–666, 1983.

[139] S.E. Payne and J.E. Conklin. An unusual generalized quadrangle of order sixteen. J. Combin.
Theory (A), 24:50–74, 1978.

[140] S.E. Payne and R.B. Killgrove. Generalized quadrangles of order sixteen. In Proceedings of
the Ninth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida
Atlantic Univ., Boca Raton, Fla., 1978), pages 555–565. Congressus Numerantium, No. XXI,
Winnipeg, Man., 1978. Utilitas Math.

[141] S.E. Payne, R.B. Killgrove, and D.I. Kiel. Generalized quadrangles as amalgamations of desar-
guesian planes: the multiplicative case. In Proceedings of the Tenth Southeastern Conference
on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla.,
1979), pages 787–794. Congressus Numerantium, No. XXIII–XXIV. Utilitas Math., Winnipeg,
Man., 1979.

[142] S.E. Payne and J.A. Thas. Generalized quadrangles with symmetry, Part I. Simon Stevin,
49:3–32, 1975.

[143] S.E. Payne and J.A. Thas. Generalized quadrangles with symmetry, Part II. Simon Stevin,
49:81–103, 1976.

[144] S.E. Payne and J.A. Thas. Moufand conditions for finite generalized quadrangles. In P.J.
Cameron, J.W.P. Hirschfeld, and D.R. Hughes, editors, Finite geometries and designs, volume 49
of London Math. Soc. Lecture Note Ser., pages 275–303. Cambridge Univ. Press, 1980.

[145] S.E. Payne and M.F. Tinsley. On v1 × v2 (n, x, t)-configurations. J. Combin. Theory, 7:1–14,
1969.

[146] N. Percsy. A characterization of classical minkowski planes over a perfect field of characteristic
2. J. Geom, 5:191–204, 1974.

[147] O. Prohaska and M. Walker. A note on the hering type of inversive planes of even order. Arch.
Math., 28:431–432, 1977.

[148] M.A. Ronan. Generalized hexagons. PhD thesis, University of Oregon, 1978.

[149] M.A. Ronan. A geometric characterization of moufang hexagons. Invent. Math., 57:227–262,
1980.

[150] M.A. Ronan. A note on the 3D4(q) generalized hexagons. J. Combin. Theory, 29:249–250, 1980.

[151] M.A. Ronan. Semiregular graph automorphisms and generalized quadrangles. J. Combin. Theory
(A), 29:319–328, 1980.

[152] M.A. Ronan. A combinatorial characterization of the dual moufang hexagons. Geom. Dedicata,
11:61–67, 1981.

[153] C. Roos. An alternative proof of the feit-higman theorem on generalized polygons. Delft Progr.
Rep. Series F: Math. Eng., 5:67–77, 1980.



Bibliography 201

[154] A. Russo. Calotte hermitiane di un sr,4. Ricerche Mat., 20:297–307, 1971.

[155] N.S.N. Sastry. Codes, partial geometries and generalized n-gons. preprint.

[156] G.L. Schellekens. On a hexagonic structure, part i. Indag. Math., 24:201–217, 1962.

[157] G.L. Schellekens. On a hexagonic structure, part ii. Indag. Math., 24:218–234, 1962.

[158] B. Segre. Sulle ovali nei piani lineari finiti. Rend. Accad. Naz. Lincei, 17:141–142, 1954.

[159] B. Segre. Lectures on modern geometry. Edizioni Cremonese, Rome, 1961. With an appendix
by Lucio Lombardo-Radice. Consiglio Nazionale delle Rierche Monografie Matematiche, 7.

[160] B. Segre. Ovali e curve σ nei piani di galois di caratteristica due. Rend. Accad. Naz. Lincei,
32:785–790, 1962.

[161] B. Segre. Forme e geometrie hermitiane, con particolare riguardo al caso finito. Ann. Mat. Pura
Appl., 70(4):1–202, 1965.

[162] B. Segre. Introduction to Galois geometries. Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat.
Natur. Sez. I (8), 8:133–236, 1967.

[163] B. Segre and U. Bartocci. Ovali ed altre curve nei piani di galois di caratteristica due. Acta
Arith., 18:423–449, 1971.

[164] J.J. Seidel. Strongly regular graphs with (−1, 1, 0) adjacency matrix having eigenvalue 3. Linear
Algebra Appl., 1:281–298, 1968.

[165] S. Shad and E.E. Shult. Near n-gons. In The Santa Cruz Conference on Finite Groups (Univ.
California, Santa Cruz, Calif., 1979), volume 37 of Proc. Sympos. Pure Math., pages 461–463,
Providence, R.I., 1980. Amer. Math. Soc.

[166] E.E. Shult. Characterizations of certain classes of graphs. J. Combin. Theory (B), 13:142–167,
1972.

[167] E.E. Shult and A. Yanushka. Near n-gons and line systems, part i. Geom. Dedicata, 9:1–72,
1980.

[168] R.R. Singleton. Minimal regular graphs of maximal even girth. J. Combin. Theory, 1:306–332,
1966.

[169] C. Somma. Generalized quadrangles with parallelism. Ann. Discrete Math., 14:265–282, 1982.

[170] A.P. Sprague. A characterization of 3-nets. J. Combin. Theory (A), 27:223–253, 1979.

[171] J.J. Sylvester. Note sur l’involution de six lignes dans l’espace. Comptes Rendus Hebdomadaires
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(S(p), G), 106
G2(q), 28
H(d, q2), 25
H(q), 28
K(q), 28
O(n, m, q), 112
P (S, x), 26
Q(d, q), 25
S(G, J), 106
T -function, 161
T -set up, 161
T (O), T2(O), T3(O), T ∗2 (O), 26
T (n, m, q), 112
W (q), 26
AS(q), 27
k-arc, 22
4-gonal basis, 145
4-gonal family, 131
4-gonal function, 153
4-gonal partition, 132
4-gonal setup, 153

acentric, 2
admissible pair, 165, 166
amalgamation of planes, 165
ambient space, 43
antiregular, 3
arc, 22
axiom (D) (with variations), 61
axis of symmetry, 105

base point, 106
broken grid, 61
bundle (with variations), 66
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center of irregularity, 39
center of symmetry, 105
centric (triad), 2
classical GQ, 25
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collinear, 1
concurrent, 1
coregular, 3

definite (2× 2 matrix), 137
duad, 79

dual grid, 1

elation, 105
elation generalized quadrangle (EGQ), 106
elation group, 106

finite generalized quadrangle (FGQ), 1

generalized hexagon, 28
generalized polygon, 189
generalized quadrangle, 1
geometric graph, 191
grid, 1

Higman-Sims technique, 6, 121
homology (generalized), 129
hyperbolic line, 2

inversive plane, 54

kernel of a T -set up, 161, 163
kernel of a TGQ, 111

Laguerre plane, 53

matroid, 76
Minkowski plane, 53
Moufang condition (Mp) (with variations), 117

order, 1
orthogonal, 1
ovoid, 13

parameters, 1
partial geometric design, 189
partial geometry, 187
partial quadrangle, 187
partial three-space, 188
perp, 2
perpendicular, 1
perspectivity (line of), 127
polar space, 190
polarity, 13
projective GQ, 43
property (A) (with variations), 63
property (H), 3
pseudo-geometric graph, 191

regular, 3
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Shult space, 190
skew-translation generalized quadrangle (STGQ),
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subquadrangle, 17
symmetry, 105
syntheme, 79
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translation generalized quadrangle (TGQ), 106
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unicentric, 2

whorl, 105
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