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Chapter 1

Combinatorics of finite generalized
quadrangles

1.1 Axioms and definitions

A (finite) generalized quadrangle (GQ) is an incidence structure & = (P, B,1I) in which P and B are
disjoint (nonempty) sets of objects called points and lines (respectively), and for which I is a symmetric
point-line incidence relation satisfying the following axioms:

(i) Each point is incident with 1 + ¢ lines (¢ > 1) and two distinct points are incident with at most
one line.

(ii) Each line is incident with 1 + s points (s > 1) and two distinct lines are incident with at most
one point.

(iii) If z is a point and L is a line not incident with z, then there is a unique pair (y, M) € P x B for
whichz IMIyIL.

Generalized quadrangles were introduced by J. Tits [217].

The integers s and t are the parameters of the GQ and S is said to have order (s,t); if s=1¢, S is
said to have order s. There is a point-line duality for GQ (of order (s, t)) for which in any definition or
theorem the words “point” and “line” are interchanged and the parameters s and ¢ are interchanged.
Normally, we assume without further notice that the dual of a given theorem or definition has also
been given.

A grid (resp., dual grid) is an incidence structure S = (P, B,I) with P = {z;; || i =0,...,s1 and j =
0,...,82}, s1 > 0 and s > 0 (resp., B = {L;; || ¢ = 0,...,tyand j = 0,...,t2}, t1 > 0 and
to >0), B={Lo,...,Ls,, My,...,Ms,} (vesp., P = {xo,..., %, Y0,---,Yts}), ®ij I Ly iff i = k (resp.,
Lij 1 xpiffi = k), and a;; I My iff j = k (vesp., L;; 1 yi iff j = k). A grid (resp., dual grid) with
parameters si, se (resp., t1,t2) is a GQ iff s; = s (resp., t; = t2). Evidently the grids (resp., dual
grids) with s; = s9 (resp., t; = t2) are the GQ with t =1 (resp., s = 1).

Let S be a GQ, a grid, or a dual grid. Given two (not necessarily distinct) points x,y of S, we
write  ~ y and say that x and y are collinear provided that there is some line L for which z I L I y.
And z £ y means that x and y are not collinear. Dually, for L, M € B, we write L ~ M or L 4 M
according as L areM are concurrent or nonconcurrent, respectively. If x ~ y (resp., L ~ M) we may
also say that x (resp., L) is orthogonal or perpendicular to y (resp., M). The line (resp., point) which
is incident with distinct collinear points z,y (resp., distinct concurrent lines L, M) is denoted by zy
(resp., LM or LN M).
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For z € P put 2+ = {y € P || y ~ 2}, and note that 2 € 2. The trace of a pair (z,y) of distinct
points is defined to be the set Nyt and is denoted tr(z,y) or {x,y}+. We have |{z, y}*| = s+1 or t41
according as z ~ y or x o 3. More generally, if A C P, A “perp” is defined by A+ = n{zt || = € A}.
For = o y, the span of the pair (z,y) is sp(z,y) = {z,y}** ={u € P || u € z'Vz € 2t nyt}. If
x oy, then {z,y}+ is also called the hyperbolic line defined by x and y. For z # y, the closure of
the pair (z,y) is cl(z,y) = {z € P || - n{z,y}*+ # o}

A triad (of points) is a triple of pairwise noncollinear points. Given a triad T = (z,y, z), a center
of T is just a point of 7. We say T is acentric, centric or unicentric according as |T| is zero, positive
or equal to 1.

Isomorphisms (or collineations), anti-isomorphisms (or correlations), automorphisms, anti-automorphisms,
involutions and polarities of generalized quadrangles, grids, and dual grids are defined in the usual
way.

1.2 Restrictions on the parameters
Let S = (P,B,I) be a GQ of order (s,t), and put |P| = v, |B| = b.
1.21. v=(s+1)(st+1) and b= (t+ 1)(st + 1).

Proof. Let L be a fixed line of S and count in different ways the number of ordered pairs (x, M) €
PxBwitha¥L, 21 M, and L ~ M. There arises v —s—1= (s+1)ts or v = (s+1)(st +1). Dually
b=(t+1)(st+1). O

1.2.2. s+t divides st(s+1)(t+1).

Proof. If £ = {{z,y} || =,y € P and = ~ y}, then it is evident that (P, F) is a strongly regular
graph [17, 77] with parameters v = (s + 1)(st + 1), k (or n1) = st + s, A (or p}y) = s — 1, u (or p})
=t+ 1. The graph (P, E) is called the point graph of the GQ. Let P = {z1,...,z,} and let A = (a;;)
be the v X v matrix over R for which a;; = 0if i = j or x; # x;, and a;; = 1 if i # j and z; ~ x;, i.e.
A is an adjacency matrix of the graph (P, E) (cf. [17]).

If A% = (c;5), then we have : (a) ¢;; = (t+1)s; (b) if i # j and x; % xj, then ¢;; = t + 1; (c) if
i # j and z; ~ xj, then ¢;; = s — 1. Consequently A% — (s —t —2)A — (t+1)(s — 1)I = (t + 1)J.
(Here I is the v x v identity matrix and J is the v x v matrix with each entry equal to 1.) Evidently
(t + 1)s is an eigenvalue of A, and J has eigenvalues 0, v with multiplicities v — 1, 1, respectively.
Since ((t+1)s)? — (s =t —2)t+ 1)s— (t+1)(s —1) = (t+ 1)(st + 1)(s + 1) = (t + 1)v, the
eigenvalue (t 4+ 1)s of A corresponds to the eigenvalue v of J, and so (¢ + 1)s has multiplicity 1. The
other eigenvalues of A are roots of the equation 22 — (s —t — 2)z — (¢t + 1)(s — 1) = 0. Denote the
multiplicities of these eigenvalues 01,05 by m1, ma, respectively. Then we have 0 = —t—1, 05 = s—1,
v=1+ms+mg, and s(t + 1) —mi(t + 1) + ma(s — 1) = tr(A) = 0. Hence m; = (st + 1)s?/(s + 1)
and mg = st(s+ 1)(t+ 1)/(s +t). Since my, ma € N, the proof is complete. O

1.2.3. (The inequality of D.G. Higman [77, 75]). If s > 1 and t > 1, then t < 52, and dually s < 2.

Proof. (P.J. Cameron [31]). Let x,y be two noncollinear points of S. Put V.={z € P || z #
zand z Xy}, s0 |[V|=d=(s+1)(st+1) —2—2(t+1)s+ (t + 1). Denote the elements of V' by
21,...,2zq and let t; = [{u € {x,y}* || u ~ z}|. Count in different ways the number of ordered pairs
(zi,u) € V x {z,y}+ with u ~ z; to obtain

d ti=(t+1)(t—1)s. (1.1)
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Next count in different ways the number of ordered triples (z;,u,u') € V x {x,y}* x {z,y}* with
u#u, u~ 2z, u ~ z, to obtain

D it — 1) = (t+ t(t - 1). (1.2)

From 1.1 and 1.2 it follows that >, 2 = (¢ + 1)(t — 1)(s + t).

With dt = 3. ¢;, 0 < Y, (f — t;)? simplifies to d >, 2 — (>, ¢;)? > 0, which implies d(t + 1)(t —
D(s+1t) = (t+1)%(t —1)%2, or t(s — 1)(s® —t) > 0, completing the proof. O

There is an immediate corollary of the proof.

1.2.4. (R.C. Bose and S.S. Shrikhande [19] ). If s > 1 andt > 1, then s> =t iff d> 12 — (> t;)> =0
for any pair (x,y) of noncollinear points iff t; = t for all i = 1,...,d and for any pair (x,y) of
noncollinear points iff each triad (of points) has a constant number of centers, in which case this
constant number of centers is s + 1.

Remark: D.G. Higman first obtained the inequality ¢ < s by a complicated matrix-theoretic method
[77, 78]. R.C. Bose and S.S. Shrikhande [19] used the above argument to show that in case t = s?
each triad has 1+ s centers, and P.J. Cameron [31] apparently first observed that the above technique
also provides the inequality. (See Paragraph 1.4 below for a simplified proof in the same spirit as that
of D.G. Higman’s original proof.)

1.2.5. Ifs#1,t#1, s #t2, and t # 5%, then t < s®> — s and dually s <t —t.

Proof. Suppose s # 1 and t # s%. By 1.2.3 we have t = s> — x with z > 0. By 1.2.2 (s + 5% —
z)|s(s? — x)(s + 1)(s®> — 2 + 1). Hence modulo s + s> — x we have 0 = x(—s)(—s + 1) = x(x — 2s). If
x < 2s, then s + s? — 1 < 2(2s — ) forces x € {s,s5+ 1}. Consequently z = s, z = s+ 1, or x > 2s,
from which it follows that t < s2 —s. O

1.3 Regularity, antiregularity, semiregularity, and property (H)

Continuing with the same notation as in 1.2, if z ~ y,  # y, or if £ y and [{z,y}*| =t + 1,
we say that the pair (z,y) is regular . The point x is regular provided (x,y) is regular for all y € P,
y # x. A point z is coregular provided each line incident with x is regular. The pair (z,y), z % vy, is
antiregular provided |2+ N {z,y}*| < 2 for all z € P\ {z,y}. A point x is antiregular provided (z,y)
is antiregular for all y € P\ at.

A point u is called semiregular provided that z € cl(z,y) whenever u is the unique center of the 2
(,y,2). And a point u has property (H) provided z € cl(z,y) iff = € cl(y, z), whenever (x,y, z) is a
triad consisting of points in u*. It follows easily that any semiregular point has property (H).

1.3.1. Let x be a regular point of the GQ S = (P, B,1) of order (s,t). Then the incidence structure
with pointset x \ {x}, with lineset the set of spans {y, 2}, where y,z € x\ {x}, y + 2z, and with
the natural incidence, is the dual of a net (cf. [17]) of order s and degree t + 1. If in particular
s=1t>1, there arises a dual affine plane of order s. Moreover, in this case the incidence structure my
with pointset x-, with lineset the set of spans {y, z}“-, where y, z € o, y # z, and with the natural
incidence, is a projective plane of order s.

Proof. Easy exercise. O

1.3.2. Let = be an antiregular point of the GQ S = (P,B,1) of order s, s # 1, and let y € z+ \ {z}
with L being the line xy. An affine plane w(x,y) of order s may be constructed as follows. Points
of m(x,y) are just the points of - that are not on L. Lines are the pointsets {x,z}++\ {x}, with

x~z by, and {z,ult\ {y}, with y ~u # x.
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Proof. Easy exercise. O

Now let s2 =t > 1, so that by 1.2.4 for any triad (z,y, z) we have |{z,y, 2}*| = s + 1. Evidently
{x,y, 2} < s+ 1. We say (z,y, 2) is 3-regular provided |{z,y, 2} = s 4 1. Finally, the point =
is called 3-regular iff each triad containing z is 3-regular.

1.3.3. Let S be a GQ of order (s,s%), s # 1, and suppose that any triad contained in {x,y}*,
x ~ vy, is 3-reqular. Then the incidence structure with pointset {x,y}*, with lineset the set of ele-
ments {z,2', 2"}, where 2,2, 2" are distinct points in {x,y}*, and with the natural incidence, is an
inversive plane of order s (cf. [50]).

Proof. Immediate. O

For the remainder of this section let z and y be fixed, noncollinear points of the GQ S = (P, B, 1)
of order (s,t), and put {x,y}*+ = {z0,...,2}. For A C {0,...,t} let n(A) be the number of points
that are not collinear with x or y and are collinear with z; iff i € A.

1.3.4. (i) n(@) =0 iff each triad (z,y, z) is centric.
(if) n(A)

(iii) n(A) =0 for all A with 3 < |A] iff (x,y) is antiregular.
(iv) n(A)

Proof. (i), (ii) and (iii) are immediate. To prove (iv), suppose that % u # y, u ~ z for i =

(A) =0 for each A with 2 < |A| <t iff (x,y) is regular.

(A) =0 if |A| = t.

0,...,t—1, and u ¢ 2. Let L; be the line incident with z; and concurrent with uz;, ¢ =0,...,t — 1.
Then Lo, ..., Li—1,2z,yz must be t+2 distinct lines incident with z;, a contradiction. Hence n(A) =0
if |A|=t. O

1.3.5. The following three equalities hold:

>4 n(A) = %t — st —s+1t, (1.3)
YA |AIn(A) =t%s — s,
Sa lAI(JAl = Dn(4) = ¢° —t.

Proof. Note first that ), n(A) is just the number of points not collinear with z or y. Then count
in different ways the number of ordered pairs (u, z;) with u ~ z; and u not collinear with x or y, to
obtain ) , |A|n(A) = (t 4+ 1)(t — 1)s, which is 1.4. Finally, count in different ways the number of
ordered triples (u, 2, z;) with u € {z;, 2;}*, 2z; # zj, and u not collinear with x or y. It follows readily
that Y 4 |A|(JA] —1)n(A) = (t+1)t(t—-1). O

These three basic equations may be manipulated to obtain the following:

3

n(@) = % — 25 — st + T % (JA] = 1)(|A] — 2)n(A), (1.6)
|A|>2

(A = -D(s—t)+ > (AP —2/A])n(A), (1.7)
|Al=1 |A|>2
S n(A) = 50 1) — 5 3 (AP~ |ADn(A) (1.8)
|Al=2 |A|>2
(t+D)n(@) = (s—tit(s— 1)t +1)+ (t—1) Y n(A) +

|A|=2

> (A=)t + 1 - |A]n(A). (1.9)

2<|Al<t
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For each integer a = 0,1,...,t+ 1, let N, = Z‘A‘:a n(A). Suppose there are three distinct «, 3,7,
0 < ao,(3,7 <t+1, for which 6 ¢ {«, 3,7} implies that Ny = 0. Note that we allow N, = 0 also for
example. Then equations 1.3, 1.4, 1.5 can be written in matrix form as

1 1 1 N,
a! 54 v Ng
ala—1) BB-1) ~v(v-1) Ny
s%t—st—s +t
= t’s—s : (1.10)
3 —t

The determinant of this linear system is A = (o — 5)(5 — 7)(7 — a), and we may use Cramer’s rule
to solve for N, N3, N,. As «, 3, v were given in no particular order, it suffices to solve for just one:

(8%t —st —s+1)By— (2 = 1)s(B+7) + (2 —1)(s + 1)
(a—=B)(a—7) '

First, suppose that Ng = N, = 0, i.e. there is at most one index for which N, # 0. Then equations
1.3, 1.4, 1.5 become

N, =

(1.11)

N, = s’t — st — s+ t,
aN, = t*s — s, (1.12)
ala—1)N, =13 —t.

Eliminating o and N,, we find that (t — 1)(s — 1)(s?> — 1) = 0, and that if s> = # 1, then a = s + 1
and N, = s(s — 1)(s? 4+ 1). This result was also contained in 1.2.4.
Second, suppose that N, = 0. By the formula for N, we know the following:

(%t —st —s+t)af — (> = )s(a+6) + (> = 1)(s +1t) = 0. (1.13)

Here there are two cases of special interest: &« =0 and o = 1. If « =0, then = (s +1t)/s, if t > 1.
If @ =1, then 8 = (t? — 1)/(st — s> + s — 1), which forces s < tif t # 1.

Finally, consider again the 0 case. If s > ¢ > 1, then by 1.7 and 1.9 it follows that both N; > 0
and Ny > 0. So suppose a =0, 8 = 1, with s,¢, > 1. Then N, = t(t* —1)/v(y — 1).

The case v = t + 1 forces s > t by 1.9 and occurs precisely when (z,y) is regular. Here Ny =
(s—t)t(s—1), Ny = (t* —=1)(s — 1), and Npoq =t — 1.

The case v = 2 occurs precisely when (x,%) is antiregular, in which case Ny = st — t?s — st +
tt2+1)/2, Ny = (2 —1)(s — t), Ny = t(t> — 1)/2. Since Ny > 0, we have s >t if t > 1.

There is one last specialization we consider: l =a < g <y=1+41t.

Here
Ni=(1+t)(s-1)(A-t+p6(s—1)/(B-1),
Ng=t(s=1)(t+1)(t—s)/(B-1)(t+1-7), (1.14)
Nej1=(t2—1-8(st —s>+s5—1))/(t+1- 7).

Since Ny 20, 8> (t—1)/(s—1)if s # 1. Since Ng > 0, t > s.
1.8.6. (i) If1 <s<t, then (z,y) is neither reqular nor antiregular.

(ii) The pair (z,y) is reqular (with s =1 or s > t) iff each triad (x,y,z) has exactly 0, 1 ort+1
centers. When s =t this iff each triad (xz,y,z) is centric.

(iii) If s > t, then N1 = 0 iff either t =1 or s =t and (z,y) is antireqular. Hence for s =t the pair
(z,y) is antiregular iff each triad (x,y,z) has 0 or 2 centers.
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1v S = ana eacn point in T Ty 1S requiar, €N every point 1s requiar.
iv) If s =t and each point in x+ \ {x} is regular, th int is requl

Proof. In the preceding paragraph we proved that a GQ containing a regular or antiregular pair of
points satisfies s > t if s > 1, £ > 1. We remark that for s = 1 any pair of points is regular, and
that for ¢ = 1 any pair of points is regular and any noncollinear pair of points is antiregular. By the
definition of regularity, the pair (x,y) is regular iff each triad (z,y, z) has exactly 0, 1, or t+ 1 centers.
When s = ¢ and (x,y) is regular, then Ny = 0 and so each triad is centric. Conversely, if s = ¢,
s # 1, and each triad (z,y, z) is centric (recall that the pair (z,y) is fixed), then by 1.9 n(A) = 0 if
2 < |A| < t, i.e. each triad has 0, 1 or £ + 1 centers and so (x,y) is regular.

If t = 1, then it is trivial that Ny = 0. If s = ¢ and (z,y) is antiregular, then the paragraph
preceding the theorem informs us that Ny = 0. Conversely, assume N; = 0 and s > t. Then from 1.7
we have t =1 or s =t and n(A) =0 for |A| > 2,i.e. t =1o0r s =t and (x,y) is antiregular.

Now let s = ¢ and assume that each point in ot \ {z} is regular. Let y * = and 21,2 € {z,y},
21 # z9. Since (z1, z2) is regular, clearly (x,y) is regular. Hence x is regular. To complete the proof
that each point is regular, it suffices to show that if (z,u,u’) is a triad, then (u,u’) is regular. But
since z is regular, by (ii) there is some point z € {z,u,u'}*. By the regularity of z, for any point
2" € {u, '} \ {2}, the pair (z,2') is regular, forcing (u,u’) to be regular. O

1.4 An application of the Higman-Sims technique

Let A = (aj;) denote an n x n real symmetric matrix. Suppose that A = {Aq,...,A,} and I' =
{T'1,..., Ty} are partitions of {1,...,n}, and that I is a refinement of A. Put ¢; = |A,|, 7 = |4,

and let
dij = Z Zaum %’jzz Zaul/-

,LLEAi Z/EAJ' ,uel"i I/GFj

Define the following matrices:
AR = (8ij/6i)1<ij<r and AY = (vij /7)1 j<u-

If g, . ., ptr, with g < ... < p, are the characteristic roots of A% and A1, ..., Ay, with A1 <... < Ay,
are the characteristic roots of Al then by a theorem of C.C. Sims (c.f. p. 144 of [70]; the details are
in S.E. Payne [131] and are considerably generalized in W. Haemers [60]) it must be that A\ < p; <
ttr < Ay. Moreover, if 7 = (y1,...,y,)T satisfies A2 = \17 (so Ay = 1), then ATZ = \ 7, where
Z=(..,2p,...)7 is defined by z;, = y; whenever I'y C A;.

We give the following important application.

1.4.1. (S.E. Payne [17]]). Let X = {x1,...,zm}, m =2, and Y = {y1...,yn}, n = 2, be disjoint
sets of pairwise noncollinear points of the GQ S = (P,B,1) of order (s,t), s > 1, and suppose that
X C YL, Then (m —1)(n — 1) < s2. If equality holds, then one of the following must occur:

(i) m=n = 1+s, and each point of Z = P\ (X UY) is collinear with precisely two points of X UY .

(i) m#n. If m <n, then slt, s <t,n=1+t, m =1+ s%/t, and each point of P\ X is collinear
with either 1 or 1+ t/s points of Y according as it is collinear with some point of X

Proof. Let P = {wi,...,w,} and let B be the (0, 1)-matrix (b;;) over R defined by b;; = 1 if w; % w;
and b;; = 0 otherwise. So B = J—A—1, where A, J, I are as in the proof of 1.2.2, and it readily follows
from that proof that B has eigenvalues st, t, —s. Let {A1, As, Az} be the partition of {1,...,v}
determined by the partition {X,Y,Z} of P. Put d;; = > ;cn, ZfeAj bre, 0; = |A;|, and define the

3 X 3 matrix BA = (6ij/5i)1<i,j<3- Clearly 51 =m, (52 =n, 63 = U — (m+n), 511 = (M* 1)m, 512 == O,
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13 = (8t — (m = 1))m, 01 = 0, da2 = (n — 1)n, o3 = (s* — (n — 1))n, 031 = (s*t — (m — 1))m,
(532 = (S2t — (n — 1))77,, (533 = 8215(53 — 531 - 532. Hence

m—1 0 st—m+1
BA = 0 n—1 s2t—n+1
(s2t—-m+1)m  (s’t—n+1)n 2t — (s2t—m~+1)m+(s*t—n+1)n

v—m—n v—m—n v—m—n

If s%t, 0y, B (with 6; < 6y) are the eigenvalues of B then 6y + 0y = tr(B2) — 5%t = ((m +n)(st + s+
2)—2v—2mn)/(v—m—n) and 6105 = (detB>)/s*t = ((1+s+st)(2mn—m—n)+v—mnv)/(v—m—n).
By the theorem of C.C. Sims the eigenvalues of B2 belong to the closed interval determined by the
smallest and largest eigenvalues of B. Hence —s < 0; < 0y < s’t. But #; and 6y are the roots of
the equation f(z) = 0 with f(z) = 22 — (01 + 02)x + 6102, so that f(—s) > 0. Writing this out
with the values of 1 + 6 and 61605 given above yields (s — 1)(st +1)(s> =1 —mn +m +n) > 0, i.e.
s2 > (m —1)(n —1). In case of equality, i.e. —s = 61, then T = (y1,y2,y3)” satisfies B2y = (—s)7, if
we put y3 = (m —1—s%t)/(s+m—1), y2 = (n —1—5t)/(s +n — 1), y3 = 1. Hence it must be that
BT = (—s)%, where T = (..., x,...)T is defined by z, = y; whenever k € A;. Let us now assume,
without loss of generality, that X = {wy,...,wy,} and Y = {wpm41, ..., Wnin}. Then

T:( Yly oY1y, Y2,...,Y2, 1,...,1)T.
m times n times v —m — n times

For the first m + n rows of B this yields no new information. But consider the point w;, ¢ > m + n.
Suppose w; is not collinear with ¢ points of x, is not collinear with ts points of Y, and hence is not
collinear with s?t — t; — t5 points of points of Z. Then the product of the ith row of B with Z, which
must equal —s, is actually t1y; + toye + st — t; — t9 = —s. This becomes

tl/(s+m—1)+t2/(s+n—1):1. (1.15)

If w; lies on a line joining a point of X and a point of Y, thent;y =m —1and ts =n—1, and eq. 1.15
gives no information. On the other hand, if w; is not on such a line, then either ¢t{ = m or t5 = n.
Suppose t; = m, so w; is collinear with no point of X. Using eq. 1.15 we find that the number of
points of Y collinear with w; isn —ta =14 (n —1)/s. If m = n = s + 1, this says each point not on
a line joining a point of X with a point of ¥ must be collinear with two points of X and none of Y
or with two points of Y and none of X. If 1 <m < s+1,s0 1+ (m —1)/s is not an integer, then
each point of P is collinear with some point of Y. This implies that each point w; of Z is either on
a line joining points of X and Y or is collinear with 1 4+ (n — 1)/s points of Y. Suppose n < 1+ t.
Then there is some line L incident with some point of X but not incident with any point of Y. But
then any point w; on L, w; € X, cannot be collinear with any point of Y, a contradiction. Hence it
must be that n = 1+ ¢, from which it follows that m = 1+ s2/t. This essentially completes the proof
of the theorem. O
This result has several interesting corollaries.

1.4.2. Let x1, x2 be noncollinear points.

(i) By putting X = {x1, 29} and Y = {x1,22}* we obtain the inequality of D.G. Higman. If also
t = s2, part of the corollary 1.2./ of R.C. Bose and S.S. Shrikhande is obtained.

(ii) Put X = {z1, 22} " and Y = {1, 22}, If |X| = p+1 (and s > 1) it follows that pt < s%.
Moreover, if pt = s? and p < t, then each point w; & cl(x1,x2) is collinear with 1+t/s = 1+s/p
points of {x1,x2}+. (This inequality and its interpretation in the case of equality were first
discovered by J.A. Thas [190]. Moreover, using an argument analogous to that of P.J. Cameron
in the proof of 1.2.3, he proves that if p < t and if each triad (w;,x1,x2), w; € cl(z1,x2), has
the same number of centers, then pt = s2).
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(iii) Let s> =t, s > 1, and suppose that the triad (x1,x2,x3) is 3-reqular. Put X = {x1,x9, 23}
and Y = {z1,z2,73}. Then |X| = |Y| = s+ 1, so that by 1.4.1 each point of P\ (X UY)
is collinear with precisely two points of X UY . (This lemma was first discovered by J.A. Thas
[193] using the trick of Bose-Cameron.)

1.5 Regularity revisited
Let S = (P,B,I) be a GQ of order (s,t), s > 1 and t > 1.
1.5.1. (i) If (z,y) is antiregular with s =t, then s is odd [21/].

(ii) If S has a regular point x and a regular pair (Lo, L1) of nonconcurrent lines for which x is
incident with no line of {Lo, L1}, then s =t is even [150)].

(iii) If = is coregular, then the number of centers of any triad (x,y,z) has the same parity as 1 +t

[144].
(iv) If each point is regular, then (t + 1)|(s? — 1)s2.

Proof. Let (x,y) be antiregular with s = ¢t > 1 and {z,y}* = {uo,...,us}. For i = 0,1, let
w1 L; Tu; 1 M; 1y, and let K € {Lo, M1}*, L1 # K # My. The points of K not collinear with = or y
are denoted vy, ..., v,. Let u; ~ v; for some i > 2. Then (z,y,v;) is a triad with center u;, and hence,
by 1.3.6 (iii), with exactly one other center u;. It follows that ws, ..., us occur in pairs of centers of
triads of the form (z,y,v;), each pair being uniquely determined by either of its members. Hence s—1
is even, and (i) is proved.

Next suppose that x and (Lg, L) satisfy the hypotheses of (ii), so that by 1.3.6 (i) we have s = ¢.
If {Lo, L1}**+ = {Ly,..., L}, then let y; be defined by  ~ 4; I L;, i = 0,...,s. By 1.3.1 the elements
,%0,Y1,---,Ys are s+ 2 points of the projective plane 7, of order s defined by x. It is easy to see that
each line of 7, through z contains exactly one point of the set {yo,...,ys}. Suppose that the points
Yi» Yj» Yk, with 4, j, k distinct, are collinear in the plane m,. Then the triad (y;, y;, yx) has s+ 1 centers.
Let u; (resp., ug) be the point incident with L; (resp., Lx) and collinear with y;. Then uy € {y;, yx }*,
hence uy ~ yj, giving a triangle with vertices y;, ux, u;. Consequently {yo,...,ys} is an oval [50] of
the plane 7,. Since the s + 1 tangents of that oval concur at z, the order s of 7, is even [50].

Now assume that x is coregular. Let u1, ..., u,, be all the centers of a triad (z,y, z) with {z, y}J- =
{ut1, . oy Uy Umt1, - -+, U1 ). We may suppose m < t+ 1. For i > m, let L; be the line through = and
u; and M; the line through y and u;. Let K be the line through z meeting L; and N the line through 2
meeting M;. Let M be the line through y meeting K, and L the line through x meeting N. Since the
line L; through x is regular, the pair (L;, N) must be regular, and it follows that M must meet L in
some point uy € {z,y}t, m+1 < <t+1,4" #4. In this way with each point u; € {Uupm1,..., i1}
there corresponds a point u; € {tumy1,..., w1}, ¢ # i, and clearly this correspondence is involutory.
Hence the number of points {z,y}* that are not centers of (x,y, z) is even, proving (iii).

Finally, assume that each point is regular. The number of hyperbolic lines of S equals (1 + s)(1 +
st)s?t/(t + 1)t. Hence (t + 1)[(1 + s)(1 + st)s?. Since (1 + 8)(1 + st)s? = (1 + s)(1 + s(t + 1) — 5)s?,
this divisibility condition is equivalent to (¢ + 1)|(1 + s)(1 — s)s?, proving (iv). O

We collect here several useful consequences of 1.3.6 and 1.5.1, always with s > 1 and ¢ > 1.

1.5.2. (i) If S has a regular point x and a regular line L with x ¥L, then s =t is even [150)].
(ii) If s =t is odd and if S contains two regular points, then S is not self-dual [150].

(iii) If z is coregular and t is odd, then |{x,y}**| =2 for ally & x*+ [1//].
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(iv) If z is coregular and s = t, then x is reqular iff s is even [127, /.
(v) If x is coregular and s =t, then x is antireqular iff s is odd [1//].

Proof. If § has a regular point  and a regular line L, x ¥ L, then it is easy to construct a line Z,
Z ¢ L, such that z is incident with no line of {L, Z}*. Then from 1.5.1 (ii) it follows that s = ¢ is
even. Now suppose that s =t is odd, and that S contains two regular points « and y. If S admits an
anti-automorphism 6, then z¥ and 3% are regular lines. Since at least one of ¥ and 7? is not incident
with at least one of x and y, an application of part (i) finishes the proof of (ii).

For the remainder of the proof suppose that x is coregular, and y is an arbitrary point not collinear
with z. If z € {x,y}*++ \ {x,y}, and if 2' I zu, 2’ & {2, u}, for some u € {x,y}*, then u is the unique
center of (x,y,z’). Hence t is even by 1.5.1 (iii), proving (iii). Now assume s = t. If z is regular, then
any triad (z,y,z) has 1 or 1 + s centers by 1.3.6, implying s is even. Conversely, if s is even, then by
1.5.1 (iii) any triad («,y, 2) is centric, hence by 1.3.6 x is regular, proving (iv). To prove (v), first note
that if s = ¢ and « is antiregular then s is odd by 1.5.1 (i). Conversely, suppose that s = ¢ is odd and
let (z,y,z) be any triad containing x. By 1.5.1 (iii) the number of centers of (x,y, z) must be even.
Hence from 1.3.6 (iii) it follows that = must be antiregular. O

1.6 Semiregularity and property (H)

Throughout this section S = (P, B,1I) will denote a GQ of order (s,t), and the notation of Section 1.3
will be used freely.

Let x,y be fixed, noncollinear points. Each point u € {z,y}* is the unique center of (s —
Dn({z,y}*) triads (z,y,2) with z € cl(z,y). It follows that (z,y,2) can be a unicentered triad
only for z € cl(x,y) precisely when Ny = (¢t + 1)(s — 1)n({x, y}*), which proves the first part of the
following theorem.

1.6.1. (i) Each point of S is semiregular iff N1 = (t + 1)(s — 1)Nyy1 for each pair (z,y) of non-
collinear points.

(ii) If s=1 ort =1 then each point is semiregular and hence satisfies property (H).
(iii) If s =t and u € P is reqular or antiregular, then u is semiregular.
(iv) If s > t, then u € P is reqular iff u is semiregular.

Proof. Parts (i) and (ii) are easy. Suppose u € P is regular. If u is a center of the triad (z,y, ), then
(z,y) is regular. But |{z,y}**| = 1+t implies that u C cl(z,y). Hence z € cl(z,y), implying that
u is semiregular. Conversely, suppose that u € P is both semiregular and not regular. Then there
must be a pair (z,y), z % y, z,y € ut, with [{z,y}**| < 1 +¢. It follows that some line L through
u is incident with no point of {x,y}*+. By the semiregularity of u, the s points of L different from u
must each be collinear with a distinct point of {z,y}* different from u. Hence s < t, proving (iv). To
complete the proof of (iii), let s =t and suppose u is antiregular. From 1.3.6 (iii) it follows that each
triad of points in v has exactly two centers, implying that « is semiregular. O

Remark: It is now easy to see that each point of S is semiregular if any one of the following holds:
(i) s=1ort=1,
(ii) each point of S is regular,

(iii) s =t and each point is antiregular,
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(iv) t = s? (since each triad has 1+ s centers),
(v) {z,y}*+t| = 1+ 82/t for all points x,y with x £y (use 1.4.2 (ii)).

For z,y € P, x # y, let u € {x,y}* and put T = {x,y}**, so T C ut. If Ly,..., L, are the lines
projecting T' from u, r = |T|, put Tu={x € P || x I L; for some i =1,...,r}.

1.6.2. (i) Let u be a point of S having property (H). Let T and T” be two spans of noncollinear
points both contained in wt. If Tu N T'u contains two noncollinear points, then Tu = T'u, so
T =T"].

(ii) Let each point of S have property (H). Then there is a constant p such that [{z,y}**| =1+p
for all points x,y with x ¢ y.

Proof. (i) If |[TNT'| > 2, clearly T = T". So first suppose TNT’ = {z}. By hypothesis there must be
pointsy € T,y € T/, with y ~ ¢/, y #¢'. If T' = {x,y'}, then clearly T'u C Tu. Now suppose there
is some point 2" € T"\ {z,y'}. Since y € cl(z, 2') and u has property (H), it must be that 2’ € cl(x,y),
ie. 2t NT # @. Since S contains no triangles we have 2’ € Tu, implying 7" C Tu. It follows that
always T'u C Twu. Similarly, Tu C T'u. Finally, suppose that TNT" = &, but {z,2'} C TuN T u,
z o 2. Let z and 2’ be the points of T" and T”, respectively, on the line uz, and let y and g’ be
the points of T and T”, respectively, on the line uz’. So T = {z,y}*+, T' = {2/, y/}++. If we put
T" = {x,y'}*++, then by the previous case Tu = T"u = T'u.

(ii) First suppose that T and T” are both hyperbolic lines with T U T" C u" for some point u. If
TuNT'u contains two noncollinear points, then |T| = |T”| by (i). Suppose there is a point y # u with
y € TunNT'u. Let y1 € T, y1 2y, and v} € T, v} £ y. I T1 = {y,y1}*+ and T} = {y,y,}*+*, then
by (i) we have Tu = Thu and T'u = Tju. We may assume that 7} # T7, and hence that T} ¢ T}
and 7] ¢ Ti. Let z € Ty \ T and 2’ € Tj \ T1, where we may assume z ¢ 2’, since otherwise
IT| = |Th| = |T}| = |T1|. As 2’ ¢ Ty, there is a point v’ € {y,z}* and v’ & {y,2'}+. Let L be
the line through 2’ that has a point v on v’z (v # v # 2), and let M be the line through y having
a point w in common with L (v # w # 2/). By (i) we know [{v,y}**| = |{z,y}**| = |T1| and
H{v,y}+t = {2, y}++| = |T]|. Hence |T| = |T’| in case TuNT'u # @. So suppose that TuNT'u = &,
andlet z € T, 2/ € T". From the preceding case it follows that |T| = |{z, 2’}**| = |T’|. This completes
the proof that |T'| = |T’| in case T UT’ C u' for some point .

Finally, suppose T = {y, 2}, y £ 2, T! = {y, 2/}, o £ 2/, and {y, 2} N {y/, 2}t = @. If
each point of {y,z}* is collinear with each point of {3/, 2/}, then T = {¢/,2'}* and T" = {y, z}*,
so |T| = |T'|. So suppose that u »# u' with v € {y,z}*, ' € {y,2'}*. Let v,w € {u,u'}*.
The points of {v,w}*+ U T (resp., {v,w}*+ UT’) are collinear with the point u (resp., u'). Hence
IT| = |{v,w}| = |T’|, by the preceding case. O

1.6.3. Let each point of S be semiregular and suppose s > 1. Then one of the following must occur:
(i) s >t and each point of S is regular.
(ii) s =t and each point of S is regular or each point is antiregular.
(iii)
)

(iv) There is a constant p, 1 < p < t, such that |{x,y}+| = 1 + p for all points x,y with x + y.

s <t and |{z,y} 1| =2 for all x,y € P with x % y.

Proof. Since each point of S is semiregular, each point of & has property (H). Hence there is a
constant p, 1 < p < t, such that [{z,y}*| = 1 + p for all points z,y with 2 ¢ y. If p = ¢, then each
point is regular and consequently s > t. Now assume p =1 and s > t. If ¢t = 1, then s > ¢ and each
point of § is regular. For ¢ # 1 we must show that s =t and each point is antiregular. So let (z,y, z)
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be a triad with center u. Then |[{z,y}"| = 2 implies z ¢ cl(z,y), so by the semiregularity of u the
triad must have another center. Hence (z,y) belongs to no triad with a unique center, i.e. Ny = 0.
By 1.3.6 (iii) s =t and (z,y) is antiregular. So each point of S is antiregular. O

1.7 Triads with exactly 1+ t/s centers

Let z be a fixed point of the GQ S = (P, B,I) of order (s,t), s > 1,¢ > 1.

1.7.1. (i) The triads (y1,y2,y3) contained in x have a constant number of centers iff the triads
(x,u1,u2) containing x have exactly 0 or o (v a constant) centers. If one of these equivalent
situations occurs, then (s + 1)|s(t — 1) and the constants both equal 1+ t/s.

(i) Lety € P\zt. Then no triad containing (x,y) has more than 14t/s centers iff each such triad
has exactly 0 or 1 +t/s centers iff no such triad has o centers with 0 < o < 1+t/s. In such a
case there are t(s — 1)(s?> —t)/(s +t) acentric triads containing x and y, and (t* —1)s%/(s + 1)
triads containing x and y with exactly 1 +t/s centers.

(iii) If s = ¢" and t = q™ with q a prime power, and if each triad in - has 1 +t/s centers, then
there is an odd integer a for which n(a + 1) = ma.

Proof. (i) Suppose there is a constant « such that each triad (x,u;,us) containing = has 0 or «
centers. By the remark following eq. 1.13 in 1.3, we have o = 1 +t/s. There are d = (> — 1)s3t/6
triads T, 75, ..., Ty contained in . Let 1 4 r; be the number of centers of T}, so that Z?:l i =
s%t(t + 1)t(t — 1)/6. Count the ordered triples (T}, u1,u2), where T; is a triad in 2t and (z,u1, ug)
is an ordered triad in T;-, to obtain >, 7;(r; — 1) = s?tNa(1 + t/s)(t/s)(t/s — 1)/6. Here N, is the
number of triads containing (x,u1), * # u1, and having exactly o = 1 + t/s centers. From eq. 1.4 of
1.3.5 it follows that N, = (#2 — 1)s%/(s + t). Hence d(}_72) — (>.7;)? = 0, implying that r; is the
constant (> r;)/d=1/s.

Conversely, assume that the number r; + 1 of centers of T is a constant. Then r; = s2¢(t + 1)t(t —
1)/(t? —1)s3t = t/s. Fix y; in -\ {z}. The number of triads Vi,..., Vg containing z and having y;
as center is d’ = t(t — 1)s%2/2. If 1 +t; denotes the number of centers of V;, 1 < i < d, it is easy to
check that Y, t; = stt(t—1)/2 and >, t;(t; — 1) = sts(t—1)(t/s)(t/s—1)/2. Hence &' (3} t7) = (3 t:)?,
and t; is the constant (> ¢;)/d’ = t/s. It follows immediately that each centric triad (z,u1,us) has
exactly 1+ t/s centers.

Suppose that these equivalent situations occur. Fix uy, uy ¢ x, and let L be a line which is incident
with no point of {x,u;}" (since s # 1 such a line exists). Then the number of points us, us I L, for
which (x,u1,u9) is a centric triad equals (¢t —1)/(1 4 t/s). Hence (s + t)|s(t — 1), and (i) is proved.

(ii) Fix y € P \ 2, and apply the notation and results of 1.3. Using eq. 1.4 and 1.5 we have

1+t 1+t
~1 N1 _ (2 1y (42 1) —
s g aN, —t E ala—1)Ny=(t*—1)—(t*—1) =0,
a=0 a=0

which may be rewritten as
1+t

Ny =) ((sa® = a(s +1))/t)Na. (1.16)

a=2
The coefficient of N, in (1.16) is nonnegative iff &« > 1+ ¢/s, and equals 0 iff « = 1 +¢/s. Assume
that N, = 0 for « > 14 ¢/s. Since N7 > 0, we must have N, = 0 for a« = 1,2,...,t/s. Hence each
triad containing (z,y) has 0 or 1+ t¢/s centers. Conversely, assume N, =0 for 0 < v < 1 +¢/s. Since
N; = 0, we necessarily have N, = 0 for a > 1 + t/s. Hence each triad containing (z,y) has exactly 0
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or 1+1t/s centers. Finally, if this last condition holds, it is easy to use eq. (1.3) and eq. (1.4) to solve
for No and Ny4/s, completing the proof of (ii).

(iii) Given the hypotheses of (iii), from part (i) we have ¢ > s and (s + t)|s(t — 1), from which it
follows that (14¢™~™)|(¢™—1). Since ¢""—1 = (¢™ " +1)q" —¢" —1, there results (14+¢™")[(1+¢").
Consequently n(a + 1) = ma with a odd. O

Remark: If the conditions of 1.7.1 (i) hold with s = ¢ > 1, then s is odd and z is antiregular. Moreover,
putting s =¢ > 1in 1.7.1 (ii) yields part of 1.3.6 (iii).

For the remainder of this section we suppose that each triad contained in ' has exactly 1 + t/s
centers, so that each triad containing « has 0 or 1+ t/s centers. Let T' = {x,u;,u2} be a fixed triad
with T+ = {yo, 1, .. -+ Yt/s}- Each triad in T+ also has 1 +t/s centers. For A C {0,1,...,t/s}, let
m(A) be the number of points collinear with y; for i € A, but not collinear with z,uj,us or y; for
i ¢ A.

Note first that 3", m(A) = [P\ (zt Uui Uug)l, so

> m(A) = s’ — 2st — 25 + 3t — t/s. (1.17)
A

Now count in different ways the number of ordered pairs (w,y;) with w ~ y; and w not collinear with
T, u1, Or ug, to obtain

D AIm(A) = (s +1)(t - 2). (1.18)
A

Next count the number of ordered triples (w,y;,y;) with w ~ y;, w ~ y;, y; # y;, and w not collinear
with z,uq, or us to obtain

D TA[(JA] = Dm(A) = (s + t)E(t — 2) /s, (1.19)
A

Finally, count the number of ordered 4-tuples (w,vs,y;,yx) with w a center of the triad (s, y;, yk),
and w not collinear with x,uq, or us, to obtain

D TAI(A] = D(JA] = 2)m(A) = (s + D)Lt — s)(t — 25) /5™ (1.20)
A

For 0 < a < 1+t/s, put M, = £*m(A), where £ denotes the sum over all A with |A| = a. Then
egs. (1.17)-(1.20) become

> M, = s’ —2st—2s+3t—t/s, (1.21)

Z:aaMa = (s+)(t—2), (1.22)

> ala i DM, = (s+t)t(t—2)/s? (1.23)

> a(a i D(a—2)M, = (s+t)t(t—s)(t—2s)/s. (1.24)

e

We conclude this section with a little result on GQ of order (s, s?), in which each triad must have
exactly 14+ t/s =1+ s centers.

1.7.2. Let S = (P, B,1) be a GQ of order (s, s%), s > 2, with a triad (xq, 1, z2) for which {xg, r1, 2} =
{yo, s ys}, {mo, w521} C

{xo, 21,22} . Suppose there is a point xs for which x4 ~ y;, i = 0,...,5 — 1 and x5 Tj, J =
0,...,8—1. Then xs ~ ys, i.e. (xo,x1,22) is 3-reqular. It follows immediately that any triad in a GQ
of order (3,9) must be 3-regular.
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Proof. The number of points collinear with ys and also with at least two points of {yo,...,ys—1} is
at most s(s —1)/2 + s, and the number of points collinear with ys and incident with some line z,y;,
i=0,1,...,5— 1, is at most s. Since s > 2, we have s(s —1)/2+ 25 < s> + 1 =t + 1. Hence there
is a line L incident with ys, but not concurrent with xsy;, ¢ = 0,1,...,s — 1, and not incident with
an element of {y;,y;}*, i # j, 0 < 4,7 < s — 1. The point incident with L and collinear with y; is
denoted by z;, 1 =0,...,s— 1. Clearly all s points z; are distinct. Since S has no triangles, the point
T is not collinear with any z;, forcing x5 ~ ys. O

1.8 Ovoids, spreads and polarities

An ovoid of the GQ & = (P, B,1) is a set O of points of S such that each line of S is incident with a
unique point of O. A spread of S is a set R of lines of S such that each point of S is incident with a
unique line of R. It is trivial that a GQ with s =1 or t = 1 has ovoids and spreads.

1.8.1. If O (resp., R) is an ovoid (resp., spread) of the GQ S of order (s,t), then |O| = 1+ st (resp.,
|R| =1+ st).

Proof. For an ovoid O, count in different ways the number of ordered pairs (z, L) with z € O and L
a line of § incident with x. Use duality for a spread. O

1.8.2. (S.E. Payne [110]) If the GQ S = (P,B,1) of order s admits a polarity, then 2s is a square.
Moreover, the set of all absolute points (resp., absolute lines) of a polarity 6 of S is an ovoid (resp.,

spread) of S.

Proof. Let 6 be a polarity the GQ S = (P,B,1I) of order s. A point x (resp., line L) of S is an
absolute point (resp., line) of § provided x I z% (resp., L I L?). We first prove that each line L of S
is 0 with at most one absolute point of 6. So suppose that x,y are distinct absolute points incident
with L. Then z 12% y 1%, and 2% ~ 4% since x ~ 5. Hence L € {2y}, since otherwise there arises
a triangle with sides L,z% y?. So suppose L = 2. As y I %, we have z I 4’. Since y I 37, clearly
v = zy = L = 2?, implying = = vy, a contradiction. So each line of S is incident with at most one
absolute point of #. A line L is absolute iff L I L? iff LY is absolute. Now assume L is not absolute,
ie. L¥LO. I LPTM TulL, then L Tw? T M?1 L, hence v’ = M and MY = u. Consequently u and
M are absolute, and we have proved that each line L is incident with at least one absolute point. It
follows that the set of absolute points of 8 is an ovoid. Dually, the set of all absolute lines is a spread.

Denote the absolute points of 6 by x1,x2,...,2.2;. It is clear that the absolute lines of ¢ are
the images 2? = L;, 1 <i < s2+ 1. Let P = {21,...,202,1,...,7}, B={L1,...,Lo.1,..., Ly},
with aj? =L;,1 <i<v, and let D = (dij) be the v x v matrix over R for which d;; = 0 if x; ¥ L;,
and d;; = 1if 2; I L; (i.e. D is an incidence matrix of the structure §). Then D is symmetric and
D? = (1 + s)I + A where A is the adjacency matrix of the graph (P, E) (c.f. the proof of 1.2.2).
By 1.2.2 D? has eigenvalues (s + 1)2, 0, and 2s, with respective multiplicities 1, s(s? + 1)/s, and
s(s+1)2/2. Since D has a constant row sum (resp., column sum) equal to s + 1, it clearly has s + 1
as an eigenvalue. Hence D has eigenvalues s + 1, 0, v/2s and —/2s with respective multiplicities 1,
s(s2 4+ 1)/2, a1 and ag, where aj + az = s(s + 1)2/2. Consequently trD = s+ 1 + (a3 — az)v/2s. But
trD is also the number of absolute points of 6, i.e. trD =1+ 52 So s>+ 1= s+ 1+ (a1 — az)V2s,
implying that 2s is square. O

1.8.3. A GQ S = (P, B,]) of order (s,t), with s > 1 and t > s> — s, has no ovoid.

Proof. We present two proofs of this theorem. The first is due to J.A. Thas [207]; the second is the
original one due to E.E. Shult [165].
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(a) Let O be an ovoid of a GQ S of order (s,s?), s # 1. Let z,y € O, x # ¥, and count the number
N of ordered pairs (z,u) with u € O\ {x,y}, 2 € {z,y}*, and u ~ z. Since any two points of O
are noncollinear, we have {z,5}* N O = @, and hence N = (s 4+ 1)(s2 — 1). By 1.2.4 N also equals
(0] —2)(1 + s) = (s® — 1)(1 + s), which yields a contradiction if s # 1. Hence a GQ of order (s, s?),
s # 1, has no ovoid.

Let O be an ovoid of a GQ S of order (s,t), s # 1. Since t # s2, by 1.2.5 t < 5% — s.

(b) Let O be an ovoid of the GQ § = (P, B,1) of order (s,t) with s # 1. Fix a point z ¢ O and
let V={yeO | y~x}. Further,let 2 € O, z % x, and let L, = {u € V || u ~ z}. We note that
d={z€P | 2¢O and z % z}| = t(s*—s+1). Ift, = |L,|, then Y t, = (1+t)tsand > t.(t,—1) =
(1+t)t%. Since d Y, t2— (3", t.)? > 0, there arises t(s> —s+1)(1+t)t(t+s) — (1 +t)*t?s> > 0. Hence
(s—1)(s* —t—15) >0, from which t < s> —s. O

1.8.4. ([207]) Let S = (P, B,1) be a GQ of order s, having a regular pair (x,y) of noncollinear points.
If O is an ovoid of S, then |O N {xz,y}*+|, |0 N {z,y}*| € {0,2}, and |O N ({z,y}* U {z,y}+1)| = 2.
If the GQ S of order s, s # 1, contains an ovoid O and a reqular point z not on O, then s is even.

Proof. Let ON ({z,y}* U{z,y}*) = {y1,..., -} fu € P\ ({x,y}+ U{z,y}*+"), then u is on just
one line joining a point of {x,y}* to a point of {z,y}*+; if u € {x, y}* U {z,y}*++, then uison s +1
lines joining a point of {z,y}* to a point of {z,y}+. We count the number of all pairs (L, ), with L
a line joining a point of {z,y}* to a point of {x,y}++ and with u a point of O which is incident with
L. We obtain (s +1)2 = s>+ 1 —r + (1 + s). Hence r = 2. Since no two points of O are collinear,
there follows |O N {z,y}**|,|0 N {x,y}*| € {0,2}.

Let O be an ovoid of the GQ & of order s and let z be a regular point not on O. Let y € O, z ~ v,
z # y. The points of O collinear with y are denoted by zy, ..., zs, with zg I zy. By the first part of
the theorem, for each i = 1,...,s, {z,2}T1 N0 = {2, 2;} for some j # i. Hence |{21,..., 25} is even,
proving the second part of the theorem. O

There is an immediate corollary.

1.8.5. Let S = (P, B,1) be a GQ of order s, s even, having a regqular pair of noncollinear points. Then
the pointset P cannot be partitioned into ovoids.

Proof. Let (z,y) be a regular pair of noncollinear points of the GQ S = (P, B,1) of order s. If P can
be partitioned into ovoids, then by 1.8.4 [{z,y}**| is even. Hence s is odd. O
The following is a related result for the case s # t.

1.8.6. ([207]). Let S = (P,B,I) be a GQ of order (s,t), 1 # s # t, and suppose that there is
an hyperbolic line {x,y}*+ of cardinality p + 1 with pt = s>. Then any ovoid O of S has empty

intersection with {x,y}+.

Proof. Suppose that the ovoid O has 741, 7 > 0, points in common with {z,y}+*. Count the number
N of ordered pairs (z,u), with z € {z,y}*, u € O\ {z,y}**, and u ~ 2. Since any two points of O are
noncollinear, we have O N {x,y}*+ = @. Hence N = (t +1)(t —r) = (s2/p+1)(s?/p —r). The number
of points of O \ {z,y}** collinear with a point of {z,y}** equals (p —r)(t +1) = (p —7)(s?*/p + 1).
Each of these points of O is collinear with exactly one point of {z,y}*. Further, by 1.4.2 (ii), any
point of O \ cl(z,y) is collinear with exactly 1 4 s/p points of {z,y}*. Consequently N also equals
(p—r)(s?/p+1)+(s]/p—7—(p—7)(s®/p+1))(s + p)/p. Comparing these two values for N, we
find r = p/s. Hence both p|s and s|p, implying p = s and r = 1. From pt = s? it follows that t = s, a
contradiction. O

Remark: Putting ¢t = s2, s # 1, in the above result we find that a GQ of order (s,s?), s # 1, has no
ovoid.
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1.9 Automorphisms

Let S = (P,B,I) be a GQ of order (s,t) with P = {z1,...,2,} and B = {L1,..., Ly}. Further, let
D = (di;) be the v x b matrix over C for which d;; = 0 or 1 according as x; ¥ L; or ; I L; (i.e. D is
an incidence matrix of the structure S). Then DD = A + (t + 1)I, where A is an adjacency matrix
of the point graph of S (c.f. 1.2.2). If M = DDT, then by the proof of 1.2.2, M has eigenvalues
0= (1+3)(1+1), 71 =0, 2 = s+ t, with respective multiplicities mo = 1, my = s2(1 + st)/(s + 1),
mg = st(1+s)(L+1)/(s+1).

Let 6 be an automorphism of S and let @ = (¢;5) (resp., R = (r45)) be the v x v matrix (resp.,
b x b matrix) over C, with ¢;; = 1 (vesp., rjj = 1) if 2/ = x; (resp., LY = L;) and ¢;; = 0 (resp.,
rij = 0) otherwise. Then @ and R are permutation matrices for which DR = QD. Since QT =Q!
and RT = R~! for permutation matrices, there arises QM = QDDT = DRDT = DRRTDT(Q=H)T =
DDTQ = MQ. Hence QM = MQ.

1.9.1. (C.T. Benson [10], c.f. also [1/2]). If f is the number of points fixed by the automorphism 6
and if g is the number of points = for which % # x ~ %, then

tr(QM)=(14+t)f+g and (1 +t)f + g =1+ st(mod s+ t).

Proof. Suppose that 6 has order n, so that (QM)™ = Q"M"™ = M™. Tt follows that the eigenvalues of
QM are the eigenvalues of M multiplied by the appropriate roots of unity. Since MJ = (1+s)(1+1t)J
(J is the v x v matrix with all entries equal to 1), we have (QM)J = (1+s)(1+1t)J, so (1+s)(1+1) is
an eigenvalue of QM. From mg = 1 it follows that this eigenvalue of QM has multiplicity 1. Further,
it is clear that 0 is an eigenvalue of QM with multiplicity m; = s?(1 + st)/(s +t). For each divisor d
of n, let Uy denote the sum of all primitive d-th roots of unity. Then Uy, is an integer [37]. For each
divisor d of n, the primitive d-th roots of unity all contribute the same number of times to eigenvalues
0 of QM with |0] = s+ t. Let ag denote the multiplicity of £;(s + ) as an eigenvalue of QM, with
d|n and &g a primitive d-th root of unity. Then we have tr(QM) = 3_,, aa(s +t)Us + (1 + s)(1 + ).
Hence tr(QM) = 1+ st(mod s + t). Let f and g be as given in the theorem. Since the entry on
the i-th row and the i-th column of QM is the number of lines incident with z; and xf, we have
tr(QM) = (1 +t)f + g, completing the proof. O

1.9.2. If fp (resp., fB) is the number of points (resp., lines) fized by the automorphism 0, and if gp
(resp., gg) is the number of points x (resp., lines L) for which 2% # & ~ x% (resp., LY # L ~ L9),
then

tr(QDDT) = (1 +t)fp +gp = (1 + 8)fs + g5 = tr(RDT D).

Proof. The last equality is just the dual of the first, which was established in 1.9.1. To obtain the
middle equality, count the pairs (z, L) for which z € P, L € B, 2 1 L, 2% ~ 2, L% ~ L. This number
is given by (1+1¢)fp +gp + N/2 = (1+ s)fg + g + N/2, where N is the number of pairs (x, L) for
which 2 1L, 2% ~ x, x # 2%, L ~ L, LY # L. The desired equality follows. O

1.10 A second application of Higman-Sims

Let S = (P,B,1I) be a GQ of order (s,t), P = {w1,...,wy}. Let A = {A1, Az} be any partition of
{1, ce ,U}. Put 61 = |A1|, 0y = |A2| =v —01.

Let 6;; be the number of ordered pairs (k,() for which k € A;, I € A; and w; # wy,. Here we recall
the notation of 1.4. So for the matrix B of 1.4, the resulting B2 is

BA — e s’t—e ith e = 61, /6
- 51(s2t—6)/(52 s2t—61(52t_e)/52 » W = 011/01.



16 Finite generalized quadrangles

One eigenvalue of B2 is clearly st, so the other is 7 = tr(B?) — st = e — §;(s%t — €)/02. By the
result of C.C. Sims as applied in 1.4, we have —s < e — §1(s?t — €)/d2, with equality holding iff
61 —e = s+ 01/(1 + s). If equality holds (6; — v,6;)7 is an eigenvector of B2 associated with the
eigenvalue —s, hence it must be that

T = (51 —v,...,01 — v, 51,...,(51)
d1 times do times

is an eigenvector of B associated with —s. It is straightforward to check that this holds iff each point
of A is collinear with exactly 6; — e = s+ 61/(1 + s) points of A, and each point of Ay is collinear
with exactly 8 + e — s*t + s = s + d2(1 + s) points of Ay. The following theorem is obtained

1.10.1. (S.E. Payne [125]). Let X1 be any nonempty, proper subset of points of the GQ S of order
(s,t), |X1| = 01. Then the average number € of points of X1 collinear in S with a fized point of
X1 satisfies € < s+ 01/(1 4+ s), with equality holding iff each point of Xy is collinear with exactly
s+ 01/(1+ s) points of X1, iff each point of Xo =P\ X1 is collinear with exactly §1/(1 + s) points of
Aq.



Chapter 2

Subquadrangles

2.1 Definitions

The GQ §' = (P',B',T') of order (¢, 1) is called a subquadrangle of the GQ S = (P, B,1) of order (s,t)
if P C P, B'C B, and if I is the restriction of I to (P’ x B') U (B’ x P’). If 8’ # S, then we say that
S’ is a proper subquadrangle of S.

From |P| = |P’| it follows easily that s = s and ¢ = t/, hence if &' is a proper subquadrangle then
P # P, and dually B’ # B. Let L € B. Then precisely one of the following occurs: (i) L € B/, i.e.
L belongs to &'; (ii) L ¢ B’ and L is incident with a unique point z of P’, i.e. L is tangent to S’ at
x; (iii) L ¢ B' and L is incident with no point of P’ i.e. L is external to S’. Dually, one may define
external points and tangent points of §’. From the definition of a GQ it easily follows that no tangent
point may be incident with a tangent line.

2.2 The basic inequalities

2.2.1. Let 8’ be a proper subquadrangle of S, with notation as above. Then either s = s or s > s't'.
If s = ', then each external point is collinear with exactly 1+ st’ points of an ovoid of S'; if s = s't/,
then each external point is collinear with exactly 1 + s’ points of S’. The dual holds, similarly.

Proofs. (a) ([189]). Let V be the set of the points external to §’. Then |V| =d = (1 + s)(1 + st) —
(1+sHA+st)— 1 +t)(A+st)(s—5).

If t = ¢, then from d > 0 there arises (s — s')t(s — §'t) > 0, implying s = s’ or s > s't.

We now assume t > t'. Let V = {x1,...,24} and let ¢; be the number of points of P’ which
are collinear with ;. We count in two different ways the ordered pairs (z;,2), z; € V, z € P/,
z; ~ z, and we obtain ), t; = (1 +§')(1 + s't’)(t — t')s. Next we count in different ways the ordered
triples (z,2,2'), x; € V, z € P, 2/ € P/, 2 # 2/, ®y ~ 2z, ; ~ 7/, and we obtain ) t;(t; — 1) =
(14 8)(1+8)s"t (t—1'). Hence Y, 12 = (148 )1+ s)(t —t')(s+ ). Asd > ;12— (3, 1:)2 > 0,
we obtain (1+ ¢')(1+ s't')(t —t')(s — ') (s — s't') (st + s*#'*) > 0. Since ¢ > ¢/, it must be that s = s’
or s > s't’. Further, we note that t; = (3, ¢;)/d for all i € {1,...,d} iff d> . t2 — (3, t:)* =0, i.e.
iff s=5ors=3st. If s=¢, thent; =1+ st’ for all i. Hence in such a case each external point is
collinear with the 1 + st’ points of an ovoid of §&’. If s = &'t/, then t; =1+ &' for all 7. O

(b) ([126]). Refer to the proof of 1.10.1, and let A; be the indices of the points of &', As the set
of remaining indices. Then 6; = (1 + s')(1 + s't'), and each point indexed by an element of A; is
collinear with exactly 1+ s’ + st such points. Hence 1+ s + s't' < s+ (1+8')(1+s't')/(1+ s). This
is equivalent to 0 < (s — s't')(s — §'), and when equality holds each external point is collinear with
exactly (14 5")(1+ s't")/(1+ s) points of S’ When s = &', this number is 1+ s't'. When s = §'t/, this
number is 1 +¢. O

17
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The next results are easy consequences of 2.2.1, although they first appeared in J.A. Thas [183].

2.2.2. Let 8" = (P, B",T) be a proper subquadrangle of S = (P,B,1), with S having order (s,t) and
S’ having order (s,t'), i.e. s=¢" andt > t'. Then we have:

(i) t = s;ift=s, thent' =1.

(i) If s > 1, thent’ < s;ift' = s> 2, thent = s°.

(iv) If s > 1 and t' > 1, then /s <t' < s, and s/ <t < s%.

) t
)
(i) If s =1, then 1 < t' <t is the only restriction on t'.
)
(v) Ift=35%2>1 and t' > 1, then t' = \/s.

i)

(v

Proofs. These are all easy consequences of 2.2.1, along with the inequality of D.G. Higman. We give
two examples. (ii) Suppose that s > 1. By Higman’s inequality we have ¢t < s?. Hence using the dual
of 2.2.1 also, we have t' < t/s < s, implying #' < s. If t/ = s, then s = t/ = t/s, implying t = s2.
(vi) Let 8’ have a proper subquadrangle S” of order (s,t”), s > 1. Then ' < s and " < t'/s < s/s,
implying ¢” = 1 and ¢ = s. By (ii) we have t = s2. O

Let 8" have a proper subquadrangle 8" of order (s,t"), s > 1. Thent" =1, = s, and t = s>

2.3 Recognizing subquadrangles

A theorem which will appear very useful for several characterization theorems is the following [183].

2.3.1. Let 8" = (P',B,T) be a substructure of the GQ S = (P,B,1) of order (s,t) for which the
following conditions are satisfied:

(i) Ifz,y e P (x #y) and x 1 L1y, then L € BB'.

(ii) Fach element of B' is incident with 1+ s elements of P’.
Then there are four possibilities:

(a) 8 is a dual grid (and then s =1).

(b) The elements of B’ are lines which are incident with a distinguished point of P, and P’ consists
of those points of P which are incident with these lines.

(¢) B =@ and P’ is a set of pairwise noncollinear points of P.
(d) S is a subquadrangle of order (s,t').

Proof. Suppose that S’ = (P’,B',1') satisfies (i) and (ii) and is not of type (a), (b) or (¢). Then
B #+ @, P+ @ and s > 1. If L' € B, then there exists a point 2 € P’ such that 2’ ¥ L. Let z and
L be defined by 2/ IL T2z 1 L'. By (i) and (ii) we have x € P’ and L € B'. Hence &’ satisfies (iii) in
the definition of a GQ Clearly S’ satisfies (11) and we now show that &’ satisfies (i) of that definition.
Consider a point 2’ € P’ and suppose that z’ is incident with ¢ 4 1 lines of B’. Since B’ # @, t' > 0.
Let 3/ € P’ be a point which is not collinear with 2’ and suppose it is incident with ¢” + 1 lines of B’.
By (iii) in the definition of GQ it is clear that ¢’ = t”. Hence ' 4+ 1 is the number of lines of B’ which
are incident with any point not collinear with at least one of the points 2’ or 3. So we consider a
point 2z’ € P’ which is in {2,y'}*.
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First suppose that ¢ = 0. Let 2’2’ = L', y/2' = L", and L € B\ {L',L"}. Then 2/’ ¥ L and 3/ ¥ L.
Since there exists a line of B’ which is incident with 2’ (resp., 3’) and concurrent with L, it follows
that L and L’ (resp., L and L") are concurrent. Hence 2’ I L, and &’ is of type (b), a contradiction.

Now assume t’ > 0. Consider a line L € B’ for which 2/ T L and 2’ ¥ L. On L there is a point u/,
with «' £ 3" and «’ £ 2. Then the number of lines of B’ which are incident with 2’ equals the number
of lines of B’ which are incident with «’, which equals ¢’ + 1 since 3’ ¢ «/, and hence equals ' + 1.

We conclude that each point of P’ is incident with ¢'+1 (> 2) lines of B’, which proves the theorem.
O

2.4 Automorphisms and subquadrangles
Let 6 be an automorphism of the GQ S = (P, B,1) of order (s,t).

2.4.1. The substructure Sy = (Py, By, 1y) of the fixed elements of 0 must be given by at least one of
the following:

(i) By = @ and Py is a set of pairwise noncollinear points.
(i) Py = @ and By is a set of pairwise nonconcurrent lines.

(ii) Py contains a point x such that x ~ y for every point y € Py and each line of By is incident with
x.

(ii)" By contains a line L such that L ~ M for every line M € By, and each point of Py is incident
with L.

(iii) Sp is a grid.
(iil)" Sy is a dual grid.
(iv) Sy is a subquadrangle of order (s',t'), s > 2 and t' > 2.

Proof. Suppose Sy is not of type (i), (i)', (ii), (i)', (iii), (iii)’. Then Py # @ # By. If z,y € Py, = # v,
x ~ vy, then (27)? = 2% = zy, so the line zy belongs to By. Dually, if L, M € By, L # M, then the
point common to L and M belongs to Py. Next, let L € By and consider a point x € Py, with = ¥ L.
Further, let y and M be defined by 2 IM Iy I L. Then 2 TM? 14?1 L% ie. 21 M?14%1 L. Hence
M = M? and y = ¢%, i.e. M € By, y € Py. It follows that Sy satisfies (iii) in the definition of GQ.
Now parts (i) and (ii) in the definition of GQ are easily obtained by making a variation on the proof
of 2.3.1. O

2.5 Semiregularity, property (H) and subquadrangles

The following result will be recognized later as a major step in the proofs of certain characterizations
of the classical GQ.

2.5.1. Let each point of the GQ S = (P,B,1) of order (s,t) have property (H). Then one of the
following must occur:

(i) Each point is regular.

(i) Hz,y}tt| =2forall 2,y € P, x £ .
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(iii) There is a constant p, 1 < p < t, such that [{z,y}*|=1+pforall z,y € P, z ¢ y, and s = p?,
t = p>. Moreover, if L and M are nonconcurrent lines of S, then {x € P || z I LY U {y € P ||
y I M} is contained in the pointset of a subquadrangle of order (s,p) = (p?, p).

Proof. Let each point of S have property (H). By 1.6.2 there is a constant p such that |[{z,y}*++| = 1+p
for all points z,y € P, x ¢ y. If p = ¢, then all points of S are regular, and we have the case (i). If p = 1,
we have case (ii). So assume 1 < p < t, so that necessarily s # 1. For L € B,put L* ={z € P || z I L}.
Now consider two nonconcurrent lines L and M, and denote by P’ the union of the sets {z,y}**,
with € L* and y € M*. First we shall prove that each common point of the distinct sets {z, y}LL
and {z’,9/}+, with z,2’ € L* and y,y € M*, belongs to L* U M*. If {z,y}* and {2,y }*+ are
the pointsets of distinct lines of S, then evidently {z,y}*+ N {z/,y'}*+ = @. Now let 2 ~ y and
x' 4 y'. Suppose that z € {z,y}+ N {z/,y/}*+, with 2z & {x,y}. Since z € {z, 2/} = {¢/,2'}*,
we have z ~ o/, a contradiction as there arises a triangle zyy’. Finally, let z £ y, 2’ # %', and
z € {x,y}ttn{z’, v}, with 2 & {z,y}. The point which is incident with L and collinear with z is
denoted by u. Since u € {z,7}* = {y, 2}* and u € {2, 2’} = {y/, 7'}, we have y ~ u ~ 3/, which is
clearly impossible.

Now consider a point z € L* and define V and y by a IVIyI M. If 211V, 21 # y, and 20 I M,
29 # 7, then by 1.6.2 the set cl(z1, z0) Ny*, i.e. Ty if T = {21, 2}, is independent of the choice of
the points z1, z9. That set will be denoted by zM*. By 1.6.2, any span having at least two points in
common with zM* must be contained in xM*. If u € tM*, u ¢ z, then {u,z}* N M* # &. Hence
u € P’, and it follows that xM* C P’

Next let N be a line whose points belong to the set xM*, where N # M and N # V. We shall
prove that the union P” of the spans {z,u}*+, 2 € N* and u € L*, coincides with P’. First we note
that the spans {z,u}*+ with z € M* N N* are contained in P’. Now consider an hyperbolic line
{z,2}* with z € N*\ M*. Evidently {z,z}** has a point in common with M*, and {z,z}*+ C
xM* C P'. Finally, consider a span {z,u}**, with 2 € N*\ M* and u € L* \ {z}. The hyperbolic
line {z, Z}J‘J‘ has a point v in common with M*. From the preceding paragraph we have vL* C P’.
But {z,z}** = {z, v} C vL*, so {z,u}** has two points in common with vL* and hence must be
contained in vL*. This shows P” C P’. Interchanging the roles of P’ and P” shows P’ = P”. (Or
|P"| =|P'|=(s+1)(sp+1) and P” C P’ imply P”" = P'.)

The next step is to show that for any two distinct collinear points z,y € P’, the span {x,y}“-
(= (zy)*) is contained in P’. The case {z,y} C L* U M* is trivial. So suppose that {z,y} ¢ L* U M*
and that z € L* U M*. Assume that € L* and y € {y1,92}*", with y; € L and yo € M*. In
such a case {x,y}*+ C yoL* C P'. So suppose that {x,y} N (L* U M*) = @. Evidently we may also
assume that {z,y}+ N (L*UM*) = @. Let x € {x1,22}" (vesp., y € {y1,y2}1), with 2; € L* and
Ty € M* (resp., y1 € L* and yo € M*). First, we suppose that {1, z2}*" is an hyperbolic line (i.e.
x1 70 x2). Then let z; and N be defined by I N 12, I L. Clearly N* C xoL*. Since we have proved
that the union P” of the sets {z,u}**, 2 € N* and u € M*, coincides with P’, the point y belongs to
P". By a preceding case, {z,y}+ C P”, so {z,y}*+ C P’. Second, we suppose x1 ~ 2, and without
loss of generality that y; ~ ys. Since z ~ y, clearly x1 # y1 and x2 # y2. Let u be a point of the
hyperbolic line {2, y1}*++, z2 # u # y1, and let P” be the union of the sets {v,w}++, w € M* and
v € N* = {z1,u}*+. As P’ = P”, y is contained in a set {v,w}*+, w € M* and v € N*. Evidently
v %t w, so that by a previous case {z,y}*+ C P” = P’. We conclude that for any distinct collinear
points z,y € P’, the span {z,y}** is contained in P’.

Now let B’ be the set of all lines of & which are incident with at least two points of P’, and let
I'=IN((P' x B")U (B xP’)). Then by 2.3.1 the structure &' = (P, B/, I') is a subquadrangle of order
(s,t') of S.

Since [P'| = (s+1)(sp+ 1) = (s + 1)(st’ + 1), we have t' = p. By the inequality of D.G. Higman
we have s < p?, and by 2.2.1 we have ¢t > sp. Moreover, by 1.4.2 (ii) we have pt < s2. There results
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sp? < pt < 2, implying s > p?. Hence s = p?. It now also follows easily that ¢t = p3, which completes
the proof of the theorem. O

The preceding theorem is essentially contained in J.A. Thas [196]. We now have the following easy
corollary.

2.5.2. Let each point of S be semireqular and suppose s > 1. Then one of the following must occur:
(i) s >t and each point of S is reqular.
(ii) s =t and each point of S is reqular or each point is antiregular.
(iii) s <t and |{z,y}*+*| =2 for all z,y € P with x £ y.
(iv) The conclusion of 2.5.1 (iii) holds.

Proof. Immediate from 1.6.3 and 2.5.1. (Recall that any semiregular point has property (H).) O

2.6 3-Regularity and subquadrangles

2.6.1. ([210]). Let (x,y,z) be a 3-regular triad of the GQ S = (P, B,1) of order (s,s%), s > 1, and let
P’ be the set of all points incident with lines of the form uv, u € {x,y,2}* = X andv € {z,y, 2}*+ =
Y. If L is a line which is incident with no point of X UY and if k is the number of points in P’ which
are incident with L, then k € {0,2} if s is odd and k € {1,s+ 1} is s is even.

Proof. Let L be a line which is incident with no point of XUY". If € X = {w,y, 2} , ifw IMImIL,
and if M is not a line of the form uv, v € X and v € Y = {z,y, 2z}, then there is just one point
w' € X \ {w} which is collinear with m. Hence the number r of lines uv, u € X and v € Y, which are
concurrent with L, has the parity of | X| = s+ 1. Clearly r is also the number of points in P’ (P’ is
the set of all points incident with lines of the form uv) which are incident with L.

Let {L1,Ls,...} = L be the set of all lines which are incident with no point of X UY, and
let 7; be the number of points in P’ which are incident with L;. We have |£| = s3(s®> — 1) and
P\ (XUY)| = (s+1)*(s —1). Clearly >, r; = (s +1)%(s — 1)s?, and Y, 7;(r; — 1) is the number
of ordered triples (uv,u'v’, L;), with u, " distinct point of X, with v, v’ distinct points of Y, and with
uv ~ L; ~ u'v" where u,v,u/,v" are not incident with L;. Hence Y, r;i(r; — 1) = (s + 1)%s%(s — 1).

Let s be odd. Then r; is even, and so ) . r;(r; — 2) > 0 with equality iff r; € {0, 2} for all 4. Since
Soiri(ri —2) = (s +1)%2s%(s — 1) — (s + 1)%(s — 1)s*> = 0, we have indeed r; € {0,2} for all 4.

Let s be even. Then r; is odd, and so ) _,(r; —1)(r; — (s +1)) < 0 with equality iff r; € {1,541} for
all i. Since >, (r; —1)(ri— (s+1)) = (s+1)?s*(s — 1) — (s + 1)(s + 1)?(s — 1)s* + (s + 1)s3(s* — 1) = 0,
we have indeed r; € {1,s+ 1} for alli. O

2.6.2. ([210]). Let (x,y,2) be a 3-regular triad of the GQ S = (P, B,1) of order (s,s?), s even. If P’
is the set of all points incident with lines of the form uwv, u € X = {z,y,2}* andv € Y = {z,y, z}*++,
if B is the set of all lines in B which are incident with at least two points of P', and if I is the
restriction of I to (P x B')U (B’ x P’), then §' = (P',B',T') is a subquadrangle of order s. Moreover
(z,y) is a regular pair of S, with {z,y}* = {z,y, 2} and {z,y}*'+ = {z,y, 2} +.

Proof. We have |[P/| = (s + 1)2(s — 1) +2(s + 1) = (s + 1)(s®> + 1). Let L be a line of B'. If L is
incident with some point of X UY, then clearly L is of type uv, with u € X and v € Y. Then all
points incident with L are in P’. If L is incident with no point of X UY, then by 2.6.1 L is again
incident with s+ 1 points of P’. Now by 2.3.1 8’ = (P, B/,T') is a subquadrangle of order (s,t). Since
|P'| = (s + 1)(st’ + 1) we have t' = s, and so &’ is a subquadrangle of order s. Since X UY C P/,
|X| = |Y| = s+ 1, and each point of X is collinear with each point of Y, we have {z,y}* = {z,y, 2z} *
and {z,y}' 1 = {z,y, 2}t O
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2.7 k-arcs and subquadrangles

Let S = (P, B,I) be a GQ of order (s,t), s >1,t> 1. A k-arc of S is a set of k pairwise noncollinear
points. A k-arc O is complete provided it is not contained in a (k + 1)-arc.

Let O be an (st — p)-arc of S, for some integer p. Let B’ be the set of lines of S incident with no
point of O. An easy calculation shows that |B'| = (14 ¢)(1 + p), implying that p > —1. Evidently O
is an ovoid precisely when p = —1. For the remainder of this section we assume that p > 0. Let L be
a fixed line of B incident with points yo, . .., ys, and let ¢; be the number of lines (# L) of B’ incident
with y;, ¢ =0,...,s.

iti:(1+s)t—(st—p):t+p. (2.1)
=0

Eq. (2.1) says that each line of B’ is concurrent with ¢ + p other lines of B'. Put t; = 6; + p. It
follows that each line M of B’ incident with y; is concurrent with exactly ¢ — 6; lines (# M) of B’ at
points different from y;. Count the lines of B’ concurrent with lines of B’ through y; (including the
latter) to obtain (6; + p+1)(1+t¢—#0;). Clearly this number is bounded above by |B'| = (1+¢)(1+ p),
from which we obtain the following:

0.((t — p) — 0) <0, (2.2)

with equality holding iff each line of B’ is concurrent with some line of B’ through ;.
Clearly t; <t,s00; <t—p. And 0; =t — p iff O U {y;} is also an arc. From now on suppose that
O is a complete (st — p)-arc, p > 0. Then 6; < t — p, so that by eq. (2.2) we have

6; <O0. (2.3)

The average number of lines of B’ through a point of L is
1+ t+p)/A+s)=>700;+p+1)/(1+5) < p+1. Hence p > t/s, with equality holding iff
0; =0fori=0,...,s, iff each point of L is on exactly p + 1 lines of B'. (2.4)

2.7.1. Any (st — p)-arc of S with 0 < p < t/s is contained in an uniquely defined ovoid of S. Hence
if S has no ovoid, then any k-arc of S necessarily has k < st —t/s.

Proof. By the preceding paragraph it is clear that any (st — p)-arc O of S with 0 < p < t/s is
contained in an (st — p+ 1)-arc O'. If p =0, then O’ is an ovoid. If p > 0, then 0 < p — 1 < t/s, and
O’ is contained in an (st — p + 2)-arc O”, etc. Finally, O can be extended to an ovoid. Now assume
that O is contained in distinct ovoids O; and Q. Let z € O; \ O2. Then each of the ¢ + 1 lines
incident with x is incident with a unique point of Oy \ O;. Hence |02 \ O1] > t + 1, implying that
|02\ O| > t+1,1e. p+1>t+1 which is an impossibility. O

2.7.2. Let O be a complete (st —t/s)-arc of S. Let B’ be the set of lines incident with no point of O;
let P’ be the set of points on (at least) one line of B'; and let I be the restriction of I to points of P’
and lines of B'. Then 8" = (P, B,T') is a subquadrangle of order (s, p) = (s,t/s).

Proof. Use (2.2) and (2.4). O
Putting s =t in 2.7.2 yields the following corollary.

2.7.3. Any GQ of order s having a complete (s> — 1)-arc must have a regular pair of lines.
2.7.4. Let S be a GQ of order s, s > 1, with a regular point x. Then S has a complete (2s + 1)-arc.

Proof. Let 77 and T3 be two distinct hyperbolic lines containing . By 1.3.1 there is a point y for
which T{- N T5- = {y}. Let z 1wy, 2 # =, 2 # y. Then (Ty \ {z}) U (T5-\ {y}) U {2} is a complete
(2s +1)-arcof S. DO
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2.7.5. Let S be a GQ of order s, s > 1, having an ovoid O and a regular point x, x & O (so s is even
by 1.8.4). Then (O\ xt)u{z} is a complete (s> — s+ 1)-arc.

Proof. Clearly O’ = (O \ zt) U {x} is an (s®> — s + 1)-arc. If O’ U {y} is an arc, then {z,y}* =
OnNy*t =0nat, contradicting 1.8.4 O



24

Finite generalized quadrangles



Chapter 3

The known generalized quadrangles
and their properties

3.1 Description of the known GQ

We start by giving a brief description of three families of examples known as the classical GQ, all of
which are associated with classical groups and were first recognized as GQ by J. Tits [50].

3.1.1. The classical GQ, embedded in PG(d,q), 3 < d <5, may be described as follows:

(i) Consider a nonsingular quadric @ of projective index 1 [30] of the projective space PG(d,q),
with d = 3,4 or 5. Then the points of @) together with the lines of () (which are the subspaces
of maximal dimension on @) form a GQ Q(d, q) with parameters

s=q, t=1,v=(q+1)? b=2(qg+1), when d =3,
s=t=1, v:b:(q+ )(q +1) whend—4

when d = 5.

Since Q(3, q) is a grid, its structure is trivial. Further, recall that the quadric @ has the following
canonical equation:

rox1 + 2223 = 0, when d = 3,
x% + x129 + 2324 = 0, when d = 4,

f(wo, 1) + w223 + 2475 = 0,
where f is an irreducible binary quadratic form when d = 5.

(ii) Let H be a nonsingular hermitian variety of the projective space PG(d,q?), d = 3 or 4. Then
the points of H together with the lines on H form a GQ H(d,¢?) with parameters

s=¢, t=q v=(C+D(+1), b=(¢+1)(¢*+1),
when d = 3,
s=q¢ t=¢> v=(¢*+1)(¢° + 1), when d = 4.

Recall that H has the canonical equation

q+1 +xq+1 +. +:Uq+1 0.

25
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(iii) The points of PG(3,q), together with the totally isotropic lines with respect to a symplectic
polarity, form a GQ W (q) with parameters

s=t=q, v:bz(q+1)(q2+1).

Recall that the lines of W(q) are the elements of a linear complex of lines of PG(3, ¢), and that
a symplectic polarity of PG(3,¢) has the following canonical bilinear form:

Toy1 — T1Yo + T2y3z — x3y2 = 0.

The earliest known non-classical examples of GQ were discovered by J. Tits and first appeared in
P. Dembowski [50].

3.1.2. For each oval or ovoid O in PG(d,q), d =2 or 3, there is a GQ T(O) constructed as follows:
Let d = 2 (resp., d = 3) and let O be an oval [50] (resp., and ovoid [50]) of PG(d,q). Further, let
PG(d,q) = H be embedded as an hyperplane in PG(d + 1,q) = P. Define points as (i) the points of
P\ H, (ii) the hyperplanes X of P for which |X NO| = 1, and (iii) one new symbol (c0). Lines are
defined as (a) the lines of P which are not contained in H and meet O (necessarily in a unique point),
and (b) the points of O. Incidence is defined as follows: A point of type (i) is incident only with lines
of type (a); here the incidence is that of P. A point of type (ii) is incident with all lines of type (a)
contained in it and with the unique element of O in it. The point (c0) is incident with no line of type
(a) and all lines of type (b). It is an easy exercise to show that the incidence structure so defined is a
GQ with parameters

s=t=q, v=b=(qg+1)(¢*+1), whend =2
s=q t=¢* v=_(¢+1)(¢’ +1), b=(¢" +1)(¢’ +1), when d = 3.

If d = 2, the GQ is denoted by T5(0); if d = 3, the GQ is denoted by T3(O). If no confusion is
possible, these quadrangles are also denoted by T'(O).

3.1.3. ([70, 1]). Associated with any complete oval O in PG(2,2") there is a GQ Ty (O) of order
(@—1,g+1), ¢=2"

Proof. Let O be a complete oval, i.e. a (g + 2)-arc [20], of the projective plane PG(2,q), ¢ = 2", and
let PG(2,q) = H be embedded as a plane in PG(3,q) = P. Define an incidence structure 75 (O) by
taking for points just those points of P\ H and for lines just those lines of P which are not contained
in H and meet O (necessarily in a unique point). The incidence is that inherited from P. It is
evident that the incidence structure so defined is a GQ with parameters s =q¢—1,t =g+ 1, v = ¢°,
b=¢q*(q+2). O

3.1.4. ([121]). To each regular point x of the GQ S = (P,B,1) of order s, s > 1, there is associated
a GQ P(S,x) of order (s —1,s+1).

Proof. Let z be a regular point of the GQ & = (P, B,I) of order s, s > 1. Then P’ is defined to be
the set P\ z+. The elements of B’ are of two types: the elements of type (a) are the lines of B which
are not incident with z; the elements of type (b) are the hyperbolic lines {z,y}**, y # x. Now we
define the incidence I'. If y € P/ and L € B’ is of type (a), then y I' Liff y I L; if y € P’ and L € B’ is
of type (b), then y I' L iff y € L’. We now show that the incidence structure &' = (P, B',T') is a GQ
of order (s — 1,5+ 1).

It is clear that any two points of S" are incident (with respect to I') with at most one line of S’.
Moreover, any point of P’ is incident with s points of P’. Consider a point y € P’ and a line L of type
(a), with y I/ L. Let 2z be defined by  ~ z and 2z I L. If y ~ z, then no line of type (a) is incident with
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y and concurrent with L. But then, by the regularity of x, there is a point of P’ which is incident with
the line {x,y}*+ of type (b) and the line L. If y o z, then there is just one line of type (a) which is
incident with y and concurrent with L. By the regularity of x, the line of type (b) containing y is not
concurrent with L. Finally, consider a point y € P’ and a line L = {z,u}**, 2 « u, of type (b) with
y & L. It is clear that no line of type (b) is incident with y and concurrent with L. If y is collinear
with at least two points of L, then by the regularity of x we have y ~ z, i.e. y € P’, a contradiction.
Hence y is collinear with at most one point of L. If u ¢ y, then by 1.3.6 the triad (z,y, u) has a center
v, and consequently the line of type (a) defined by v I M 1y is incident with y and concurrent with
L. O

The GQ S’ = (P',B',T) of order (s — 1,s + 1) will be denoted by P(S, x).

A quick look at the examples of order s in 3.1.1 and 3.1.2 reveals that regular points and regular
lines arise in the following cases (for more details and proofs see 3.3): all lines of Q(4,q) are regular;
the points of Q(4,q) are regular iff ¢ is even; all points of W(q) are regular; the lines of W(q) are
regular iff ¢ is even; the unique point (00) of type (iii) of T5(O) is regular iff g is even; all lines of type
(b) of T5(O) are regular. The corresponding GQ of S.E. Payne will be considered in detail in 3.2.

3.1.5. ([1]). For each odd prime power q there is a GQ AS(q) of order (¢ —1,q+1).

Proof. An incidence structure AS(q) = (P,B,I), ¢ an odd prime power, is to be constructed as
follows. Let the elements of P be the points of the affine 3-space AG(3, q) over GF(gq). Elements of B
are the following curves of AG(3, q):

(i) x=0,y=a, z=0,
(i) x=2,y=0,2=0b,
(iii) 2 =co? —bo+a,y = —2co+b, z = 0.

Here the parameter o ranges over GF(q) and a, b, ¢ are arbitrary elements of GF(q). The incidence I
is the natural one. It remains to show that AS(q) is indeed a GQ of order (¢ — 1,¢ + 1).

It is clear that |P| = ¢, that |B| = ¢*(¢ + 2), and that each element of B is incident with ¢
elements of P. For each value of ¢ there are ¢ curves of type (iii), and these curves have not point in
common. For suppose the curves corresponding to (a, b, c) and a’, V', ¢') intersect. Then for some o we
have co? —bo +a = co? —bo +a’ and —2co + b = —2co + b, which clearly implies b = b’ and a = a.
Similarly, no two curves of the form (i) (or of the form (ii)) intersect. Thus we have g + 2 families of
nonintersecting curves, ¢> curves in each family and ¢ points on each curve. Hence each point of P is
incident with exactly ¢ + 2 elements of B, one from each family.

Now we shall show that two curves in different families meet in at most one point. This is clear if
one of the curves is of type (i) or (ii), and we only need to consider two curves of type (iii). Suppose the
curve corresponding to (a, b, ¢) meets the curve corresponding to (a’,¥’,¢’) at two different parameter
values, say o and 7. Then we have —2co +b = —2dc + V' and —2ct + b = =27 + 0. Hence
c(t—o)=d(r — o), with 7 # 0. Consequently ¢ = ¢ and the two curves coincide.

Finally, we shall show that axiom (iii) in the definition of GQ is satisfied. It is sufficient to prove
that AS(q) does not contain triangles. For indeed, if AS(g) has no triangles, then the number of points
collinear with at least one point of a line L equals ¢ + q(q+1)(¢ — 1) = ¢> = |P|, which proves (iii) in
the definition of GQ. We must consider the following possibilities for Li, Lo, Ls to form a triangle.

(a) Ly of type (i), Lo of type (ii), L3 of type (iii). Let L be z = 0, y = a1, z = by; let Ly be z = aq,
y =0, z=by; let Lz be © = c30% — bgo + 23, y = —2c30 + bs, 2 = 0. Since L; and Lo meet, we must
have by = by. But then both L; and Lo meet L3 at the same point, with parameter value o = by = bs,
and there is no triangle.

(b) Ly of type (i) and Lg, L3 of type (iii). Let L; be z = o, y = a1, z = b1; let Ly and Lg be,
respectively, © = 202 —boo+ag, y = —2c20+by, 2 = 0, and = = c30% —bzo+asz, y = —2c30+b3, 2 = 0.
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The line L1 meets both Lo and L3 at points with parameter value b;. We have a1 = —2c2b1 + b =
—2c¢3by + bs. If Lo, L meet at the point with parameter value o # by, then —2co0 + by = —2¢30 + bs,
which with the previous equation gives 2ca(0 — by) = 2¢3(0 — by ), implying c2 = ¢3. Hence Lo and Lg
do not meet, a contradiction.

(¢) Ly of type (ii) and Lo, L3 of type (iii). Let L1 be x = a1, y = 0, z = by; and let Ly and L3 be
as given in (b). The line L; meets both Ly and L3 at points with parameter value b;. We now have
ap = Cgb% — bob1 + as and a1 = c;;b% — b3by + a3. If Lo, Ly meet at the point with parameter value
o # by, then 202 — byoas = c30% — bso + a3 and —2cp0 + by = —2c30 + bs, which with the previous
equations give ca(o + b1) — by = c3(0 + b1) — b3 and (by — 0)(c2 — ¢3) = 0, from which ¢ = ¢3. Hence
Lo and L3 do not meet, a contradiction.

(d) L1, Lo, L3 are of type (iii). Let L; be x = ¢;0% — bjo +a;, y = —2ci0 +bi, z =0, i =1,2,3.
Suppose that L;, L;, i # j, meet each other at the point with parameter value o;; = 0;;, where 012,
093, 031 are distinct. Then

Ci0'i2j — bio'ij +a; = CjO'in — bjO'ij + a; (31)
and
— 2Ciaij +b; = —QCjJij + bj, (3.2)
giving
— bio'ij + 2a; = *bjo'ij + QCL]‘. (33)

By (3.2) we have

023031(b1 — b2) + 031012(b2 — b3) + 012023(b3 — b1) =

2093031012(c1 — ¢2) + 2031012023(c2 — €3) + 2012023031(c3 — ¢1) = 0. (3.4)

By (3.3) we have
0’12(b1 —b2)—|—023(bg—b3)+0’31(b3—bl) =0. (35)

Eliminating b; from (3.4) and (3.5), we obtain (012 — 023)(012 — 031)(031 — 023)(b2 — b3) = 0. Hence
by = b3, and by (3.2) o93(ca — ¢3) = 0. Since ¢z # c3, we have 093 = 0. Analogously o3; = 012 = 0. So
012 = 093 = 031, a contradiction.

It follows that AS(q) has no triangles and consequently is a GQ. O

In their paper [1], R.W. Ahrens and G. Szekeres also note that the incidence structure (P*, B*,T*)
with P* = B*and L1* M, L € P*, M € B*, if L ~ M and L # M in (P,B,1), is a symmetric
2 — (¢*(q + 2),q(q + 1),q) design. These designs are new. (See Section 3.6 for a further study of
symmetric designs arising from GQ.) They also remark that for ¢ = 3 there arises a GQ with 27
points and 45 lines, whose dual can also be obtained as follows: lines of the GQ are the 27 lines on a
general cubic surface V' in PG(3,C) [1], points of the GQ are the 45 tritangent planes [1] of V', and
incidence is inclusion.

The only known family of GQ remaining to be discussed was discovered by W.M. Kantor [39] while
studying generalized hexagons and the family Ga(q) of simple groups. We now give the method by
which Kantor used the hexagons to construct the GQ. In 10.6, using the theory of GQ as group coset
geometries, we shall give a self-contained algebraic presentation that was directly inspired by W.M.
Kantor’s original paper.

3.1.6. ([59]). For each prime power q, ¢ = 2 mod 3, there is a GQ K(q) of order (q,q?) which arises
from the generalized hexagon H(q) of order q associated with the group Ga(q).

Construction: A generalized hexagon 42 [123] of order ¢ (> 1) is an incidence structure S = (P, B,1
), with a symmetric incidence relation satisfying the following axioms:

(i) each point (resp., line) is incident with ¢ + 1 lines (resp., points);
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(i) [Pl=1Bl=1+q+¢*+¢’+¢" +¢
(iii) 6 is the smallest positive integer k such that S has a circuit consisting of k points and k lines.

There is a natural metric defined on P U B: an object is at distance 0 from itself, an incident point
and line are at distance 1, etc. Clearly the maximum distance between any two objects in P U B is 6.
The generalized hexagon of order ¢, ¢ a prime power, is known.

This generalized hexagon arises from the group Gz(¢q) and was introduced by J. Tits in his cel-
ebrated paper on triality [217]. One of the two dual choices of this generalized hexagon has a nice
representation in PG(6,q) [217]: its points are the points of a nonsingular quadric Q); its lines are
(some, but not all of the) lines of @; incidence is that of PG(6, ¢). The generalized hexagon with that
representation will be denoted by H(q).

Let S = (P, B,1) be a generalized hexagon of order g. Define an incidence structure S* = (P*, B*, I*
) as follows. Let L be a fixed line of S. The points of S* will be the points of L and the lines of S at
distance 4 from L. Lines of §* are L, the points of S at distance 3 from L and the lines of S at distance
6 from L. We now define the incidence I*: a point of L (in S) is defined to be incident (in S*) with
the lines of §* which are at distance 1 or 2 (in S) from it. For the incidence structure §* so defined,
the following properties are easy to check: each point is incident with 1+ ¢ lines, each line is incident
with 1+ ¢ points, any two points are incident with at most one line, and both |P*| and |B*| have the
correct values for S* to be a GQ of order (g, ¢%). It is easy to discover a simple geometric configuration
whose absence from § is necessary and sufficient for §* to be a GQ. Recently, using mainly projective
geometry techniques in PG(6,q), J.A. Thas [82, ] proved that this configuration is absent from
H(q) when ¢ = 2 (mod 3). In this work we shall give a group theoretical proof directly inspired by
W.M. Kantor’s paper, and hence we defer it until 10.6.2, when GQ as group coset geometries are
introduced.

3.2 Isomorphisms between the known GQ

We start off by considering GQ of order ¢, ¢ > 1, for which the known examples are Q(4,q), W(q),
T5(0), and their duals.

3.2.1. Q(4,q) is isomorphic to the dual of W(q). Moreover, Q(4,q) (or W(q)) is self-dual iff q is

even.

Proof. Let Q1 be the Klein quadric of the lines of PG(3,q) [4]. Then Q% is an hyperbolic quadric
of PG(5,q). The image of W(q) on Q" is the intersection of Q@ with a nontangent hyperplane of
PG(4, q) of PG(5,q). The nonsingular quadric Q* N PG(4, q) of PG(4, q) is denoted by Q. The lines
of W(q) which are incident with a given point form a flat pencil of lines, hence their images on Q™
form a line of ). Now it easily follows that W(q) is isomorphic to the dual of Q(4, q).

Now consider the nonsingular quadric @ of PG(4,q). Let Ly and L; be nonconcurrent lines of
Q(4,q). Then the 3-space LoL; intersects @) in an hyperbolic quadric having reguli {Lg, L1,..., L1}
and {Mo, My, ..., M} In Q(4, q) we have L; ~ Mj, 1,5 =0,...,q, so (Lo, L1) is a regular pair of lines
of Q(4,q). Hence each point of Q(4,q) is coregular. From 1.5.2 it follows that each point of Q(4, q)
is regular or antiregular according as ¢ is even or odd. Thus for ¢ odd Q(4, q) (and also W(q)) is not
self-dual.

So let ¢ be even. The tangent 3-spaces of @ all meet in one point n, the nucleus of @ [30]. From n
we project () onto a PG(3, ¢) not containing n. This yields a bijection of the pointset of Q(4, ¢q) onto
PG(3, q), mapping the (¢ + 1)(¢? + 1) lines of Q(4,q) onto (g + 1)(¢ + 1) lines of PG(3, q). Since the
g + 1 lines of Q(4,q) which are incident with a given point are contained in a tangent 3-space of @,
they are mapped onto elements of a flat pencil of lines of PG(3,¢). Hence the images of the lines of
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Q(4, q) constitute a linear complex of lines [159] of PG(3,q), i.e. they are the totally isotropic lines
with respect to a symplectic polarity of PG(3,¢). It follows that Q(4,q) = W (q), and consequently
Q(4,q) and W(q) are self-dual. O

Remark: In [218] J. Tits proves that W (q) is self-polar iff ¢ = 22"*1 h > 0. Let 6 be a polarity
of W(q), ¢ = 221 h > 1. By 1.8.2 the set of all absolute points (resp., lines) of # is an ovoid O
(resp., a spread V') of W(q). It is easily seen that O (resp., V) is an ovoid [50] (resp., spread [50])
of PG(3,q). J. Tits proves that O is not a quadric and that the associated inversive plane admits he
Suzuki group Sz(gq) as automorphism group. Finally, the spread V is the Liineburg-spread giving rise
to the non-desarguesian Liineburg-plane [100, 184].

3.2.2. The GQ T»(O) is isomorphic to Q(4,q) iff O is an irreducible conic; it is isomorphic to W (q)
iff q is even and O is a conic.

Proof. Let @ be a nonsingular quadric of PG(4,¢) and let z € Q. Project @ from x onto a PG(3,q)
contained in PG(4, ¢) but not containing x. Then there arises a bijection # from the set of all points of
Q(4,q) not collinear with z, onto the pointset PG(3,¢q) \ PG(2, q), where PG(2, q) is the intersection
of PG(3, ¢) and the tangent 3-space of @ at x. In other words, if O is the conic @ NPG(2, q), then we
have a bijection € from the set of all points of (4, ¢) not collinear with x, onto the set of all points
of T5(O) not collinear with (co). Now we extend € in the following way: if y is a point of Q(4, ¢) with
y ~ x and y # x, then define 3 to be the intersection of PG(3,q) and the tangent 3-space of Q at
y, i.e. y? is the projection of that tangent 3-space from x onto PG(3,q); define 2% to (00); if L is a
line of Q(4,q), define L to be the projection of L onto PG(3,q) (from z). If L does not contain z,
then LY is a line of PG(3,q) containing a point of O; if L contains x, then L is a point of O. Now
it is clear that € is an isomorphism of Q(4,q) onto T»(0O). Hence, if O is an irreducible conic, then
T5(0) = Q(4,q).

Conversely, suppose that T5(0) = Q(4,q). Then by an argument in the proof of the previous
theorem, all pairs of lines of T5(O) are regular. Let Ly and L; be nonconcurrent lines of type (a)
of T5(0), and suppose they define distinct points zg and 1 of O. If {Lg, Li}* = {My, M, .. ., My}
and {Lo, L1 }*+ = {Lo, L1, ..., Ly}, then Lo, ..., Ly, My, ..., M, are lines of type (a) of T5(O). More-
over, in 75(0) and also in PG(3,q) L; is concurrent with M;, i,j7 = 0,...,q. Hence {Lo, L1} and
{Lo, L1} are the reguli of an hyperbolic quadric Q* of PG(3,q) [30]. Clearly O is the intersection
of QT with a nontangent plane, so O is an irreducible conic.

If ¢ is even and O is a conic, then T5(0) = Q(4,q) = W(q). Conversely, suppose that T5(O) =
W (q). As all points of W(q) are regular and the lines of 75(0O) through (co0) are regular, by 1.5.2 ¢
must be even. In this case T5(0) = Q(4,q) = W(q), implying that O is a conic. (In the case ¢ is
odd another pleasant argument is as follows: by B. Segre’s theorem [155] the oval O is a conic. Hence
T5(0) = Q(4, q), implying Q(4,q) = W (q), a contradiction since ¢ is odd.) O
Remark: If ¢ is odd, then the oval O is a conic, implying T5(0) = Q(4,q). If g is even and O is a
conic, then T5(0), which is isomorphic to Q(4,q), is self-dual. The problem of determining all ovals
for which T»(0O) is self-dual has been solved (c.f. M. Eich and S.E. Payne [50], S.E. Payne and J.A.
Thas [143], and also Chapter 12). A complete classification of T5(O) would also entail a complete
classification of the ovals, a problem which at present seems hopeless.

We now consider the known GQ of order (q,q?). For ¢ = 2, the GQ of order (g, ¢?) are also the
GQ of order (¢,q 4+ 2). But in 5.3.2 we shall prove that up to isomorphism there is only one GQ of
order (2,4). For ¢ > 2, the known examples are Q(5,q), the dual of H(3,¢?), T3(0), and K(q).

3.2.3. Q(5,q) is isomorphic to the dual of H(3,q?).

Proof. Let @ be an elliptic quadric, i.e. a nonsingular quadric of projective index 1, in PG(5, q).
Extend PG(5, ¢) to PG(5, ¢%). Then the extension of @ is an hyperbolic quadric @7, i.e. a nonsingular
quadric of projective index 2, in PG(5,¢?). Hence Q% is the Klein quadric of the lines of PG(3, ¢?).
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So to @ in Q% there corresponds a set V' of lines in PG(3,¢?). To a given line L of the GQ Q(5, q)
there correspond ¢ + 1 lines of PG(3,¢?) that all lie in a plane and pass through a point z. Let H
be the set of points on the lines of V. Then with each point of Q(5,q) there corresponds a line of V'
and with each line L of Q(5,q) there corresponds a point x of H. With distinct lines L, L' of Q(5, q)
correspond distinct points z, 2’ of H (a plane of QT contains at most one line of Q). Since a point
y of Q(5,q) is on ¢? + 1 lines of Q(5,q), these ¢*> + 1 lines are mapped onto the ¢® + 1 points of the
image of y. Hence we obtain an anti-isomorphism from Q(5, q) onto the structure (H,V,I) where I is
the natural incidence relation. So (H,V,I) is a GQ of order (¢?,q) embedded in PG(3,¢?). But now
by a celebrated result of F. Buekenhout and C. Lefévre [29], which will be proved in the next chapter,
the GQ (H,V,I) must be H(3,¢%). O

The proof just give is in J.A. Thas and S.E. Payne [211]. An algebraic proof of the same theorem
was given by A.A. Bruen and J.W.P. Hirschfeld [21].

3.2.4. T5(0) is isomorphic to Q(5,q) iff O is an elliptic quadric of
PG(3,q).

Proof. Let @ be a nonsingular quadric of projective index 1 of PG(5,q), and let x € Q. Project Q
from = onto a PG(4,q) C PG(5,¢) not containing =. Then there arises a bijection 6 from the set of
all points of Q(5, ¢q) not collinear with x, onto the pointset PG(4, q) \ PG(3,1), where PG(3, q) is the
intersection of PG(4,¢) and th tangent 4-space of @ at x. In other words, if O is the elliptic quadric
PG(3,9) NQ, then we have a bijection 6 from the set of all points of Q(5, ¢) not collinear with x, onto
the set of all points of T5(O) not collinear with (co). We extend 6 in the following way: if y is a point
of Q(5,q) with z # y ~ z, then define 3% to be the intersection of PG(4, q) and the tangent 4-space of
Q at y, i.e. 37 is the projection of that tangent 4-space from z onto PG(4,¢) (note that 4% NPG(3, q)
is a tangent plane of O); define 2% to be (c0); if L is a line of Q(5,q), define L to be the projection
of L onto PG(4,q) (from z). If L does not contain x, then L? is a line of PG(3, ¢) which contains a
point of O; if L contains z, then LY is a point of O. Now it is clear that 6 is an isomorphism of Q(5,q)
onto T5(0). Hence, if O is an elliptic quadric of PG(3, ¢), then T5(0) = Q(5, q).

Conversely, suppose that T5(0) = Q(5,q). Since the 3-space defined by any pair of nonconcurrent
lines o fQ(5, q) intersects @) in an hyperbolic quadric, it is clear that any pair of lines of Q(5,q) is
regular. Hence any pair of lines of T5(O) is regular.

Let Lo and L; be nonconcurrent lines of type (a) of T3(0O), and suppose they define distinct
points z¢ and xq of O. If {Lg,L1}* = {My, Mi,...,M,} and {Lo, L1 }**+ = {Lo, L1,...,L,} then
Ly,...,Lg, My, ..., M, are lines of type (a) of T3(0). Moreover, in T3(O) and also in PG(4,q) L; is
concurrent with M, i,7 =0,...,q. Hence Ly, ..., Ly, My, ..., M, are contained in a three dimensional
space P, and moreover {Lg, L1 }* and {Lg, L1 }** are the reguli of an hyperbolic quadric @t of P [30].
If PG(3, q) is the three dimensional space containing O, then clearly QT NO = QT NPG(3,q) = PNO.
Hence P N O is an irreducible conic. It follows that for any 3-space P of PG(5,q) with P ¢ PG(4,q)
and |P N O| > 1, the oval PN O is an irreducible conic. Since all ovals on O are conics, the ovoid O
is an elliptic quadric by a result of A. Barlotti [5]. O

3.2.5. For ¢ =2 (mod 3) and q > 2 the GQ K(q) is never isomorphic to a T3(0).

Proof. For a complete proof of this theorem we refer to 10.6.2, where it is shown that K(q) has a
unique regular line if ¢ > 2, whereas the point (c0) of T3(0) is always coregular. O

We now turn to isomorphisms between the known GQ of order (¢—1,¢+1). For the case ¢ = 3 see
that the remarks preceding 3.2.3. For ¢ > 3, the known examples are T5(0), P(S,z) (resp., P(S,L))
with z (resp., L) a regular point (resp., line) of the GQ S of order ¢, and mathrmAS(q). In choosing
the regular point x or regular line L in some GQ S of order ¢, by 3.2.1 and 3.2.2 we may restrict
ourselves to the GQ T>(0).
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For ¢ odd, every oval O is an irreducible conic by B. Segre’s theorem [158] and hence by 3.2.2
T5(0) = Q(4,q). So in that case all lines of T»(O) are regular and all points are antiregular, and
moreover T5(0) is homogeneous in its points (resp., lines). Consequently for ¢ odd there arises only
one GQ of S.E. Payne. Perhaps the nicest model of that GQ is obtained by considering P(W(q), z):
points of the GQ are the points of PG(3, ¢) \ PG(2, ¢), with PG(2, ¢) the polar plane of = with respect
to the symplectic polarity 6 defining W (q); lines of the GQ are the totally isotropic lines of # which
do not contain z, and also all lines of PG(3, ¢) which contain x and are not contained in PG(2, q).

Now assume that ¢ is even. Here the structure 75(O) depends, naturally, on the nature of the oval
O. In general the point (c0) and all lines incident with it are regular. If some additional point or line is
regular then 75(O) must belong to a completely determined list of examples (c.f. 3.3 and Chapter 12
for the details). And for ¢ = 2" > 8, there are examples of O for which there is a unique line L,
of regular points. For any one of these regular points x different from (c0), the GQ P(T>(0),x) was
shown by S.E. Payne [121] not to be isomorphic to any T5(0). However, as we show below, both
T5(0) and AS(q) do arise as special cases of the general construction P(S,x). This underscores the
importance of this general method of construction, and strongly suggests that a complete classification
of the GQ P(S,z) and P(S, L), for ¢q even, is hopeless.

3.2.6. ([120]) The GQ T5(0) and AS(q) are isomorphic to the respective GQ P(T2(0'),(x)), with
O' =0\ {z} and z € O, and P(W(q),y).

Proof. Consider T3 (0), with O a complete oval of PG(2,q), ¢ = 2". Let O’ = O\ {z}, with 2 some
point of O. Then O’ is an oval with nucleus z [30]. Now consider the GQ T5(O’). The point (o)
is a regular point of T5(O’) (which may be considered to follow from the fact that all tangent lines
of O’ meet at z, of from the fact that (co) is coregular and ¢ is even). It is easy to see that the GQ
P(T5(0'"), (00)) coincides with the GQ T5(O). Hence T35 (0) is a GQ of S.E. Payne.

Now consider the GQ AS(q), ¢ odd, of R.W. Ahrens and G. Szekeres. Recall that the elements of
P are the point of AG(3,¢q) and that the elements of B are the following curves of AG(3, q):

(i) x =0, y = a, z = b; denoted [—a, b].
(ii) x = a, y = 0, z = b; denoted [a, —b].
(iii) x = co? —bo +a, y = —2co + b, z = o; denoted [c, b, a].

Here the parameter o ranges over the elements of GF(q), and a, b, ¢ are fixed but arbitrary elements
of GF(q). The set of ¢ lines of type (ii) with fixed b will be denoted by (b); the set of ¢ lines of
type (iii) of AS(q) with fixed ¢ and b will denoted by (¢,b). Further, we introduce the notation
[c] = {(e,b) || b€ GF(q)} and [oo] = {(b) || b € GF(¢)}. Then we define a new incidence structure
S = (P, B,T) in the following way. The elements of P’ are of four types: a symbol (c0), the elements
(b) and (c,b), and the points of P. The elements of B’ are the lines of type (ii) and (iii) of B, the
elements [c], and [0o]. Further, we define I by (00) I [o0], (00) I [¢] for all ¢ € GF(q), (b) I' [o0] for
all b € GF(q), (b) I [a, —,b] for all a,b € GF(q), (¢,b) I [¢] for all b,c € GF(q), (¢,b) I [¢,b,a] for all
a,b,c € GF(q), u I' L iff u I L for all u € P and all lines of L of type (ii) or (iii) of B. It is easily
checked that each point of P’ is incident with ¢ + 1 lines of B’, and each line of B’ is incident with
q + 1 points of P’. Now using the fact that for each value of ¢ there are ¢ mutually disjoint lines of
type (iii) in AS(q), and after checking that in &’ two lines L, M of type (ii) or (iii) concur at a point
(b) or (c,b) iff in AS(q) the ¢ lines of {L, M}* are of type (i), it is not difficult to show that S’ is a
GQ of order gq.

Next we show that all points of S’ are regular. By 1.3.6 it is sufficient to prove that any triad of
points of &’ is centric. There are several cases according to the types of the points in the triad. In the
following a point (z,y,z) € P will be called a type I point, a point (c¢,b) a type II point, a point (b)
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a type III point, and the point (0co0) the type IV point. There are many cases to consider, but several
of them are easy. We present the details only for the least trivial of the cases.

First of all we consider the case (IV,LI). Let u and v be the points of type I. Further, assume that
L is the line of type (i) of AS(q) incident with w and that M is the line of AS(g) which contains v and
is concurrent with L. If w is defined by w I’ N T w I’ M, then in &’ the point w is collinear with (o).
Hence in &’ the triad ((c0),u,v) is centric, so that the point (co) is regular.

Before starting with the other cases we remark that in &’ the points (xo, y0, 20) and (x1,y1, 21)
(resp., (¢,b) and (z,y, z)) are collinear iff (yo + y1)(21 — 20) = 2(xg — x1) (resp., y = —2cz + b).

Consider now the case (I,1,I), and suppose (ug,u1,uz2), u; = (i, ¥, 2i), is a triad of points. For
subscripts reduced mod 3 to one of 0, 1, 2, this means that (y;+yi+1)(zi41—2i) # 2(xi—xi41),7 = 0,1, 2.
We then wish to find a point ug = (z3, y3, 23) of type I such that (y;+y3)(23—2;) = 2(z;j—x3),1 = 0,1, 2,
or a point (¢, b) of type II such that b = y; +2cz;, i = 0,1, 2, or a point (b) of type III such that b = z;,
i =0,1,2. A point us = (x3,ys,23) satisfying the above conditions can be found iff the following
system of linear equations in ys, z3 has a solution:

(z1 —20)ys + (Yo —y1)z3 = yozo — Y121 + 2(xo — 1),
(22— 20)ys + (Yo — y2)23 = Yo2zo — Y222 + 2(xo — x2).

The determinant of this system is A = z0(y2 — y1) + 21(vo — y2) + 22(y1 — yo). Hence if A # 0 we can
solve for a ug of type I. On the other hand, if A\ = 0 and z; # z; for some i # j, then it is easily verified
that the system b = y; + 2c¢z;, i = 0,1,2, has a solution in b,c. Finally, if A = 0 and zp = 21 = 29,
then (zp) is collinear with ug, u1,ue. This completes case (I,I,I). The other cases that are not trivial
are for triads (IILILI), (IILLI), (ILILI), and (I,L,I). But even there the computations are somewhat
simpler than, and in the same spirit as the ones just presented.

So we have proved that all points of S’ are regular. Clearly we have AS(q) & P(S’,()). We
finally prove that 8’ = W9q). For that purpose we introduce the incidence structure S” = (P”, B”,17),
with P” = P’ B” the set of spans (in &’) of all points-pairs of P’, and I” the natural incidence. By
1.3.1 and using the fact that any triad of points of &’ is centric, it follows that any three noncollinear
points of S” generate a projective plane. Since |P”| = ¢3 + ¢®> + ¢ + 1, 8" is the design of points and
lines of the projective 3-space PG(3,¢q) over GF(q). Clearly all spans (in 8’) of collinear point-pairs
containing a given point z, form a flat pencil of lines in PG(3, ¢q). it follows immediately that the set
of all spans of collinear point-pairs is a linear complex of lines of PG(3,¢) [159], i.e. is the set of all
totally isotropic lines for some symplectic polarity. Hence 8’ = W (q) and the theorem is proved. O

Remark: In [15] it is proved that 75 (O1) = T4 (O2) iff there is an isomorphism 6 of the plane m; of Oy
onto the plane my of Oy for which O? = Os.

3.3 Combinatorial properties: regularity, antiregularity, semiregu-
larity and property (H)

In this section we consider the pure combinatorics of the known GQ. Many of the properties in the
following theorems will be seen to be of fundamental importance for a large variety of characterizations
of the known GQ. We start by considering the classical GQ, and by 3.2.1 it is sufficient to consider
Q(3,9), Q(4,9), Q(5,q), and H(4,q?). Of course, the structure of Q(3,q) is trivial.

3.3.1. (i) Properties of Q(4,q): all lines are regular; all points are regular iff q is even; all points
are antireqular iff q is odd; all points and lines are semiregular and have property (H).

(ii) Properties of Q(5,q): all lines are regular; all points are 3-regular; all points and lines are
semiregular and have property (H).
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(iii) Properties of H(4,q%): for any two noncollinear points x,y we have |{z,y}*| = q + 1; for any
two nonconcurrent lines L, M we have |{L, M}*+| =2, but (L, M) is not antiregular; all points
are semireqular and have property (H) but no line is semiregular.

Proof. (i) This is an immediate corollary of 1.6.1 and the proof of 3.2.1.

(ii) It was observed in the proof of 3.2.4 that all lines of Q(5,¢q) are regular. So consider a triad
(zg,21,22). Since t = s we have |{zg, 1,22} |¢ 4+ 1. Tt is clear that {zg,z1, 22} = Q N 7L, where
7t is the polar plane of the plane m = zoxixe with respect to the quadric Q. Since 7 and 7+
are mutually polar, each point of @ N 7 is collinear in Q(5,q) with each point of @ N 7+. Hence
{xo, z1, 22} = |QN 7| = g+ 1, and (zq, 1, x2) is 3-regular. It follows that all points are 3-regular.
Since all lines are regular, by 1.6.1 they are semiregular and hence satisfy property (H). Since no triad
(of points) has a unique center, also all points are semiregular and satisfy property (H).

(iii) Consider two noncollinear points x,y of H(4,q?). Then {z,y}* = H N, where pi is the polar
plane of the line L = zy (of PG (4, ¢?)) with respect to the hermitian variety H. The set of all points
of H that are collinear with all points of H N is clearly L N H. Hence |{x,y}**| = |HNL| =q+ 1.
Further, consider two nonconcurrent lines L, M of H(4,q?). If PG(3,¢?) is the 3-space containing L
and M, then PG(3,¢?) N H = H' is a nonsingular hermitian variety of PG(3, ¢?). Moreover, the trace
(resp., span) of (L, M) in H(4,q?) coincides with the trace (resp., span) of (L, M) in H'(3,¢*). Hence
[{L, M}*++| = 2. Since t > s in H(4,¢?), the pair (L, M) is not antiregular.

Now we shall show that all the points are semiregular. Suppose that u is the unique center of the
triad (z,v, z). Since (|{z,y}*+| — 1)t = 52, part (ii) of 1.4.2 tells us that z € cl(z,y). Hence u is
semiregular. It follows also that all points satisfy property (H).

From |{L, M}++| = 2 for each pair (L, M) of nonconcurrent lines, it follows that all lines have
property (H). Finally, we show that no line is semiregular. Consider three lines L, M,V of H(4,q?)
with L ~ V ~ M ¢ L. Further, let N be a line of H(4,q?) for which N ~ V, L «# N ¢ M, and
which is not contained in the 3-space PG(3,¢?) defined by L and M. Then V is the unique center of
the triad (L, M, N), but N ¢ cl(L, M). Hence V is not semiregular, and the proof of (iii) is complete.
O

We now turn out attention to the GQ T'(O).

3.3.2. (i) Alllines of type (b) of To(O) are regular. The point (c0) is reqular or antireqular according
as q is even or odd.

(i1) All lines of type (b) of T5(O) are reqular, and the point (c0) is 3-regular.

Proof. (i) Let = € O be a line of type (b). We shall prove that x is regular. Consider a line L of type
(a) which is not concurrent with x. The intersection of O and L is denoted by y, x # y. It is clear
that {x, L}* contains y and the ¢ lines of the plane 2L which contain x but not y. And {z, L}**
contains x and the ¢ lines of the plane L which contains y but not . Hence |{x, L}1+| = ¢ + 1 and
(x, L) is regular. It follows that (co) is coregular and the proof of (i) is complete by 1.5.2.

(ii) An argument analogous to that in (i) shows that all lines of type (b) of T5(O) are regular. It
remains only to prove that (0o) is 3-regular. Let ((c0),x,y) be a triad, so that x and y are points
of type (i). The 3-space PG(3,q) which contains O and the line zy of PG(4,¢) have a point z ¢ O
in common. Exactly ¢ + 1 tangent planes m, ..., 7,1 of O contain z. It is clear that {(00),z,y}*
consists of the ¢ + 1 3-spaces x71,...,2my+1. And {(00),z,y}+1 contains (co) and the ¢ points of
zy \ {z}. Hence |{(c0),z,y}**| = ¢ + 1, and consequently (c0) is 3-regular. O

There is a kind of converse.

3.3.3. (i) If T5(O) has even one reqular pair of nonconcurrent lines of type (a) defining distinct
points of O, then O is a conic and T2(O) is isomorphic to Q(4,q).
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(ii) If T2(O) has a reqular point of type (i), then q is even, O is a conic and T2(O) is isomorphic to
Q4,9).

(iii) If T3(O) has a regular line of type (a), then O is an elliptic quadric and T5(O) is isomorphic to
Q(5,9).

(iv) If T5(O) has a 3-regular point other than (c0), then O is an elliptic quadric and T5(0) is iso-
morphic to Q(5,q).

Proof. (i) Suppose that (L, M) is a regular pair of nonconcurrent lines of 75(O) of type (a) defining
distinct points of O. Then all elements of {L, M }* and {L, M }** are of type (a), and in PG(3, q) each
line of {L, M}* has a point in common with each line of {L, M}*+. Hence {L, M} and {L, M}*++
are the reguli of some hyperbolic quadric Q* of PG(3,¢). Evidently O is a plane intersection of QT
and thus O is a conic and by 3.2.2 the proof of (i) is complete.

(ii) Suppose that some type (i) point of T5(O) is regular. Since the translations of PG(3,q) \
PG(2,q), O C PG(2,q), induce a group of automorphisms of 75(0) which is transitive on points of
type (i), clearly all points of type (i) are regular. It follows easily that all points are regular, and then
by 1.5.2 that ¢ is even since lines of type (b) are regular. Then by 1.5.2 again all lines are regular, so
an appeal to part (i) completes the proof of (ii).

(iii) Suppose that T3(O) has a regular line L of type (a). The point of O defined by L is denoted by
x. By an argument analogous to that used in the proof of (i) it follows that all ovals on O containing x
are conics. So if 2/ € O\ {z}, the ovals on O containing 2 and x’ are conics. If g is even, by a theorem
of O. Prohaska and M. Walker [117] the ovoid O is an elliptic quadric, i.e. T3(0) = Q(5,q). If ¢ is
odd, by a result of A. Barlotti[5] O must be an elliptic quadric, so that by 3.2.4 T3(0) = Q(5, q).

(iv) Finally, suppose that 73(O) has a 3-regular point x of type (i) or (ii). In Step 3 of the proof
of 5.3.1 we shall show that x is coregular. Now by part (iii) the proof is complete. O

Note: If ¢ is odd, any oval (resp., ovoid) is necessarily a conic (resp., an elliptic quadric), so that
T5(0) = Q(4,q) (resp., T3(0) = Q(5,q)). For q even, q > 4, there are always ovals O for which T5(O)
has a unique line of regular points (c.f. Chapter 12 for more details). And for ¢ = 2", h odd, h > 2,
the Tits ovoids provide examples of T3(O) not isomorphic to Q(5, q).

In 10.6.2 we shall prove that for ¢ = 2 (mod 3), ¢ > 2, L (as used in the construction given in
3.1.6) is the unique regular line of K(g). Hence by Step 3 of the proof of 5.3.1 K(q), ¢ # 2, has no
3-regular point. This has the following interesting corollary: if ¢ = 22"+1, h > 1, there are at least
three pairwise nonisomorphic GQ of order (q,q?).

We now turn to the known GQ of order (¢ — 1,¢ + 1). In 5.3.2 we shall prove that every GQ of
order (2,4) is isomorphic to Q(5,2). Hence all lines of the GQ of order (2,4) are regular, and all its
points are 3-regular. Note that a GQ of order (¢ — 1,q+ 1), ¢ > 2, has no regular pair of noncollinear
points since s < .

3.3.4. The pair (L, M) of nonconcurrent lines of T5(O) is reqular iff L and M define the same point
of O.

Proof. Let L and M be distinct lines of T5(O) which define the same point y of the complete oval
O. The plane LM of PG(3, q) intersects O in two points y and z. It is clear that {L, M} consists of
the ¢ lines distinct from yz which are contained in the plane LM and pass through the point z. The
span {L, M }lL consists of the ¢ lines distinct from yz which are contained in the plane LM and pass
through the point y. Hence the pair (L, M) is regular.

Further, let L and M be nonconcurrent lines of 75 (O) which define different points y and z of O.
If (L, M) is regular, then {L, M}+
(vesp., {L, M}*1) defines ¢ different points ui, ..., u, (vesp., y = y1, z = ya,...,y,) of O. Moreover,
u; #yj for alli,j =1,...,q. Hence |O| > 2¢, which is impossible since ¢ > 2. O
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In determining all regular elements of P(W (q), x) we may restrict ourselves to the case ¢ odd, since
otherwise P(W(q),z) = T5(O) where O is a conic. Note that in the case ¢ odd P(W(q),z) = AS(q).

3.3.5. The pair (L,M), L 4 M, of P(W(q),x), q > 3, is reqular iff one of the following holds: (i) L
and M are hyperbolic lines of W (q) which contain xz, or (ii) in W(q) L and M are concurrent lines.

Proof. Let L and M be distinct lines of P(W(q),x) which are both of type (b), i.e. which are
hyperbolic lines of W (q) through z. Let 7 be the polar plane of x with respect to the symplectic
polarity 6 of PG(3, q) defining W (q). If y is the pole of the plane LM with respect to 6, then {L, M}+
consists of the ¢ lines of PG(3,¢) distinct from xy which are contained in the plane LM and pass
through the point y. All lines of {L, M}* are of type (a). The span {L, M}*+ consists of the ¢ lines
of PG(3, ¢) distinct from xy, which are contained in the plane LM and pass through the point z. All
lines of {L, M}*+ are of type (b). Since |{L, M}**| = ¢, the pair (L, M) is regular.

Finally, suppose that (L, M) is a regular pair of nonconcurrent lines with L of type (b) and M of
type (a) or with both L and M of type (a) but non concurrent in W(q). Then {L, M}* and {L, M}++
each contain at least ¢ — 1 lines of type (a). Let Z,...,z4—1 (resp., Vi,...,Vy—1) be lines of type (a)
contained in {L, M}+ (resp., {L, M}*+). Then in W (q) the line Z; is concurrent with the line V;, for
alli,j=1,...,¢— 1. Since ¢ > 3 and by 3.3.1 all lines of W(q), ¢ odd are antiregular, and we have a
contradiction. O

3.4 Ovoids and spreads of the known GQ
As usual we consider the classical case first.

3.4.1. (i) The GQ Q(4,q) always has ovoids. It has spreads iff q is even, but in that case has no
partition into ovoids or spreads by 1.8.5.

(i) The GQ Q(5,q) has spreads but no ovoids.

(iii) The GQ H(4,q%) has no ovoid. For q = 2 it has no spread (A.E. Brouwer [21]). For q¢ > 2,
whether or not it has a spread seems to be an open problem.

Proof. (i) Let us consider the GQ Q(4,q). In PG(4,q) consider a hyperplane PG(3,¢q) for which
PG(3,q9) N Q is an elliptic quadric @~. Then Q~ is an ovoid of Q(4,q). If ¢ is even, then Q(4, q) is
self-dual, and hence Q(4, ¢) has spreads. If ¢ is odd, since all lines of Q(4, q) are regular, the dual of
1.8.4 guarantees that Q(4, ¢) has no spread.

(i) Let H be a nonsingular hermitian variety in PG(3,¢?). Then any hermitian curve on H, i.e.
any nonsingular plane intersection of H, is an ovoid of the GQ H (3, ¢?). Hence H(3,¢?) has ovoids,
implying that Q(5, ¢) has spreads. By 1.8.3 Q(5, ¢) has no ovoid.

(iii) Here we propose two proofs.

(a) Suppose H(4,¢?) did have an ovoid O, and let {z,y} C O. Then {z, y}** has cardinality ¢+1.
Since at = s, by 1.8.6 O has an empty intersection with {z, y}LL, a contradiction.

(b) Again suppose that O is an ovoid of H(4,¢?), and consider the intersection of O with a
hyperplane PG (3, ¢?) of PG(4, ¢%). If HNPG(3, ¢?) is a nonsingular hermitian variety H' of PG(3, ¢?),
then O NPG(3,¢%) = O’ is an ovoid of the GQ H'(3,¢?). Hence |O'| = ¢® + 1. If H N PG(3,¢?) has a
singular point p, then |O NPG(3,¢%)| =1if p € O and |ONPG(3,¢?)| = ¢* + 1if p &€ O. So for any
PG(3,4¢%) we have |O N PG(3,¢?)| € {1,¢> + 1}. From J.A. Thas [187] it follows that O is a line of
PG(4,4¢?), a contradiction.

By an exhaustive search A.E. Brouwer [21] showed that H(4,4) has no spread. We do not know
whether or not H(4,¢?) has a spread when ¢ > 2. O
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For g an even power of 2, only one type of ovoid of Q(4,q) is known. But for q22h+1, h > 1, two

types of ovoids of (4, q) are known. Their projections from the nucleus of @) onto a PG(3, q) are the
elliptic quadric and the Tits ovoid [21%8]. On the other hand, the corresponding spreads of W (q) are
the regular spread [50] and the Liineburg-spread [100] of PG(3, ¢). Details and proofs are in J.A. Thas
[184].

Recently W.M. Kantor [90] proved that for odd values of ¢ there exist ovoids of Q(4,q) which are
not contained in some PG(3, ¢), i.e. which are not obtained in the way described in the proof of the first
part of 3.4.1. One of the classes constructed by W.M. Kantor is the following. Consider in PG(4, q),
q odd, the nonsingular quadric Q with equation 23 + xoz4 + 321 = 0. Let 0 € Aut GF(q) and let
—k be a nonsquare in GF(q). Then {(0,0,0,0,1)} U {(1, 21, x2, k2§, —23 — ka§ ™) || x1,29 € GF(q)}
is an ovoid O of Q(4,q). (It is easy to check that O is contained in some PG(3, q) iff o is the identity
permutation). Moreover, he showed that the corresponding spread of W (q) gives rise to a Knuth
semifield plane [50].

Without using the duality between H(3,q?) and Q(5,¢q) it is possible to give a short proof that
Q(5,q) has a spread. Indeed, over a quadratic extension of GF(q) we consider two mutually skew
and conjugated planes m and 7’ on the extension Q* of (). For each point p € @, let L be the line
containing p and intersecting m and 7’. Since L contains at least three points of Q*, L is a line of Q*.
As L is a line of PG(5,q), L is a line of Q). The set of all such lines L evidently is a spread of the GQ
Q(5,9).

Further, we show that H(3,¢?) has different types of ovoids. Let H' be an hermitian curve on H.
If 2,y € H', x # y, then (H'\ {z,y}**) U {x,y}* is also an ovoid. For more information about the
spreads of Q(S q) we refer to J.A. Thas [209, ].

Finally, we remark that the second part of (ii) was first proved by A.A. Bruen and J.A. Thas [27]
using a method analogous to that used in proof (b) of (iii).

3.4.2. (i) The GQ T>(0O) always has an ovoid, but for q even it has no partition into ovoids or
spreads by 1.8.5.

(ii) The GQ T3(0O) has no ovoid but always has spreads.

Proof. (i) Let 7 be a plane which has no point in common with O. The ¢? points of type (i) in 7
together with the point (c0) clearly constitute an ovoid of T>(O). If the oval O of PG(2, q) is contained
in some other ovoid O’ of PG(3, q), PG(2,q) C PG(3, q), then an ovoid of T»(O) may also be obtained
as follows. Let O = {zo,..., 24} and let m; be the tangent plane of O" at x;, i = 0,...,¢. Then the
set (O’ \ O) U{mp,m1,...,mg} is an ovoid of T>(O).

(ii) By 1.8.3 the GQ 73(O) has no ovoid. Finally, we show that 73(O) always has spreads. Let
z € O, let m be a plane of PG(3,¢) D) for which « ¢ 7, and let L be the intersection of 7w and the
tangent plane of O at z. Further, let V' be a threespace through 7 which is distinct from PG(3, q),
and let W be a line spread of V containing L as an element. The elements of W are denoted by
L, Ly,...,Lp. Since LN L; = &, the plane L;x has exactly two points in common with O, say x
and z;. Notice that {z,z;} = O Nxy;, with {y;} = 7N L;. Clearly O = {z,1,...,2,}. The lines

distinct from zx; which join x; to the points of L; are denoted by M;y, M;s, ..., M;q. Now we show
that {Mi1, Mia, ..., Mg, x} is a spread of T3(0O).

Clearly the lines M;j and M;j; of T3(0), j # j', are not incident with a common point of T3(O) of
type (i), and since M;; M;;» N PG(3,q) = wx; is not a tangent line of O, they are not incident with a
common point of T3(0) of type (iii). It is also clear that M;; and M; s, i # ¢, are not incident with
a common point of type (ii), and since M;j, My and x generate a four dimensional space, the lines
M;; and M;j of T3(O) cannot be incident with a common point of type (1) Fimally7 the lines z and

M;j of T3(O) are not incident with a common point of T53(0). Since [{Miy, ..., Mz, x}| = ¢* +1, we

conclude that { M1, ..., My, x} is a spread of 73(0). O
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3.4.3. The GQ P(S,z) always has spreads. It has an ovoid iff S has an ovoid containing x.

Proof. Consider a GQ S of order s, s > 1, with a regular point . If 2 I L, then the s? lines of S
which are concurrent with L but not incident with x constitute a spread of P(S,z). In addition, the
set of all lines of type (b) is a spread of P(S,z). Further, we note that for each spread V of S, the
set V' \ {L}, where L is the line of V' which is incident with z, is a spread of P(S, ).

Let O be an ovoid of the GQ S with x € O. It is clear that O \ {z} is an ovoid of P(S,x) if every
line of type (b) contains exactly one point of O \ {z}. But this follows immediately from 1.8.4.

Conversely, suppose that O’ is an ovoid of P(S, ). It is immediate from the construction of P(S, )
that O’ U {z} is an ovoid of S. O

3.4.4. the GQ K(q) has spreads but no ovoid.

Proof. By 1.8.3 K(q) has no ovoid. We sketch a proof that K(q) always has spreads. Let V be a
spread of the generalized hexagon H(q), i.e. let V be a set of Q> + 1 lines of H(q) every two of which
are at distance 6 [30]. If the regular line L of K(q) belongs to V, then it is easy to show that V' is a
spread of K (q). Since H(q) always has spreads containing L [203], the GQ K(q) always has a spread.
O

Note: Suppose that H(q) is constructed on the quadric @) of PG(6,q). Let PG(5, q) be a hyperplane
of PG(6, ¢) which contains L and for which @ NPG(5,¢) is elliptic [$0]. Then by J.A. Thas [203] the
lines of H(q) which are contained in PG(5, ¢) constitute a spread of K(q).

3.5 Subquadrangles

Here we shall describe some of the known subquadrangles of both the classical and of the other known
GQ, with the main emphasis being on large subquadrangles.

(a) Consider Q(5,q), with @ a nonsingular quadric of projective index 1 in PG(5, ¢). Intersect @
with a nontangent hyperplane PG(4, ¢). Then the points and lines of Q' = Q NPG(4, q) form the GQ
Q'(4,q). Here s> =t = ¢%, s = s’ = t/, so that t = s't’. Since all lines of Q(5,q) (resp., Q'(4,q)) are
regular, Q(5,q) (resp., Q'(4,¢)) has subquadrangles with ¢’ =1 and s" = §' = s.

Similarly, consider H(4,¢?), with H a nonsingular hermitian variety of PG(4,q?). Intersect H
with a nontangent hyperplane PG(3,¢?). Then the points and lines of H' = H N PG(3,¢?) form the
GQ H'(3,¢%). heret = s%/2 = ¢*, s = ', t' = \/s, and again t = §'t’. Since all points of H'(3,¢?) are
regular, H'(3,¢?) has subquadrangles with ¢’ = ' = \/s and s” = 1.

Now consider Q(4, q) and extend GF(q) to GF(¢?). Then Q extends to @ and Q(4,q) to Q(4,¢?).
Here Q(4,q) is a subquadrangle of Q(4,¢?), and we have t = s = ¢®> and ' = s’ = q. Hence t = s't’.

(b) Consider T5(0) and let 7 be a plane of PG(3,¢q) D O for which ONm = O’ is an oval. Then by
considering a hyperplane PG/(3,¢) of PG(4, q), for which PG(3,¢) NPG/(3,q) = m, we obtain T5(0O’)
as a subquadrangle of T3(0). Here s> =t == ¢? and s = s’ = t/, so again t = s't’.

(c) Consider an irreducible conic C’ of the plane PG(2,q) € PG(3,q), where ¢ = 2". Let GF(q"),
n > 1, be an extension of the field GF(q) and let PG(3,¢") (resp., PG(2,¢") and C) be the corre-
sponding extension of PG(3,q) (resp., PG(2,q) and C’). If x is the nucleus of C’, then z is also the
nucleus of C, and C' U {z} = O’ (resp., C U {x} = O) is a complete oval of the plane PG(2,q) (resp.,
PG(2,q¢")). Evidently T3 (0’) is a subquadrangle of T3 (O). In this case we have s = ¢"—1,t = ¢" +1,
s'$=q—1,and t' = g+ 1. For n = 2 we have s = s't’.
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3.6 Symmetric designs derived from GQ

3.6.1. (i) A GQ of order q gives rise to a symmetric 2-(¢®* + ¢* + ¢+ 1,¢*> + ¢+ 1,q+ 1) design.
(ii) A GQ of order (g +1,q — 1) gives rise to a symmetric 2-(¢>(q¢ + 2),q(q + 1),q) design.

Proof. (i) Let & = (P,B,I) be a GQ of order gq. Define as follows a new incidence structure
S'=P,B,1): P =B=P,andzl'yforzeP,ye B, iff x ~yinS. Clearly S’ is a symmetric
2-(®+¢*+q+1,¢> +q+1,q+1) design. The identity mapping of P is a bijection of P’ onto B’ which
defines a polarity 6 of S’. Moreover, all points and lines of S’ are absolute for §. We also remark that
an incidence matrix of &’ is given by A + I, where A is an adjacency matrix of the point graph of S.

(ii) Let S = (P,B,I) be a GQ of order (¢ + 1,¢g — 1), and let &’ = (P’,B',T') be defined by:
P =B =P,andzl yforxz € P',yecB,if v #yand z ~ y in S. Clearly S’ is a symmetric
2-(¢%(q + 2),q(q + 1), q) design (cf. also our comments following the proof of 3.1.5). The identity
mapping of P is a bijection of P’ onto B’, which defines a polarity 6 of S’. Moreover,  has no absolute
point. Further, we note that any adjacency matrix of the point graph of S is an incidence matrix of
the design &= O

Let S; = (P1,B1,11) and Sy = (P2, Bz 1) be two GQ of order ¢ (resp., (¢ +1,¢ — 1)), and let S}
and S} be the corresponding designs. It is straightforward to check that any isomorphism of S; onto
Sy induces an isomorphism of S onto S}. In [56] M.M. Eich and S.E. Payne consider the following
converse: In which cases is an isomorphism between S| and S} necessarily induced by an isomorphism
of the underlying GQ? We now survey their main results.

3.6.2. If S; and Sy have order (q+1,q—1), g = 3, then any isomorphism from S} onto S is induced
by a unique isomorphism from S1 onto Sa. For ¢ = 2 this result does not hold.

Proof. First suppose ¢ > 3 and let 7 be an isomorphism from S] = (P, B}, 1;) onto 8§ = (P4, B, 1,,).
Then 7 is a pair («, ), where « is a bijection from P; onto P and [ is a bijection of B} onto B
satisfying 1} y iff z* T, y”. Hence o and 3 are really bijections from P; onto Py satisfying x ~ y iff
% ~ yP and 2 # y? for distinct elements = and y. Assume that a is not an isomorphism of the point
graph of &) onto the point graph of So. Then there must be distinct collinear points x and y in St

such that ¢ and y® are not collinear in Sz. Let z1,..., 2, be the remaining points incident with the
line xy of S;. Then zf, zg, ey zg must be precisely the elements of {2%,y*}*. Since z ~ y, clearly

2’ ~ y* (2P # y®). So we may assume that y®, 2%, and say z’f are collinear in S>. But z{¥ ~ P

(z& # o) and 2% ~ zf (2 # zlﬁ), for i = 2,...,q. Hence yo‘,xﬂ,zl’g,zg‘,...,zf must be the ¢ + 2
points incident with some line L of Sp. For 2 < i,j < q, © # j, it must be that zf ~ zja (zf #* z]a),
z;-g ~y® (zlﬂ # y), so that zf is incident with L. But then z% ~ zf (z* # zlﬁ) for 1 <7 < implies 2
is incident with L, so % ~ y%, a contradiction. Hence o must be an isomorphism of the point graph
of &1 onto the point graph of S». Again let  ~ y in &1 with x # y, and let 21, ..., z; be the remaining
points incident with the line zy of S1. Then 21, 25, ..., 2" are the remaining points incident with the
line 2%y of So. We have y” ~ 2% (y° # 2&) and y# ~ 2@ (y® # 2%). Hence y° = y®, implying a = 3.
It is now clear that 7 is induced by a unique isomorphism from S; onto So.

Now suppose that ¢ = 2, so S = (P,B,I) is a grid. Let P = {axy; || ¢,j = 1,...,4}, B =
{Li,...,La; My, ..., My}, 245 1 Ly iff i = k and x;; I My, iff j = k. Let a be the permutation of P
defined by z{y = x21, 2§ = ®12, ] = T22, T = T11, TGy = Ta3, T3 = T34, TG = Ta4, T = 233 and
x7; = xij in all other cases. Then the permutation « of the pointset of the corresponding 2-(16,6,2)
design &’ clearly defines an automorphism of &', but « is not an automorphism of the point graph of

S. 0O

The situation for GQ of order ¢ requires somewhat more effort. Let S = (P, B,I) be a GQ of order
q, ¢ # 1. A point z of S is called a center of irregularity provided the following is true: if y and z
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are distinct collinear points in P \ xZ, then there is some point w such that w ~ z and (y,w) is an
irregular (i.e. not regular) pair. The following result is a key lemma in the treatment of the order ¢
case.

3.6.3. Suppose S has a center of irreqularity. Let « be a permutation of P satisfying the following:
(i) y ~y® forally € P,
(ii) y ~w iff y* ~w® ', for all y,w € P,
(iii) If (y,w) is an irreqular pair of points, then w % y*
Then « is the identity.

Proof. Suppose Too 18 a center of 1rregular1ty, and let y be a point such that y % zo, and y 75 y ,
soy #y*. By i)y ~y ol If y* o X, there must be some point w such that w~ y*  and
(y,w) is 1rregular But this is impossible by (iii). Hence y* ~ xoo. Now if y # y® , then by (i) and
(ii) y must be incident with the line yy® . Hence y® ¢ z., and the argument just applied to show
y*  ~ Zoo now shows that (y )"‘71 = y must be collinear Wlth Too, & contradiction. So y o' We
have proved that o? fixes each pomt inP\zL. If z € 73 \ 2%, then by (ii) 2%, % 2%, i.e. 2% £ 2
Again by (i) 22 o 2. Since 2% % z for all z € P\ 2%, we have z? = Q:OO If u € xoo \ {a:oo} then
for v € {xo} U (P\ zL) and v’ ~ u, We have u® ~ (/) ", i.e. u® ~ u/®. Again by (ii) u® ~ v/
It easily follows that u® = u. Hence o is the identity permutation of P, and by (ii) a defines an
automorphism 7 of S.

We now claim « fixes x. For suppose 25, = z # 2. Then z ~ x. Let L be the line zx,. Since

2 is the identity, 2% = 2o, which implies that o must fix the set of all points incident with L. Also

z must be a center of irregularity. It now follows for z just as it did for z., that if y is a point such
that y # y® and y o z, then y® € {y, 2}, Ify ~ 2, y o Too, y # y®, then y® € {y, 2} N {y, 200},
implying y* I L. This is impossible since Y I/L. Hence any point y with y ¢ z and y % Z must be
fixed by a. Since each line M, m ¢ L, is incident with at least two points not collinear with z,, or z
(by 1.3.4 (iv) all points of a GQ of order 2 are regular), it is clear that M* = M. It follows readily
that « is the identity automorphism of S, which contradicts the assumption that z # r.

Finally, since o fixes 7o, it must leave P \ 2 invariant. Then by the first part of the proof a
must fix each point of P \ zL. It follows readily that « is the identity. O

If S is a GQ of order ¢, ¢ # 1, in which each pair of noncollinear points is irregular, then clearly
each point is a center of irregularity and 3.6.3 applies.

3.6.4. Let §; = (P1,B1,11) and So = (Po,Ba,12) be GQ of order q, ¢ > 1. If Sy has a center of
irregularity, then any isomorphism from Sy onto S} is induced by an isomorphism from Sy onto Ss.

Proof. Suppose that S and S} are isomorphic, and that Sz has a center of irregularity. Further,
assume that @); is an incidence matrix of §;, ¢ = 1,2, with points labeling columns and lines labeling
rows. Then AZ-TAi = (s + 1)I + A;, with A; an adjacency matrix of the point graph of S;. Hence
ATQ; — sI = N; is an incidence matrix of the design S!. Since S; = Sy, there are permutation
matrices M; and My such that My NiMs = N,. By reordering the points of &1 so that its new
incidence matrix is Qlel, we may suppose N1 = NoM for some permutation matrix M. If M =1,
we are done.
So suppose M # I. Since N7 = NoM and Ny are symmetric, we have

MT Ny = NoM (3.6)

If P, = {x1,...,2,}, then let the permutation a be defined by z; = ¢ iff (M);; # 0. By (3.6)
x; ~ xj; iff zf ~ x;?fl, for all points x;, x; of P2. Since NoM has only 1’s on its main diagonal, we
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have x; ~ xf for all points x; of P,. We now prove that for any irregular pair (z;,z;) of points of S,

we have x; x?il. Suppose the contrary for a particular ¢ and j. If P = {y1,...,9}, then from
1
7
T~ xd T ‘e {z;,2;}* (notice that z; % z; since (z;, ;)
-1

is irregular). Now consider a point yj incident with the line y;y;. Then z; ~ :cg_l and z; ~ xf

N1 = NoM it follows that y, ~ ym, iff 2, ~ w%_l. So in particular y; ~ y; in S;. Since x; ~ x

—1 —1 —1 -1 -
1o . a 1o
~ x;, we have = *, af

implying {z;,z;}+ = {xzfl | ye Tyiyit. If yr T yy;, then a, ~ ng for all xzfl € {xi,x;}*+. Hence
(xi, ;) is regular, a contradiction. So for any irregular pair (z;,z;) of points of Sy we have x; :L‘?il.

Now by 3.6.3 « is the identity permutation of Po. So M = I and the proof is complete. O

We are now in a position to resolve the problem of this section for at least the known GQ.

3.6.5. Suppose §1 and Sy are GQ of order q, ¢ > 1, and that Sz is isomorphic to one of the known
GQ. Then one of the following two situations must arise:

(i) So =W (q). If S§ = S8, then also S1 = W (q). However, not every isomorphism from S to S,
is induced by one from S1 to Ss.

(ii) S2 has a center of irregqularity, so that each isomorphism from Sf to Sh is induced by one from
S1 to Ss.

Proof. Since all points of W (q) are regular, it has no center of irregularity. The symmetric design
arising from W(q) clearly is isomorphic to the well known design of points and planes of PG(3,q).
Here the polarity 6 of the design is essentially the symplectic polarity of PG(3,q) defining W (q).
Moreover, it is an easy geometrical exercise to prove that W(q) is the only GQ of order ¢ that gives
rise to the symmetric design S’ formed by the points and planes of PG(3,¢). Since any element
of PGL(4,q) defines an automorphism of &’ and since there are always elements in PGL(4, ¢) that
are not automorphisms of the point graph of W (q), there are automorphisms of &’ not induced by
automorphisms of W(q).

If So 2 Q(4, q), there are two cases. If ¢ is even, then Q(4,q) = W (q), so it is already handled. If
q is odd, then each point is antiregular, and in particular is a center of irregularity.

The only remaining known GQ of order ¢ is T5(O) and its dual, where ¢ is even and O a nonconical
oval. In this case we now show that (c0) is a center of irregularity for T5(O) and each line of T5(O) of
type (b) is a center of irregularity for the dual of T5(O).

First we prove that for any line x of type (b) of T5(0) (z € 0) is a center of irregularity for the dual
of T5(0). Let L and M be two concurrent lines each of which is not concurrent with = (then L and
M are of type (a)). Let L ~y and M ~ z, with y and z of type (b) (possibly y = z). In PG(3, q), let
u € M\ {z} and u € L. The line zu of PG(3,¢q) is a line N of type (a) of T5(O) for which N ~ M.
By 3.3.3 the pair (L, N) is irregular, so we have proved that x is a center of irregularity for the dual
of Tg (O)

Finally, we prove that the point (c0) is a center of irregularity for T5(O). By 3.3.3 no point of type
(i) is regular. Let = and y be two collinear points of type (i). Since z is not regular, there is some point
z for which (z, z) is irregular. The point which is collinear with z and incident with zy is denoted
by u. First let u be of type (i). The perspectivity of PG(3,¢q) with center z and axis PG(2,q) D O
which maps u onto y is denoted by o. Since o induces an automorphism of 75(0O) and since (z, 27) is
irregular, where 2% ~ y, we are done. So suppose u is of type (ii). Let {z, 2}+ = {u,u1,...,u,} and
let {uy,u;}t = {z,2,u},... ,uffl}, i=2,...,q. Clearly (x,uz) is irregular. Now suppose ui
alli=2,...,qandj =1,...,¢—1. Then u € {u1,u;}** and equivalently u; € {u,u1}*+,i=2,...,4q.
Hence (u,u1) is regular, a contradiction. It follows that there is some uf for which uf + u. Now by a
preceding argument there is a point u' for which «’ ~ y and (z,y’) is irregular. O

~ 1 for
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Chapter 4

Generalized quadrangles in finite
projective spaces

4.1 Projective generalized quadrangles

A projective GQ § = (P, B,1) is a GQ for which P is a subset of the pointset of some projective space
PG(d,K) (of dimension d over a field K), B is a set of lines of PG(d, K), P is the union of all members
of B considered as sets of points, and the incidence relation I is the one induced by that of PG(d, K).
If PG(d',K) is the subspace of PG(d,K) generated by all points of P, then we say PG(d’,K) is the
ambient space of S.

All finite projective GQ were first determined by F. Buekenhout and C. Leféevre in [29] with a proff
most of which is valid in the infinite case. Indepenedently, D. Olanda [1 10, | has given a typically
finite proof and J.A. Thas and P. De Winne [213] have given a different combinatorial proof under
the assumption that the case d = 3 is already settled. More recently, K.J. Dienst [51, 52] has settled
the infinite case. The main goal of this chapter is to give the proof of F. Buekenhout and C. Lefévre.
However, because the GQ in this book are finite, we have modified their presentation somewhat.

The definition of GQ used by F. Buekenhout and C. Lefevre was a little more general and included
grids. However, a routine exercise shows that a projective grid consists of a pair of opposite reguli in
some PG(3,K) (and hence a GQ). Until further notice we shall suppose S = (P, B,1I) to be a finite
projective GQ of order (s,t), s > 2, t > 2, with ambient space PG(d, s), d > 3.

For the subspace of PG(d, s) generated by the poinsets or points
Py, ..., Py, we shall frequently use the notation < Py,..., Py >.

4.2 The tangent hyperplane

4.2.1. If W is a subspace of PG(d, s) and if W N B denotes the set of all lines of S in W, then for the
substructure SNS = (W NP, W N B, ) we have one of the following: (a) The elements of W N B are
lines which are incident with o distinguished point of P, and W NP consists of the points of P that
are incident with these lines; (b) WNB = & and W NP is a set of pairwise noncollinear points of S;
(¢) W NS is a projective subquadrangle of S. If W is a hyperplane of PG(d, s), then W NP generates
w.

Proof. By 2.3.1 and since s # 1, it is immediate that we have one of (a), (b), (¢). So suppose W is
a hyperplane of PG(d, s). By definition there is a point p € P € (W U P). It suffices to show that an
arbitrary line L of B is in < W NP, p >. We may suppose that L meets W in some point q. If p € L,
the required conclusion is obvious. So suppose p ¢ L and let L’ be a line of B through p (L' # L)

43
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meeting W in a point ¢/, with ¢’ # ¢. Clearly L' is in < W NP,p >. There must be a point r’ of
L', r" # ¢/, such that the line M of B through r’ intersecting L meets L in a point r different from gq.
Then M has two distinct points in < W N P,p >: the point 7’ of L' and the point M N W. Hence r
isin < WNP,p >, so that L has two point of < W NP,p>. O

If p € P, a tangent to S at p is any line L through p such that either L € B or LNP = {p}. The
union of all tangents to S at p will be called the tangent set of S at p, and we denote it by S(p). The
relation between S(p) and p* is: p* = PN S(p). A line L of PG(d, s) is a secant to S if L intersects
P in at least two points but is not a member of B.

4.2.2. If p and q are collinear points of S, then p- N gt is the line < p,q >.
Proof. Clear. O
4.2.3. For eachp € P, < p- >C S(p).

Proof. We must show that for each line L through p in < p > either L € B or L intersects P exactly
in p. So suppose that p € L ¢ B, L C< p+ >. First, suppose that there is some line L; of B through
p and a second tangent Lo to S at p for which the plane o =< L1, Ly > contains L. If L were not a
tangent at p it would contain some point ¢ p # ¢ € P. There would be a unique line M € B through
q and intersecting L in p1, p1 # p. As M is contained in o, M meets Lo in a point po, po # p. Then
p,p2 € Lo implies Lo € B, since Lg is a tangent to S containing two points of S. But then L; and Lo
are two lines of § through p intersecting M, contradicting the assumption that S is a GQ. Hence L
must be a tangent.

Second, as PG(d, s) is finite dimensional there is an integer k such that < pt > is generated by k
lines Ly,...,Lg of S through p. Let X; =< LiU...UL; >, i =2,..., k. By the first case we know
Xs C S(p). Now we use induction on 7. Assume X; C S(p), and let L be som eline of X;1; through p.
We may suppose L # L;y1 and L ¢ X;. Then the plane o =< L, L; 1 > intersects X; along a line L'.
By induction hypothesis L’ is a tangent to S at p, so that a =< L;11, L' > satisfies the hypothesis of
the first case. Hence L is a tangent to S at p, and it follows that X;11 C S(p). O

4.2.4. < p*t > is a hyperplane of PG(d, s).

Proof. Consider a point ¢ € P\ < pt >. By 4.2.1 < p*,q > NS is a subquadrangle of S. Clearly
this subquadrangle has order (s,t), so it must coincide with S. Hence < pt,q >= PG(d,s), i.e.
dim <pt>=d—-1. O

4.2.5. The hyperplane < p- > is the tangent set S(p) to S at p, and is called the tangent hyperplane
to S at p.

Proof. By the preceding results we know that < p > is a hyperplane contained in S(p). If equality
did not hold, there would some tangent line L at p not in < p~ >. We use induction on the dimension
of PG(d, s) to obtain the desired contradiction. First suppose d = 3. Let L; be a line of S through p
and let « be the plane < L, Ly >. If there was a point ¢ € aN P with ¢ € L1, there would be a line M
of B through ¢ meeting L; in a point not p. But M would be in « and hence meet L in a point (# p)
of P, an impossibility. Hence each point of a NP is on Li. But every line of § intersects «, implying
every line of § meets L1, an impossibility. So the result holds for d = 3. Suppose d > 3 and consider
two lines L and Lo of S through p. Let H be a hyperplane containing < L, L1, Ly >. As L is not in
< pt > Hisnot < p- > By421 < HNP >= H, and either H NP is the pointset of a GQ in
Hor HNP cCpt. T HNP C pt, then H =< HNP >C< pt >, or H =< p' >, a contradiction.
So H NS is a subquadrangle of S. But then using the induction hypothesis in the ambient space of
H NS we reach a contradiction. O
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4.2.6. Let p,q,r be three distinct points of S on a line of PG(d, s). Then the intersections S(p)NS(q),
S(q) N S(r), and S(r) NS(q) coincide.

Proof. First suppose that < p,q,r > is not a line of S, and let w be any point of p= N ¢+. Then
p,q € wh, and r €< p,q¢ >C< wt >= S(w). Since r € P and r € S(w), clearly r € w'. Hence
any point of pt N ¢t also belongs to r+. We claim < pt > N < ¢& >=< pt Ng¢t >. Indeed
<pt>nN< gt >mustbea (d—2)-dimensional subspace containing < ptNgt >, so that < ptngt >
is at least (d — 2)-dimensional. Hence < pt > N < ¢- >=< p- N¢t >. Then S(p) N S(g) =< p* >
N < gt >=<ptngt >c< rt >= S(r), completing the proof. Now suppose < p,q,r > is a line of
S,s0 by 4.2.2 pt Ngt =< p,q > and S(p) NS(¢) NP =< p,q >. Let w be any point of S(p) N S(q)
not on < p,q >. If ' is on the line < r,w >, " # r and ' # w, then < p,r’ > is in S(p). Since
< p,r’ >N < q,w>isnot a point of S, < p,r’ > is not a line of S, so 7’ € P. Hence the line < r,w >
intersects P at the unique point 7, implying that each point w of S(p) N S(¢) not on < p,q > belongs
to S(r). This completes the proof. O

4.2.7. Let L be a secant containing three distinct points p,a,a’ of P. Then the perspectivity o of
PG(d, s) with center p and azis S(p) mapping a onto a' leaves P invariant.

Proof. Clearly o fixes all points of S(p) and thus fixes p*. Let b € P\ pt. First suppose b is not on
L and let « be the plane < p,a,b >. Consider the line M =< a,b >. Then M intersects S(p) at a
point ¢, fixed by 0. Hence M7 =< d’, ¢ >.

If M is a line of &, then ¢ € P so the tangent line < p,c¢ > is a line of §. Thus the plane
< p,a,c >= « is in the tangent hyperplane S(c). Hence, since a’ € a, it follows that a’ ~ ¢ and M7
is a line of § and 67 is a point of S.

If M is not a line of S, suppose there is a point v € P\ S(p) with v € a* N b+. The argument of
the previous paragraph, with u in the role of b, shows that u? € P. Then with v and u° playing the
roles of a and a’, respectively, it follows that b € P. On the other hand, suppose a~ N b+ C S(p).
Consider points u, v’ € P\ S(p) with a ~ u ~ u' ~ b. Then consecutive applications of the previous
paragraph show that w7, v/, and finally b° are all in P.

Second, suppose b is on L, and use the fact that if u is any point of P not on L then u? € P. It
follows readily that b € P. O

4.2.8. All secant lines contain the same number of point of S.

Proof. Let L and L' be secant lines. First suppose L and L’ have a point p of P in common, and
let M be any secant line through p. If some M is incident with more than two points of P, by 4.2.7
we may consider the nontrivial group G of all perspectivities with center p and axis S(p), leaving P
invariant. The group G is regular on the set of points of M in P but different from p, for each M.
Hence each secant through p has 1+ |G| points of P, so that L and L’ have the same number of points
of S. If no M is incident with more than two points of P, then clearly L and L’ contain two points of
S.

Secondly, suppose L and L’ do not have any point of P in common, and choose points p,p’ of P
on L, L', respectively. If p «£ p/, then < p,p’ > is a secant, so meets P in the same number of points
as do L and L', by the previous paragraph. If p ~ p/, choose a point ¢ € P with p # ¢ # p’, and apply
the previous paragraph to the secant lines L, < p,q >, <p/,q>, L. O

4.3 Embedding S in a polarity: preliminary results

The goal of this section and the next is to extend the mapping p — S(p) to a polarity of PG(d, s), i.e.
to construct a mapping 7 such that
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(a) for each point z of PG(d, s), w(x) is a hyperplane of PG(d, s),
(b) for each p € P, w(p) = S(p),
(¢) z € m(y) implies y € w(x).

For a point x of PG(d, s), the collar S, of S for x is the set of all points p of S such that p = = or the
line < p,x > is a tangent to S at p. For example, if z € P, S, is just . If x & P, the collar S, is
the set of points p of P such that < p,z > NP = {p}.

For all z € PG(d, s) the polar m(x) of x with respect to S is the subspace of PG(d, s) generated by
the collar S, i.e. m(z) =< S; >. In particular, if x € P, then m(x) = S(x) (c.f. 4.2.5).

4.3.1. For any point x, let p1 and ps be distinct points of Sp. Then PN < p1,p2 >C S,.

Proof. Suppose p € PN < p1,p2 >, p1 # p # pe. Since z € S(p1) N S(p2), by 4.2.6 also x € S(p),
hence pe §,. O

4.3.2. Each line L of S intersects the collar S, for each point = of PG(d,s), in exactly one point,
unless each point of L is in S.

Proof. The result is clearly true if x € P, so suppose x € P. Put a =< L,x >. If anNP is the
set of points on L, then each point of L is in S;. So suppose y € aNP, y & L. Then y ~ p for a
unique point p of L. By 4.2.5 each line of a =< L,y > through p is a tangent at p, and hence p € S,.
Moreover by 4.3.1 p is the unique point of L in S, unless each point of L isin §,. O

4.3.3. Fither m(z) =< Sz > is a hyperplane or w(x) = PG(d, s).

Proof. Again we may assume that = ¢ P. If the assertion is false for some point x, then m(z) is
contained in some subspace X of codimension 2 in PG(d, s). Each line L € B intersects X by 4.3.2.
Therefore if p is a point of S not on X, S, is contained in < X,p > and as < S5, > is a hyperplane,
< X,p>=<S§, >=S(p). Any line L' of S through p must contain a second point g of P not in X.
Then S(p) =< X,p >=< X, q >= S5(q), an obvious impossibility. O

4.3.4. If w(x) is a hyperplane, then S, = P N7 (x).

Proof. Clearly S, C PN (z). Suppose there were a point p of P N7 (z) not in S,. Then either some
line L of S through p does not lie in 7(z), or 7(xz) = S(p). In the first case L intersects m(z) exactly
in p. Then as p € S;, L is on no point of S,, contradicting 4.3.2. In the second case, as p € S,., each
line of B through p has exactly one point in S;. So on any line of B through p there is a point p/,
p' # p, of S(p) \ Sz, and there is a line L of B through p’ but not in 7(z) = S(p), leading back to the
first case. O

4.3.5. Let x be a point of PG(d, s) and a,a’ distinct points of P different from x and not in m(x),
which are collinear with x. Then the perspectivity o of PG(d, s) with center x and azxis w(x) mapping
a onto a' leaves P invariant.

Proof. If x € P, the result is known by 4.2.7, since < x,a,a’ > is a secant line. So suppose = ¢ P,
and note that o fixes all points of PN7(z). Let b be a point of P\ w(z) not on < a,a’ >. Let a be the
plane < x,a,b > and M the line < a,b >. If M N7(z) = {c}, then M? =< a/,c¢ >. By an argument
similar to that used in the proof of 4.2.7 we may assume M € B. Then c € PN7(z) = S,, by 4.3.4, so
< ¢,z > and M, and hence a =< z,a,c > are in the tangent hyperplane S(c¢). Then a’ € a C S§(¢),
forcing M? =< da’,¢ >€ B, i.e. b° € P. Finally, if b is a point of P \ m(x) on the line < a,a’ >, it
follows readily that b € P. 0O
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4.3.6. Suppose that secant lines to S have at least three points of P. If w(x) is a hyperplane, then
either y € m(x) implies © € w(y), or there is a point z with 7(z) = PG(d, s) and S, # P.

Proof. Clearly we may suppose m(y) to be a hyperplane. Consider a nontrivial perspectivity o with
center x and axis 7(z) and leaving P invariant (o exists by 4.3.5). Since y € m(x), o fixes y and by
definition of 7(y) must leave 7(y) invariant. But the invariant hyperplanes of a nontrivial perspectivity
are its axis and all hyperplanes through its center. First suppose 7(y) is the axis of 0, i.e. 7(z) = 7(y).
If x € w(x), there is nothing to show. So suppose x ¢ w(x). Let p; and pa be two points of P\ {y} on
a secant L through y, and let ¢ € P, p1 ~ ¢ ~ g2. Then S(p1) and S(p2) do not contain y because it
contains p; and py on L, i.e. g € 7(y) = 7(x). Since S(p1) N S(p2) =< pi Npy >, S(p1) N S(p2) is in
7(x) = m(y) and does not contain y. Furthermore, as p; and py are not in m(z), S(p1) and S(p2) do
not contain z. Consequently, as x ¢ 7(z), S(p1) and S(p2) intersect the line < x,y > in two distinct
points z; and zo, different from = and y. But the line < z,y > is in the tangent hyperplane of each
point of S, =S, = P Nm(x). Hence S, contains S, = Sy and the point pi, but not the point ps. So
m(z1) = PG(d, s) and S,, # P. Consequently, if there is no z such that 7(z) = PG(d, s) and S, # P,
then 7(y) is not the axis of o and 7(y) must contain x, completing the proof. O

4.4 The finite case

Throughout this book attention is concentrated on finite GQ. The arguments given in hte first three
sections of this chapter hold also in the case of a projective space of finite dimension d > 3 over an
infinite field. For the remainder of this chapter, however, finiteness is essential. Recall that S has
order (x,t), s > 2, t > 2, and denote by ¢ + 1 the constant number (cf. 4.2.8) of points of S on a
secant line. If £ = 1, P is a quadratic set in the sense of F. Buekenhout [27] and by his results S
formed by the points and lines on a nonsingular quadric of projective index 1 in PG(d, s), d =4 or 5.
Hence we assume that ¢ > 1 and proceed to establish (a), (b), (c) of 4.3.

4.4.1. L =1/s3, and d =3 or 4.

Proof. The secant lines through a point p € P are the s~ lines of PG(d, s) through p which do not lie
in the tangent hyperplane S(p). Hence the total number of points of P is £s?~1 +|pt| = (1+5)(1+st),
implying ¢ = t/s%3. By Higman’s inequality we know that t < s2, so that 2 < £ < s2/5%73, implying
d=3or4. O

A subset F of P is called linearly closed in P if for all z,y € E, x # y, the intersection < x,y > NP
is contained in E. Thus any subset X of P generates a linear closure X in P.

4.4.2. Let d = 3, and suppose ag,a1,az are three points of P noncollinear in PG(3,s). Then
{a’07a17a2} =PN< ap,a1,as >.

Proof. If the plane @ =< ag, a1,a2 > contains a line of S, the lemma is trivial. Hence suppose «
contains no line of S. As d = 3, any secant line intersects P in exactly ¢t 4+ 1 points. Take a point
p (# ag) of P on the secant line < ag,a; >. The t + 1 secant lines < p,q >, where ¢ is a point of
PN < ag,a; >, intersect P in points which are in the linear closure {ag, a1, a2}. As each of these
lines < p,q > intersects P in t + 1 points, there are ¢(t + 1) + 1 points of P on these lines. Hence
{ao, a1, as}| > t2+t+1. If the claim of 4.4.2 were false, there would be a point r € (PNa)\{ao, a1, as}.
Then every line of a through r contains at most one point of {ag, ar, as}, so there are at least t> 4+t -+ 1
lines of a through r which are secant to P. Therefore, we obtain (2 + ¢+ 1)(t — 1) + 1 = 3 points of
P in a not belonging to {ag,a1,as}. Hence |an}| > t3 + 12 + ¢ + 1. Since no two points of a NP are
collinear in S, and s < t2, we have t3 +t?> +t + 1 < 1+ st < 1 + t3, an impossibility that completes
the proof. O
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4.4.3. Let d = 4, and suppose ap,ay1,ay are three points of P mnoncollinear in PG(4,s). Then
{ag,a1,a2} = PN < ag, a1, az >.

Proof. As before we may suppose that & =< ag, a1, a2 > contains no line of §. Fix a point p € PN«
and a line L € B incident with p. Put ¢ =< ag,a1,a92, L >. Then for Q NS there are the following
two possibilities: (a) The elements of @) N B are lines which are incident with a distinguished point
of P, and @ NP consists of the points of P which are incident with these lines, and (b) @ NS is a
projective subquadrangle of S. If we have (b), then by the preceding result a« NP is the linear closure
of {ap,a1,az} in P, as desired. If we have (a), two cases are possible. (i) There exists a line L' € B
through a point of « such that < «, L’ > intersects S in a subquadrangle. Then 4.4.2 still applies.
(ii) For each line L € B intersecting o, B’ =< «, L > NB is a set of lines through a point b; of L not
on a, and P’ =< a, L > NP is the set of all points on the lines of B’. Here < «, L > is the tangent
hyperplane at b;. Hence o contains 1 + ¢ points of P : ag,...,as. Clearly a; ~ b; for all i and j.
Furthermore, by the definition of the points b;, the line of B through a given point a; are the lines
< aj,b; >. Hence there are exactly ¢ 4+t points b;. This means S has two (disjoint) sets {a;}, {0y} of
1+t (pairwise noncollinear) points with a; ~ b;, 0 < i,j < t. By Payne’s inequality 1.4.1, t* < 5%, i.e.
t < s. But £ =t/s > 1 makes this impossible, completing the proof. O

4.4.4. Let {a;} be a family of points of P. Then the linear closure of {a;} in P is PN < a; >.

Proof. First note that if s = 2 (and ¢ > 1, < P >= PG(d, s) by assumption), then any line containing
at least two points of P is entirely contained in P. Hence all points of PG(d, s) are points of P, so the
lemma, is trivial. Hence we assume s > 2. Also it is clear that the result holds if < a; > is a point, line,
or plane. Further, we may assume that the points a; are linearly independent in PG(d, s). As PG(d, s)
is finite, we may apply induction as follows: suppose the result is true for k£ points aqg, ..., ar_1, 3 < k,
indexed so that < ag,...,ax—1 > is not contained in S(ap), and let ax € P\ < ao,...,ax—1 >. We
show that the result holds for {ao,...,ax}. Put L; =< ag,a; >, i =1,...,k, and let 3 be any plane
through L; contained in < Lq,..., L, >. Clearly @ intersects < Lq,...,Lg > in a line L. We show
that PN < Ly, L >C {ao,...,ar}, from which the desired result follows immediately. Suppose L is
incident with at least two points of P. By the induction hypothesis the points of P on L are all in
{ag,...,ar—1}. And then 4.4.2 and 4.4.3 show that PN < Ly, L > is in {ag,...,ar}. Now suppose
that L is a tangent line whose points are not all in P. If < Lg, L > contains no point of P not on
Ly, there is nothing more to show. So suppose p is a point of PN < L, L > but not on L. Consider
the plane a generated by L and a secant line through ag in the space < Li,...,Li_1 > (such a line
exists since S(ap) A< ag,...,ar—1 >). This plane is not in the tangent hyperplane S(ag), so L is the
unique tangent line at ag in . Hence there are two secant lines A, K in a and through ag. Each of
the planes < Lg, A >, < Lg, K > is not in S(ag), and hence contains exactly one tangent line at ag.
Consider in < Lg, A > a secant line C' (C' # L) such that the plane < C,p > intersects < Ly, K >
in a secant line D. (The line C exists because < L, A > has at least four lines through ag). By the
induction hypothesis the points of P on A and K belong to {ag,...,ax_1}. Hence by 4.4.2 and 4.4.3
the points of P on C and D belong to {ag,...,ar}. But as p €< C,D >, again by 4.4.2 and 4.4.3

pE{ao,...,ak}. O
4.4.5. S, #P.

Proof. Clearly we may suppose z ¢ P, and there are two cases: d = 3 and d = 4. First suppose that
d = 3 and that S, = P. Each line through z intersecting P must be a tangent line, so the number of
tangent lines through z is [P| = (1 + s)(1 + st). As t > 1, there are at least (1 4+ s)? = 1 + 25 + 52
lines of PG(3, s) through x, of which there are only 1+ s+ s%. So we may suppose d = 4 and S, = P.
Let p € P. If L is a line of S through p, the plane < x, L > intersects P in the points of L, because
all points of P are points of S;. Hence the 1 + ¢ lines of S through p together with x generate ¢ + 1
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distinct planes. Since all thses planes are contained in S(p) and dim S(p) = 3, we have 1 + tles + 1,
an impossibility since t/s =¢ > 1. O

4.4.6. 7(x) is a hyperplane.

Proof. This result is known for x € P, so suppose z ¢ P. Consider the intersection 7w(x)NP. By 4.3.1
and 4.4.4 all points of w(x) NP are in S(x), implying S, = 7(x) NP. If m(z) were not a hyperplane,
then by 4.3.3 w(z) = PG(d, s), implying S; = m(x) NP = P, am impossibility by 4.4.5. O

This completes the proof that conditions (a), (b), (c¢) of Section 4.3 hold, so that 7 is a polarity.
We show that P is the set of absolute points of 7. Since B is the set of all lines of PG(d, s) which
contain = and are contained in w(xz) N P, where x runs over P, B must be the set of totally isotropic
lines of .

4.4.7. v en(z) iff v € P.

Proof. If z € P, we know that = € w(x). We shall prove that if € 7(z), then x € P. First suppose
d = 3, so the number of lines through = in 7(z) is equal to s+ 1. Suppose x € w(z)\P. If p € PN7(z),
then < p,x > is a tangent. If 7(z) contains a line L of S, then all points of m(x) NP are on L. Since
every line of S contains a point of 7(x), all lines of S are concurrent with L, a contradiction. If 7(z)
contains no line of S, every line of S meets 7(x) in exactly one point, and every point of w(z) NP is
on 1+t lines of S. Hence |w(x) NP| =1 = st, and there are at least ¢ + st lines through z in 7(z),
an impossibility for ¢ > 1. Finally, we may suppose d > 3 (i.e. d =4) and let z € w(z) \ P. Let H
be the hyperplane containing = and two lines L;, Ly of S through a point p, p & 7(z) (notice that
x €< L1, Ls >). The intersection H NS is a subquadrangle, since otherwise H would be the tangent
hyperplane S(p), forcing p to be in m(x). Clearly H is the ambient space of HNS. If ©’(z) is the polar
of x with repsect to HN S, then 7/(x) = n(x) N H. Hence x € 7'(x), a contradiction since dim H = 3
andz ¢P. O

This completes the proof of F. Buekenhout and C. Lefevre:

4.4.8. A projective GQ S = (P,B,1) with ambient space PG(d, s) must be obtained in one of the
following ways:

(i) There is a unitary or symplectic polarity m of PG(d,s), d = 3 or 4, such that P is the set of
absolute points of m and B is the set of totally isotropic lines of .

(ii) There is a nonsingular quadric Q of projective index 1 in PG(d,s), d = 3, 4 or 5, such that P
is the set of points of Q and B is the set of lines on Q.

Hence S must be one of the classical examples described in Chapter 3.
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Chapter 5

Combinatorial characterizations of the
known generalized quadrangles

5.1 Introduction

In this chapter we review the most important purely combinatorial characterizations of the known
GQ. Several of these theorems appeared to be very useful and were important tools in the proofs of
certain results concerning strongly regular graphs with strongly regular subconstituents [34], coding
theory [34], the classification of the antiflag transitive collineation groups of finite projective spaces
[35], the Higman-Sims group [8], small classical groups (E.E. Shult, private communication), etc.

In the first part we shall give characterizations of the classical quadrangles W(q) and Q(4, q).
The second part will contain all known characterizations of T5(0) and Q(5,¢q). Next an important
characteriaztion of H (3, ¢?) by G. Tallini [176] is given. Then we prove two characterization theorems
of H(4,¢%). In the final part conditions are given which characterize several GQ at the same time,
and the chapter ends with a characterization by J.A. Thas [205] of all classical GQ and their duals.

5.2 Characterizations of W (q) and Q(4,¢q)

Historically, this next result is probably the oldest combinatorial characterization of a class of GQ. A

proof is essentially contained in R.R. Singleton [168] (although he erroneously thought he had proved
a stronger result), but the first satisfactory treatment may have been given by C.T. Benson [10]. No
doubt it was discovered independently by several authors (e.g. G. Tallini [176]).

5.2.1. A GQ S of order s (s > 1) is isomorphic to W (s) iff all its points are regular.

Proof. By 3.2.1 and 3.3.1 all points of W (s) are regular. Conversely, let us assume that S = (P, B,1)
is a GQ of order s (s # 1) for which all points are regular. Now we introduce the incidence structure
S' = (P, B,T), with P’ = P, B the set of spans of all point-pairs of P, and I’ the natural incidence.
Then 8 is isomorphic to the substructure of S’ formed by all points and the spans of all pairs of points
collinear in §. By 1.3.1 and using the fact that any triad of points is centric by 1.3.6, it follows that
any three noncollinear points of &’ generate a projective plane. Since |P'| = s3 + 52 + s+ 1, S’ is the
design of points and lines of PG(3,s). Clearly all spans (in S) of collinear point-pairs containing a
gien point z, form a flat pencil of lines of PG(3,s). Hence the set of all spans collinear point-pairs is
a linear complex of lines of PG(3,s) (cf. [159]), i.e. is the set of all totally singular isotropic lines for
some symplectic polarity. Consequently S = W(s). O

5.2.2. ([197]). A GQ S of order (s,t), s # 1, is isomorphic to W (s) iff |{z,y}*+| > s +1 for all z,y
with x # .

o1
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Proof. For W(s) we have |{z,y}| = s + 1 for all points z,y with = # y. Conversely, suppose S
has order (s,t), s # 1, and |[{z,y}**| > s + 1 for all z,y with z # y. By 1.4.2 (ii) we have st < s2.
Since |{z,y}*+| <t +1 for 2 ¢ y, there holds t > s. Hence s =t and |{z,y}**| = s+ 1 for all 2,y
with  # y. Then S W (s) by 5.2.1. O

5.2.3. Up to isomorphism there is only one GQ of order 2.

Proof. Let S be a GQ of order 2. Consider two points z,y with 2 £ y, and let {z, y}* = {21, 20, 23}.
If {21, 20} = {x,y,u}, then by 1.3.4 (iv) we have u ~ z3. Hence (z,v) is regular. So every point is
regular and S = W (2). O

5.2.4. (J.A. Thas [156]). A GQ S = (P,B,1) of order s, s # 1, is isomorphic to W (2") iff it has an
ovoid O each triad of which is centric.

Proof. The GQ W (2") has an ovoid O by 3.4.1 (i) and each triad of O is centric by 1.3.6 (ii) and 3.3.1
(i). Conversely, suppose the GQ S of order s, s # 1, has an ovoid O each triad of which is centric.
Consider a point p € P\ O. The s+1 lines incident with p are incident with s+ 1 points of O. Such a
subset C of order s+ 1 of O is called a circle. The number of circles is at most (s +1)(s+1) — 0| =
s(s?+1). Since every triad of O is centric, there are at least (s?+1)s%(s2—1)/(s+1)s(s—1) = s(s2+1)
circles. Consequently, there are exactly s(s? + 1) circles, every three elements of O are contained in
just one circle, and each circle is determined by exactly one point p & O. It follows that O together
with the set of circles is a 3-(s2+1,s+1, 1) design, i.e. an inversive plane [50] of order s. This inversive
plane will be denoted by I*(O). The point p ¢ O defining the circle C' will be called the nucleus of C'.

Now consider two circles C and C’ with respective nuclei p and p’, where p ~ p’. If pI L1p' and
if  is the point of O which is incident with L, then C N C’ = {z}. Hence the w — 1 circles distinct
from C which are tangent to C' at x have as nuclei the s — 1 points distinct from = and p, which are
incident with L.

Consider a circle C, a point z € C, and a point y € O \ C. Through y there passes a unique circle
C’ with C N C" = {z}. Now take a point u € C'\ {z}, and consider the unique circle C” with u € C”
and C' N C”" = {y}. We shall prove that |C N C”| = 2. If not, then C N C"” = {u}. And the nucleus of
C' (resp., C', C") is denoted by p (resp., p/, p”). By the preceding paragraph there are distinct lines
L, L', L" such that ' TL1p", p" TL' 1p, pI L” 1/, giving a contradiction. Hence |C' N C"| = 2.
If w runs through C' \ {z}, then we obtain a partition of C'\ {z} into pairs of distinct points. Hence
|C'\ {z} = s is even. Since s is even, I*(0) is egglike by the celebrated theorem of P. Dembowski
[50], and hence s = 2". Consequently there exists an ovoid O’ in PG(3,w) together with a bijection o
from O’ onto O, such that for every plane 7 of PG(3,s) with |7 N O’| > 1, we have that (7 N O’)7 is
a circle of I*(0). If W (s) is the GQ arising from the symplectic polarity 6 defined by O’ [50], i.e. if
W (s) is the GQ formed by the points of PG(3, s) together with the tangent lines of O’ then we define
as follows a bijection ¢ from the pointset and lineset of W (s) onto the pointset and lineset of S: (i)
x? = 27 for x € O'; (ii) for z ¢ O’ the point z? is the nucleus of the circle (% N O")? of I*(0); and
(iil) if L is a line of W (s) which is tangent to O at z, L? is the line of S joining 2% to the nucleus of
the circle (7 N O")?, where 7 is a plane of PG(3, s) which contains L but is not tangent to O’. In one
of the preceding paragraphs it was shown that L? is independent of the plane 7. Now it is an easy
exercise to show that ¢ is am isomorphism of W (s) onto S. O

In view of 1.3.6 (ii), there is an immediate corollary.

5.2.5. A GQ S of order s, s # 1, is isomorphic to W (2") iff it has an ovoid O each point of which is
reqular.

5.2.6. (S.E. Payne and J.A. Thas [1/3]). A GQ S = (P,B,1) of order s, s # 1, is isomorphic to
W (2") iff it has a reqular pair (L1, Lo) of nonconcurrent lines with the property that any triad of points
lying on lines of {Ly, Lo} is centric.
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Outline of proof. By 3.3.1 all lines and points of W (2") are regular, and then by 1.3.6 (i) all triads
of points and lines are centric.

Conversely, suppose the GQ S of order s, s # 1, has a regular pair (L;, L) of nonconcurrent lines
with the property that any triad of points lying on lines of {Li, Lo}* is centric. Let {L;, Lo}* =
{My,...,Msi1}, {L1, Lo} = {L1,...,Le1}, and L; T ;5 1 M;j, i,j = 1,...,s + 1. Consider
apoint p e P\V, with V.= {a;; || 4,7 = 1,...,s+1}. The s+ 1 lines incident with p are
incident with s 4+ 1 points of V. Such a subset C of order s + 1 of V is called a circle. By an
argument similar to that used in the proof of 5.2.4 one proves that each triad of V is contained in
exactly one circle and that any circle C' is determined by exactly one point p € P\ V. The point
p will be called the nucleus of C. Now we consider the incidence structure M* = (V,B’,1'), where
B' = {Li,Lo}*t U{L1, Lo} U{C || Cisacircle} and I is defined in the obvious way. Then it is
clear that M* is a Minkowski plane of order s [(8]. That s is even folows from an argument analogous
to the corresponding one in 5.2.4. Now by a theorem proved independently by W. Heise [72] and N.
Percsy [146], the Minkowski plane M* is miquelian [6&], i.e. is isomorphic to the classical Minkowski
plane arising form the hyperbolic quadric H in PG(3,s). Hence s = 2". If W(s) is the GQ arising
from the symplectic polarity € defined by H [30], which means that W (s) is the GQ formed by the
points of PG(3,s) together with the tangent lines of H, then in a manner analogous to that used in
the preceding proof one shows that W(s) = S. O

5.2.7. (F. Mazzocca [102], S.E. Payne and J.A. Thas [1/5]). Let S be a GQ of order s, s # 1, having
an antireqular point x. Then S is isomorphic to Q(4,s) iff there is a point y, y € x* \ {x}, for which
the associated affine plane w(z,y) is desarguesian.

Proof. Since S = (P, B,I) has an antiregular point z, s is odd by 1.5.1 (i). And for Q(4,s), s odd,
it is clear that each associated affine plane 7(z,y) (see 1.3.2) is the desarguesian plane AG(2, s).

Conversely, suppose that y, y € =\ {z}, is a point for which the associated affined plane 7(z,y)
is desarguesian. We consider the incidence structure L* = (z* \ {z}, B, I'), where B’ = B; U By with
Bi={MecB | 1M} and By = {{z,2}* || 2z # 2} and where I' is defined in the obvious way. We
shall prove that L* is a Laguerre plane of order s [68], for which the elements of B; are the generators
(or lines) and the elements of By are the circles.

Clearly each point of L* is incident with a unique element of By, and a generator and a circle
intersect in exactly one point. Next, let x1,z9,z3 be pairwise noncollinear points of L*. Hence
(1,2, 23) is a triad of S with center z. By the antiregularity of x, the triad has exactly one center
z # x (see 1.3.6 (iii)). Hence x1, z2,x3 lie on a unique circle C,. Further, we remark that each circle
has s + 1 points and that there exist some C' € By and some d € x* \ {z} such that d ¥ C. Finally,
we have to show that for each C' € By, d € C, u € (z+\ {z})\ C, u # d, there is a unique circle Cy
with u € Cy and C N Cp = {d}. But this is an easy consequence from the preceding properties and
2t \ {2} =82 +s, [{z | ' M}| = s for all M € By, |C| = s+ 1 for all C € Bs.

It is clear that the internal structure Ly [68] of the Laguerre plane L* with respect to the point y is
essentially the affine plane 7 (z,y). Since 7(x,y) is desarguesian, then by a theorem proved by Y. Chen
and G. Kaerlein [39] and independently by S.E. Payne and J.A. Thas [143], there is an isomorphism
o from the Laguerre plane L* onto the classical Laguerre plane arising from the quadric cone C* in
PG(3,s).

Let C* be embedded in the nonsingular quadric @ of PG(4,s). The vertex of C* is denoted by
Xoo. Now let 2% = 2o and w® = w” for all s € 21\ {x}. If 2 %  and C = {z,2}* € By, then 2
is the unique point of the GQ Q(4, s) for which {2?, 25} = C?. Evidently ¢ is a bijection from P
onto ). Moreover, it is easy to check that collinear (resp., noncollinear) points of S are mapped by ¢
collinear (resp., noncollinear) points of Q(4, s). It follows immediately that S =2 Q(4,s). O

There is an easy corollary.
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5.2.8. Let S be a GQ of order s, s # 1, having an antiregular point x. If s <8, i.e. if s € {3,5,7},
then S is isomorphic to Q(4,s).

Proof. Since each plane of order s, s < 8, is desarguesian [30], the result follows. O

From the proof of 5.2.7 it follwos that with each GQ S of ordre s, s # 1, having an antiregular
point there corresponds a Laguerre plane L* of order s. In [143] it is also shown that, conversely, with
each Laguerre plane L* of odd order s there corresponds a GQ of order s with at least one antiregular
point.

5.3 Characterizations of 75(0) and Q(5,q)

The following characterization theorem will appear to be very important, not only for the theory of
GQ but also for other domains in combinatorics: see e.g. L. Batten and F. Buekenhout [3], and P.J.
Cameron, J.-M. Goethals, and J.J. Seidel [31].

5.3.1. (J.A. Thas [195]). A GQ of order (s,s%), s > 1, is isomorphic to T3(O) iff it has a 3-regular
point Too-

Proof. By 3.3.2 (ii) the point (c0) of T3(0O) is 3-regular. Conversely, suppose that S = (P, B,1) is
a GQ of order (s,s?), s > 1, for which the point x4, is 3-regular. The proof that S is isomorphic to
T3(0) is arranged into a sequence of five rather substantial steps.

Step 1. The inversive plane 7m(Zo).

Let y € P\z%. In 1.3.3 we noticed that the incidence structure 7 (2w, y) With pointset {0, y}+, with
lineset the set of elements {z, 2/, 2”"}++ where z, 2/, 2" € {x,y}", and with the natural incidence, is
an inversive plane [50] of order s. Let O be the set {L1,..., L, 1}, where Ly,..., Lo, aer the
s> + 1 lines which are incident with z. If C is a circle of m(zs,y), then Cy is the subset of Ox
consisting of the lines L; for which x I L; I x;, with x; € C. The set of elements Cy, is denoted B,,.
It is clear that m,(2s) = (Oso, By, €) is an inversive plane of order s which is isomorphic to m(Zss, y).
The goal of Step 1 is to show that By is independent of the point y.

Suppose that L;, L, L, are distinct lines through z, and that 1, z2, x3, ¥4, o are distinct points
with o1 I L;, 9 I Lj, x3 I Lj, I 4. We prove that each line of O which is incident with a point of
{x1, 79, 23} = C is also incident with a point of {x1, 29,25} = C’. So let Ly € O, ¢ & {4,7,k},
be incident with a point z4 of C, and assume L, is incident with no point of C’. Then by 1.4.2 (iii)
4 is collinear with two points 7o, and xj of {1, z2, 75 }Perp. But o] € {x1, 22, 24} = {21, 22, 23}
implies 2, x:3, 2 are the vertices of a triangle, a contradiction. Hence each line of O which is incident
with a point of C' is also incident with a point of C”.

Now consider two points y, z € P\xé—o Let L;, L;, L, be distinct elements of O, and let x1, z2, 23
(resp., z, z%, %) be the points of (2, y) (resp., m(Zso, 2)) which are incident with L;, L, Ly, respec-
tively. The sets {1, z2, 73} and {2}, 25, 25} are denoted by C and C’, respectively. We have to
consider four cases:

(1) If C = ', then each line of Oy which is incident with a point of C is also incident with a
point of C’.

(2) If |CNC'| = 2, then by the preceding paragraph each line of O, which is incident with a point
of C' is also incident with a point of C”.

(3) Let |CNC'| =1, say CNC" = {4}, with 21 # x4 # x9. Each line of Oy which is incident
with a point of C is also incident with a point of {37/1,.%'2,.%'4}J‘J‘ and hence alsxo with a point of
{2, o}t = C".

(4) Let C N C" = @. Each line of Oy which is incident with a point of C' is also incident with a
point of {x1, 29,3} and hence also with a point of C’, by the preceding case.
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From (1)-(4) it follows that the circle L;L;Lj, of the inversive plane my(z~) coincides with the
circle Ly L;Lj, of the inversive plane m,(z~). Hence By = B, i.e. my(2s) = m.(2s). The inversive
plane 7, (2 ), which is independent of the choice of the point y, will be denoted by 7 ().

Step 2. The inversive plane 7(z+,) is egglike.
Here we must prove that m(xs) arises from an ovoid in PG(3,s). Since there is a unique inversive
plane of order s for s =2 or 3 (cf. [50]), we may assume s > 4.

Let z ~ Zoo, 2 # Too, and define the following incidence structure S, = (P, B,,1.). The set P, is
just 2L \ z+. The elements of type (i) of B, are the set L* = {u € P, || w1 L}, with 2, I L and z F L.
The elements of type (ii) of B, are the sets {z,uy, us}, with (z,u1,us) a triad and uy,us € P,. 1,
is the natural incidence. It is clear that S, is a 2-(s?, s, 1) design. We shall prove that S, is the design
of points and lines of AG(3, s).

By a theorem of F. Buekenhout [26] it is sufficient to prove that any three noncollinear points
u1, ug, us of S, generate an affine plane. We consider three cases:

(a) Let wj,uj, i # j, be incident with an element of type (i) in B., and let {i,j,k} = {1,2,3}.
From the proof of Step 1 it follows that the s? points of P, which are collinear (in S) with a point of
{z,u;, up } -+ form a 2-(s2, s, 1) subdesign of S,. This subdesign is an affine plane containing wy, us, u3.
So the triangle with vertices u1, ug, us of S, generates an affine plane.

(b) Let (u1,us2,us) be a triad and suppose that the line z,.z of S is incident with some point of
{u1,uz,uz}**+. From the proof of Step 1 it follows that the s? points of P, which are collinear (in
S) with a point of {uy,us,u3}" form a 2-(s2,s,1) subdesign of S,. So the triangle ujusus of S,
generates an affine plane.

(c) Let (ui,u2,us) be a triad and suppose that the line 2z of S is incident with no point of
{uy, up, uz}*+. By 1.4.2 (iii) there is exactly one point z’ for which 2’ € 2+ N {u1, uo, uz}*, 2’ # 2oo.
Now the internal (or residual) [50] structure of the inversive plane 7(z, ") at z is an affine plane of
order s which is a substructure of S, and contains the points u — 1, us, us.

Hence S, is the design of points and lines of AG(3,s). All lines of type (i) of B, are parallel lines
of AG(3,s), and thus define a point (00) of PG(3,s). If 3/ is the point defined by ¥’ I £z and ¢ ~ y,
then let O}, = ({0, y}+) U {(00)}. It is easy to check that no three points of O are collinear in
PG(3,s). Hence Oy, is an ovoid of PG(3,s). If C'is a circle of 7(20,y) which does not contain y’, then
C C Oy, and by (c) C'is a plane intersection of the ovoid Oy, of PG(3, s), the plane being the projective

completion of the internal structure of m(zs,') at z where 2’ is the unique element of O+ \ {2}
that is collinear with z. If C' is a circle of m(2,y) which contains 3/, then (C'\ {y/}) U {(c0)} is the
intersection of O?’J with the projective completion of the affine subplane of S, having as points the s?
points of P, which are collinear (in S) with a point of C'\ {y'}. Hence m(xs0, ) is isomorphic to the
egglike inversive plane arising from the ovoid O; of PG(3, s).

Since m(Zoo) = T(Too,y), we conclude that the inversive plane 7(z) is egglike.

Step 3. The point x is coregular.

It is convenient to adopt just for the duration of this proof a notation inconsistent with the standard
labeling of lines of S through . Let Ly be a line through z, and let L; be a second line of S not
concurrent with Ly. The proof amounts to showing that (Lg, L) is regular.

Let L{ be the line through z, meeting Ly, and let L}, ..., L’ be the remaining lines in {Lg, L1 }*.
Similarly, let Lo, L1, ..., Ls be the lines in {L{, L} }*. Let ;2,...,2;s be the points of L; not on L{
or LY, and let zl,, ...,z be the points of L, not on Lo or Ly, i = 2,...,s. To show that (Lo, L1) is
regular, it will suffice to show that each x;; lies on some L.

Let y, 2, u be the points defined by Lo Ly I L;, Ly I 2 1 L}, and Ly Tu I Ljy. Let Cjj = {7o, 2, zi
Cl = {xoo,z,x;j}L, 2 <4,j < 5. Then each Cj; and Cj; are circles in the inversive plane 7(z, 2).
Moreover, each {Cia, ..., Cis, {u},{y}} and each {Cl,, ..., Cl,, {u},{y}} are partitions of the pointset
of m(Too, 2), i.e. each Fy = {Cj; || 2 < j < s} and each F] = {C}; || 2 < jles} are flocks [50, 58]
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of m(xoo, z) with carriers [50, 58] w and y. Since 7(z, 2) is egglike, the flocks F; and F are linear
by theorems of W.F. Orr and J.A. Thas [58]. This means that the flocks F; and F] are uniquely
determined by their carriers. Since they all have the same carriers, we necessarily have Fp = F3 =
...=Fy = F) = ... = F.. Then, for example, F; = F/ says that for each j, 2 < j < s, there is a
k, 2 < k < s, such that {zc, 2, 7ij} = {00, 2,2/, }. Hence {zc, 2, 7;;}1+ has a point 2/, on L.
Fixing i and j, we see that each of the s—1 lines L), . .., L), contains a point of {Zeo, 2, 2 } 7\ {0, 2}
So x;; must be on some L/, and consequently (Lo, L;) is regular.

Note: An additional consequence of interest is that each set of points of the form {z, z, :r:l-j}LL lies
entirely in the set of points covered simultaneously by {Lo, L1}* and by {Lo, L1}*+.

Step 4. The affine space A = (P*, B*, €).

Let P* = P\ 2L. If y and z are distinct points of P* collinear in S, define the block yz of type (i)
to be the set of points of P* on the line of § through y and z. If y and 2z are noncollinear points of
P*, define the block yz of type (ii) to be the set {Zoo,y, 2} \ {Zoo}. Let B* be the set of blocks just
defined. Then A = (P*,B*,€) is a 2-(s*,5,1) design.

In the set B* of blocks we now define a parallelism. Two blocks of type (i) are parallel iff the
corresponding lines of S are concurrent with a same element of Oy (recall that O consists of the
lines of S incident with 2,). The blocks {Zoo,y, 2} \ {Zeo} and {20, ¥, 2/} \ {200} of type (ii)
are parallel iff each line of O, which is incident with a point of {z,y, 2} is also incident with a
point of {z,y’,2’'}*, i.e. iff they both determine the same circle of 7(zs). A block of type (i) is
never parallel ot a block of type (ii). The parallelism defined in this manner will be denoted by || .

By a well known theorem of H. Lenz [99] the design A is the design of points and lines of AG(4, s)
iff the conditions (i) and (ii), or (i) and (i)’ are satisfied.

(i) Parallelism is an equivalence relation in the set B*, and each class of prallel blocks is a partition
of the set P*.

(ii) Let s >3 and let L || L', L # L, ye L,y € L', 2 € I'\{y}, p € yv/\ {y,y'}. Then
Lnp # @.

(i)’ Let s = 2 and let y, z,u be three distinct points of P*. If L is the block defined by y € L and
L || zu, and M is the block defined by z € M and M || yu, then LN M # &.

It is clear that parallelism is an equivalence relation in the set B* and that each class of parallel
blocks of type (i) is a partition of P*. Since there are no triangles in S, any two distinct parallel blocks
of type (ii) are disjoint. Now let L = {o0,y, 2} \ {Zoo} be a block of type (ii) and let u € P*. If
we “project” {Too,y,2z}+ from x.., then there arises a circle C' of m(2). By “intersection” of C' and
{Zoo, u}t, we obtain a circle €’ of T(%oe, u). Clearly C' \ {240} is the unique block which contains u
and is parallel to L. Hence condition (i) is satisfied.

Now we assume s > 3 and prove that (ii) is satisfied. Solet L || L', L # L', y € L,y € L,
Z e \{y}, peyy \{y,y}. Itis clear that (ii) is satisfied if we show that the substructure of A
generated by L and L' is an affine plane (of order s). Note that the substructure of A generated by L
and L’ has at least s points. We have to consider several cases.

Let L and L’ be of type (i), say L = {Zoo, ¥, 2} \ {Zoo} and L' = {0, 9/, 2} \ {7}, and let
{Too, ¥, 2} N {20, ¥, 2/} = {21, 72}. Then the substructure of A generated by L and L' is contained
in {z1,22}" \ {Z}, and hence has at most s> points. Consequently that substructure is an affine
plane.

Let L and L’ be of type (ii), with notation as in the preceding case, but suppose {Zso,y, z}L N
{Too, v/, 2’} = {21}. We first prove that for an arbitrary u € L, the line uz; of S is incident with
a point of L'. Suppose the contrary. Then by 1.4.2 (iii) u is collinear with two points X; and y; of
{Zoo,y/, 2'}*. Since L || L', the line zooy. is incident with a point 21 of {Zw,y, 2}. So there arises a
triangle uz1y; in S, a contradiction. Consequently, for each point w of L, the line ux; is incident with
a point of L. The blocks of type (i) corresponding to the lines uxq, u € L, are denoted My, ..., M;.
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By an argument just like that used in Step 1, one shows that each block which has a point in common
with M;, Mj, i # j, has a point in common with all s blocks Mj, ..., M. Clearly the substructure of
A generated by M, My has s® points and contains the blocks L and L’. Hence the blocks L and L’
generate an affine plane.

Let L and L' be of type (i), and suppose that the corresponding lines of S have a point y in
common (y ~ Zo). Further, let N be a block of type (ii) having a point in common with L and L’.
The blocks of type (i) corresponding to the lines uy, u € N, are denoted by My = L, My = L', ... M;.
Just as in Step 1, one shows that each block that has a point in common with two of the M;’s has a
point in common with each of the s blocks My, ..., Ms. Now it is clear that the blocks My = L and
My = L' generate an affine plane.

Let L and L' be of type (i), and suppose that the corresponding lines of S are not concurrent. If
the lines of & which correspond to L and L’ are denoted N; and Ns, respectively, then O, contains
one line which is concurrent with N7 and Ny. The set of all points of P* which are incident with
lines of { N7, No}t (or {Ny, No}++) is denoted by V. We note that |V| = s2. In the last paragraph
of Step 3 we noted that each set of points of the form {2, y, 2} \ {zoo}, With y,2 € V., y o 2, lies
entirely in V. Hence the substructure of A generated by L and L’ has a pointset V of order s?, and
consequently is an affine plane of order s.

Finally, let L and L’ be of type (ii), say L = {Zoo, 9,2} \ {20} and L' = {200,y 23\ {200}
and let {Zoo,y, 2} N {700, v, 2’} = @. First suppose that {x..,y’, 2’} contains a point z” which is
collinear (in S) with z. By the hypothesis L || L', the line 242" is incident with some points u of
{%00,y, 2z} 7+, and there arises a triangle zuz” in S, a contradiction. Hence by 1.4.2 (iii) the point z is
collinear with two points ' and r’ of L’. Let L be the line of Oy which is concurrent with zu'. The
et of all points of P* which are incident iwth lines of {Ly,2zr'}* (or {L1, 2'}*+) is denoted by V.
Then |V| = s2, and in the preceding paragraph we noticed that V is the pointset of an affine subplane
of order s of A. Since clearly L' C V, it only remains to be shown that L C V. Let Mj,..., Ms;_ 1 be
the blocks of type (ii) in V' which contain z. One of thesis blocks is parallel to L', say My. Then M;,
i # 1, and L’ have just one point in common, say v;. It follows that there is no line L; € O which
is incident with a point of MZ-J-, i # 1, and a point of L’ L, since otherwise there arises a triangle with
vertex v; and the other two vertices on L; (keep in mind that by hypothesis L+ and L’ L are dijoint).
Since each point of M; \ {2z} is collinear with two points of M; \ {z}, i # j, the sets M;" adn MjJ-
are disjoint. As M; N M; = {z}, i # j, there is no line of Oy which is incident with a point of M
and with a point of M jL. It now follows easily that the s + 1 lines of Oy which are incident with a
point of L'/ L coincide with the s + 1 lines of O which are incident with a point of Mf If these lines
are denoted by L, ..., L;,, then Mi- as well as L+ consists of the points of L;,,..., L;, which are
collinear with z. Hence MlL = L+, implying M, = L. It follows that L C V, and consequently L and
L’ generate an affine plane of order s.

It is now proved that for s # 2 the design A is the design of points and lines of AG(4, s). Finally,
we assume that s = 2.

Let y, z,u be three distinct points of P*. If L is the block defined by y € L and L || zu, and M is
the block defined by z € M and M || yu, then we must prove that L N M # @. We have to consider
several cases.

If uy and uz are blocks of type (i), then from the coregularity of x, it follows immediately that L
and M have a point in common.

Let uz be of type (i), uy of type (ii), and let {zoo,u,y}*+ N (M U {zs})* = {r}. Just as in the
case s > 2 one shows that u, z,r are collinear, that y ~ r, and that the line yr of S is incident with a
point of M. Since L is the set of all points of P* which are incident with yr, we have L " M # @.

Let uz be of type (i), uy of type (ii), and let {zoo, u, y}* N (M U {z5})t = @. If M = {2, 7}, then
just as in the last part of the s # 2 case, one shows that y ~ z, y ~ r, and that the lines uz and yr
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of S are concurrent with a same element of O,. It follows immediately that L is of type (i) and that
LNM+ 2.

Clearly the cases uy of type (i) and uz of type (ii) are analogous to the preceding two cases.

Let uz and uy be of type (ii), let L = {y,r}, and let ur be of type (i). In S the point u is collinear
with exactly one point of L. If v is defined by v I ur and v € zX, then just as in the case s # 2 one
sees that z ~ v and that the line zv is incident with a point of L. Then clearly y I zv. Now from a
preceding case it follows that the block {u,r} has a point in common with the block M. Hence r € M,
and LN M # @.

Finally, let uz and uy be of type (ii), let L = {y, 7}, and let ur be of type (ii). If M = {z,v},
then by the preceding case uv is also of type (ii) (since otherwise ur would be of type (i)). As u is
collinear with no poin of L, it is collinear with two points @1,z of (L U {xs})*. Since the line zx;
is incident with a point of {Zs,u, 2} and since S has no triangles, we have 1,29 € {Zoo,u, 2}".
Hence r is collinear with the two common points 1, x9 of {Zeo,u, 2}, {Too, u, y}+, and {z0,y, 2}+.
Analogously, v is collinear with z1 and z5. Hence {x1, 22} = {200, u, 9, 2,7} = {Zoo,u,y, 2,0}, and
it must be that r = v, implying LN M # &.

This completes the proof that also for s = 2 the design A is the design of points and lines of
AG(4,s).

Step 5. The GQ T(Ox).

The points of the hyperplane at infinity PG(3, s) of AG(4, s) can be indentified in a natural way with
the elements of O, i.e the points of 7(z ), and with the circles of 7(z). Now we prove that O is
an ovoid of the projective space PG(3, s).

Suppose L;, Lj, Ly € O« are collinear in PG(3, s). Projecting these three points L;, L;, Ly, from a
point y € P* we obtain three blocks M;, M;, My, of type (i) that must belong to an affine subplane of
A of order s. If y; € M; \ {y}, y; € M; \ {y}, then the block w;y; (of type (ii)) has a point y; (# v)
in common with Mj, (note that the blocks M}, and y;y; are not parallel since they are of different
type). Consequently y € {y;,y;, Y}, implying y ~ T, a contradiction. Hence no three elements of
O are collinear in PG(3,s), if s # 2 [50]. So we now assume that s = 2. Let 2o # u I L; € Ox.
Then it is easy to prove that P’ = {y € P* || y ~ u} is the pointset of an affine subspace AG(3,2)
of AG(4,2). Clearly L; is the only point of infinity of AG(3,2) that belongs to O. So the plane
at infinity PG(2,2) of AG(3,2) has only the point L; in common with Oy. Consequently for each
L; € O there exists a plane of PG(3, 2) which contains L; and which has only the point L; in common
with Os. As |Os| = 5, it follows immediately that O, is an ovoid of PG(3,2).

Now we consider a point u I L;, u # Zoo. It is easy to show that P’ = {y € P* || y ~ u} is the
pointset of an affine subspace AG(3, s) of AG(4, s). Clearly L; is the only point at infinity of AG(3, s)
that belongs to O, so that the plane at infinity of AG(3,s) is the tangent plane PG(i)(27 s) of O at
L;. So with the s points v on L;, u # x, there corresponds the s three dimensional affine subspaces
of AG(4, s) which have PG(®(2, 5) as plane at infinity.

At this point it is clear that S has the following description in terms of the ovoid O.,. Points of
S are (i) the points of AG(4,s), (ii) the three dimensional affine subspaces of AG(4,s) that possess
a tangent plane of O as plane at infinity, (iii) one new symbol (c0). Lines of S are (a) the lines of
AG(4,s) whose points at infinity belong to O, and (b) the elements of Oy. Points of type (i) are
incident only with lines of type (a) and here the incidence is that of AG(4,s). A point AG(3,s) of
type (ii) is incident with the lines of type (a) that are contained in AG(3, s) and with the unique point
at infinity of AG(3, s) that belongs to O. Finally, the unique point (00) of type (iii) is incident with
all lines of type (b) and with no line of type (a).

We conclude that S is isomorphic to the GQ T5(O«) of J. Tits. O

There are some immediate corollaries.

5.3.2. (i) IfS is a GQ of order (s,s%), s > 1, in which each point is 3-reqular, then S = Q(5,q).
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(ii) Up to isomorphism there is only one GQ of order (2,4).
(iii) Up to isomorphism there is only one GQ of order (3,9).

Proof. (i) By Step 3 of the preceding proof each line of S would be regular, and a T3(O) with all
lines regular is isomorphic to Q(5,¢) by 3.3.3 (iii).

(ii) Let S be a GQ of order (2,4). If (z1, 22, x3) is a triad of points, then clearly {x1,z2, 23}++ =
{x1,29,23}. Hence |{x1, 2,23} | = 1 + s, every points is 3-regular, and by part (i) we have S =
Q(5,9).

(iii) By 1.7.2 all points of any GQ of order (3,9) are 3-regular, so part (i) applies. O

The uniqueness of the GQ of order (2,4) was proved independently at least five times, by S.
Dixmier and F. Zara [51], J.J. Seidel [164], E.E. Shult [166], J.A. Thas [189] and H. Freudenthal [63].
The uniqueness of a GQ of order (3,9) was proved independently by S. Dixmier and F. Zara [51] and
by P.J. Cameron [1413].

Using the same kind of argument and results from Section 3.2 and 3.3 it is easy to conclude the
following.

5.3.3. (i) Let S be a GQ of order (s,s%), s > 1, with s odd. Then S = Q(5,s) iff S has a 3-reqular

point.
(ii) Let S be a GQ of order (s,s?) with s even. Then S = Q(5,s) iff one of the following holds:

(a) All points of S are 3-regular.

(b) S has at least one 3-regular point not incident with some reqular line.

Remark: Independently F. Mazzocca [103] proved the following result: A GQ S of order (s,s?), s # 1
and s odd, is isomorphic to Q(5, s) iff each point of S is 3-regular.

We now consider the role of subquadrangles in characterizing 75(O).

5.3.4. (J.A. Thas [198]). Let S = (P,B,1) be a GQ of order (s,t), s > 1. Then the following are
equivalent:

(i) S contains a point xs such that for every triad of lines having a center incident with xoo is
contained in a proper subquadrangle S’ of order (s,t').

(ii) t > 1 and S contains a point x such that for every triad (u,u',u”) with distinct centers ro
and z', the points u,u',u", xoo, 2’ are contained in a proper subquadrangle of order (s,t').

(iii) s =t, S contains a 3-regular point T, and hence S = T3(0).

Proof. By 3.5 (b) it is clear that (iii) implies (i) and (ii). Now we assume that (i) is satisfied. Clearly
we have t > 1. Let K,L,M,N be lines for which oo I N, L ~ N, M ~ N, K ~ N, K # L,
LA M, M# K. Then K, L, M are contained in a proper subquadrangle 8’ = (P, B/,T') with order
(s,t'). Suppose that K’ is not a line of S’ and that N, K, K’ are concurrent. Then K', L, M are
contained in a proper subquadrangle S” = (P”, B"”,1") with order (s,t”). Clearly &’ # §”. By 2.3.1
S§" = (P' NP, B NB" T NT") is a proper subquadrangle of 8" of order (s,t”). Now by 2.2.2 (vi)
s2 =t,t" = s and " = 1. Since t" = 1, the pair (L, M) is regular. It follows immediately that each
line incident with x, is regular, i.e. zo, is regular.

Let us suppose that s is even. Consider a triad (2,y,2) and suppose that u,u’ € {zo,y, 2},
u#u'. Let 2’ # xo and 2’ # 4/, be a point which is incident with the line o u. Further, let L be the
line which is incident with z’ and concurrent with yu’. Then the lines z,.u/, zu and L are contained



60 Finite generalized quadrangles

in a proper subquadrangle &’ of order (z,t"). Clearly S’ contains the lines zoou', 2u, L, zoou, yu', 2u’,
and the points zs, ¥, 2, u, u/. Consequently ¢ > 1. By 2.2.2 we have t’ < s and since S’ contains
regular lines we have ¢’ > s. Hence s = /. Since s is even and x, is a coregular point of S’ the point
Too is regular for 8’ by 1.5.2 (iv). So each triad of points of S’ containing z, has exactly 1 or 1+ s
centers in §’. Since u and u’ are centers of {z~,y, 2}, the triad (zs,y, 2) has exactly 1+ s centers
ug = u, u; = u', ug,...,us which are collinear with each of the points 79 = zo, T1 = y, 2 = 2,
x3,...,xs which are collinear with each of the points uyg,...,us. Hence (2, ¥, ) is 3-regular in S. It
follows that z is 3-regular and hence S is isomorphic to some T3(0).

Now suppose that s is odd. Let (zo0,,2) be a triad and suppose that u,u’ € {20, y, 2}, u # u'.
Just as in the preceding paragraph one shows that there is a subquadrangle S’ = (P’,B',1') of S of
order s which contains the points o, y, 2, u,u’ and the lines zoou, yu, zu, roou’, yu', zu'. Since s is
odd and z, is coregular, the point z is antiregular for S’ by 1.5.2 (v). Let v” € {200, y, 2} \ {u, v/}
and let S” = (P”,B”,T"") be a subquadrangle of S of order s containing the points z,y, 2, u, u”. If
S’ = 8", then in &’ the triad (z., y, z) has at least three centers, a contradiction by the antiregularity
of 0. Hence &' # S8”, v ¢ P” and v’ ¢ P’. Now we consider the incidence structure & =
(PP, B'NB", T N1"). We have 2, y, z,u € P'NP" and zou, yu, zu € B'NB". By 2.3.1 one of the
following occurs: (a) each point of P’ NP” is collinear with v and each line of B/ N B" is incident with
u, and (b) & is a proper subquadrangle of S’ of order (s,¢;). If (b) occurs, then by 2.2.2 (vi) t; = 1,
a contradiction since B’ N B” contains at least three lines through u. Hence we have (a). By 2.2.1 the
point u’ of Sis collinear with the 1 + s points of an ovoid of S”. Hence each line incident with '
has a point in common with §”. Tt follows that |[B'NB”| =1 + s. Now we consider a subquadrangle
S" = (P",B",1") of § of order s containing the points oo, y, z,u',u”. Then &’ # 8" # §”. Then
(P'NP"AP" = Py, BNB'NB" = By, I N T" N I"=L,) = (P'NP")NP", (B'nB")NB", (I NT")NT") =
(the set of s+ 1 points of P which are collinear in &’ (or in §”) with u, &, &). Analogously, we have
Py = the set of the s 4+ 1 points of P’ which are collinear in 8" (or §") with v” = the set of s + 1
points of P” which are collinear in S (or &) with /. Hence Py = trace of (u,u') in &’ = trace of
(u,u") in 8" = trace of (v/,u”) in §". Tt follows that each point of {s,y, 2}* is collinear with each
point of the trace of (u,u’) in §’. Consequently (2, vy, 2) is 3-regular in S. So o, is 3-regular and S
is isomorphic to a T3(0), i.e. to Q(5, s).

Hence (i) implies (iii). Finally, we shall prove that (i) follows from (ii).

So assume that (ii) is satisfied. Consider a centric triad of lines (L, L', L") with a center N which is
incident with z,. Suppose that z, is not incident with L'. Let N’ € {L,L’}*\{N} and L' T2’ T N'.
If N' o L”, then let L = L"; if N' ~ L”, then let L be a line for which L ~ N, L" ~ L/,
L" ¢ {N,L"}. Further, let N be the line which is incident with 2’ and concurrent with L, let u
be the point which is incident with N” and collinear with z, and let N Tu” I L’. Then (u,u’,u”) is
a triad with centers xo, and x’. Hence u,u/,u”, xo, 2" are contained in a proper subquadrangle S’ of
order (s,t'). Clearly L, L', L" are lines of &', so that (i) is satisfied. O

There is an easy corollary

5.3.5. (i) A GQ S of order (s,t), s > 1, is isomorphic to Q(5,s) iff every centric triad of lines is
contained in a proper subquadrangle of order (s,t').

(i) A GQ S of order (s,t), s > 1 and t > 1, is isomorphic to Q(5,s) iff for each triad (u,u’, u")
with distinct centers x,x’ the five points u,u’,u”,z, 2" are contained in a proper subquadrangle
of order (s,t).

Proof. (i) Let (L, L', L") be a centric triad of lines of Q(5, s). Then there is a PG(4, s) which contains

L, L' L". It QNPG(4,s) = Q' then Q'(4, s) is a proper subquadrangle of order s of Q(5, s).
Conversely, suppose that s > 1 and that every centric triad of lines is contained in a proper

subquadrangle of order (s,t'). Then from 5.3.4 it follows that s> = ¢ and that each point of S is
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3-regular. By 5.3.2 we have § = Q(5, s).
(ii) The proof is analogous and left to the reader. O

Let S be a GQ of order (s,t), and let (Ly, Lo, L3) and (M1, M2, M3) be two triads of lines for which
L & Mj iff {i,j} = {1,2}. Let x; be the point defined by L; I z; I M;, i = 1,2. This configuration
of seven distinct points and six distinct lines is called a broken grid with carriers x1 and xo. First
suppose S is classical and let My be a line in {L1, Ly} not concurrent with any of My, My, Ms. There
is a PG(4, s) containing the broken grid. hence the threespace PG(3,s) defined by M; and My has
at least one point v in common with My. It is clear that there is a line L, which contains w and is
concurrent with My, My, and My. Next suppose that S is the GQ T3(0) and assume that Ly or M;
contains the 3-regular point (co). Then there is a PG(3,s) C PG(4, s) for which PG(3,s)NO is an oval
O’, and such that the corresponding subquadrangle T>(O") of T5(O) (see 3.5 (b)) contains the groken
grid. If Ly contains (00), then the line L; is regular. Let Ly € {My, My}t (vesp., My € {Lq, La}™)
with Ly ¢ L; (vesp., My o M;) for i = 1,2,3. Then the pair (L1, L4) (resp., (M7, My)) is regular. So
there must be a line My (resp., Ly) of To(O') (by 1.3.6) which is concurrent with each of Ly, Lo, Ly
(resp., My, My, My). If M; contains (00), we can proceed through the same discussion interchanging
L; and M;. Similarly, the same argument holds if (co) is on Lg or Ma.

The preceding paragraph provides the motivation for the following definitions. Let I' be a broken
grid with carriers 27 and z5. Assume the same notation as above so that L; adn M; are the lines
of T incident with z;, i = 1,2. We say that T' satisfies aziom (D) with respect to the pair (L1, L2)
provided the following holds: If Ly € {My, My}* with Ly o4 L;, i = 1,2, 3, then (L1, Lo, L3) is centric.
Interchanging L; and M; gives the definition of axiom (D) for I w.r.t. the pair (M;, Ms). Further, T’
is said to satisfy aziom (D) provided it satisfies axiom (D) w.r.t. both pairs (L1, L) and (M, Ms).

5.3.6. Let I be a broken grid whose lines are those of the triads (L1, Lo, L3) adn (M, Ma, M3), where
M; 4 Ly iff {i,7} = {1,2}. If ' satisfies axiom (D) w.r.t. (L1, L2) (or w.r.t. (My,Ms)) and if some
line of T' through one of its carriers x; (here Ly 1 x; 1 M;, i = 1,2) is reqular, then T' satisfies aziom
(D).

Proof. Without loss of generality we may suppose that I' satisfies axiom (D) w.r.t (L, L2). Let
Lj € {My, My}t with Ly 4 Lj ## Lo, j € J (|J| = s if 21 ~ 29, and |J| = s — 1 if 21 ¢ x2). Then by
hypothesis the triad (L1, L2, L3) has a centre M; (clearly My o Mj o Ms). Since |{M € {Ly, La}* ||
Ly & M o Ly} = |J|, it is clear that I' satisfies axiom (D) w.r.t. (M, M) if L; % Lj implies
M; + My, with j,k € J. So suppose M; = M, for distinct j,k € J. Then for i =1 or 2, (L;, Lj, L)
is a triad with two centers M; and M; = Mj,. By hypothesis one of My, M, L1, Lo is regular. If either
M, or My is regular then the pair (Lj, Lj) is regular and hence the triad (L;, L;, Li,) must have 1+ s
centers, forcing Ly ~ My, a contradiction. If L; is regular, i = 1 or 2, the triad (L;, Lj, L) also must
have 1 + s centers, giving a contradiction. O

Let = be any point of S. We say that S satisfies aziom (D), (respectively, aziom (D)’) provided
the following holds: Let I' be any broken grid whose lines are those of the triads (Lq, Lo, L3) and
(M, My, Ms), where L; o¢ M; iff {i,j} = {1,2} and where z I L;. Then I' satisfies axiom (D) w.r.t.
the pair (L1, La) (respectively, w.r.t. the pair (M;, M3)). We say S satisfies aziom (D), provided it
satisfies both axiom (D)’ and (D).

Then the following result is an immediate corollary of 5.3.6.

5.3.7. Let S be a GQ of order (s,t) having a coregular point x. Then S satisfies (D). iff it satisfies
(D)Y iff it satisfies (D),

5.3.8. (J.A. Thas [195]). Let S = (P,B,1I) be a GQ of order (s,t) with s #t, s >1 andt > 1. Then
S is isomorphic to a T3(0) iff it has a coregular point T~ for which (D);,oo (resp., (D)ZOO) is satisfied.



62 Finite generalized quadrangles

Proof. We have already observed that T5(0O) satisfies (D) ). Conversely, let S = (P, B,I) be a GQ
of order (s,t) with s #¢, s > 1 and ¢t > 1, and suppose S has a coregular point x, for which (D);oo
(resp., (D), _) is satisfied. Then in fact S satisfies (D), . And since 2 is coregular we have ¢ > s.
If s =2, then by 1.2.2 and 1.2.3 § is of order (2,4). So by 5.3.2 it must be that S = T3(0). We now
assume s > 2.

Suppose that the triad of lines (L, L', L") has at least two centers N and N’ where zo, I N. By
regularity of N, the lines L, L', L are contained in a (proper) subquadrangle of order (s, 1).

Now we consider the triad of lines (L, L', L") with a unique center N which is incident with z.
Let {L/, L} = {Lo,L1 = L', Ly = L", L3,
ce ,LS}, with L() ~ L, and for all ¢ = 1 let {L,LI}J‘ = {Nzg = N, Nih ey
Nis}. Further, let D(L, L', L") ={y € P || yI Nj;, forsomei=1,...,s
and some j = 0,1,...,s}. We have |D(L, L', L")| = s +2s + 1.

Consider two points yi,y2 of D(L, L', L") which are incident with a line V' of S, and suppose that
V' does not contain the intersection z of L and N (in particular L # V # N). If V ~ L, then clearly
V is some Nj;, and hence all points of V' are contained in D(L,L',L"). If V.~ N but V o L, then V
is concurrent with some Njj, j # 0, and belongs to {L, L;}*+. As all points on all lines of {L, L;}**
belong to D(L, L', L"), all points of V are contained in D(L, L, L"). If V € {L',L"}*, then the s
points of V' not collinear with z are contained in D(L, L', L"”). Now suppose that V ¢ L, V % N,
v ¢ {LI,L”}J‘.

Evidently the point of V' which is collinear with z is not contained in D(L, L', L"). Let y3 I V,
Y1 # Y3 # Yo, y3 7 2. We shall prove that y3 € D(L, L', L").

Let y1 I Ny, @ # 0, and y2 I Nj;, j # 0. Clearly Ny, # Nj and L; # L;. Now we have N ~ L;,
leNV,leNLNN,VNNZ‘]CNLi,NZ‘kNL,N]‘ZNLjNN,andCCOOINF/JV,Li'%'le.
If yo = NjyNLj or y1 = Ny, N L;, then trivially there is a unique line M which is concurrent with
Li,L]’ and V. Suppose yo # le N Lj and y1 # Ny N L;. Then (Ll, V, L) and (N, le7Ni]€) are the
two triads of a broken grid for which (D)gw guarantees that the triad (L;, V, L;) has a center M,
which is unique because N is regular and N # V. Let N3 be the line defined by y3 I N3 ~ L.
Since V¢ {L/,L"}*, we cannot have both y; = Ny, N L; and y2 = Ny N Lj. Without loss of
generality we may suppose y2 # Nj; N Lj. Then the triads (N, M, N;) and (L, V, L;) give the lines
of a broken grid with N3 € {L,V}+ and N3 not concurrent with any of N, M, Nj;. Hence by (D);oo
there is a line W which is a center of (N, M, N3). Clearly z FW. Since y3 I N3, N3 € {L,W}+ and
W e {N,M}*+ = {L;,L;}**+ = {L/, L"}**, we have y3 € D(L,L',L"). Hence V is incident with
exactly s points of D(L, L', L").
Let P = D(L, L', L") U D(L',L,L") and P” = D(L,L',L") N D(L',L,L"). We shall prove that
P'| = s +s2+s5+1and [P’ =53 — 52 +3s+ 1. Let 2/ be the point incident with N and L', and
consider a point y € D(L, L', L") with y # 2'. We show that y € D(L', L, L"). Since the case y I L
is trivial, we suppose that y ¥ L. Let N;; be the line through y meeting L. Then L; is the line of
{L', L”}*+ which is concurrent with Ny. If L; = L', then Ny, € {L,L'}* and y € D(L/, L, L") by
definition. Now suppose that L; # L. Let Njz Tu 1 L, and let «' T L with v & {z,u}. Further, let
N’ and V be defined by o' I N, N' ~ L', y 1V, V ~ N. If V€ {L',L”}*, then y I L;, and then
clearly y € D(L/,L,L"). So assume V ¢ {L',L"}*. Also V o L and V ¢ N. If we put y; = v,
y2 =V NN', Lj = L', then by the preceding paragraph (L;,V,L;) = (L;,V, L") has a unique center
M. Note that M € {L/,L"}*. Let yj = VN M and yb = yo = VN N'. Clearly ¢} = v} iff L' ~ V iff
N'N L' ~y. Since s* > 2, we may choose v’ in such a way that N’ N L’ £ y. Then we have y| # v,
{yi, 95y C D(L', L, L"), V L L',V & N,V ¢ {L,L"}*, and y + 2’. Now by the preceding paragraph
y € D(L',L,L"). Since D(L, L', L") contains s> — s points which are collinear with 2’ and not incident
with L' or N, there holds [P”| = s® — s 4+ 3s + 1. It easily follows that |P'| = s> + s? + s+ 1.

Next let p,p’ € P/ with p ~ p/, say z I pp’. The case N = pp’ is trivial. So suppose N # pp’. Since
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p,p' € D(L',L, L") and 2’ & pp', it follows from a preceding paragraph that D(L’, L, L") contains all
elements incident with the line pp’.

Let z ¥ pp/, 2/ ¥pp/, pp’ ~ N. Since pp’ € D(L', L, L") and 2’ ¥ pp/, the set D(L', L, L") contains
each point incident with pp'.

Let pp’ # N. Since s > 2, the line pp’ contains points w,w’ (w # w') for which z £ w # 2/,
z b w' 2. Hence w,w' € P". If pp/ ~ L (resp., pp’ ~ L') then all points of pp’ are contained in
D(L,L',L") (vesp., D(L',L,L")). So assume L « pp’ 7 L'. If w; is the point of pp’ not contained in
D(L, L', L"), then z ~ wy, so 2’ # wy and wy € D(L',L,L"). Hence P’ contains each point incident
with pp'.

Now from 2.3.1 it follows immediately that P’ is the pointset of a subquadrangle S’ of order (s,t').
Since |P/| = (s +1)(s®> + 1) we have t' = s < t, implying &’ is proper. Consequently the line L, L', L"”
are contained in a proper subquadrangle of order (s,t').

We have now proved that every centric triad of lines (L, L', L") having a center N incident with
Too is contained in a proper subquadrangle of order (s,#'). By 5.3.4 s2 = t, the points z, is 3-regular,
and S is isomorphic to a 7T3(0). O

There is an easy corollary of 5.3.8, 3.3.3 and the note following 3.3.3 whose proof may be completed
by the reader.

5.3.9. Let S be a GQ of order (s,t), with s #t, s >1,t> 1.

(1) If s is odd, then S = Q(5,s) iff S contains a coregular point xo for which (D);Joo (resp., (D)goo)
is satisfied.

(ii) If s is even, then S = Q(5,q) iff all lines of S are regular and S contains a point xo for which
(D), (resp., (D)!_) is satisfied.

In order to conclude this section dealing with characterizations of 7T3(0) and Q(5, s), we introduce
one more basic concept. Let S = (P, B,1) be a GQ of order (s,t). If B+t is the set of all hyperbolic
lines, i.e. the set of all spans {z,y}** with = ¢ g, then let S*+ = (P, B++, €). For 2 € P, we say S
satisfies property (A) if for any M = {y, 2}*+ € B+ with x € {y, z}*, and any u € cl(y, )N (z+\ {z})
with w ¢ M, the substructure of S*+ generated by M and w is a dual affine plane. The GQ S is
said to satisfy property (A) if its satisfies (A), for all z € P. So the GQ S satisfies (A) if for any
M = {y,z}*++ € B+t and any u € cl(y, 2)\ ({y, 2} - U{y, 2}+), the substructure of S+ generated by
M and u is a dual affine plane. The duals of (A), and (A) are denoted by (A); and (A), respectively.
If (A), is satisfied for some regular point z, then the dual affine planes guaranteed to exist by (A)
are substructures of the dual net described in 1.3.1.

T

5.3.10. (J.A. Thas [205]). Let S = (P,B,1) be a GQ of order (s,t), with s #t, s > 1 and t > 1.

A~

Then S is isomorphic to a T3(O) iff (A),, is satisfied for all lines L incident with some coregular point

Too-

Proof. Let S be the GQ T3(0). Then it is easy to check that (A); is satisfied for every line L incident
with the coregular point (oo) of type (iii).

Now let S be a GQ of order (s,t), with s # ¢, s # 1 # ¢, and having a coregular point x, such that
(A), is satisfied for all lines L incident with z,. We shall prove that (D)goo is satisfied. So suppose
(L1, Lo, L3) and (M, Mo, Ms) are two triads of lines with zo I L1 and L; ¢ M; iff {i,j} = {1,2}.
Let My € {Ly, Lo} with My o M;, i = 1,2,3. We must show that the triad (M, Mo, M3) is centric.
Since L; is regular, any pair of nonconcurrent lines meeting L; is regular. Since (M, M3) is regular,
the line My is an element of cl(My, M3). Because M o Lo, we have My & { My, M3}*+. Now consider
the dual affine plane 7 generated by {M;, M3}++ and Mj in the structure S+ = (B, P11, €). Clearly
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{ M3, My} and { My, My}t are lines of . Since Ls (resp., Lo) is an element of { My, M3} (resp.,
{M3, M4}1), the point Ly N My (resp., Ly N My) is incident with a line R (resp., R') of {My, M3}++
(resp., {M3z, My}*+). Then {R,R'}** is a line of 7. As any two lines of 7 intersect, the lines
{My, My} and {R, R’} have an element R” in common. Clearly R” ~ Ms. If Ly is the line which
is incident with M, N R” and concurrent with My, then by R” € {M;, My}, we have Ly ~ Mjy.
Hence Ly is a center of (M, Ma, M,) and (D)gw is satisfied. Then by 5.3.8 S is isomorphic to a T3(O).
O
There is an easy corollary.
5.3.11. Let S be a GQ of order (s,t), s #1t, t > 1.

(i) If s > 1, s odd, then S is isomorphic to Q(5,s) iff (A), is satisfied for all lines L incident with
some coregqular point .

(ii) If s is even, then S is isomorphic to Q(5,s) iff all lines of S are regular and (A)L is satisfied
for all lines L incident with some point Tuo.

Proof. Left to the reader. O

We mention without proof one more result of interest which may turn out to be helpful in charac-
terizing the GQ Q(5, s).

5.3.12. (J.A. Thas [197]). Suppose that the GQ S = (P, B,1) of order (s,s?), s # 1, has a subquad-
rangle 8" = (P',B',1') of order s with the property that every triad (x,y,z) of 8" is 3-reqular in S and
{x,y, 2} CP'. Then S’ = Q(4,5) and S has an involution 6 firing P’ pointwise.

5.4 Tallini’s characterization of H (3, s)

Let S = (P, B,1) be a GQ of order (s,t), and let B* be the set of all spans, i.e. let B* = {{z,y}** |
z,y € P, x #y}. Then S* = (P, B*, €) is a linear space in the sense of F. Buekenhout [27]. In order
to have no confusion between collinearity in S and collinearity in S*, points x1, x2,... of P which
are on a line of S* will be called S*-collinear. A linear variety of S* is a subset P’ C P such that
z,y € P, x # vy, implies {z,y}*+ C P'. If P’ # P and |P’| > 1, the linear variety is proper; if P’ is
generated by three points which are not S*-collinear, P’ is said to be a plane of S*. Finally, if L € B
with I L1y and z # y, then {x,y}*+ € B* is denoted by L*.

5.4.1. (G. Tallini [175]). Let S = (P,B,1I) be a GQ of order (s,t), with s #t, s > 1 andt > 1. Then
S is isomorphic to H(3,s) iff

(1) all points of S are regular, and

(ii) if the lines L and L' of B* are contained in a proper linear variety of S*, then also the lines L+
and L'* of B* are contained in a proper linear variety of S*.

Proof. Let S be the classical GQ H(3,s). By 3.3.1 (ii) all points of S are regular, so (i) is satisfied.
Let V be a proper linear variety of $* containing at least three points x, y, z which are not S*-collinear.
Then z,y, z are noncollinear in PG(3,s) and V is contained in the plane m = zyz of PG(3,s). If V
contains a line L of S, then it is clear that |V| = sy/s + s+ 1 and that V = 7 N H. Now suppose
that V does not contain a line of S. We shall show that V is an ovoid of §. Assume that the line M
of § has no point in common with V. Since V is a linear variety of §*, any point of M is collinear
with 0 or 1 point of V. Hence s + 1 > |V|. But V together with the lines of §* contained in V is
a 2-(|V],v/s + 1,1) design, which implies that |V]| > s+ /s + 1. But then s +1 > s+ +/s+ 1, an



Combinatorial characterizations of the known generalized quadrangles 65

impossibility. So V' is an ovoid of S, and consequently |V| = s/s + 1. It follows immediately that
V =xNH. Now it is evident that the proper linear varieties of §* which contain at least three points
that are not S*-collinear are exactly the plane intersections of the hermitian variety H. Clearly if the
lines L and L' of S* are contained in a plane of PG(3,s), then also L' and L’ L are contained in a
plane of PG(3, s). Hence (ii) is satisfied.

Now we consider the converse. Let S = (P,B,I) be a GQ of order (s,t) with s # ¢, s > 1 and
t > 1. The proof is broken up into a sequence of steps, and to start with we assume only that S
satisfies (1), i.e. all points of S are regular.

(a) Introduction and generalities.

By 1.3.6 (i) we have s > t. Let V' be a proper linear variety of S* that contains at least three points
x,y, z which are not S*-collinear. First, suppose that V contains L* with L € B, and assume x ¢ L*.
If u ~ 2 and v I L, then clearly V contains the proper linear variety u of S*. Suppose that V # u™.
Then V' contains a subset M* with M € B and L* N M* = @. The number of points on lines of
S* having no point in common with L* and M* equals (st + 1)(s + 1) = |P|. Hence V = P, a
contradiction. So u =V and |V| = st + s + 1. Next, suppose that no two points of V are collinear
in S. We shall show that V is an ovoid of §. Assume that the line M of S has no point in common
with V. Since V is a linear variety of §* and since every point of § is regular, each point of M is
collinear with 0 or 1 point of V. Hence s+ 1 > |V|. But V together with lines of §* contained in V'
is a2 — (|V|,t+1,1) design, so that |V| > > + ¢+ 1. Hence s > t?> + ¢, an impossibility by Higman’s
inequality. So V' is an ovoid of S, and consequently |V| = st + 1.

Hence for a proper linear variety V' of §* which contains at least three non-S*-collinear points, we
have |V| € {st +s+1,st+ 1}. If |[V| = st + s+ 1, then V = u' for some u € V; if |V| = st + 1, then
V is an ovoid of S. Let V; and V5 be two (distinct) proper linear varieties of S* having at least three
non-S*-collinear points in common, and suppose that |Vi| < |Va]. Since V3 NV; is also a proper linear
variety, we necessarily have |V; N'Va| = st + 1, |Va| = st + s + 1. Hence the ovoid Vi N V5 is contained
in some u', a patent impossibility. It follows that each three points which are not S*-collinear are
contained in at most one proper linear variety, and that each proper linear variety which contains at
least three non-S*-collinear points is a plane of S*. If |V| = st + s + 1, V will be referred to as a
nonabsolute plane.

Now we introduce condition (ii)': every three non-S*-collinear points are contained in a proper
linear variety of S*. If (i)’ is satisfied, then any hyperbolic line L of S is contained in 1 4 ¢ absolute
planes and s — ¢t nonabsolute planes of S*. This is easily seen by noticing that any plane containing
L has exactly one point in common with M*, with M € Band LN M* = @.

Neat we show that condition (ii) implies condition (ii)’. Suppose that (ii) is satisfied and that x,y, z
are three non-S*-collinear points. Clearly the lines {x,y}* and {z, z}* of S* belong to the absolute
plane 2. By (ii) the lines {z,y}** and {x, z}** of S* belong to a proper linear variety V of S*, and
hence z,y,z € V. So S also satisfies (ii)’.

Condition (ii)’ seems to be weaker than (ii), and we proceed as far as possible assuming only
condition (ii)" (in addition to (i)).
(b) Let (ii)’ be satisfied: the affine planes 7, = (Py, B,), = € P.
With (ii)’ satisfied, let 2 € P, let P, be th set of hyperbolic lines of S containing z, and let B, be
the set of planes of S* different from x which contain . If L € P, and V € By, then let L I, V iff
L C V. It is clear that the incidence structure (Py, By, 1) (briefly (Py,B;) or m;) is a 2 — (s%,5,1)
design, i.e. an affine plane of order s. Let # 1 M Iy, 2 # 3. Then y* is a line of the affine plane 7.
So with M there correspond s lines of 7, and no two of them have a point of 7, in common. Hence
these lines form a parallel class of 7. The corresponding improper point of 7, is called special, and
the lines of the parallel class are also called special. The special point defined by M, = I M, will also
be denoted by M*. We note that the special lines of 7w, are exactly the absolute planes of B,.

Let V be a nonabsolute plane of 8*, let xz € V, and let y ¢ V with x £ y. If V' is a plane of S*
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with 2,y € V', then VNV’ = {z} iff V and V' are parallel lines of 7,. Since the point {x,y}*+ of 7,
belongs to just one line of 7, which is parallel to V, there is just one plane V’ in 8* which contains x
and y and is tangent to V at x. As we have V' || V' in 7, and V is nonspecial, also V' is nonspecial,
i.e. the plane V' is nonabsolute.

Further, let V' be a nonabsolute plane with = ¢ V. The points of V' which are collinear (in S)
with = are denoted yp,...,y;. The hyperbolic lines containing = and a point of V'\ {yo,...,y:} are
denoted by My,..., Mg_;. The points My, ..., Mg of m, together with the ¢ + 1 special improper
points of 7, form a set A of order st 4+ 1 of the projective completion of 7, of 7m,. Now it is an easy
exercise to show that each line U of 7, intersects A in 0,1, or ¢ + 1 points (if U is the completion of
a special line of 7, then it contains 1 or ¢ + 1 elements of A; if U is the completion of a nonspecial
line of m, then it contains 0,1, or ¢ + 1 elements of A). The lines U of 7, intersecting A in 1
point correspond to the absolute planes yOL, . ,y,f-, and to the nonabsolute planes containing x and
exactly one point of V' \ {yo,...,y}. By the preceding paragraph this number equals st + 1. The
number of lines U of 7, intersecting A in t + 1 points equals (st + 1)st/t(t + 1). Hence there are
24+ s+ 1—(st+1)— (st + 1)st/t(t + 1) = s(s — t2)/(t + 1) lines in 7, having no point in common
with A. Since this number is nonnegative and s < t2, it must be that s = t> and every line U of 7,
intersects A in 1 or t 4+ 1 points. Hence A is a unital [50] of 7.

Consequently, from (i) and (ii)’ it follows that s = 2, |V| = t3 4+ ¢? + 1 for an absolute plane, and
|V| = t3+1 for a nonabsolute plane. Finally, we shall show that two planes V and V' always intersect.
If one of these planes is absolute, clearly VNV’ # @. If V and V' are nonabsolute and z € V' \ V/,
then let A be the unital of 7, which corresponds to V. As the projective completion of the nonspecial
line V' of 7, intersects A in 1 or ¢t + 1 (nonspecial) points, we have [V NV’| =1 or t + 1. We conclude
that any two planes of S intersect.

(c) Let (ii)’ be satisfied: bundles of planes.
If L is a line of §*, then the set of all planes of $* containing L is called the bundle of planes with
azis L. That bundle is denoted by By, and |Br| = s+ 1 (by one of the last paragraphs of (a)).

Let V) be a nonabsolute plane of S*, and let x € V;. By considering the plane 7, we see that there
are s — 1 nonabsolute planes Vi, ..., Vs_; which are tangent to V at . The only absolute plane which
is tangent to vy at x is - = V;. Since Vj, ..., Vi_1 are parallel lines of 7., any two of the s+ 1 planes
Vo, ..., Vs have only z in common. The set {Vj, ..., Vs} will be denoted by 3(Vp, x) and will be called
a bundle of mutually tangent planes. Clearly 5(Vy,z) = B(Vi,z), 1 <i < s — 1. Further, two different
bundles 3(V, z) and B(V’,x) of mutually tangent planes (at =) have only the plane z* in common.

Let @ be a bundle, and let p be a point not belonging to two elements of 3. If § has axis L with
L a line of §*, then p is contained in one element of 5. If 3 is a bundle of mutually tangent planes
Vo,..., Vs, then [VoU...UVs| = (2 + 1)(t> + 1) = |P|, and consequently here too p is contained in
just one element of 3.

Finally, let us consider two planes V and V'. If [V NV’'| = t + 1, then the planes V and V' are
contained in just one bundle, namely 87, with L =V NV’. Now let VNV’ = {z}, and assume that V
is nonabsolute. Then 3(V, z) is the only bundle containing V' and V.

(d) Let (ii) be satisfied: conjugacy.

Let L be a line of S*. If L' is a subset of the plane V, we say that L is conjugated to V or that V'
is conjugated to L. The planes conjugated to L, with L = M™* and M € B, are the absolute planes
containing L. The lines (of S*) conjugated to the absolute plane xt, are the lines (of S*) which
contain the point z. Let V be a plane and let p & V. Then the hyperbolic line (p~ N V)* is the only
line of S* which contains p and is conjugated to V. If V is nonabsolute we have (p- N V) NV = 2.
Hence in this case the lines of §* conjugated to V' constitute a partition of P\ V.

We say that the planes V and V' (not necessarily distinct) are conjugated if there is a line L in S*
for which L ¢ V and L+ C V'. Tt follows that a plane is conjugated to itself iff it is absolute. The
set of planes conjugated to the plane V is called the net of planes conjugated to V', and it is denoted
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by V. If V = 2, then V consists of all planes through z, implying [V| = ¢t* + t2 + 1. Conversely, if
all elements of V have a common point z, then V = z+. Since the absolute planes conjugated to the
plane V are the planes z+ with 2 € V, we clearly have V = V' iff V = V.

Let V and V' be distinct conjugated planes, and let p € V' \ V. The unique line of §* which
contains p and is conjugated to V is denoted by N. We shall prove that N C V’. Since V and V' are
conjugated, there is a line L in 8* such that L € V and L+ c V'. If N = Lt, we have N ¢ V'. So
assume N # L*. Since N* and L are contained in the plane V', by (ii) the lines (of S*) N and L*
are also contained in some plane V”. Since N # L', clearly p ¢ L. Then p and LT are contained
in a unique plane, so that V/ = V" and hence N C V’. This shows that if V' is nonabsolute, the lines
of 8* which are conjugated to V and contain at least one point of V' are all contained in V/\ V' and
constitute a partition of V' \ V.

Let V and V' be nonabsolute and conjugated. By the previous paragraph t+1 divides |V/\V]. Since
(V\V| € {3, #3—t}, it must be that |V/\V| = t3—t, i.e. V/NV is a hyperbolic line. It easily follows that
for a nonabsolute plane V we have [V| = t2(t2 =t +1)(t2 —t) /(£ —t) +t>(t? =t + 1) (t+1) /1> = t* +12+ 1,
where t2(t?> —t +1) is the number of hyperbolic lines conjugated to V; 2 —t (resp., t+1) is the number
of nonabsolute (resp., absolute) planes containing an hyperbolic line; and t? — ¢ (resp., t?) is the
number of hyperbolic lines conjugated to V' which are contained in a nonabsolute (resp., absolute)
plane conjugated to V. Hence for any plane V of S* we have |V| = t* + 2 4+ 1.

A plane V' and a bundle ( of planes are called conjugated iff V' is conjugated to all elements of (.
And we say that bundles 3 and 3’ are conjugated iff each element of 3 is conjugated to each element
of 3.

Consider the bundle 87 with axis L. If the plane V is conjugated to (O, then V contains all
points  with z+ € 3. Consequently V contains L. Conversely, if V contains L+, then it is evident
that V is conjugated to Gr. It follows that there is just one bundle conjugated to (3, namely ﬁi—.
Now consider a bundle 3(V,z) of mutually tangent planes. Let V' be a plane which is conjugated to
the bundle B(V,z). Then V' is conjugated to 2, implying 2 € V’. Now consider a plane V' which
contains z and is conjugated to V. We shall show that V' is conjugated to 3(V, z).

If V! = xt, then clearly V' is conjugated to 3(V,z). So assume V' is nonabsolute. Let V" be a
nonabsolute plane which contains x and is conjugated to V. Suppose that V' # V" and [VNV"| = t+1.
If y e VNV"” and y € V', then the hyperbolic line N containing y and conjugated to V' is a subset
of V and V”. Since both V and V” contain N and z, we have V = V"’ a contradiction. Hence
VNV"” c V. Let R be a hyperbolic line in one of the absolute planes containing V N V", with
x € Rand R # VNV”. Then R is contained in just one plane V"’ which is conjugated to V.
Clearly V" is not absolute and does not contain V' NV”. Since V and V" are not parallel in the affine
plane 7., at least one of these planes, say V, is not parallel to V"”. Hence V N V" is a hyperbolic
line containing z. So V and V" are distinct planes which contain the hyperbolic line V N V" ¢ V'
and are conjugated to V', a contradiction. Consequently, we have V.= V" or [V N V"] = 1. Hence
V" € B(V,z). Since the number of nonabsolute planes containing z and conjugated to V' equals
(22 —t+1) —t2) /(12 —t) = t? = |3(V,x)| — 1, it is clear that V' is conjugated to 3(V, ).

Now consider the t? + 1 planes which contain = and are conjugated to V. By the preceding
paragraph these planes are mutually tangent at z and hence may form a bundle 3(V’,z). So there
is just one bundle which is conjugated to S(V, ), namely the bundle 5(V’, x), where V' is arbitrary
nonabsolute plane which contains x and is conjugated to V.

If 8 is a bundle, then the unique bundle conjugated to § is denoted by 3. We note that (3 consists
of all planes conjugated to 3.

(e) Let (ii) be satisfied: some more properties of conjugacy.

Consider two planes V and V" with [V NV”| =t + 1, which are conjugated to the nonabsolute plane
V'. We shall prove that VNV'NV” = @. The case where V or V" is absolute is easy. So assume that
V and V" are nonabsolute. If VNV’ N V" = {z}, then there are at least two planes which contain
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VNnV" ¢ V' and are conjugated to V', a contradiction. If V N V" C V', then by one of the last
paragraphs of (d) we obtain a contradiction. We conclude that always VNV ' NnV" = .

Let the plane V be conjugated to the planes V' and V", V' # V”. We shall prove that V is
conjugated to the bundle § containing V' and V”.

If V/ = 2'* and V" = 2", then V contains #’ and z”, and consequently also (VN V"L, By (d)
V is conjugated to the bundle 3 defined by V'’ and V".

Now let V/ = z/* and let V" be nonabsolute. If 2’ ¢ V", then V contains 2z’ and the hyperbolic
line L containing =’ and conjugated to V”. Since L = (V' N V")L, the plane V is conjugated to the
bundle 8. If 2’ € V", then by the last part of (d) V belongs to the bundle 3(W, z), where W is an
arbitrary nonabsolute plane which contains 2’ and is conjugated to V”. Since the bundles G(V”, z’)
and B(W, ') are conjugated, it is clear that V is conjugated to the bundle 8 = 3(V”,2’) containing
V" and V.

Finally, let V'’ and V" be nonabsolute. If V = 2+, then z € V' N V", so V is conjugated to the
bundle 3. So assume V' is nonabsolute. If |[V'NV”| = ¢t4+1 and 2z € V'NV”, then by the first paragraph
of (e) we have x ¢ V. The hyperbolic line L which contains x and is conjugated to V belongs to V'
and V", hence must be the line V' NV” of S*. Consequently V contains (/N V")+ which means that
V' is conjugated to the bundle § defined by V' and V”. It VN V" = {z}, then x € V, since otherwise
V' and V" would contain the hyperbolic line containing z and conjugated to V. By the last part of
(d) the plane V is conjugated to the bundle 5(V’, z), i.e. to the bundle 8 containing V' and V".

This completes the proof that a plane V is conjugated to a bundle [ iff it is conjugated to at least
two planes of 3. Now it is clear that for any two planes V and V’, the set V NV’ is the unique bundle
which is conjugated to the bundle defined by V and V'.

Let 3 be a bundle and let V be a plane which is not in 3. We shall prove that BN ‘N/] =1. If we
should have |3 N V| > 1, then by the preceding paragraph 3 is conjugated to V', and hence V € 3,
a contradiction. So we have only to show that |5 N f/\ > 1. First suppose that there is a point x
belonging to all elements of 8 and not contained in V. Then z is contained in just one hyperbolic
line L conjugated to V. By (d) L is contained in an element V' of 3. Clearly V' € V N 3. Next, we
suppose that every element z common to all elements of 3 is also contained in V. If g = (V" z),
then 2zt € 8 and 2t € V. If B has axis M*, M € B, then M* C V and V € 3, a contradiction. So
assume that 8 has axis N, with N a hyperbolic line. There is a plane contained in 8 and V iff there is
a plane conjugated to 3 and V iff there is a plane conjugated to V, y* and 21, with y,z € N, y # z.
If V is absolute, then it is clear that there is a plane conjugated to V/, y* and z-. If V is nonabsolute,
then we have to shot that |3’ N z+| > 1, with ' = 3(V,y). Since z+ ¢ &, this immediately follows
from one of the preceding cases.

Finally, we give some easy corollaries: (1) if 4 is a bundle and V' a plane not in 3, then [V N 3 | = 1;
(2) if 3 is a bundle and V is a plane such that 8 ¢ V, then [3N V| = 1; and (3) if § is a bundle and
V a plane not in 3, then V and [ are contained in exactly one net of planes.

(f) Let (ii) be satisfied: the space PG(3,s) and the final step.

Let V be the set of all planes, let B be the set of all bundles of planes, and let V be the set of all nets of
planes. An element V of V is called “incident” with the element V' (resp., 3) of V (resp., B) iff V/ € V
(resp., B € V), an element 3 of B is called “incident” with an element V of V iff V € B. We shall prove
that for such an “incidence” the ordered triple (V,B,V) is the structure of points, lines and planes of
the projective space PG(3,5s). So we have to check that the following properties are satisfied:

(1) Every two nets are “incident” with exactly one bundle.

(2) For every two planes there is exactly one bundle which is “incident” with both of them.

(3) For every plane V' and every bundle 8 which is not “incident” with V', there is exactly one net
“incident” with V' and (.

(4) Every bundle 8 and every net V which is not “incident” with 3 are “incident” with exactly
one plane.
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(5) There exist four nets which are not “incident” with a same plane, and for every bundle 3 there
are exactly s + 1 nets “incident” with f.

In (e) we have proved that for any two planes V and V', the set V N V' is always a bundle, and
hence (1) is satisfied. By the last paragraph of (c¢) also (2) is satisfied. By Corollary (3) in the last
part of (e) Condition (3) is satisfied. Condition (4) is satisfied by Corollary (2) in the last part of (e).
Let N and N{- be hyperbolic lines and let z,y € N, x # y, and z,u € N1, 2 # u. Then it is clear that
the nets z+, yL, 21, ul are not “incident” with a same plane. Finally, the number of nets “incident”
with a bundle 3 equals the number of planes conjugated to 3, hence equals |3| = s+ 1 by (d). Hence
(V,B,V) is the structure of points, lines and planes of PG(3, s).

Now we consider the following bijection 6 : V —, V +— V. Tt is clear that the images of the s+ 1
nets “incident” with a bundle § are the planes which are “incident” with the bundle B Moreover,
if W is “incident” with V? = V, then V is “incident” with W? = W. So 6 defines a polarity of the
projective space (V,B,V). The “absolute” [50] elements in V and V for the polarity 6 are the nets x1
and the planes x1 (the absolute planes), z € P. The “totally isotropic” [50] bundles are the bundles
(3 for which 8 = 3, i.e. the bundles Bys+, with M € B. With respect to the “incidence” in (V,B,V) the
“absolute” nets and “totally isotropic” bundles form a classical GQ S. Since z1 is “incident” with
Bu+, M € B, iff x 1 M in S, the classical GQ S is isomorphic to S. As there are (s3> + 1)(s + 1)
“absolute” nets, the polarity @ is unitary, implying that S is the GQ H(3,s). We conclude that
S=H(3,s). DO

Remark: Using 5.5.5 F. Mazzocca and D. Olanda [106] proved that a GQ S of order (s2,s), s # 1, is
isomorphic to H(3,s) iff the following conditions are satisfied:

(i) all points of S are regular,

(i) every three non-S*-collinear points are contained in a proper linear variety of S*, and

(iii) for every point x and every triad (y, z,u) with center z, the affine plane 7, has an affine Baer
subplane having only special improper points and containing the elements y~ Nz, zt Nut, vt Ny* .

5.5 Characterizations of H (4, ¢%)

5.5.1. (J.A. Thas [196]). A GQ S of order (s,t), s> =t and s # 1, is isomorphic to the classical
GQ H(4,s) iff every hyperbolic line has at least \/s + 1 points.

Proof. By 3.3.1 (iii) every hyperbolic line of H(4,s), s = ¢?, has exactly ¢ + 1 points. Conversely,
suppose that S = (P, B,1) is a GQ of order (s,t), s3 = t2 and s # 1, for which |{z,y}*+| > /s +1 for
all 7,y € P with z % y. To show that S = H(4,¢?) will require a rather lengthy sequence of steps.
(a) Introduction and generalities.

By 1.4.2 (ii) we have (|{z,y}**| — 1)t < s if 2 ¢ y. Hence |{z,y}+| < /s + 1 if z £ y. It follows
that each hyperbolic line has exactly /s + 1 points. Now, again by 1.4.2 (ii), every triad (z,y, 2),
z & cl(x,y), has exactly /s + 1 centers. Let v and v be two centers of the triad (x,y, 2), z & cl(x,y).
Then {z,y}"*+ U {2z} C {u,v}*, implying {u, v} C {z,y,2}". As [{u, 0} = [{z,y,2}*|, we
have {u,v}*+ = {z,y,2}*. It follows that for any triad (z,y,2), z & cl(x,y), the set {z,y, 2} is a
hyperbolic line, and that {x,y, z} is contained in just one trace (of a pair of noncollinear points).

(b) The subquadrangles Sz, ar.

Clearly each point of S is semiregular, so each point satisfies property (H). By 2.5.2, for any pair (L, M)
of nonconcurrent lines the set L* U M*, with L* = {x € P || e I L} and M* ={z € P || a1 M}, is
contained in a subquadrangle Sz, ps of order (s,+/s). The pointset of this subquadrangle is the union
of the sets {z,y}** with 2 I L and y I M. Now we shall prove that the set L* U M* is contained in
just one proper subquadrangle of S.
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Let Sy = (P, B/, T'), and consider an arbitrary proper subquadrangle S” = (P".B".1") of S for
which L* U M* C P”. By 2.3.1 the structure 8" = (P'NP",B' nB",I' N1") is a subquadrangle of
order (s,t") of S. Since t # 52, by 2.2.2 (vi) we have 8" = Sp and 8" = §”. Hence 8" = Sy u1.

If S = (P,B.T') and z,y € P', x # y, then we show that {z,y}*+t C P’. Clearly we have

{z,y}** c P ifx,y € P,z #y,and 2 ~ y. So assume z ¢ y. Let z T U and y I V, with U and
V nonconcurrent line of Sy, 37. The pointset U* U V* is contained in the proper subquadrangles Sz, a
and Sy, implying that Sy, ys = Sp,y by the preceding paragraph. Since {z,y}* is contained in the
pointset Sy, we also have {z,y}++ C P
(C) SL,M = H(3, S).
Next we shall prove that each subquadrangle Sz as = (P, B',1') is isomorphic to H(3,s). The first
step is to show that each point of Sz, s is regular in Sg ar. Let y be a point of Sy as which is not
collinear with z. Since every point of {z,y}*+ C P’ is collinear with every point of {z,y}+ NP’ it
follows that the hyperbolic line of Sz, as defined by = and y in Sp as has at least /s + 1 points. As
the order of S ar is (s, /s), the span of  and y in Sy, ys has exactly /s + 1 points, implying (z,y) is
regular. Consequently each point of Sy, js is regular in Sz, .

Let Sj 5, = (P', B, €) be the linear space introduced in 5.4. Notations and terminology of 5.4
will be used. In order to apply Tallini’s theorem we must prove that if the lines L and L' of B’
are contained in a proper linear variety of 827 A then also the lines LN P and 'Y NP of B* are
contained in a proper linear variety of Sy ;. Consider the three points z,y, z in P’ which are not
87 pr-collinear. These points are contained in an absolute plane of S7 , iff z € cl(z,y) (cf. 5.4.1 (a)).
If z & cl(z,y), then P'NT, with T the unique trace of S containing x,y, z, is a proper linear variety of
SZ,M which contains x,y, z. Since by 5.4.1 (a) the nonabsolute plane P’ NT of SﬂM contains s/s+ 1

points, we have T C P’. So condition (ii)’ of 5.4.1 is satisfied, and moreover the absolute planes of
S v are the traces of & which are contained in P’  i.e. the traces of S containing at least three
non—Sﬂ as-collinear points of P’. Now let L and L’ be two lines of B which are contained in a proper
linear variety (i.e. a plane) of S7.m- There are four cases.

(i) If L and/or L’ consists of the points incident with a line of S, then clearly L NP and £/* NP’
are contained in an absolute plane.

(ii) If L and L’ are hyperbolic lines which are contained in the absolute plane z+NP’, then L+ NP’
and L' NP’ contain z. Since (i)’ is satisfied, the hyperbolic lines L+ NP’ and L' NP’ are contained
in a plane of SZ,M'

(iii) Now suppose that L and L’ are hyperbolic lines which are contained in a nonabsolute plane
of &7 ) and which have a nonvoid intersection. If L N L' = {2}, then clearly L+ NP’ and r+np
are contained in z+ NP’

(iv) Finally, let L and L’ be disjoint hyperbolic lines which are contained in a nonabsolute plane T'
of Sy UT = {, y}*, then it is easy to show that {z,y} L NP = @ and {z,y}++ = LL N L'". Let
d be a point of L+ NP’. Then d is collinear with no point of L/, and consequently must be collinear
with /s + 1 points of L't Let e be one of these points, and denote by V the line of § which is
incident with d and e. Further, let R (resp., N) be the line of § which is incident with x (resp., y)
and concurrent with V. If there is a point h with R I A I N, then h IV, implying h is collinear with
d, e and all points of {z,y}*+. Since h is collinear with at least /s + 2 points of L* (resp., L’L), we
have h € L (resp., h € L'). Hence L N L' # &, a contradiction. Hence R and N are not concurrent,
and we may consider the subquadrangle Sg x = (P”,B",1") of S. Then we have Lt U L+ cop.
Clearly P'N'P" is a linear variety of S} ), which contains L+ NP’ and L’ L NP’ Since [P| = |P’| and
{z,y}*+ NP = @, we have P' N'P" # P, implying L+ NP’ and L' NP’ are contained in a proper
linear variety of SE M-

Hence condition (ii) of 5.4.1 is satisfied, and by Tallini’s theorem Sy, ps = H(3, s).

(d) Threespaces and bundles of threespaces.
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The sets 1, € P, will be called absolute threespaces, and the pointsets of the subquadrangles S LM
will be called nonabsolute threespaces. The traces of S will be called nonabsolute planes, the sets
cl(z,y) N2+, with z £ y and z € {x,y}*, will be called absolute planes, and the sets L*, with L € B
and L* ={z € P || « I L} will be called totally absolute planes. We shall show that a plane T which
is not totally absolute and a point x, x & T, are contained in exactly one threespace. As usual, there
are a few cases to consider.

(i) T = {y,2}", y # 2, and = € cl(y, z). Let = be collinear with the point u of {y, z}*+. Then
ut is the unique absolute threespace which contains {z} U T. If there is a nonabsolute threespace
E containing {z} U T, then E contains u and thus also all points of u*. Hence the point u of the
subquadrangles Sz, ps with pointset E is incident with ¢ + 1 lines of Sy, »7, a contradiction.

(i) T = {y, 2}, y o 2, and z & cl(y, z). Then there is no absolute threespace containing {z} UT.
The point z is collinear with /s + 1 points ug,...,u 5 of T. Let w € T'\ {up, ..., u s} and let L be
the line incident with w and concurrent with the line V' through x and ug. If x I M I uq, then the
pointset £ of Sy contains x,w, ug,u1. Since w & {u1,...,u 5} = {ug,u1 }**, we have T C E by
(¢). So {z} UT C E. Since any threespace through {z} U T contains all points which are incident
with L and M, by (b) there is just one threespace which contains = and 7.

(iii) 7 is an absolute plane with 7 C y* and = ~ y. Then clearly y is the only threespace through
x and T.

(iv) T is an absolute plane with T C y* and = % 3. Then {2} UT is not contained in an absolute
threespace. Let T'= LU ... L7 with L; € Band LY = {z € P || 21 L;}, and let M be the line
which is incident with = and concurrent with Ly. Any threespace through {z} UT contains L} and all
points incident with M. Hence the pointset of Sg, s is the unique threespace which contains {z}UT.

Now we introduce bundles of threespaces.

A nonabsolute bundle is the set of all threespaces which contain a given nonabsolute plane T'. From
the first part of (d) it follows that nonabsolute bundle contains y/s+ 1 absolute threespaces and s —+/s
nonabsolute threespaces. The /s + 1 absolute threespaces are the threespaces 2, with 2 € T+,

The set of all threespaces which contain a given absolute plane is called an absolute bundle. From
the first part of (d) it follows that an absolute bundle contains one absolute threespace and s nonab-
solute threepspaces.

The set of all absolute threespaces which contain a given totally absolute plane is called a totally
absolute bundle. A totally absolute bundle contains s 4+ 1 absolute threespaces.

Hence each bundle of threespaces contains exactly s 4+ 1 elements.

(e) The incidence structure D = (E,B, €).
The set of all threespaces is denoted by E and the set of all bundles by B. We shall now show that
incidence structure D = (E,B,€) is a 2 — (s* + 5% + s> + s+ 1,5+ 1,1) design.

The number of absolute threespaces equals (s + 1)(s?y/s + 1), and the number of nonabsolute
threespaces equals (sv/s +1)(s2y/5 + 1)s/(/5 +1)(sy/s + 1)s? = s* — s3\/5 + 5% — s2\/5 + s?. Hence
E| =s*+ 3+ 52 +5+ 1.

In (d) we noticed that each element of B contains s + 1 elements of E.

Let E be a nonabsolute threespace. The number of threespaces which intersect F in an absolute
plane or a nonabsolute plane is equal to
s|{nonabsolute planes in E}| + s|{absolute planes in E}|. By (c) and the first part of the proof of
Tallini’s theorem (5.4.1), this number of threespaces is equal to s|{set of planes in PG(3,s)}| = s(s%+
s2+s+1) = |[E|—1. It follows that two given threespaces E and E’, with E nonabsolute, are contained
in exactly one bundle. Now consider two absolute threespaces z1 and y*. If z ~ vy, then clearly z+
and y are contained in the totally absolute bundle defined by the totally absolute plane L*, with
1 LTy, and in no other bundle. Hence any two threespaces are contained in a unique bundle.

We conclude that D is a 2 — (s + 53 + 52 + s+ 1,5+ 1,1) design.

(f) An interesting property of bundles.
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Let 3 be the bundle defined by the plane T'. Intersect S with a nonabsolute threespace FE, with T' ¢ E
if T is not totally absolute (i.e. if T does not consist of all points incident with some line in (). By
(¢) E may be considered as a nonsingular hermitian variety of a PG(3,s). If 3 = {FEy, ..., Es}, then
by (e) the sets Ey N E,...,Ds; N E are plane intersections of the hermitian variety E. Consequently
(EiNE)N(E;NE)=TNE (i#j) is a point, a hyperbolic line, or an L* with L € B.

If TN E is not a point, then clearly the planes Ey N E,...,Es; N E (no one of which is totally
absolute) are exactly the intersections of the hermitian variety E and the s + 1 planes of PG(3, s)
through T'N E. Hence with [ there corresponds a bundle of planes in PG(3, s).

Next let TNE = {z}. Since EyNE,..., E;NE are s+1 plane intersections of the hermitian variety
E, having in pairs only the point z in common, their planes 7, ..., 7s in PG(3, s) have a tangent line
of E (in PG(3,s)) in common. Consequently 7, ..., s constitute a bundle of planes in PG(3, s).

(g) D is the design of points and lines of PG(4, s).

Let E be the threespace common to the bundles 8 and 3, 3 # ('. Let E; and E5 be elements of
(3 with E, Ey, Es distinct, and let E] and E) be elements of 5’ with E, F}, F!, distinct. The bundle
containing F; and Ef (resp., B2 and E)) is denoted by E1E] (resp., E2E}). We have to show [220]
that ElEi N EQEé #* O,

Suppose that 3 (resp., (') is defined by the plane T (resp., 7). Now we prove that T NT" # @.
Evidently T UT’ C E. If E is nonabsolute, then T and 7’ are plane intersections of a nonsingular
hermitian variety of PG(3,s) and hence T NT’ # @. Now let E be the threespace z+, = € P. If at
least one of 3, 3 is absolute or totally absolute, then clearly T NT' # @. So we assume that 8 and
(' are nonabsolute. Then we have T' = {x, z}* and 7" = {z,2'}* for some z and 2’. If x,z, 2’ are
contained in a nonabsolute plane {u,v}*, then clearly {u,v}*+ =T NT’; if z, 2,2’ are contained in
an absolute plane, then there is exactly one point w which is collinear with z, z, 2/, and TNT" = {w}.
Hence in all cases TNT' # @.

Let w € TNT' and let E’ be a nonabsolute threespace which does not contain w. By (¢) E’
may be considered as a nonsingular hermitian variety of a PG(3,s). The planes ENE', Ey N F/,
E>sNE', E{NE', EfNE" are plane intersections of the hermitian variety E’. Let 7,1, o, ], 75 be
the respective planes of PG(3,s) in which these intersections are contained. By (f) m, 71,7 (resp.,
m, 7, 7h) are elements of a bundle 7 (resp., 7') of planes in PG(3,s). We notice that 7,1, 7 (resp.,
7,7, ) are distinct. We shall now show that vy N+ = {n}. If 7’ € y N/, then 7' N E’ is the
intersection of E’ and an element R (resp., R’) of 8 (resp., ). Since R and R’ both contain 7/ N E’
and w (w € 7' N E’), we have R = R, implying R = R’ = E. Hence 7’ = m, i.e. yN~+' = {r}. Clearly
the bundles of planes 77} and ma7) have a plane 73 in common. The plane intersection 73 N E’ of
the hermitian variety E’ is the intersection of E’ with an element E3 (resp., E%) of the bundle E} F}
(resp., EoF)). Since w is a point of each element of the bundle E1E} (resp., ExFE}), the threespace
E3 (resp., EY) is the unique threespace containing w3 N E' and w. Consequently E3 = Ef, implying
ElEi N EQEé #+ 2.

This completes the proof that D = (E,B, €) is the design of points and lines of a PG(n, s). Since
El=s*+s3+s2+s+1and |8| =s+1 for all 8 € B, it must be that n = 4.

(h) The final step.

Let P be the set of all absolute threespaces, and let [3 be the set of all totally absolute bundles. Then
S = (P,3,€) is a GQ of order (s,sy/s) which is isomorphic to S. The elements of P are points of
PG(4,s) and the elements of § are the lines of PG(4, s). So by the theorem of F. Buekenhout and C.
Lefévre (cf. Chapter 4) S is a classical GQ. Since ¢ = sy/s, clearly S~H (4,s). This completes the
proof that S = H(4,s). O

We now turn to a characterization of H(4,s) in terms of linear spaces. Let S = (P,B,I) be a
GQ of order (s,t), and let S* = (P,B*,€), with B* = {{z,y}* || =,y € P and xz # y}, be the
corresponding linear space. Recall (cf. 5.4) that points of P which are on a line of §* are called
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S*-collinear, and that any linear variety of S* generated by three non-S*-collinear points is called a
plane of §*.

5.5.2. (S.E. Payne and J.A. Thas [21/]). Let S have order (s,t) with 1 < s3> < t*>. Then S is
isomorphic to H(4, s) iff each trace {x,y}*, x oy, is a plane (of S*) which is generated by any three
non-S*-collinear points in it.

Proof. Let S be the classical GQ H (4, s), and consider a trace {x,y}*, z 4 y. Let u,v,w be three
non-S*-collinear points in {z,y}* and call T the plane of S* generated by u,v,w. Suppose that
T # {x,y}*" and let z € {x,y}* \ T. Consider a line L through z which is incident with no point of
{z,y}*+. If 2’ T L, 2 # 2, then 2’ is collinear with the /s + 1 points of a span in {x,y}*. Since T is
a plane of §* and z ¢ T, 2’ is collinear with at most one point of 7. Hence s > |T|, a contradiction
since |T| > sy/s+1 (note that T is the pointset of a 2 — (||, /s + 1, 1) design). Consequently {x,y}+
is the plane T' of §*.

Conversely, let S = (P, B,1) be a GQ of order (s,t) with 1 < s < 2, and suppose that each trace
{z,y}*, x A y, is a plane of S* which is generated by any three non-S*-collinear points of it. Let
u,v € 2+, u o4 v, and note that [{u,v}**| < ¢+ 1, since s < ¢ (cf. 1.3.6). The number of traces
T for which {u,v}*+ C T C 2% is denoted by a. Let M be a line of S incident with 2 that has no
point in common with {u, v}, and let w, w # z, be a point incident with M. If two traces T} and
T, could contain {u,v}++ and w, then T} N Ty (# T1) would contain the plane of S* generated by
u, v, w, a contradiction. Hence {u, v}LL and w are contained in at most one 7', implying that o < s.
It follows that in {u,v}* there are at most s hyperbolic lines containing z, and by 1.4.2 (ii) each such
hyperbolic line has at most s2/t < t'/3 points different from z. Hence |{u,v}*\ {z}| =t < st'/3 < t,
implying s = #? and each hyperbolic line in {u,v}" containing z has exactly 1+ /s points. Now it
is clear that each span has exactly 1+ /s points. By 5.5.1 S 2 H(4,s). O

5.6 Additional characterizations

5.6.1. (J.A. Thas [197]). Let S have order (s,t) with s # 1. Then
H{a,y} | = 82/t + 1 for all x,y, with x + y, iff one of the following occurs:

(i) t =7,
(i) S=W(s),
(iii) S = H(4,s).

Proof. If one of the three conditions holds, then clearly |{z,y}**| > st + 1 for all 2,y with = £ y
(cf. 3.3.1).

Conversely, let S = (P, B,1) be a GQ of order (s,t), s # 1, for which |{z,y}++| > 5%t + 1 for all
x,y, with = o 3. On the other hand, by 1.4.2 (ii) we have |{z,y}**| < s2/t + 1 for all 2,y, z + ¥.
Hence |{z,y}**| = s*t + 1 for all z,y, with ¢ y. If s = t, then all points of S are regular and by
52.1 8= W(s). From |{z,y}**| <t+1, 2 # y, it follows that s < t. So we now assume that s < ¢.
By 1.4.2 (ii), each triad (x,y, z), z &€ cl(z,y), has exactly 1 = t/s centers. Hence each point of S is
semiregular. By 2.5.2 we have t = s2 or s3 = t2. In the latter case every hyperbolic line has exactly
1+ /s points. By 5.5.1 we have S = H(4, s), and the theorem is proved. 0O

5.6.2. (J.A. Thas [197], J.A. Thas and S.E. Payne [21/]). In the GQ S of order (s,t) each point has
property (H) iff one of the following holds:

(i) each point is regular,
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(ii) each hyperbolic line has exactly two points,
(iii) S = H(4,s).

Proof. If one of (i), (ii), (iii) holds, then clearly each point has property (H) (cf. 1.6.1 and 3.3.1).

Conversely, assume that each point of the GQ S has property (H). By 2.5.1 we must have one
of the following: (i) each point is regular, (ii) all hyperbolic lines have exactly two points, or (iii)’
s3 = 12 # 1 and each hyperbolic line has 1 + /s points. By 5.5.1 (iii)’ implies (iii). O

5.6.3. (J.A. Thas [197], J.A. Thas and S.E. Payne [21/]). Let S be a GQ of order (s,t) in which

each point is semiregular. the one of the following occurs:

Proof. With the given hypotheses on S, by 2.5.2 we have one of the following: (i) s > t and each
point is regular, (i)’ s = ¢ and each point is regular, (iii) s = ¢ and each point is antiregular, (iv)
s < t and each hyperbolic line has exactly two points, or (v)" s® = 2 # 1 and each hyperbolic line has
/5 + 1 points. But (ii)" implies (ii) by 5.2.1 and (v)" implies (v) by 5.5.1. O

5.6.4. (J.A. Thas [197]). In a GQ S of order (s,t) all triads (x,y, z) with z & cl(x,y) have a constant
number of centers iff one of the following occurs:

(i) all points are regular,

(iii) S = H(4,s).

Proof. If we have one of (i), (ii), (iii), then all triads (z,y, 2), z & cl(z, y), have a constant number of
centers (cf. 1.2.4, 1.4.2 and 3.3.1).

Conversely, suppose that all triads (z,y, 2), z & cl(x,y), have a constant number of centers. Also,
assume that not all points are regular and that s? # t. Then there is an hyperbolic line {z, y}** with
p+ 1 points, p < t. By 1.4.2 (ii) we have pt = s? and the number of centers of the triad (x,y, 2),
2z & cl(z,y), equals 1 +t/s. From pt = s% and p < t it follows that s < ¢t. From s2 # t, it follows that
p # 1. Moreover, since 1 4+ t/s > 1, each point of S is semiregular. Now by 5.6.3 we conclude that
S=H(4,s). O

5.6.5. (J.A. Thas [197]). The GQ S of order (s,t), s > 1, is isomorphic to one of W(s), Q(5,s)
or H(4,s) iff for each triad (z,y,z) with x & cl(y, z) the set {x} U {y, z}* is contained in a proper
subquadrangle of order (s,t').

Proof. If S= W(s), S = Q(5,s), or S = H(4,s), then it is easy to show that each set {z} U {y, 2},
where (z,y, 2) is a triad with = & cl(y, 2), is contained in a proper subquadrangle of order (s,t") (cf.
Section 3.5). Note that in W(s) there is no triad (z,y, z) with = & cl(y, 2).

Conversely, suppose that for each triad (z,y, z) with 2 & cl(y, z) the set {z} U {y, z}* is contained
in a proper subquadrangle of order (s,t’). If there is no triad (z,y, 2) with = ¢ cl(y, z), then for each
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pair (y, z), y 7 z, all points of § belong to cl(y, z), from which it follows easily that (y, z) is regular
and s =t or s = 1. By hypothesis s # 1, so from 5.2.1 § = W (s).

Now assume that S 2 W (s), so there is a triad (z,y,z) with = & cl(y, z). Let 8" = (P',B',T') be
a proper subquadrangle of order (s,t') for which {z} U {y, 2} C P’. Since S’ contains a set {y, z}+
consisting of ¢ 4+ 1 points, no two of which are collinear, we have ¢t < st’ (cf. 1.8.1). Since &’ is a
proper subquadrangle of S we have ¢ > st/ (2.2.1). Hence st' =t and {y, z}* is an ovoid of §’. So =
is collinear with exactly ¢’ + 1 = 1 4 t/s points of {y, 2z}*, implying s < t. It follows that each triad
(w,y,2) with = & cl(y, z) has exactly 1+ t/s centers. By 5.6.4 all points are regular, or s> = ¢, or
S = H(4,s). If all points of S are regular, then s = 1 or s > ¢ (1.3.6). Thus s = ¢, and by 5.2.1
S = W (s), a contradiction. Hence t = s% or S = H(4, s).

Assume t = s? with s > 2 and consider a centric triad of lines (L, M, N) with center N'. Let
xIN, 2y L,2 ¥ M, 2 ¥ N, yIN, y ¥ N, 21 M, 2 ¥ N', where (z,y,2) is a triad (since s > 2,
the points x,y, z exist). Let {x,y,2}* = {ug,...,us}. Then u; ¥ L, u; ¥ M, u; ¥ N, and u; ¥ N/,
i =0,...,s. Moreover, no point u; is collinear with the point u defined by N’ I v I L. Hence there
is at least one point «’ which is incident with L and is collinear with at least two points u;, uj. A
proper subquadrangle S’ of order (s,#') which contains {u} U {u;,u;}* contains u,u’, z,y, . Hence S’
contains L, M, N. By 5.3.5 we have § = Q(5, s).

Finally, let s =2 and ¢ = 4. Then by 5.3.2, S = Q(5,2). O

5.6.6. (J.A. Thas [197]). Let S be a GQ of order (s,t) for which not all points are regular. Then S
is isomorphic to Q(4,s), with s odd, to Q(5,s) or to H(4,s) iff each set {x} U {y,z}*, where (z,y, 2)
is a centric triad with x & cl(y, z), is contained in a proper subquadrangle of order (s,t').

Proof. If we have one of § = Q(4,s) with s odd, § = Q(5,s), or S = H(4,s), then it is easy to
show that each set {z} U {y, z}* with (z,¥, ) a centric triad and = & cl(y, z) is contained in a proper
subquadrangle of order (s,t’) (cf. Section 3.5).

Conversely, suppose that for each centric triad (x,y, z) with = ¢ cl(y, 2) the set {z} U {y, z}* is
contained in a proper subquadrangle of order (s,t'). By the proof of the preceding theorem we have
st' = t, and z is collinear with exactly 1+ ¢/s points of {y, z}*. Hence each centric triad (z,y, z) with
x ¢ cl(y, z) has exactly 14 ¢/s (> 1) centers. So all points of S are semiregular. By 5.6.3 we have
one of the possibilities (iii) s = ¢ and each point is antiregular, (iv) s < ¢t and each hyperbolic line has
exactly two points, or (v) S = H(4,s).

Suppose that we have one of the cases (iii) or (iv). Then each hyperbolic line has exactly two
points. Let (x,y, z) be a centric triad (since not all points are regular, we have t # 1, so that such a
triad exists), and let S’ = (P’,B/,1') be a proper subquadrangle of order (s,t') = (s,t/s) containing
z and {y,z}*t. The 1 + t/s centers of (x,y,z) are denoted by Ug, U1, - ., Uys. Consider a point
2 € ({ug,u1}* \ {z}) NP". Notice that 2’ ¢ cl(yz), since y,z € P'. Now let S” = (P”,B",1") denote
a proper subquadrangle of order (s,t/s) containing {z} U {z/,2}*. As 2/ € P, we have S’ # S”. By
2.3.1 the structure 8" = (P'NP",B'nB",,' N 1") is a proper subquadrangle of order (s,t"”) of &’
(and 8”), or all the lines of B’ NB" are incident with = and P’ NP” consists of all points incident with
these lines. Frist assume that S is a proper subquadrangle of S’. By 2.2.2 (vi) we have t = s2. In
this case each triad is centric, so each set {u} U {v,z}*, with (u,v,w) a triad, is contained in a proper
subquadrangle of order (s,t/s) = (s,s). Then by 5.6.5 S = Q(5, s).

Next, assume that for each choice of 2’ all elements of B'NB" are incident with z and P'NP” consists
of all points incident with these lines. By 2.2.1 the point 2’ is collinear with exactly 1+t's = 1+t points
of 8", i.e. every line incident with 2’ contains a point of S”. It follows easily that |B'NB"| =1+ t/s.
Consequently the lines of 8’ which are incident with x coincide with the lines of 8” which are incident
with 2. Let L be a line of &’ which is incident with z. Since {y, z}* (resp., {2,2'}*) is an ovoid of S’
(resp., S”), the line L is incident with one point p (resp., p’) of {y,z}* (resp., {2,2'}*). But S has
no triangles, so p = p’. Consequently 2’ is collinear with the 1 4-¢/s centers uo, ..., us/ of (2,9, 2).
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Suppose that s # ¢. Then z,y, 2, 2’ are centers of the triad (ug,u1,us). Since we have t/s choices for
the point 2/, the triad (ug,u1,u2) has at least 3 + t.s centers, a contradiction since each centric triad
has exactly 1+ t/s centers. So we have s = ¢, and moreover each point is antiregular by 5.6.3. Hence
s is odd (cf. 1.5.1). Now we consider two lines V and V', with V £ V'. Let w IV, v/ TV’ u o 4/, and
let # € {u,u'}*+ with w ¥V and w }V'. Further, let N be a line concurrent with V and V' for which
u N and v/ ¥ N. The point «” is defined by w ~ «” I N. Since all points are antiregular, the triad
(u,u’,u") has exactly two centers w and w'. If N 121V, then the set {2} U {w,w'}* is contained in
a proper subquadrangle S’ of order (s,t/s) = (s,1). Clearly V, V', N are lines of this subquadrangle
S’ of order (s,1). Hence the pair (V, V') is regular. It follows that all lines of S are regular. From the
dual of 5.2.1 it follows that the GQ S is isomorphic to Q(4,s). O

We now give a characterization due to F. Mazzocca and D. Olanda in terms of matroids.

A finite matroid [235] is an ordered pair (P, M) where P is a finite set, where elements are called
points, and M is a closure operator which associates to each subset X of P a subset X (the closure
of X) of P, such that the following conditions are satisfied:

(i
(i
(iii
(iv) ye XU{z},yg X >z XU{y} forallz,y € P and z C P.

& =@, and {7} = {z} for all x € P.
X C X forall X CP.
X

)
)
) XCY=XCcCY foral X,Y CP.

)

The sets X are called the closed sets of the matroid (P, M). It is easy to prove that the intersection
of closed sets is always closed. A closed set C' has dimension h if h + 1 is the minimum number of

points in any subset of C whose closure coincides with C. The closed sets of dimension one are the
lines of the matroid.

5.6.7. (F. Mazzocca and D. Olanda [107]). Suppose that S = (P,B,1) is a GQ of order (s,t), s > 1
andt > 1, and that P is the pointset and B* = {{z,y}** || =,y € P and x # y} is the lineset of some
matroid (P, M), then we have one of the following possibilities: S = W (s), S 2 Q(4,s), S 2 H(4,s),
S = Q(5,s), or all points of S are reqular, s = t* and S satisfies condition (i)’ introduced in the proof
of Tallini’s characterization (5.4.1) of H(3,s).

Proof. First of all we prove that dim 2% = (dim P) — 1 for all # € P, and that dim {x,y}*+ =
(dim P) — 2 for all 2,y € P with z # y. Let Y = 2t U {2}, with z a point of P \ zt. Clearly
Y contains zt U 2zt and {z,y}**. Choose a point u not contained in z* U 2+ U {z,2}**. Since
u & {x, 2z}, we have {x, 2} ¢ u’. Hence there is a line V incident with u for which the points u’
and u” defined respectively by 2 ~ «/ 1V and z ~ u” 1V are distinct. It follows that {u/,u"}*+ C Y,
implying « € Y. Consequently Y = P, i.e. dim 2 = (dim P) — 1. Now let z,y € P with = o . Since
zt and y* are closed, also the set x- Ny = {z,y}* is closed. Clearly we have z+ = {z,y}+ U {x},
so that dim {x,y}* = (dim z*) — 1 = (dim P) — 2. It is now immediate that dim P > 3.

Suppose that not all points of S are regular, and consider a set {z} U {y, z}*, where (z,y, z) is a
centric triad with x ¢ cl(y, z). By 2.3.1 the set {y, 2} U {z} is the pointset of a subquadrangle S’ of
order (s,t') of S. Since dim {y, z}+ U {z} = (dim P) — 1, it follows that {y,z}+ U {x} # P. Hence
S’ is a proper subquadrangle of S. By 5.6.6 we have one of S & Q(4,s) and s odd, S = Q(5,s), or
S=H(4,s).

Now we suppose that all points of S are regular. If s = ¢, then by 5.2.1 we have S = W(s) (which
is equivalent to S = Q(4,s) if s is even). So assume s # t. Let x,y,z be three points of & which
are not on one line of the matroid (P,M). Then dim {z,y,z} = 2 < dim P. Now it is clear that
{x,y,2} is a proper linear variety of the linear space S* = (P, B*, €). Hence S satisfies condition (ii)’
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introduced in Tallini’s characterization (5.4.1) of H(3,s). Finally, by 5.4.1 (b) the parameters of S
satisfy s =t2. O

Note: The first paragraph of this proof is due to F. Mazzocca and D. Olanda. The remainder is due
to the authors and represents a considerable shortening of the original proof.

We conclude this section and this chapter with a fundamental characterization of all classical and
dual classical GQ with s > 1 and ¢ > 1 due to J.A. Thas [205].

We remind the reader of properties (A) and (A) introduced in the paragraph preceding 5.3.10. Let
B+ be the set of all hyperbolic lines of the GQ S = (P, B,1), and let S+ = (P, B+, €). We say
that S satisfies property (A) if for any M = {y, z}*+ € B+ and any u € cl(y, 2) \ ({y, 2}- U {y, 2}1H)
the substructure of S+ generated by M and u is a dual affine plane. The dual of (A) is denoted by

(A).
5.6.8. (J.A. Thas [205]). Let S = (P,B,I) be a GQ of order (s,t), with s > 1 andt > 1. Then S is

a classical or dual classical GQ iff it satisfies one of the conditions (A) or (A).

Proof. It is an exercise both interesting and not difficult to check that a classical or dual classical
GQ with s > 1 and ¢ > 1 satisfies one of the conditions (A) or (A).

Conversely, assume that the GQ S = (P, B,I) of order (s,t), s > 1 and ¢t > 1, satisfies condition
(A). We shall first prove that also property (H) is satisfied. To that end, consider a triad (u,y, z) for
which u € cl(y,2) \ {y,z}**+. Let m be the dual affine plane generated by {y, z}** and u in S*++.
Evidently {z,u}*" is a line of w. In 7 the point y is not collinear with exactly one point of {z,u}++,
i.e. in S the point y is collinear with exactly one point of {z,u}**. Hence y € cl(z,u), and (H) is
satisfied. By 5.6.2 we have one of the following: (i) each point is regular, (ii) each hyperbolic line has
exactly two points, or (iii) S = H(4, s).

Now assume that S % H(4,s). If [{y,2}**| = 2 for all y,z € P with y # 2, then for any
M = {y,z}* € B and any u € cl(y, 2) \ {y, z}* with v ¢ M (such a u exists since s > 1), the
substructure of S+ generated by M and u has 3 points and consequently is not a dual affine plane,
a contradiction. Hence all points of S are regular. If s = ¢, then by 5.2.1 § 2 W(s). If s # t, then by
dualizing 5.3.11 we obtain S = H (3, s).

We have proved that if S satisfies (A), then S is isomorphic to one of W(s), H(3,s), H(4,s).
Hence if S (of order (s,t) with s > 1 and ¢ > 1) satisfies one of the conditions (A) or (A), then it is
isomorphic to one of H(4,s), the dual of H(4,s), W(s), Q(4,s), H(3,s), or Q(5,s). O
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Chapter 6

Generalized quadrangles with small
parameters

6.1 s=2

Let § = (P,B,I) be a GQ of order (2,¢), 2 < t. By 1.2.2 and 1.2.3 we know that t = 2 or ¢t = 4.
In either case, by 1.3.4 (iv) it is immediate that all lines are regular, and in case ¢ = 4 all points
are 3-regular. As was noted in 5.2.3 and 5.3.2 the GQ of order (2,2) and (2,4) are unique up to
isomorphism. Nevertheless it seems worthwhile to consider briefly an independent construction for
these examples, the first of which was apprarently first discovered by J.J. Sylvester [172].

A duad is an unordered pair ij = ji of distinct integers from among 1,2,...,6. A syntheme is a
set {ij, k¢, mn} of three duads for which i, j, k, ¢,
m,n are distinct. It is routine to verify the following.

6.1.1. Sylvester’s syntheme-duad geometry with duads playing the role of points, synthemes playing
the role of lines, and containment as the incidence relation, is the (unique up to isomorphism) GQ of
order (2,2), which is denoted W (2).

It is also routine to check the following.

6.1.2. For each integer i, 1 < i < 6, the five duads ij (j # i) form an ovoid of W (2). These are all
the ovoids of W(2) and any two have a unique point in common.

The symmetric group Sg acts naturally as a group of collineations of W (2). That Sg is the full
group of collineations also follows without too much effort. Since there is a unique GQ of order 2, it
is clear that W (2) is self-dual. In fact it is self-polar. For example, it is easy to construct a polarity
with the following absolute point-line pairs:
1j «— {14,[1 —1[j+1],[J —2][s + 2]}, where 2 < j < 6, and [k] means k is to be reduced modulo 5 to
one of 2,3,...,6. A complete description of the polarity may then be worked out using the following
observation. Each point (resp., line) is regular, and the set of absolute points (resp., lines) form an
ovoid (resp., spread). Hence each nonabsolute point (resp., line) is the unique center of a triad of
absolute points (resp., lines). So if 7 is the polarity, and if u is the center of the triad (x,y, z) of
absolute points, then ©™ must be the unique center of the triad (z™,y™,2™) of absolute lines. For
example, the nonabsolute point 35 is the center of hte triad (12,14,16) of absolute points, whose
images under 7 are {12,63,54}, {14,35,26}, and {16, 52,43}, respectively. This triad of absolute lines
has the unique center {63, 14,52}, implying that 7 : 35 «—— {63,14,52}.

Since W(2) = Q(4,2) is a subquadrangle of Q(5,2), we may extend the above description of W (2)
to obtain the unique GQ of order (2,4). In addition to the duads and synthemes given above for W (2),
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let 1,2,...,6 and 1/,2,... 6" denote the additional twelve points, and let {i,4j,7'}, 1 < 4,5 < 6,1 # j,
denote the thirty additional lines. It is easy to verify the following.

6.1.3. The twenty-seven points and forty-five lines just constructed yield a representation of the unique

GQ of order (2,4).

H. Freudenthal [63] has written an interesting essay that contains an elementary account of many
basic properties of these quadrangles, as well as references to their connections with classical objects
such as the twenty-seven lines of a general cubic surface over an algebraically closed field.

6.2 s=3

Applying 1.2.2 and 1.2.3 to those ¢t with 3 < ¢t < 9, we find that ¢ € {3,5,6,9}. After some general
considerations, each of these possibilities will be considered in turn.

Let z,y be fixed, noncollinear points of S, and let K; be the set of points z for which (z,y, z) is a
triad with exactly ¢ centers, 0 < ¢ < 1+ t. Put N; = |K;|, so that N; = 0 by 1.3.4 (iv), and by 1.4.1
we have

N; =0 for i > 6. (6.1)

Equations (1.6)-(1.8) of 1.3 become, respectively,

1+t
No =6t —3t>+ (£ +1)/2 = > (i — 1)(i — 2)N;/2, (6.2)
o =3
Ny = (P -1)B—t)+ ) (*—20)N, (6.3)
1+t =
Ny = (£ —1)/2 =) (i* —i)N;/2. (6.4)
=3

If z € K;, 0 <i <t— 1, then there are t + 1 — 4 lines through z incident with no point of {x,y}+,
and since s = 3 each of these lines is incident with a unique point of K;_1_; \ {z}. This implies the
following two observations of S. Dixmier and F. Zara [51].

NiA0= Ny >t+1—i for0<i<t—1 (6.5)

and
(t +1-— Z)Nz = (2 + Z')Ntflfi (66)

(count pairs (z,2'), z € K;, 2/ € Ky_1_4, 2 ~ 2, 2 # 2’ and 22 incident with no point of {x,y}*).
The cases t = 3,6,9 are now easily handled.

6.2.1. A GQ of order (3,3) is isomorphic to W(3) or to its dual Q(4,3).

Proof. Equations (6.3) and (6.4) yield N3 = 8Ny, Ny = 12—6N4, and (6.6) with ¢ = 0 says Na = 2Nj.
It is easy to check that Ny # 1, hence either Ny = N; = 0 and (z,y) is antiregular by 1.3.6 (iii), or
N4 = 2 so that Ny = Ny = 0 and (x,y) is regular. It follows that in any triad (z,y, z), each pair is
regular or each pair is antiregular. From this it follows that each point is regular or antiregular. If
some point is antiregular, S is isomorphic to (4, 3) by 5.2.8. Otherwise S is isomorphic to W (3) by
5.2.1. O
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6.2.2. (S. Dizmier and F. Zara [5/]).) There is no GQ of order (3,6).

Proof. Equations (6.1)-(6.6) with ¢ = 6 yield Ng = N5 =0, N; =4, No =12, N3 =15, Ny = 8.

Let z € K;. The one line through z meeting a point of {z,y}* necessarily is incident with two
points z1, zo of K4. Hence each of the four points of K7 is collinear with each of the eight points of
Ky. Soif 2/ € Ky \ {2}, then 2’ is collinear with 27 and 29, giving a triangle with vertices 2/, 21, 29, a
contradiction. O

6.2.3. (P.J. Cameron [1/5], S. Dizmier and F. Zara [5]]). Any GQ of order (3,9) must be isomorphic
to Q(5,3).

Proof. This was proved, of course, in 5.3.2 (iii), using 1.7.2 to show that each point is 3-regular. We
offer here an alternative proof relying on the equations just preceding 1.7.2 to show that each point
is 3-regular. Let T' = (x,y, z) be a triad of points in S, and recall the notation M; of 1.7, 0 < i < 4,
with s = 3, t = 9. Then multiply eq. (1.21) by 8, eq. (1.22) by —8, eq. (1.23) by 4, eq. (1.24) by —1,
and sum to obtain Z?:o(i —1)(i —2)(4 —7)M; = 0. Since all terms on the left are nonnegative, in
fact they must be zero, implying My = M3 = 0. Hence T is 3-regular. O

The remainder of this section is devoted to handling the final case ¢ = 5, which requires several
steps.

6.2.4. (S. Dizmier and F. Zara [5/]). Any GQ of order (3,5) must be isomorphic to the GQ T5(O)
arising from a complete oval in PG(2,4).

Proof. (a) From now on we assume s = 3 and ¢ = 5. Then solving equations (6.2), (6.3), (6.4) and
(6.6) simultaneously we have N1 = 6(2 — Ny), No = 12Ny, N3 = 10(2 — Ny), Ny = 3Ny. Moreover,
by (6.5), if Ny # 0, then Ny > 6. So either Ny = 0 or Ny = 2. First suppose Ny = 0, so that
Ny = Ny =0, Ny =12, N3 = 20. This says that each triad containing (x,y) has 1 or 3 centers. But
consider a line L passing through some point of {x, y}* but not through x or y. For the three points
w of L not in {x,y}* it is impossible to arrange all triads (x,y,w) having 1 or 3 centers. Hence we
must have the following

No=2, Ny =24, Ny=6, Ny = N3 = 0. (6.7)

(b) Put {x,y}*+ = {c1...,c6}. The line through z and ¢; is denoted A;, and a line through z is
of type A. The line through y and ¢; is denoted B; and a line through y is of type B. If L is a line
incident with no point of {x,y} U {x,y}*, it is of type AB. The remaining lines are of type C.

A line of type C' has two points of Ko and one of K4. A line of type AB has one point of Ky and
one of Ky, or it has two points of K5. Now it is clear that the two points of K are not collinear, and
that each of the two points of Kj is collinear with all six points of K. Hence K- = Kj.

Let Ko = {2/,y'} and Ly, = {z,y,2',y'}. If z is a center of (y,2,y'), then 2z € Kg- = K4, implying
z oy, a contradiction. So L, ., = Lg,. Now it is also clear that L, , = Ly, = Ly = Ly, =
L,, = Ly ,. Let us define an affine line to be a line of S or a set L, ,. Then the points of S together
with the affine lines (and natural incidence) form a 2 — (64,4, 1) design.

(c) If (z,y,2) is a triad, then 7, is the permutation of Ng = {1,2,3,4,5,6} defined by: the line
through z meeting A; also meets B So m,(i) = i iff z ~ ¢;. And if z € Ky, then 7, is a
transposition.

Put D = U?:OKZ' = KogU Ky U Ky.

For i # 7,1 <14, j < 6, it is clear that there are precisely 4 points z of D such that 7, (i) = j.

For z € D, w, interchanges ¢ and j iff there is a line Cj; (resp., Cj;) which is incident with z and
concurrent with A; and B; (resp., A; and Bj). Then the lines Cjj, Cji, Ai, Aj, B, Bj define a 3 x 3 grid

Ta(i) "

'We thank Jack van Lint for helping us to streamline the argument of [54]
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G (i.e. a grid consisting of 9 points and 6 lines). Let wuj,u9, us, v1,v2,vs be the other points on the
respective lines Cj;, A;, Bj, C;j, Aj, B;. Since s = 3, we have u; ~ ug ~ u3 ~ uy and vy ~ vg ~ v3 ~ v1.
So uq,ug,us are on a line L and vy, v9,v3 are on a line M. Let uy (resp., v4) be the fourth point on
L (resp., M). Since s = 3, we have us ~ vq ~ ug, uj ~ v4, implying ug = vq. So we have shown
that the grid G can completed in a unique way to a grid with 8 lines and 16 points. The four points
whose permutations map i to j (and j to i) are z,u1, ug, v1. It also follows that if z and 2’ are distinct
collinear points of D for which both 7, and 7,/ interchange 7 and j, the line through z and 2z’ must be
of type AB.

(d) Consider a 4 x 4 grid (i.e. a grid consisting of 8 lines and 16 points) containing z,y, ¢;, ¢,
and with points z,2’,2”,2"” as indicated on the diagram. Then the lines zz/, 2”2/, 2’2", 2"z are of
type AB. Clearly z,2/, 2", 2" are all in Ko, or {2,2'} = Ky and 2", 2" € Ky, or {2",2""} = Ky and
2,2 € K4. Assume we have the first case. Then each of the eight lines joining z, 2/, 2", 2" to a point
of {z,y}* contains exactly one point of K4. Since Ny = 6, at least two of these lines, say L and M,
contain a common point of Ky, say u. Clearly L and M are incident with z and 2’ or with 2” and
2. Without loss of generality we may assume that z I L and 2’ T M. Let ¢, (resp., ¢;) be the point
of {z,y}*+ on M (resp., L). Since ¢, ~ &, Cm ~ ¥, Cm 7 2", we have ¢, ~ z, giving a triangle ¢,,zu.
Hence the first case does not arise, and there is no 3 x 3 grid containing x,y and a point z € K». As
a consequence we have: A 4 x 4 grid defines a linear subspace of the 2 — (64,4,1) design, i.e. a4 x 4
grid together with the affine lines on it is AG(2,4).

G

"

zl// Z/

Figure 6.1: Diagram for (c)

(e) Let z € Ky, so 7, is a transposition, say interchanging ¢ and j, and z is collinear with
Cky C0s Cm, €. Let 2’ be the other point of K4 on the 4 x 4 grid containing z,y,z (and ¢; and ¢;).
Clearly m, = m. If Ko = {u,u'}, then u and «’ are on the grid and both 7, and 7,/ interchange i
and j. So we have proved that we may order i, j,k,¢,m,n and z1,...,2¢ in K4 in such a way that
T, = T, interchanges ¢ and j, that m,, = m,, interchanges k and ¢, that 7,, = m,, interchanges m
and n, and that m, = 7, = (ij)(k€)(mn).

Let L be a line and y a point not on L. Choose x, x I L, x o4 y. If, for example, x ~ ¢ ~ y, then
by the preceding paragraph the 4 x 4 grid containing x, y, z3, z4 is the unique 4 X 4 grid containing L
and y.

(f) In the set of lines of S we define parallelism in the following way: L||M iff L = M, or L 4 M and
L and M belong to a same 4 x 4 grid (i.e. L||M iff L = M or (L, M) is a regular pair of nonconcurrent
lines). By (e) all lines parallel to a given line form a spread of S. Now we show that parallelism is an
equivalence relation. Clearly the relation is reflexive and symmetric, and all that remains is to show
that it is transitive.

Let L||M and M||N, with L, M, N distinct. Let {L, M}*+ = {L, M, U,

V}. If N contains a point of the 4 x 4 grid defined by L and M, then clearly N L.

So assume N contains no point of the grid. Let u I N, LT uy ~ u, M T ug ~ u, U T ug ~ u,

VIug ~u, and let R € {L,M}* and u; I R. Clearly uu; } R and wu; § L. Hence the two lines
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through w and different from wu; are parallel to L and R, respectively. So N||L or N||R. Since R
intersects M and M||N, we have N||L.

An equivalence class E contains 16 lines. If L, M € E, L # M, then {L, M}*+ C E, and {L, M }*
belongs to another equivalence class. hence the elements of an equivalence class together with the line
spans contained in it form a 2 — (16,4, 1) design, i.e. AG(2,4).

Note: If (L, M) is regular, L ¢ M, and u is a point that does not belong to the grid defined by
{L, M}, then u is on two lines having no point in common with the grid: one of these lines is parallel
to all elements of {L, M}*; the other line is parallel to all lines of {L, M}++.

(g) Choose a distinguished equivalence class E. Define a new incidence structure 8’ = (P, B/,T')
as follows: B = (B\ E)U{E1,...,Es}, with Ej,..., E5 the other equivalence classes. The elements
of P’ are of three types: (i) the elements of P, (ii) the traces {L, M}* with L,M € E, L # M, (iii)
(00). Incidence is defined in the following manner: if x € P, L€ B\ E, then z I L' iff 2 I L; If z € P
and L = F;, then 2 ¥ L; if v = {L,M}*, L,M € E, N € B\ E, then 2 I' N iff N € {L, M}*; if
x={L,M}Y, L,M € E, N = E;, then 2 I' N iff {L,M}*+ C E;; (c0) I' E;, i = 1,...,5. It is now
rather straightforward to check that &’ is a GQ of order 4. There are correct numbers of points and
lines, each point is on five lines, each line is incident with five points, and there are no triangles. We
leave the somewhat tedious details to the reader.

(h) We prove that &’ = W(4). Let z,y € P, with  and y not collinear in §’. The lines of E
incident (in S) with  and y are denoted by L and M, respectively. If L # M, then {L, M }* is a point
of &’ which is collinear with (00),z,y in S’. Hence every triad containing (co) is centric and (oo) is
regular in &'. It follows from 1.3.6 (iv) and 5.2.1 that &’ = W (4) if all points z of &', (c0) # z € (00)*,
are regular in &’. Since (00) is regular, it is sufficient to prove that each triad (z,y, z), with x,y of
type (i) and z of type (ii), is centric in S’. Let z € {L,M}*, L,M € E, so x and y are not on the
4 x 4 grid defined by L and M in §. The elements of F containing x and y are denoted by U and
V', respectively. First suppose U = V. Let R and T be the lines containing = and y, respectively,
and parallel to the elements of {L, M}*. Then {R,T}** is a center of (z,y,2) in S’. Now suppose
U#V. By (f) {U, VI n{L, M}*+| € {0,1}. By the note in (f), if {U,V}*+n{L, M}*+ = &,
then the elements of {U, V}* are parallel to the elements of {L, M}+. Hence {U,V}* is a center of
(z,y,2). Finally, let {U,V}*+ n{L, M}*+ = {N}. Then, with respect to (z,y), N contains a point
u € K4. The line of {L, M }* which contains u is denoted by H. The line H, defined by = I H, ~ H
clearly does not belong to the 4 x 4 grid defined by U and V. Hence on H, is center of (z,y,u) in S.
Since S does not contain triangles, this center is the intersection of H, and H. So H contains a point
n of {x,y}+. Clearly n is a center of (r,y,2) in S’. We conclude that S’ = W (4).

(i) In 8’ the hyperbolic lines through (co) are exactly the elements of E. Now it is clear that
S = P(S8',(0)). Since 8’ = W (4) and W(4) is homogeneous in its points, the GQ § is unique up to
isomorphism. O

6.3 s=4

Using 1.2.2 and 1.2.3 it is easy to check that ¢ € {4,6,8,11,12,16}. Nothing is known about ¢t = 11
or t = 12. In the other cases unique examples are known, but the uniqueness question is settled only
in the case t = 4.

Let S = (P, B,1) be a GQ of order 4. The goal of this section is to prove that each pair of distinct
lines (or points) is regular, so that S must be isomorphic to W (4). The long proof is divided into a
fairly large number of steps.

Since s = t = 4 is even, no pair of points (respectively, lines) may be antiregular by 1.5.1 (i).
Hence each pair of noncollinear points (respectively, nonconcurrent lines) must belong to some triad
with at least three (and thus by 1.3.4 (iv) with exactly three of five) centers. Let (z,vy, 2) and (u, v, w)
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be triads of points of S. We say that (x,y, z) is orthogonal to (u,v,w) (written (x,y,z) L (u,v,w))
provided the following two conditions hold: {z,y,2}* = {u,v,w} and {u,v,w}* = {z,y, z}. Dually,
the same terminology and notation are used for lines. Our characterization of S begins with a study
of orthogonal pairs.

Until further notice let £ = (L1, La, L3) and M = (M, Ma, M3) be fized, orthogonal triads of lines

of S. Let x;; be the point at which L; meets M;, 1 < i,j < 3, and put R = {z;; || 1 < i,j < 3}.

Let T' denote the set of points incident with some L; or some M;, but not both, and put V= RUT,
P =P\V.

|P|=85; |V|=21; |P'|=64. (6.8)

An L; or M; will be called a line of R. A line incident with two points of 7" (but no point of R) will

be called a secant. A line incident with precisely one point of V' (respectively, R, T') will be called

tangent to V (respectively, R,T). A line of S incident with no point of V' will be called an exterior

line. A point of P’ collinear with three points of R will be called a center of R. Let B’ denote the set
of exterior lines. An easy count reveals the following :

There are 6 lines of R, 12 secants, 27 tangents to R, 24 tangents to T', 16

exterior lines. (6.9)

For a point y € P’ there are precisely the following possibilities :

(i) y is collinear with three points of R (i.e. y is a center of R), with no point of T, and is on two
exterior lines; or

(ii) y is collinear with two points of R, with two points of T, is on two tangents to T and is on one
exterior line; or

(iii) y is collinear with one point of R, with four points of T, and is on zero, one or two exterior
lines, aero one or two secants, and four, two or zero tangents to T', respectively; or

(iv) y is collinear with no point of R, with six points of T', and is on zero or one exterior lines, one
or two secants, and four or two tangents to T, respectively. (6.10)

Let n; be the number of points of P’ on i exterior lines, i = 0,1,2. Let k; be the number of points of
P’ collinear with 7 points of R, 7 = 0,1, 2, 3.

3 2

P=64=> ki=> ni (6.11)

1=0 i=0
Count the pairs (z,y) with x € R, y € P/ and = ~ y, to obtain the following:

3

108 =Y " ik;. (6.12)

1=0
Similarly, count the ordered triples (z,y,2), with 2,y € R,z #y,z€ P,and x ~ 2z ~ y :
108 = 2ks + 6ks. (6.13)
Solving (6.11), (6.12) and (6.13) for k;, 0 < i < 2, we have

ko = 10—ks >0,
ki = 3ks, (6.14)
ky = 54— 3ks. (6.15)
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Count pairs (z,L) withz € P', Le B', 2 1L :
80 = 1y + 2ns. (6.16)
Using (6.11) and (6.16), solve for ng :
np =ng — 16 > 0. (6.17)

A point of P’ is called special provided it lies on two secants. In general there are two possiblities.
Case (a). No secant is incident with two special points.

Case (b). Some secant is incident with two special points.

We say that the orthogonal pair (£, M) of triads of lines is of type (a) or of type (b) according as case
(a) ro case (b) occurs.

If y; and yo are distinct special points incident with a secant N, and
if the other secant through y; is K;, ¢ = 1,2, then K; and K5 do not

meet the same two lines of R. (6.18)

Proof. We may suppose that the two special points y; and yo lie on a secant N € { Mo, M3}*. Let
K; be the other secant through y;, ¢ = 1,2, and suppose that both K; and Ky are in {Ll,Lg}J—.
As My, M3, K1, Ky are all centers of the triad (Lg, L3, N), this triad must have five centers, so that
M ~ N. But then (Mj, Ms, M3) has four centers, contradicting the hypothesis that £ 1L M. O

If (L, M is an orthogonal pair of triads of lines, then ks = 10, ko = 24, k1 = 30 and kg = 0,
so that each point of P’ is collinear with some point of R, and some triad of points of R has three
centers. If (L, M) is of type (a), then no = 16, n; = 48 and ng = 0. (6.19)

Proof. Suppose kg > 0, so there is some point y € P’ collinear with no point of R. By (6.10) (iv) y
must lie on some secant; say y is on N € { My, M3}*. Then the secants meeting M; and belonging to
the family opposite to that containing N make it impossible for y to be collinear with some point of
M lying in T. Hence y must be collinear with some point of R, implying ko = 0, k3 = 10, k; = 30,
ko = 24. Now assume that the triad (z1,z2,z3) of points of R has centers y; and yo. If z; T N,
i=1,2,3, with N; & {x;,y1, 2,92} and N; not a line of R, then clearly Ny ~ Ny ~ N3 ~ N;. Hence
there is a point y3 incident with N;, i = 1,2,3, so that (1, x2,x3) has three centers. Since there are
ten centers of R and six triads consisting of points of R, some triad of R must have three centers.

Suppose (£, M) is of type (a). Since there are six secants concurrent with a pair of L;’s and any
special point must lie on such a secant, there are at most six special points. So ng < 6 4+ k3 = 16, and
by (6.17) ng > 16. Hence ng = 16, ng =0 and n; =48. O

If a secant pases through two special points, it must be incident with three special points. The other

secants through these special points must be the secants of one family. ( )
6.20

Proof. Let N be a secant incident with two special points y; and y». We may suppose N €
{M,, M3}*, and that if K; is the other secant through y;, i = 1,2, then K| € {Ls, L3}* and K5 €
{Ly, L3}*. Clearly K1 and K> must belong to the same family. By considering which points of N are
collinear with which points of L1, L and L3 we see easily that the third point y3 on /N and on no M;
must lie on the third secant of the family containing K; and Ks. O

Let Ny be a secant incident with two special points y1 and yz, and let K1 be the other secant through
y1. If (N1, N2, N3) is the family of secants containing N1 and (Ki, Ko, K3) is the family of secants
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containing K1, then (K1, Ky, K3) L (N1, N2, N3). Moreover, the nine intersection points N; N K are
all special points. (6.21)

Proof. By (6.20) there must be a third special point y3 on N;j. Let K; be the other secant on y;,
© = 1,2, 3, and suppose that the K;’s are incident with no special points other than y1, y2, y3. We may
suppose Nj € { Mo, Mg}J‘. Let a, b, c be the points of M; and Ms as indicated in Fig. 6.2.

Ly
Loy
Ls
n Y2 Y3 N
a
b c d e
M My M3 K, K, K
Figure 6.2:

As there are only two available lines through the point a to meet K1, Ko, and K3, one of them
must hit two of the K;’s, say K; and K3. Let d and e be the remaining points of K; and Ks as
indicated. The point b must be collinear with some point of K; and some point of Ks. It follows
readily that d ~ b ~ e. Similarly, ¢ must be collinear with some point of K7 and some point of Kj.
But the only available points are those at which the line through a meets K7 and Ks, respectively. Of
course, ¢ cannot be collinear with both of these. Hence at least one of K1, K9, K3 must pass through
some additional special point. For example, if K; has an additional special point, then by (6.20) K
must have three special points. Moreover, by relabeling we may assume that the points and lines are
related as in Fig. 6.3. But now the three points of Ny on M7, M3, and K7 must each be collinear with
some point of Ko, but not with any point of K9 on Ly, L3, or Nj.

It follows that Ny ~ Kj. Similarly, Ny ~ K3, N3 ~ K, and N3 ~ Kj3. The proof of (6.21) is
essentially completed. O

FEach orthogonal pair (L, M) must have type (a). (6.22)

Proof. Suppose (£, M) is an orthogonal pair of triads of type (b), so that a family N' = (N1, No, N3)
of secants to the M;’s is orthogonal to a family K = (K, Ko, K3) of secants to the L;’s. Let R be
the set of points at which some NN; meets some Kj, 1 < 4,5 < 3. A point y of P’ \ R" will be called
an exterior point. The family of secants opposite to N meets the family of secants opposite to K in
somewhere between 0 and 9 special points, implying that there are between 9 and 18 exterior points
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Figure 6.3:

lying on at least one secant. As there are 55 exterior points, there must be at least 37 exterior points
lying on no secant. Let y be an exterior point lying on no secant. The argument used to prove (6.19)
may now be used to show that y must be collinear with some point of R’ (alternatively, by (6.10)(iv)
it is immediate that y is collinear with some point of R').

Case 1. The point y is collinear with one point of R and lies on four tangents to T (since by assumption
y is on no secant). It follows that y is collinear with one point of R’, necessarily on the same line
joining it to a point of R.

Case 2. The point y is collinear with two points of R and lies on two tangents to T', one meeting some
L; and one meeting some M;. It follows readily that y cannot be collinear with one or three points of
R’. Hence y is collinear with two points of R’. As y is on five lines, including two tangents to T', one
of the lines joining y to a point of R must join y to a point of R'.

Case 3. The point y is collinear with three points of R. It follows readily that y is collinear with three
points of R’, and y must be on some line joining a point of R to a point of R'.

Hence there must be at least 37 exterior points on line joining a point of R with a point of R’. But
each point of R is collinear wth a unique point of R’, so there are at most 9 x 3 = 27 exterior points
lying on lines joining points of R to points of R’. This contradiction completes the proof of (6.22).
O

This completes our preliminary study of orthogonal pairs, with (6.19) and (6.22) being the main
results, and we drop the notation used so far.

Until further notice let S have a regular pair (Lo, L1) of nonconcurrent lines. Let {Lo, L1}* =
{Mo,..., My}, {Lo, L1}t = {Lo,..., Ls}. Let x;; be the point at which L; and M; meet, and put
R:{l‘ij ” 0<Z,j<4}

Each line of S is in {Lo, L1} U {Lo, L1 }** or meets R in a unique point. (6.23)
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Proof. This accounts for all 85 lines. O

FEither each triad of R has a unique center, so S = W (4) by 5.2.6, or each triad of R has ef@.otYy

0 or 3 centers. ) .
Proof. Clearly no triad of R could have four or five centers. Suppose some triad, say (xoo, Z11,Z22)

has two centers yo and y;. Let N;; be the line through y; and x;;, ¢ = 0,1, 7 = 0,1,2. Then
L;, Mj, Nyj, N1j are four of the five lines through z;;, j = 0,1,2. Moreover, for 0 < j < k < 2, each
one of L;, Mj, N,j, N1; meets one of Ly, My, Noi, N1. Hence the fifth lines through xgg, z11, and 22
all meet at some point ys, showing that no triad of R has exactly two centers. It follows that either
each of (zoo,z11,222), (Z00,211,232), (Z00,Z11,2T42) has a unique center, or one of them has three
centers and the other two have no center. It is easy to move around the grid R to complete the proof
of (6.24). O

As mentioned in (6.24), if each triad of R has a unique center, then S = W (4) by 5.2.6. Hence until
further notice we assume that each triad of R has exactly O or 3 centers.

If a triad (yo,y1,y2) has three centers in R, it must have five centers in R. ( )
6.25

Proof. Suppose (zgo, 11, 22) has three centers yo, y1,y2. Then for 0 < j < 2, y; is collinear with
both 33 and x44 or y; is collinear wtih both x34 and x43. By relabeling we may suppose that yo and
y1 are both collinear with x33 and x44. If yo were collinear with both x34 and x43, then the two lines
Y2243 and yax34 must meet the lines y;x33 and y;z44 in some order, j = 0,1. Any such possibility
quickly yields a triangle. Hence y» must also be collinear with x33 and x44. This shows that if a triad
has three centers in R, it must have five centers in R. O

It follows that each pair of noncollinear points of R belongs to a unique 5-tuple of noncollinear
points of R having three centers yg,y1,y2. Such a 5-tuple will be called a circle of R with centers
Y0,Y1,y2. For each y € P\ R, the points of R collinear with y form a circle denoted C,. Moreover,
given y € P\ R, there are two other points y',y” € P\ R for which Cy = Cy = Cyy.

There are 25 points z;; of R with eqach z;; lying on L; and M; and on 4 circles. Two distinct
points of R lie on a unique one of the ten lines L;, M;, or on a unique circle. It follows readily that
the points of R together with the lines and circles of R are the points and lines, respectively, of the
affine plane AG(2,5). The line of AG(2,5) defined by distinct points =,y of R will be denoted (xy).

Our goal, of course, is to obtain a contradiction under the present hypotheses. At this point in
the published “proof” [131] the argument is incomplete, and the authors thank J. Tits for providing
the argument given here to finish off this case.

We continue to consider R as the pointset of the affine plane AG(2,5) in which the two families
Lg,...,Ls and My, ..., My of lines are two distinguished sets of parallel lines called horizontal and
vertical, respectively. A path is a sequence zyz ... of points of R which x #£ y o4 z o4 .... Let P denote
the set of all paths. Each z € R is incident in S with three tangents to R, which are labeled [z, ],
i = 1,2,3, in a fixed but arbitrary manner. To each xy € P we associate a permutation ¢,, of the
elements {1,2,3} as follows : i = j iff [z,4] ~ [y,j] in S. For any path x1x3 ..., we denote by
Oxy..z,, the composition ¢z 2y Guozs Gz 12, 1 1 = 25 and if ¢y, 4, is the identity permutation,
we write x1Ty...x, ~ 0.

By our construction, the following condition is seen to hold for all paths of the form xyzz.

For xyzx € P, either x,y, z are collinear in AG(2,5) and xyzx ~ 0, or they are not collinear in
AG(2,5) and ¢uy.q is fized-point free (i.e. is a 3-cycle).
(6.26)

If zyztz € P, if (zvy) and (zt) are parallel in AG(2,5), and if the ratio of the slopes of the lines
(yz) and (tx) (w.r.t. horizontals and verticals) is different from +1, then xytza ~ 0. (6.27)
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Proof. Let a be the intersection of the lines (zt) and (yz). Note : a,z,y,z,t must all be distinct.
The points of the lines (axt) and (ayz) can be labeled, respectively, a, by, b1, be, bs and a, ¢, c1, c2, c3
in such a way that the lines (b;c;) are all parallel and neither horizontal nor vertical, and similarly
for the lines (b;ci11), where subscripts run over the integers modulo 4. (For example, by exchanging
horizontals and verticals, if necessary, one may assume that the slopes of (axt) and (ayz) are 1 and 2,
respectively, and for a coordinate system centered at a take b; = (2¢,w?), ¢; = (2°+1,212). Here the
coordinates for AG(2,5) are taken from Zs.) Now

¢ab1c1boa . Qbaclbla : d)abocla = ¢ab1c1a . ¢ac1boa : ¢ac1b1a . Qbabocla = ldv (628)

-1
arya*

since 3-cycles on {1,2,3} commute and ¢y =

As Gabieiboa = Paby - Pbi1ciboby - qb;bll is a 3-cycle also, all three factors of the original product
must be equal. In particular, ¢upocia = Pacibia- Repeating the argument we find that ¢appe,a =
GPacrbra = Pabiesa = Pacgbya = ---. (To derive the second equality, in (6.28) replace bg,c1,b1 by
c1, b1, co, respectively.) Then from ¢gp,c,a = Gabjcja With j # @ we have id = @ap;c;a - (bgblj ca =
Gabicia” Pacibsa = Pab; * Pbicicibib; * Posas from which it follows that bic;c;jbjb; ~ 0. Similarly, starting with
Gabicira = Pabjcjpras J 7 4 we find biciy1¢j4105b; ~ 0. The relation zyztz ~ 0 must be one of these
two, since the lines (b;c;) and (b;ci+1) are the only nonhorizontal and nonvertical lines connecting
points b; and ¢. O

We are now ready to obtain the desired contradiction.

If § has even one regular pair of nonconcurrent lines (respectively, points), then S = W (4).
(6.29)

Proof. Continuing with the asumptions and notations just preceding (6.25), consider five distinct
points x,y, z, t, u such that u,t and z are collinear in AG(2,5), (zy) is parallel to (utz), the lines (zy),
(yz), (xt), (zu) represent the four nonhorizontal and nonvertical directions, and the lines (zy) and
(yz) have opposite slopes. (For example, take z = (0,0), y = (1,1), 2 = (0,2), t = (1,3), u = (2,4).)
By (6.27) xyztx ~ 0 and zyzux ~ 0. Combining these we obtain ¢,; - ¢rx = Pon - Guz = (P2t - Otw) - Puzs
and finally id = ¢y, - Puz - Pt But this says tuxzt ~ 0, which is impossible by (6.26). O

If § is a GQ of order 4 not isomorphic to W(4), then any triad of points or lines having ¢/Bey

centers must have exactly three centers. ) ) )
Proof. Let S be a GQ of order 4. Then by 1.5.1 (i) each pair (Li, L2) of non-concurrent lines must

belong to some triad £ = (L1, Lo, L) with at leat three centers (M, My, M3) = M. If both £ and M
have five centers, then (Ly, L) is regular. (For suppose £+ = {Mj,..., M5} and M+ = {Ly,...,Ls}.
Let j,k € {4,5} and consider which points of L; are collinear with which points of M;,. It follows
readily that {L1,..., Ls}* = {Mj, ..., Ms}.) Hence S = W (4) by (6.29). If £ has five centers but M
has only three, it easily follows that the ten pints on the five centers of £ but on no line of £ may be
split into two sets of five, with one set being the perp (or trace) of the other. This would force S to
have a regular pair of points, contradicting (6.29). O

For the remainder of this section we assume that S is a GQ of order 4, S % W(4), and let
L = (L1, Lo, L3) and M = (My, My, M3) denote an orthogonal pair of triads of lines, necessarily of
type (a). The notation and terminology of the beginning of this section, up through the proof of (6.19),
will also be used throughout the rest of this section. From the proof of (6.19), Ny = 16 and k3 = 10.
By (6.10) this leaves exactly 6 special points, proving the following :

Each secant is incident with a unique special point. (6.31)
Let a and b denote distinct special points of the pair (£, M). Let N, and K, be the secants

through a meeting lines of M and L, respectively. Similarly, N, and K} denote the secans through
b meeting lines of M and L, respectively. The pair (a,b) of special points is said to be homologous
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provided N, and N, belong to the same family of secants and K, and K} belong to the same family
of secants.

If (a,b) is an homologous pair of special points, then a ~ b. (6.32)

Proof. With no loss in generality we may suppose that (a, b) is a homologous pair of special points with
al Ny € {My, M3}* and a 1 Ky € {La, L3}, and with b1 Ny € {My, M3}+ and b1 Ko € {L1, L3}~.
Then a ~ x11 = L1NM7, and b ~ x99 = LoNMs. Let N3 and K3 be secants for which N = (N1, No, Ng)
is one of the two families of secants meeting lines of M and K = (K7, K, K3) is one of the two families
of secants meeting lines of £. Let a;; = L N Kj, i # j, 1 < 4,5 < 3, and let b;; = M; N Nj, ¢ # j,
1 <14,57 < 3. Let ¢ and d be the two remaining points of K7, e and f the two remaining points of
K>. Suppose ¢ and d are labeled so that b13 ~ ¢ and bjs ~ d. Then the “projection” from M; onto
K7 is complete. Consider the projection from Ms onto K. Clearly x12 = L1 N Mo and bog must be
collinear, in some order, with ¢ and d. It follows easily that bes 7 ¢ (since the secant K1 may not pass
through two special points), so bes ~ d and x12 ~ c.
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Figure 6.4:

Projecting from L onto K7 we find that s13 ~ d. Projecting from M3 onto K7, we find b3y ~ c.
In projecting from Ks onto K7, it is clear that b must be collinear with one of a,c,d. But bio ~ d
precludes b ~ d, and b3y ~ ¢, as no secant may have two special points. Hence b ~ a. O

An orthogonal pair (£, M) is called rigid provided that three special points lying on one family of
secants of (£, M) are pairwise homologous.



Generalized quadrangles with small parameters 91

No orthogonal pair is rigid. (6.33)

Proof. Suppose (£, M) is a rigid orthogonal pair. Hence the six special points are divided into
two sets of three, say S = {a,b,c} and S’ = {d/,V/, '}, with each pair of points in one set being
homologous. By (6.32) and since S has no triangles, the points of S (respectively, S’) lie on some
exterior line L (respectively, L'). Let N = (N1, N2, N3) and K = (K71, Ko, K3) be the two families of
secants on a, b, ¢, and suppose that the lines are labeled so that the incidences are as described in part
by Fig. 6.5.

Ly

Loy

L
M,y My M3 K Ky K3
Figure 6.5:

Let NV = (N{, N}, N%) (resp. K' = (K1, K}, K})) be the family of secants opposite to N/ (resp.,
to K) with M; ¢ N/ (resp., L; # K]), i = 1,2,3. Finally, let a;; = L; N Kj, bjj = M; N Nj, i # j,
g < 1,7 < 3. It is easy to check that By = (b12, bas, b31) and By = (ba1, bz, b13) are orthogonal traids of
points. The nine lines joining them are M;, N;, N/, 1 < i < 3. the six triads formed by these lines are
M NN, and (M;, N;, N!), i = 1,2,3. By the dual of (6.19) there must be ten lines that are centers
of these six triads. Of course M has three centers, and we claim that neither A" nor N/ can have three
centers. The two cases are entirely similar, so consider A'. AN has the center L. Suppose there were
two other centers Ky and K5 of N. For i # j, 1 < 1,7 < 3, the point a;; is collinear with K; N L on N,
but must be collinear with a point of Ny lying on K4 or K5 if k # j, 1 < k < 3. Since no secant of the
family K’ opposite to K can meet a memeber of A, it is easy to reqach a contradiction by considering
which points a;; are collinear with which points of Ky N N, i # j, k # j, 1 <4,5,k < 3,t =4,5. It is
also clear that if N has a second center Ky, it also has a third center K5. It follows that the unique
center of N is L, the unique center of N’ is L', and one of (M;, N;, N}), i = 1,2,3, must have three
centers while the other two each have just one center (by the proof of (6.19) (M;, N;, N}) cannot have
exactly two centers). By relabeling we may suppose (M7, N1, N{) has three centers. Let d, e, f be the
special points (w.r.t. (£, M)) lying on Ni, Nj, Ni, respectively ({d,e, f} = {a’,V/,’}). The remainder
of the proof of (6.33) is divided into three cases according as f is collinear with x11, 21, or x3;.
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Case 1. f ~ x11 (cf. Fig 6.6).

As (M, Ny, N{) is assumed to have three centers and a ~ x11, it must be that z11, f, a all lie on one
line. Let p and ¢ be the points of Ny collinear with ai9 and a3, respectively. Then a3 ~ p and
asg ~ ¢, so that p ~ x3; and ¢ ~ x9;. Let v = N{ Nx31p and w = Ny Nx21q. Let the points r, s of
Ny and ¢, u of N3 be labeled so that p ~ 7 ~t ~ g~ s~ u~ p. Of the three lines L, K} and K>
through a1z, none can meet Ni, Ny or N3. Moreover, a line through aj2 cannot meet both Nj and
one of Ny, N3. Hence the line through ai2 and p must be the line pu, and a1 ~ w on the fifth line
through ais. A similar argument shows that ai3,q, s lie on a line. This implies aog ¢ s, S0 as3 ~ 7
and ag; ~ s. Again, a similar argument shows that aoi, s,u lie on a lien. Then asy 4 u, so q31 ~ t.
And a3y # s implies as; ~ 7, S0 az1,r,t lie on a line. This implies ags ~ u. But as a2, p,u are on a
line and a2 ~ ass, a contradiction has been reached.

TO BE DONE

Figure 6.6:

Case 2. f ~ 9.

The three secants K/, K}, K4 pass through the points d, e, f in some order, and in this case it is clear
that K’ must pass through f. We then easily obtain a contradiction by considering the points of Nj
collinear with L11,212,221,213,T31-

Case 3. f ~ x31.

In this case K% must pass through f, and again we obtain a contradiction by considering the points
of N{ collinear with x11, 12, 221, €13, £31. This completes the proof of (6.33). O

From now on we may supose that each orthogonal pair is flexible, i.e., it is not rigid. Let (£, M)
be a (flexible) orthogonal pair. Let A and N’ be the two opposite families of secants meeting lines
of M, and let K and K’ be the two opposite families of secants meeting lines of £. Then each of N,
N is paired with just one of K, K', in the following sense : A is paired with K provided that two of
the secants of N/ meet two of the secants of K. If N is paired with K and if N € N/, K’ € K/, with
N ~ K', we say N is the odd member of the family A/. (Also in this case K’ must be the odd member
of the family K, since K’ is paired with N’.) We may choose notation so that N' = (Ny, No, N3) is
paired with K = (K3, Ko, K3), with N1 ~ K7, N3 ~ K3. If the odd member Ny of N meets the secant
of K’ that belongs to {K7, K3} and the odd member K5 of K meets the secant of A that belongs
to {IN1, N3}, then the pairing N < K is strong and the pair (£, M) is strongly flexible. Clearly then
also the pairing N7 « K’ is strong.

FEvery orthogonal pair (L, M) is strongly flexible. (6.34)

Proof. Let (£, M) be an orthogonal pair that fails to be strongly flexible. By labeling appropriately
we may suppose that A/ and K are paired as in the preceding paragraph with the odd member N,
of N meeting the secant K/ of K’ that belongs to {Ks, K3} (cf. Fig. 6.7). Put a = Ny N K; and
b= N3N K}, soa~bby (6.32) and ab is an exterior line. The unique point of R collinear with a is
z11, and the unique point of R collinear with b is x33. Let ¢ = Np N K{. Put bj; = M; N Nj, i # j,
1 <i,5 < 3. Let d and e be the remaining two points of K;, say with 15 ~ d and b12 ~ e. Then
considering the projection from M, onto K7, it follows that 12 ~ d and beg ~ e. Projecting M3 onto
K1, we find that x13 ~ e and bza ~ d. As bia ~ e and bss ~ d, clearly d # ¢ # e. Projecting K| onto
K1, we find ¢ ~ a. At this point we know that abo1, ad, ac, ab, and axiy are five distinct lines through
a. One of these lines must be the line through a meeting the secant Ni through bss and ba3. The only
possibility is the line azi;. Say N{ Nazri; = y. Now y is collinear only with the point x1; of R, but
it must be collinear with some point of Ly and some point of Ls. It is collinear with the point a of
K, hence must be collinear with both ags = K| N L and asy = K1 N Ls. This forces y to lie on Kj.
Clearly y # ¢, so K contains the two special points y and c. This completes the proof of (6.34). O
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TO BE DONE

Figure 6.7:

We are now nearing the end of the proof of the main result of this section.

6.3.1. (S.E. Payne [151, 132]). A GQ S of order 4 must be isomorphic to W (4).

Proof. Continuing with the assumptions and notation adopted after the proof of (6.30), we may
suppose that relative to the stronly flexible orthogonal pair (£, M) the odd member Ny of N meets
the secant K of K’ that belongs to {K7, Kg}L; similarly, the odd member K5 of K meets teh secant
N} of N’ that belongs to { N1, N3}+. This implies that A7 and K’ are paired and have odd members
Ny and K3, respectively. So Nj and N meet K| and K% in some order. The remainder of the proof
is divided into two cases : Case 1. N| ~ K} and Nj ~ K. Case 2. N{ ~ K| and Nj ~ Kj3.

Case 1 is impossible. (6.35)

Assume that Case 1 holds for the strongly flexible orthogonal pair £, M), and label four of the special
points as follows : a = K1 N Ny; b= K3N N3; ¢ = N{ N Kj; d = NiN K{. The situation is partially
depcited in Fig. ??7. Note that the four lines through the point d of Fig. 7?7 must be distinct. Then
by considering the projections from Kj onto Mj, My, M3, the diagram may be filled in further, as
indicated by the solid lines in Fig. ??7. Moreover, the line from d to K; must be new and must hit
K, at the point of the figure indicated. The triad (Ma, M3, K1) is orthogonal to (Lga, L3, N1). And
K7 cannot hit Ny, for otherwise K| would be a secant of (£, M) with two special points. So K is
a secant of the pair ((Ma, M3, K1), (L2, L3, N1)), and must have a unique special point with respect
to this orthogonal pair. Hence K’ must meet exactly one of the six secants that hit two of the lines
Mo, M3, K1. These six secants are already indicated in Fig. 7?7, and the only possibility is indicated
by the dotted extension of K71, i.e. K| meets the line from beg to K. The points of N3 are b3, bas,
b, and two others, say e and f. And a2, ags must be collinear in some order with e and f. Label e
and f so that a1o ~ e and ags ~ f. Projecting K7 onto N3, we have as; ~ f and az; ~ e. Projecting
L1 onto N3, we find z13 ~ f. It follows that d may not be collinear with any of by3, bes, b, f. On the
other hand, each of the five lines through d is clearly unsuitable as a line through d and e. Hence d is
collinear with no point of N3, an impossibility that proves (6.35).

Case 2 is impossible. (6.36)

Assume that Case 2 holds for the strongly flexible orthogonal pair (£, M), and label the special points
as indicated in Fig. 2?7 : a = K1 N Ny; b= K3N N3; ¢ = NjN K; d = K{ N Nj. Project Nj onto K
to force their special points e and f to be collinear on a line M through z23. Project N} onto K3 to
find that c is collinear with b on a line through x33. Similarly, project Ni onto K7 to find that d and
a lie on a line through x1;.

Let p, q,g be the other three points on the line L through a and b. Notice that ab is an exterior
line and that each secant concurrent with L is one of No, NJ, Ko, KI. If N} ~ ab (resp., K} ~ ab) we
have case (iii) in (6.10) and hence K}, NJ and ab are concurrent, a contradiction. Hence p,q, g are
incident with no secant. It follows that p,q, g are each collinear with two or three points of R. One
of p,q, g, say p, is collinear with a;2 and with two points of R. One of g, q, say ¢, is collinear with aso
and with two points of R. By (ii) of (6.10) p and ¢, in some order, are collinear, respectively, with bjo
and bsa. As neither a nor b is collinear with the special points e = Ko N N} and f = K N N, it must
be that g ~eand f~g. Sog=LNM.

Let N = cd. Let N play the role of L in the above paragraph to find that N meets M at a point
h. So f,g,h,e, xo0 are the five distinct points of M. The points z11, z13, 31, x33 of R must each be
collinear with a point of M. It follows that x1; and x33 are collinear with one of g, h, and x13 and x3;
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are collinear with the other. But it is also easy to see that x11 (resp., x33) may not be collinear wth
g (resp., h). O

6.3.2. (J.A. Thas [210]). If a GQ S = (P, B,1) of order (4,16) contains a 3-regular triad, then it is
isomorphic to Q(5,4).

Proof. Let (z,y,2) be a 3-regular triad of the GQ S of order (4,16). Then by 2.6.2 {z,y,z}*+ U
{x,y, 2} is contained in a subquadrangle S’ = (P’, B/,I') of order 4. By 6.3.1 &' may be identified
with Q(4,4) (& W(4)).

In Q(4,4) all points are regular. It follows immediately that any three distinct points of an
hyperbolic line of Q(4,4) form a 3-regular triad of S.

Let u be a point of P\ A. The 17 points of @ which are collinear with u form an ovoid of (4, 4).
It is well known that each ovoid of Q(4,4) belongs to a hyperplane PG(3,4) of the space PG(4,4)
containing ) (this easily follows from the uniqueness of the projective plane of order 4). So the number
of ovoids of Q(4,4) equals 120. Since for any triad (uj,uz2,u3) of S we have |{u1,u2,u3}*| = 5, clearly
any ovoid of (Q(4,4) corresponds to at most two points of P\ Q). Since |P \ Q| = 240, any ovoid of
Q(4,4) corresponds to exactly two points of P\ Q.

Consider a triad (v1,ve,v3) of S with v; € @, i = 1,2,3. We shall prove that (v, ve,v3) is 3-
regular. We already noticed that this is the case if v1, v, v3 are points of an hyperbolic line of (4, 4).
So assume that v1,v9,v3 do not belong to a common hyperbolic line. Since each point of Q(4,4) is
regular, we have {v1, v, v3}"7"¢ = {w} in Q(4,4) (cf. 1.3.6 (ii)). Let C be the conic Q N7, where
7 is the plane vivovs. Clearly w is collinear with each point of C. In Q(4,4) there are two ovoids
O, 0" which contain C. The points of P\ @ which correspond to O, O’ are denoted by wuy, ua, u}, uh.
Since w1, ug,u},uh are collinear with all points of C, we have {vy,v2,v3}* = {w,u1,uz,u},uh} and
{v1,v2,v3}+ = C. Hence (vy,v9,v3) is 3-regular in S.

Now we shall show that any point v of @ is 3-regular. If (v,v’,v”) is a triad consisting of points
of @, then we have already shown that (v,v’,v”) is 3-regular. Next, let (v,v’,0v”) be a triad with
v € Q, v € P\ Q. Let w be a point of @ which is collinear with v and v'. If (v, vs,v3) is a
triad with v; € wt' C Q, i = 1,2,3, then by the preceding paragraph {vy, va, 1)3,}Ll is contained in a
subquadrangle S; of order 4. If {vy,v2,v3}" is not an hyperbolic line of Q(4,4), then S; # Q(4,4).
If the intersection S” of S; and Q(4,4) contains a point which is not in w'', then by 2.3.1 8" is a
subquadrangle of order 4 of Q(4,4), i.e. Q(4,4) = S1, a contradiction. Hence the intersection of the
pointsets of S; and Q(4,4) is w'. Next, if (v}, v}, v}) is another triad in w'’ and if the corresponding
subquadrangle S is distinct from Sj, then clearly wt’ is the intersection of the pointsets of S; and
S{. The number of subquadrangles arising from triads in wt’ is equal to the quotient of the number
1”7 and the number of hyperbolic lines in wt’ of a given Si, hence is equal
to 64/16 = 4. The total number of points of these 4 quadrangles is 277. Clearly no one of these
subquadrangles contains points of w' \ w''. Since |w’\ w'| = 48 and |P| = 325, the union of the 4
subquadrangles and wh\w'' is exactly P. Now suppose that each point w € {v,v'} is collinear with v”.
If wy, wy, w3 are distinct points of {v, v’} , then v € {wy, wo, w3}, But {wy, w, w3} = {v, v/},
and so v € {v, v’} C Q, a contradiction. So we may assume that w £ v”. Then one of the 4
subquadrangles corresponding to w contains v”, say S;. Interchanging the roles of Q(4,4) and Sy, we
see that each triad in S; is 3-regular. Hence (v,v’;v"”) is 3-regular. Finally, let (v,v’,v") be a triad
with v/,v” € P\ Q. Let v" be a point of Q(4,4) which is not collinear with v or v'. Let S; be a
subquadrangle of the type described above containing v, v’,v"”’. Now, interchanging the roles of S; and
Q(4,4), we know by the preceding cases that (v,v’,v"”) is 3-regular. We conclude that v is 3-regular.

Next, let u € P\ Q. Choose a triad (u,u’,u”) with «/,u” € Q. Then there is a subquadrangle S;
of order 4 containing u, ', u”. Interchanging roles of S; and Q(4,4), we see that u is 3-regular.

Since all points of S are 3-regular, S = Q(5,4) by 5.3.3. O

of irreducible conics in w



Chapter 7

Generalized Quadrangles in Finite
Affine Spaces

7.1 Introduction

By the beautiful theorem of F. Buekenhout and C. Lefévre (cf. Chapter 4) we know that if a pointset
of PG(d, s) together with a lineset of PG(d, s) form a GQ S of order (s,t), then S is a classical GQ.
So all GQ of order (s,t) embedded in PG(d, s) are known.

In this chapter we solve the following analogous problem for affine spaces : find all GQ of order
(s,t) whose points are points for affine spaces AG(d, s + 1), whose lines are lines of AG(d, s + 1), and
where the incidence is that of AG(d, s+ 1). In other words, we determine all GQ whose lines are lines
of a finite space AG(d, q), whose points are all the points of AG(d, q) on these lines, and where the
incidence is the natural one (here ¢ = s + 1). Such GQ are said to be embedded in AG(d, q). This
embedding problem was completely solved by J.A. Thas [199]. The theorem on the embedding in
AG(3, q) was proved independently by A. Bichara [12].

Finally, we note that in contrast with the projective case, there arise five nontrivial “sporadic”
cases in the finite affine case.

7.2 Embedding in AG(2,s+ 1)

7.2.1. If the GQ S of order (s,t) is embedded in AG(2,s + 1), then the lineset of S is the union of
two parallel classes of the plane and the pointset of S is the pointset of the plane.

Proof. Easy exercise. O

7.3 Embedding in AG(3,s+ 1)

7.3.1. Suppose that the GQ S = (P, B,1) of order (s,t) is embedded in AG(3,s + 1), and that P is
not contained in a plane of AG(3,s+ 1). Then one of the following cases must occur :

(i) s=1, t =2 (trivial case);

(ii) t = 1 and the elements of S are the affine points and affine lines of an hyperbolic quadric of
PG(3,s+ 1), the projective completion of AG(3, s+ 1), which is tangent to the plane at infinity
of AG(3,s+1);

95
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(iii) P is the pointset of AG(3,s+1) and B the set of all lines of AG(3, s+ 1) whose points at infinity
are the points of a complete oval O of the plane at infinity of AG(3,s+1), i.e. S =T5(O) (here
s+1=2"andt=s+2);

(iv) P is the pointset of AG(3,s + 1) and B = By U By, where By is the set of all affine totally
isotropic lines with respect to a symplectic polarity 6 of the projective completion PG(3,s + 1)
of AG(3,s + 1) and where By is the class of parallel lines defined by the pole x (the image with
respect to ) of the plane at infinity of AG(3,s + 1), i.e. S=PW(s+1),z) (heret=s+2);

(v) s=1t=2 (an embedding of the GQ with 15 points and 15 lines in AG(3,3)).

Proof. Suppose that © € P, L € B and x ¥ L. Then a substructure S, = (P, Bu, L) is induced in
the plane L = w. By 2.3.1 B, is the union of two parallel classes of lines in w or B, is a set of lines
with common point y, and in both cases P, is the set of all points on the lines of B,,.

Assume that B, is a set of lines with common point y, and that there exists a line M in B which
is incident with y and which is not contained in w (hence ¢t > 1). Let z I M, z # y. The lines of B
though z are necessarily the line M and ¢ lines in a plane w’ parallel to w. We claim that B, is a
set of ¢ lines with common point z. For otherwise B, would consist of two parallel classes of lines in
w’. Then ¢t = 2 and the number of lines of B which are incident with y and have a point in common
with P, equals s + 1. So there are at least (s + 1) + 2 > 3 lines of B which are incident with y, a
contradiction which proves our claim. Analogously (interchange y and z) B, is a set of ¢ lines with
common point y.

It follows that if w is a plane containing at least two lines of 3, there are three possibilities for S,
: If S, is a net, we say w is of type I; if B, is a set of ¢ lines having a common point ¥y, we say w is of
type IT (if M is the line defined by y I M, M € B—B,,, and if z I M, then the ¢t + 1 lines of B incident
with z are M and ¢ lines in a plane w’ parallel to w and also of type IT); if B,, is the set of ¢ + 1 lines
having a common point y, we say w is of type I11.

The remainder of the proof is divided into three cases that depend on the value of ¢, beginning
with the most general case.

(a) t > 2.

Assume that w is a plane which contains exactly one line L of B. Let LIy I M 1z, with M € B—{L},
x # y. The lines of B which are incident with x are M and ¢ lines in a plane w’ parallel to w. Since
t > 2, the plane ' is of type II. Consequently the lines of B which are incident with y are M and ¢
lines in the plane w, a contradiction. So any plane w contains no line of B or at least two lines of B.

Now suppose that w is a plane of type I1I, and let L be a line of B,,. The common point of the
t+ 1 lines of B, is denoted by y. Assume that each plane through L is of type IT or I1I. As there are
s + 2 planes though L and only s 4 1 points on L, there is some point z on L which is incident with
at least 2t — 1 lines of B, a contradiction. So there must be a plane w’ though L which is of type I.
In &, there are two lines L, N which are incident with y, forcing y to be incident with at least t + 2
lines of B, a contradiction. It follows that there are no planes of type I11.

Next assume that there is at least one plane w of type I1. The common point of the lines of B, is
denoted yg, and M denotes the line of S which is incident with yo but not contained in w. Suppose
that yg, 1, ..., ys are the points of M and that L;1, Lo, ..., Ly, M are the t + 1 lines of B incident
with y;, ¢ = 0, 1, ..., s. Each plane w’ which contains L;; but not M, and which is not parallel to
w is of type II, since otherwise g; would be incident with at least ¢t + 2 lines of B. Next let w” be
a plane which is contains M, and suppose that w” is of type II. If y; is the common point of the
lines B, then y; is incident with the t lines of B, and also with the ¢ lines L;1, L;2, ..., L, an
impossibility. Hence any plane w” through M is of type I. It follows that for any i € {0,1,...,s}
there is a unique one of the lines L;; which is contained in B,». So the number of planes w” though
M is equal to |{L;1, Lia, . .., Lyt }| = t. Consequently ¢t = s +2 and v = (s + 1)3, i.e. P is the pointset
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of AG(3,s+ 1). From the preceding there also follows that any line of AG(3,s + 1) which is parallel
to M is an element of B. It is now also clear that any parallel plane to M is of type I, and that any
plane not parallel to M contains a line L;; and consequently is of type I1. Also it is easy to see that
the same conclusions hold if we replace M by any line parallel to M.

The plane at infinity of AG(3,s + 1) is denoted by 7, and the point at infinity of M is denoted
by ¥Yso. Let y; be a point of M’, where M’ is parallel to M and let L., L,, ..., L!,, M’ be the lines
of B which are incident with y/. The lines L};, L’,, ..., L}, are contained in a plane w;, and the line
at infinity M/ of w} is independent of the choice of y; on M’. We notice that yo is not on M. . If
the lines M’ and M", M’ # M", are both parallel to M, then we show that M/ # M, . Suppose the
contrary. Then any plane with line at infinity M/ contains at least 2t — 1 lines of B, a contradiction.
Hence M/, # M. So with the (s + 1) lines parallel to M there correspond the (s + 1)? lines of 7o,
which do not contain y.,. Now consider a line Ny, of 7o, though 9.

A plane w” with line at infinity N, is of type I, and the lines of B in w” define two points at
infinity, yso and 2.0, on Ny. Consequently with the s + 1 lines of w” which are parallel to M, there
correspond s + 1 lines of 7o, which contain z,, but not ys.

Now we define as follows an incidence structure 8’ = (P, B/, T'): P’ = PUPs with Py the pointset
of Teo; B = (B — Bas) U B, where By is the set of all lines parallel to M and where By, is the set
of all lines of 7y which contain y; I’ is the natural incidence relation. From the considerations
in the preceding paragraph it follows readily the &’ is a GQ of order s + 1, which is embedded in
the projective completion PG(3,s + 1) of AG(3,s + 1). By the theorem of F. Buekenhout and C.
Lefevre (cf. Chapter 4) B’ is the set of totally isotropic lines with respect to a symplectic polarity 6
of PG(3,s+1). Hence B = B; UBs, where B is the set of all affine totally isotropic lines with respect
to 6 and Bs is the class of parallel lines defined by ¥, the pole of 7 with respect to #. An with the
notation of 3.1.4 we have S = P(W(s + 1),¥yoc). So in this case we have the situation described in
part (iv) of 7.3.1.

Finally, we assume that there are no planes of type I1. Let L be a line of B, and let w be a plane
containing L. Clearly w is of type I. Consequently any point of w is in P, and any line of w parallel
to L belongs to B. Since w is an arbitrary plane containing L, P is the pointset of AG(3,s+ 1) and B
contains all lines parallel to L. Let mo be the plane at infinity of AG(3,s+ 1) and consider the points
at infinity of the lines of B. The set of these points intersects any line of 7w, in 2 points or none at all.
Consequently this set is a complete oval O of 7. So with the notation of 3.1.3 we have S = T5(0),
i.e. we have case (i7i) of 7.3.1.

(b) t=1.

Suppose that B = {Lo, ..., Ls, Mo, ..., M}, L; ~ M;, and consider the projective completion PG(3, s+
1) of AG(3,s+1). Since P is not contained in an AG(2, s+ 1), the projective lines M; and M; (resp.,
L; and Lj), i # j, are not concurrent in PG(3,s+ 1). If s > 2, then the s + 2 lines of PG(3,s + 1)
which are concurrent with the projective lines My, My, Ms constitute a regulus R, i.e. a family of
generating lines of an hyperbolic quadric Q. Consequently Lg, L1, ..., Ls are elements of R and M,

M, ..., My are elements of the complementary regulus R’ of Q. It follows that Q contains two lines
at infinity. Hence we have case (i) of 7.3.1. If s = 1 it is easy to see that case (ii) also arises.
(c) t=2.

First of all we assume there is a plane w of type I. If z is a point of P — P,,, then the number of lines
of B which are incident with = and a point of S,, equals s+ 1. Hence s+ 1 <t+1=3, or s € {1,2}.

Now we suppose that there is no plane of type I. Let L € B and assume that there is a plane w
which contains only the line L of B. If x is a point of P which is not in w, then the lines of B which
are incident with = are the line M defined by x I M Iy I L, and the two lines in a plane w’ parallel
to w. Clearly ' is of type I1. Consequently, the lines of B which are incident with y are M and two
lines in w, a contradiction. It follows that each plane containing L is of type I1 or I11. Suppose that
each plane though L is of type III. Since there are s 4+ 2 planes though L and only s 4+ 1 points on
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L, there is a point on L which is incident with at least five lines of B, a contradiction. Consequently,
there is a plane w of type II. Let w be type II and suppose that Li,Ls € B, L1 I 21 Lo, and x I M
with M € B—B,,. If y I M, then the lines of B which are incident with y are M and two lines in a
plane ' parallel to w. If a plane w” though M is of type III, then there is a point on M which is
incident with at least four lines of B, a contradiction. Hence each plane w” though M is of type I1.
It follows that the number of lines of B having exactly one point in common with M is s + 2. This
number also equals (s + 1)t = 2(s + 1), a contradiction.

So there is at least one plane of type I and s € {1,2}. Consequently we have s = t = 2 or the
trivial case s = 1, t = 2, i.e. we have cases (i) or (v) of 7.3.1. O

In the following theorem the “sporadic” case s =t = 2 is considered in detail.

7.3.2. Up to a collineation of the space AG(3,3) there is just one embedding of a GQ of order 2 in
AG(3,3).

Before proceeding with the proof we describe the embedding as follows. Let w be a plane of
AG(3,3) and let {Lo, L1, Lo} and {M,, M,, M.} be two classes of parallel lines of w. Suppose that
{;} = My N Ly, {yi} = My N L;, and {2z} = M, N L;, i = 0,1,2. Further let N, Ny, N, be
three lines containing xo, yo, 2o, respectively, such that N, ¢ {M,, Lo}, Ny & {M,, Lo}, N, &
{M., Lo}, such that the planes NyM,, N,M,, N,M, are parallel, and such that the planes w, LoN,,
LoNy, LoN. are distinct. The points of N, are zo, x3, x4; the points of N, are yo, y3, ya; the
points of N, are zg, 23, z4; where notation is chosen in such a way that x3,ys3,z3 (resp. x4,y4,24)
are collinear. Then the points of the GQ are xo,...,z4,%0,---,Y4, 20,---,24 and the lines are Lg,L1,
Lo, My, My,M.,Ny,Ny,N.., x3Y4,24Y3,23%4, Ta23,Yy324,Ys%3. Proof. Let S = (P,B,I) be a GQ of order
2 which is embedded in AG(3,3). By the final part of the proof of the preceding theorem there is at
least one plane w of type I. Let B, = {Lo, L1, Lo, My, My, M.}, P, = {0, Y0, 20, 1, Y1, 21, T2, Y2, 22 }
with @x; I My, y; I My, z; 1 M., x; 1 L;, y; 1 L;, z; 1 L;. Suppose that xo I N, yo I Ny, 290 I N,
with Ny & {M,, Lo}, Ny & {My, Lo}, N, & {M,, Lo}, that zo,x3,24 are points of N, that yo,y3,ys
are points of Ny, and that z9,23,24 are points of N,. Then P = {x;,y;, zi|[i = 0,1,2,3,4}. Clearly the
plane N, M, is of type I or II. If N;M, is of type I, then the fifteen points of S are contained in
the planes N, M, and w. Hence the points x3,74,Yy3,y4,23,24 are in N, M,, so the points xg,yo,2¢ are
in N, M,. Consequently N,M, = w, a contradiction. It follows that N,M, is of type II, and also
that N, M,, N,M,, N.M, are parallel planes of type I1. Now assume that the planes LoN,, LoNy,
LoN, are not distinct, e.g. LoN, = LoN,. Then the plane LyN, is of type I, and by a proceeding
argument w is of type /I, a contradiction. Hence the planes w, LoN,, LoNy, LoN, are exactly the
four planes that contain Lg. Now it is clear that the lines N;,N,,N., together with the line at infinity
Voo of w, form a regulus. Consequently, notation may be chosen in such a way that x3,ys,z3 (resp.
T4,Y4,24) are on a line which is parallel to w. As any line of B is incident with a point of P, the lines
T3Y4,T4Y3,T324,T423,Y324,Y423 are the remaining six lines of B.

JFrom the preceding paragraph it follows that up to a collineation of AG(3,3) there is at most one
GQ of order 2 which is embedded in AG(3, 3): If in PG(3, 3), the projective completion of AG(3, 3), the
coordinate system is chosen in such a way that x4(0,0,0, 1), m(0,1,0,0) with m the point at infinity of
the lines M,,M,,M, 1(0,0,1,0) with [ the point at infinity of the lines Ly,L1,L2, 2(1,0,0,0) with 2 the
point at infinity of the line N, and y3(1,1, 1, 1), then the affine coordinates of the points of the GQ are
given by (0, 0,0), 21(0,1,0), z2(0, —1,0), x3(1,—1,0), z4(—1,1,0), y9(0,0,1), y1(0,1,1), y2(0, —1, 1),
y3(1,1,1), ya(—1,—-1,1), 20(0,0,—1), 21(0,1,—1), 22(0,—1,—1), 23(1,0,—1), 24(—1,0,—1). And now
it may be checked that the fifteen points with these coordinates together with the lines zoz1, yoyi,
2021, TOY0, T1Y1, T2Y2, T3T4, Y3Y4, 2324, T3Y4, T4Y3, T3Z4, T423, Y324, Y423 form indeed a GQ. O
Remark : The existence of a GQ of order 2 which is embedded in AG(3,3) is also show as follows.
Consider the GQ described in Part (iv) of 7.3.1 in the case where s = 2. There arises a GQ of order
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(2,4) embedded in AG(3,3). Up to isomorphism this GQ is unique (cf. 5.3.2(¢7)). Hence it must have
a subquadrangle of order 2 (cf. 3.5), which is embedded in AG(3,3).

7.4 Embedding in AG(4,s+ 1)

7.4.1. Suppose that the GQ S = (P, B,1) of order (s,t) is embedded in AG(4,s+ 1) and that P is not
contained in an AG(3,s +1). Then one of the following cases must occur:

(i) s=1,t€{2,3,4,5,6,7} (trivial case);

(ii) s =t = 2, i.e. an embedding of the GQ with 15 points and 15 lines in AG(4,3). Moreover,
up to a collineation of the space AG(4,3) there is just one embedding of a GQ of order 2 in AG(4,3)
(so that the GQ is not contained in any subspace AG(3,3)). This GQ may be described as follows.
Let PG(3,3) be the hyperplane at infinity of AG(4,3); let ws be a plane of PG(3,3), and let I be
a point of PG(3,3) — weo. In ws, choose points mo1, moz, mi1, miz, mai, Moz, in such a way that
mo1, Ma1, M1 are collinear, that mq1, mg2, Mmoo, are collinear, that moy, mge, mis, are collinear,
and that mg1, mes, mig, are collinear. Let L be an affine line containing [, and let the affine points
of L be denoted by pg,p1, p2. The points of the GQ are the affine points of the lines pgmo1, pomos2,
p1mi1, p1miz, pamai, pamas. The lines of the GQ are the affine lines of the (2-dimensional) hyperbolic
quadric containing pomo1, p1mi1, p2Mmai, resp. PoMo2, P1M11, P2Ma2, TeSP. PoMmo2, P1M12, P2mai, and
resp. pommoi, P11z, p2ma2.

(7i7) (s =t = 3) and S is isomorphic to the GQ Q(4,q). Moreover, up to a collineation (whose
companion automorphism is the identity) of the space AG(4,4) there is just one embedding of a GQ of
order 3 in AG(4,4). This GQ may be described as follows. Let PG(3,4) be the hyperplane at infinity
of AG(4,4), let ws be a plane of PG(3,4), let H be a hermitian curve [197] of ws, and let [ be a
point of PG(3,4) —weo. In ws there are exactly four triangles m;imiom;s, i = 0, 1,2, 3, whose vertices
are exterior points of H and whose sides are secants (non-tangents) of H [197]. Any line mggmip,
a,b € {1,2,3}, contains exactly one vertex ma. of ma;meamas and one vertex mgy of msgymsamss, and
the cross ratio [197] {moqa, m1p; Mac, m3q} is independent of the choice of a,b € {1,2,3}. Let L be an
affine line though [, and let pg,p1,p2,p3 be the affine points of L, where notation is chosen in such a
way that {po, p1;p2, p3} = {Mmoa, M1p; Mac, m3q}. The points of the GQ are the 40 affine points of the
lines p;m;j, ¢ = 0,1,2,3, j = 1,2,3. The lines of the GQ are the affine lines of the (2-dimensional)
hyperbolic quadric containing pomoq, p1m1p, P2Mac, P3M3q, a,b = 1,2, 3.

(iv) s =2, t =4, i.e. an embedding of the GQ with 27 points and 45 lines in AG(4,3). Moreover,
up to a collineation of the space AG(4,3), there is just one embedding of the GQ of order (2,4) in
AG(4,3) (so that the GQ is contained in no subspace AG(3,3))). This embedding may be described
as follows. Let PG(3,3) be the hyperplane at infinity of AG(4, 3), let ws, be a plane of PG(3,4), of we,
and let | be a point of PG(3,4) — woo. In woe choose points m,ng,ny,n., ng,ny,n%,ny,ny,n’, in such a
way that m,n;,ny,n, (resp. mn,,n;n’) (resp. mny,nyn?) (resp. ngny,n. with {a,b,c} = {z,y,r})
are collinear. Let L be an affine line though [, and let x,y,z be the affine points of L. The plane
defined by L and m is denoted by w. The points of the GQ are the 27 affine points of the lines am,
ang, anl,, anl, with a = x,y, z. The 45 lines of the GQ are the affine lines of w with points at infinity
[ and m, the affine lines of the (2-dimensional) hyperbolic quadric containing am, bny, cn. (resp., am,
bny, cnl,) (resp., am, bny, cnl’) (resp., ang, bny, cn!) with {a,b, c} = {z,y, z}.

Proof. Suppose that s = 1. Let zg,z1,...,%,Y0,Y1,---,Y, t € {2,...,7}, be distinct points of
AG(4,2) which are not contained by a hyperplane. The the sets P = {z;,y;||i,7 € {0,...,t}} and
B = {{xi,y;}||i,7 € {0,...,t}} define a GQ of order (1,t). From now on we suppose s > 2.

Let L, M be two nonconcurrent lines of S which are not parallel in AG(4,s + 1), and suppose
that AG(3,s + 1) is the affine subspace containing these lines. By 2.3.1 the points and lines of S in
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AG(3,s+1) form a GQ ' = (P',B',T) of order (s,¢'). This GQ &’ is embedded in AG(3,s+ 1) (and
is not contained in any subplane AG(2,s+ 1))).

Suppose that S is of type 7.3.1(ii7) or 7.3.1(iv). Then ¢’ = s+ 2. By 2.2.1 we have st’ < t.
Since s # 1, we also have t < s2. Hence s(s + 2) < s2, an impossibility.

Next we suppose that &’ is of type 7.3.1(v). Then s = ¢/ = 2. Since st/ < t < 52, we have t = 4. So
S is the GQ with 27 points and 45 lines. For the points and lines of &’ we use the notation introduced
in 7.3.2. Let N;,N.,N" M,,Lq be the lines of B which contain xy. The hyperplane AG(3,3) defined by
w and N, is denoted by H, the hyperplane wN,, is denoted by H’, and the hyperplane wN/ is denoted
by H”. It is clear that the subquadrangle S” = (P”,B",1") (resp., 8" = (P"”,B",1")) induced in H’
(resp. H") has order (2,2). Suppose that Ly,M,,N/ (resp., Lo,M,,N_) are the lines lines of S” (resp.
8" which are incident with ag, @ = y, z. Then each point of S is on one of the lines Lo, My,Nq,N., N/,
with a = z,y, 2.

The point at infinity of the lines Ly,L1,Ls is denoted by [, of the lines M,,M,,M, by m, of the lines
N, by ng, of the lines N/ by n), and of the lines N, by n,, (a = z,y, z). Then the points ng,ny,n.,m
are on a line Nuo, the points nj,n;,n’,m are on a line N, and the points nj,ny,n7,m are on a line
N.. Note that the lines Ny,,N. ,N/ are distinct.

Consider the lines N, and Ny, a,b € {z,y,z} and a # b. There are three lines Lo,Lgpc, L), € B,

{a,b,c} = {z,y,2}, concurrent with N, and N]. Since all lines of S are regular (cf. 3.3.1), there
are also lines Ny, N{, T, {a,b,c} = {x,y, 2z}, concurrent with each of Lo,Lgpc,L;,.. Clearly we have
T} = N/!. Consequently the lines N, ,Ny,N!', Lo,Lapc,L.,,. form a GQ of order (s, 1) which is embedded
in the affine threespace defined by N, and N{. So this GQ is of type 7.3.1(i7). It follows that ng,nj,nc”
are on a line V., that [ and the points at infinity [, and lgbc of the lines L4, and Lflb .» respectively,
are on a line W, and that V,, and W, intersect. Now it is also clear that the points ng,nl,,n. m,
with a = z,y, z, are in a plane ws. Since S is not contained in a subspace AG(3,3) we have | ¢ weo.

If Lo,Dap,Eap (vesp., Lo,D., El,) (vesp., Lo, DY, ,EY), a # b and a,b € {z,y, z}, are the lines of S
which are concurrent with Ny, Ny, (resp., N;,Ny) (vesp., Ni/,N}/), then the lines Lo,L1,L2, My, M, ,M.,N,,N,,N,N_,]
NNy N DapyEap, Dy Eryy Doy ErysLabes Ly, are the 45 lines of S.

Now show that up to a collineation of AG(4, 3) there is at most one GQ of this type. In wy, choose
a coordinate system as follows : m(1,0,0), n,(0,1,0), n’(0,0,1), n”(1,1,1). Then we have n//(0,1,1),
ny(1,1,0),
n.(1,-1,0), ny(1,0,1), n;(1,0,-1), ny(l,—1,~1). Hence in the hyperplane at infinity PG(3,3),
the configuration formed by the points m, ng, ny, n., n, ny, ni, ny, ny, n7, [, is unique up to a
projectivity of PG(3,3). Now it easily follows that in AG(4,3) the configuration formed by the affine
points of the lines Lo,My,N4, N, N/, with a = z,y, z, is unique up to a collineation of AG(4, 3).
Hence, up to a collineation of AG(4,3) there is at most one GQ S for which &' is of type 7.3.1(v).

Finally it is not difficult, but tedious, to check that the described GQ & does indeed exist. So case
(1v) of 7.4.1 is completely handled.

Now suppose that every two noncoplanar lines of S define a subquadrangle of type 7.3.1(i). Let
L and M be two concurrent lines of S. Choose a line N which is concurrent with L, but not coplanar
with M (such a line N exists). The points and lines of S in the threespace M N form a subquadrangle
of type 7.3.1(ii). Hence the plane LM contains only the lines L,M of S.

Next let L be a line of S, let pg, p1, ... ps, be the points of L, and let L, M;1,..., M; be the t + 1
lines of S though p;. Clearly the t> + s + 1 hyperplanes Moy My;, LM;; M;s are distinct. The number
of hyperplanes containing L equals (s + 1)? + (s +1) + 1, implying ¢ < (s +1)®+ 1. Hence t < s+ 1.
Since each pair of distinct lines of § is regular, we have t = 1 or t > s be 1.3.6. But t # 1, so
t € {s,s+1}. Since s # 1 and (s +1t)[st(s+1)(t+1) (cf. 1.2), it follows that s = ¢t. Now by dualising
5.2.1 we have S = Q(4, s).

Let W be the threespace defined by three concurrent lines Ly, L1, Lo of S. The common point of
these lines is denoted p. By 2.3.1 all the lines of § in W contain p and any point of S in W is on one
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of these lines. The lines of § in W are denoted by Lg, L1, ..., Ly.

First suppose that ¢’ < t, and let L; be a line of S though p which is not in W. Clearly then ¢t > 2.
Let ¢ I Ly, ¢ # p. The t + 1 lines of S through ¢ are L; and ¢ lines in the threespace W though ¢ and
parallel to W. Analogously, the ¢ + 1 lines of S though p are L; and ¢ lines in W. So t' =t — 1. Now
consider the threespace W defined by Lo,L1,L;. Notice that the plane W N W contains only the lines
Lo and L; of S§. Hence Ly is not in W, implying W contains exactly ¢ lines of S though p. Since
W and W both contain ¢ lines of S though p, their intersection contains ¢ — 1 lines of S though p.
Consequently, t — 1 = 2, implying s = t = 3. Let the points of L; be denoted by pg,p1,p2,p3, and let
L, M;1,M;5, M;3 be lines of S though p;. The lines M;1,M;o, M;3 define a hyperplane which is parallel
to W. The plane at infinity of W is denoted ws, the point at infinity of M;; is denoted m;;, and the
point at infinity of L; is denoted [ (I € wso). The points m;1,m;2,m;3 are not collinear, so they form a
triangle V; in weo. If T' is a line of wo, which contains a vertex of V; and V}, ¢ # 7, then, since any two
lines M;, and Mj;, define a subquadrangle of type 7.3.1(i7), the line T" also contains a vertex of Vj,
and Vi, {i,7,k,1} = {0,1,2,3}. If these vertices on T are denoted by mjq,mjp,mpc,myq, respectively,
then clearly the cross-ratio {p;,p;; Pk, 1} equals the cross-ratio {mjq, mjp; Mye, mig}. Further, a line
which contains two vertices of V; contains no vertex of Vj, ¢ # j. The total number of lines of these
two types equals 21, so that each line of wy, has 2 or 4 points in common with the set V' of all vertices
of V4,V1,V5, V3. It follows that each line of ws, has 1 or 3 points in common with H = we — V. Since
|H| =9, the set H is a hermitian curve [197] of ws. Clearly the triangles V,V;,V5,V3 are exactly the
four triangles of ws, whose vertices are exterior points of H whose sides are secants (non-tangents)
of H. Note that the 40 points of S are the affine points of the lines M;; and that the 40 lines of S
are the affine lines of the 9 subquadrangles defined by the pairs {M;q, Mjp}, © # j. Moreover, the
lines at infinity on the quadrics corresponding to these subquadrangles are the 9 tangents of H and
the 9 lines which join [ to points of H. From this detailed description of S it easily follows that up
to a collineation (whose companion automorphism is the identity) of AG(4,4) there is at most one
embedding of this type. Finally it is not difficult to check that the GQ as described does exist. So
case (i7i) of 7.4.1 is handled.

Finally, suppose that for each point p of S, the lines of S though p are contained in a hyperplane.
Our next goal is to show that s = 2. So assume s > 2. Let L and M be concurrent lines of S, and
consider the s+ 2 threespaces which contain the plane LM. If W is such a threespace, then W contains
only the lines L,M of &, or W contains each line of & though the common point p of L and M, or
the points and lines of S in W form a subquadrangle of type 7.3.1(i7). Clearly s of these hyperplanes
though LM are of the third type, one is of the second type, and consequently one is of the first type.
This hyperplane though LM which contains only the lines L,M of S is denoted by W’. Let N be a
line of S though p which is not contained in W', and let ¢ I N, q # p. The s + 1 lines of S though ¢
are N and s lines in the threespace W” though ¢ and parallel to W’. Since s > 2, all the lines of S
in W” contain ¢ and any point of S in W” is on one of these lines. Analogously, the s + 1 lines of S
though p are N and s lines in W, a contradiction since s > 2. It follows that s =t = 2.

Let L be a line of S, let pg,p1,p2 be the points of L, and let L, M;;, M;2 be the lines of S though
p;. Through the plane My Mo there is exactly one hyperplane Wy which contains only the lines
Moy, Moo of S§. It is clear that the lines My1,My9,Mo1,Mos are parallel to Wy. The plane at infinity
of Wy is denoted w, the point at infinity of M;; by m;;, and the point a infinity of L by | (I € weo).
In the threespace M;qMjp, @ # j, the points and lines of S form a subquadrangle of type 7.3.1(i7),
so we may assume that mgy,mq11,m91 are on a line Ny, that mge,mq1,mo2 are on a line Ny, that
mo2,M12,M91 are on a line N3, and that mg1,m12,m99 are on a line N4. The fourth point on the line
N; is denoted by n;. We notice that the lines N1,No,N3,IN4 are contained in the plane w,. Clearly the
15 points of S are the affine points of the lines M;;, and the 15 lines of S are the affine lines of the 4
(2-dimensional) hyperbolic quadrics containing pomoq,p1m1p,p2Mac, With mog,m1p, ma. collinear. The
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lines at infinity of these 4 subquadrangles are N1,Ns,N3,N4 and the lines [nq,In9,Ing,lny. From this
detailed description of S it easily follows that up to a collineation of AG(4,3) there is at most one GQ
of this type. Finally, it is not difficult to check that the GQ as described does indeed exist. So case
(7) in the statement of 7.4.1 is handled, and this completes the embedding problem in AG(4, s+ 1).
O

7.5 Embedding in AG(d,s+1),d>5

7.5.1. Suppose that the GQ S = (P, B,1) of order (s,t) is embedded in AG(d,s+1), d > 5. Then one
of the following must occur :

(i) s =1 and t € {[d/2],...,297Y — 1}, with [d/2] the greatest integer less than or equal to d/2
(trivial case);

(ti) d =5, s =2, t =4, i.e. an embedding of the GQ with 27 points and 45 lines of AG(5,3).
Moreover, up to a collineation of the space AG(5,3) there is just one embedding of a GQ of order (2,4)
in AG(5,3) so that it is contained in no subspace AG(4,3). This embedding may be described as
follows. Let PG(4, 3) be the hyperplane at infinity of AG(5, 3), let Ho be a hyperplane of PG(4, 3) and

let I be a point of PG(4,3) — Hs. In Ho, choose points mg,my,m. ng,ny,n.,n,,n, n,,n.n! n’ in such a
are in a plane w., that mg,m,,m.,ny n;
" with {a,b,c} = {x,y,z}, are
a’

way that mz,m,,m. are collinear, that m,,m,,m.,n.,ny,n. are in a plane wy, thyat mx,m;,mz,n;:,n;,nfz
»»17 are in a plane wi,, that mg,np,ne (vesp., ma,ny,ne) (resp.,
ma,ny,n.) with {a,b,c} = {x,y, 2}, are collinear, and that ng,nj,n
collinear. Let L be an affine line though [, and let z,y,z be the affine points of L. The points of
the GQ are the 27 affine points of the lines amg,ang,anl,anl, with a = z,y,z. The 45 lines of the
GQ are the affine lines of the (2-dimensional) hyperbolic quadric containing xmg,ym,,zm, (resp.,
amg,bng,cne) (resp., amg,bny,cnl.) (resp., amq,bny cnll) (resp., ang,bnj,cnl), with {a,b, c} = {z,vy, 2}
Proof. Suppose that s = 1. Let xq, 2, ..., 2¢t,J0, Y1, - - -, ys, with t € {[d/2],...,2971—1} and [d/2] the
greatest integer less than or equal to d/2, be the distinct points of AG(d, 2) which are not contained in
a hyperplane. Then the sets P = {x;,y;l|i,j € {0,...,t}} and B = {{x;,y;}||i,5 € {0,...,t}} define
a GQ of order (1,t). ;From now on we suppose s > 2.

Let L,M be two nonconcurrent lines of S which are not parallel in AG(d, s+ 1), and suppose that
AG(3,s + 1) is the affine threespace containing these lines. Suppose that p is a point of & which
does not belong to AG(3,s + 1), and call AG(4,s + 1) the fourdimensional affine space defined by
AG(3,s + 1) and p. Assume that ¢ is a point of & which does not belong to AG(4,s + 1) and call
AG(5,s + 1) the affine space defined by AG(4,s + 1) and ¢. By 2.3.1 the points and lines of S in
AG(3,s+ 1) (resp., AG(4,s + 1), AG(5,s + 1)) form a GQ &' (resp., §”, §") of order (s,t') (resp.,
(5,"), (5,8")). We have t/ <t <t" <t < s From 2.2.2(iv) it follows that ¢/ = 1, t" = s, t" = 5%,
implying that ¢t = #"” = s and d = 5. And from 7.4.1 it follows that t =s=2or t’ = s = 3.

Let us first assume that s = 2, t = 4, d = 5. By the preceding paragraph we know that there is
a subquadrangle S’ of order (2,2) of S which is embedded in a hyperplane H of AG(5,3), and which
is not contained in a subspace AG(3,3). Let Ly be a line of &', suppose that zg,y0,20 are the points
of Ly, and that N,,M,,Lo are the lines of S’ containing ag, a = x,v, 2z, and that M,,M,,M, belong
to a threedimensional affine space T. Let N,,N. N/, M, Ly be the lines of S which contain z. The
hyperplane defined by T and N, is denoted H', and the hyperplane defined by 7' and N is denoted by
H". The subquadrangle S” = (P”,B",1") (resp., 8" = (P",B",1"")) formed by the points and lines
of S 'in H' (resp., H") has order (2,2). Suppose that Ny, N, € B", yo I Ny, 20 I N, N, & {M,, Lo},
N. ¢ {M., Lo}, and that N;/, NI € B", yo I N/, 20 L N/, N,/ ¢ {M,;, Lo}, NI ¢ {M., Lo}. Any point
of S is on one of the lines Lo, M,,N,,N. N/ with a = z,y, z.

The point at infinity of the line Lg is denoted by [, that of the line M, by m,, that of the line N,
by ng, that of the line N/ by nj,, and that of the line N/ by n!, for a = z,y, z. The mg,m,,m, are on a
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line Mw,. Moreover, the points mg,my,,m.,n;,ny,n, are in a plane wo, the points my,my,m.,nny n’,
are in a plane ., and the points mg,my,m.,ny,ny,n7 are in a plane wi (cf. 7.4.1(ii)). Note that
Woo,wWho,who are distinct, and that [ is in none of these planes. Moreover, if {a,b,c} = {z,y, 2}, then
the points of mq,np,ne (resp., mq,ny,n,) (resp., mq,ny,n,) are collinear. Further there are three lines
Lo,Lape, Ly, of S, {a,b,c} = {z,y, 2}, concurrent with N, and N}, and since all the lines of S are
regular (cf. 3.3.1) there are also three lines N,,N;, T, {a,b,c} = {x,y, 2z}, concurrent with each of
Lo,Lgpe,L,,.. Clearly we have T = N/, with {a,b,c} = {z,y,2}. It follows that n,,n;,n. are on a
line V, that [ and the points at infinity /.. and l;bc of the lines L. and L;bc, respectively, are on a
line W, and that Vo and W, intersect. Now it is also clear that the points mg,ng,n,,n’,
threespace Hoo. And since S is not contained in an AG(4,3), we have | € Hwo.

If Lo,Dap,Eqp (vesp., Lo,D)y E!) (vesp., Lo,DY E"), a # b and a,b € {z,y, 2}, are the lines of
S which are concurrent with Ny,Ny (resp., N;,N;) (resp., N/,N/'), and if Lo,L;,L; are the lines of
S concurrent with M,,My, M., then the lines Lo,Lg,Lg, My, My,M,,Ny,Ny,N,, Ny,N; N, ,N;/,N/.N,
Dap, Eqp, D’y E!, D E! . Lape, L., are the 45 lines of S.

Now we show that up to a collineation of AG(5,3) there is at most one GQ of this type. In Hy,
choose a coordinate system as follows :
mg(1,0,0,0), my(0,1,0,0), ng(0,0,1,0), n,(0,0,0,1),n(1,1,1,1). Then necessarily we have n,(1,1,1,0),
ny(1,1,0,1), n.(0,1,1,0), n’(0,1,0,1),
ny(0,1,1,1), ni(1,-1,1,1), m.(1,1,0,0), Hence in the hyperplane at infinity PG(4,3), the con-
figuration formed by the points I,mg,ng,n,,n., with a = z,y, 2, is unique up to a projectivity of
PG(4,3). Now it easily follows that in AG(5,3) the configuration formed by the affine points of the
lines Lg,My,Ny,N! N/ with a = x,y, z, is unique up to a collineation of AG(5,3). Hence up to a
collineation of AG(5,3) there is at most one embedding of this type. Finally, it is not difficult but
tedious, to check that the described GQ S does indeed exist. So case (i7) of 7.5.1 is completely
handled.

Finally, we assume that s = 3, t =9, d = 5. By the second paragraph of the proof we know that
S has subquadrangles of order (3,3) of the type described in 7.4.1(éi7). So in S we may choose three
concurrent lines L,M,N, with common point p, in such a way that L,M,N are the only lines of S in
the threespace T defined by LM ,N. Let x I L, x # p,and x IV, V # L. The points and lines of S in
the hyperplane defined by T and V form a subquadrangle S’ of order (3,3). Since there are 9 choices
for V', and since in the subquadrangle S’ there are three such lines V', there are exactly 3 hyperplanes
containing T in which the points and lines of S form a subquadrangle of order (3,3). Let Hy,Hs be
the other hyperplanes though 7. The lines of S in H; all contain p, and the number of lines of S in
H; equals 3 + a; with a1 + a2 = 4. let L; be a line of § though p and not in Hy, and let ¢ I Ly, q¢ # p.
The 10 lines of S though ¢ are Ly and 9 lines My, ..., My in the hyperplane H3 though ¢ and parallel
to Hi. It is easy to see that any point of & in H3 is on one of the 9 lines M, ..., Mg. Now it is clear
that the 10 lines of S though p are Ly and 9 lines in the hyperplane Hy. Consequently 34+ a; =9, an
impossibility. O

are in a
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Chapter 8

Elation Generalized Quadrangles and
Translation Generalized Quadrangles

8.1 Whorls, Elations and Symmetries

Let S = (P, B,I) be a GQ of order (s,t), s # 1, t # 1. A collineation 0 of S is a whorl about the point
p provided 6 fixes each line incident with p. The following is an immediate consequence of 2.4.1 and
1.2.3.

8.1.1. Let 0 be a nonidentity whorl about p. Then one of the following must occur:

(i) y? #y for each y € P — p*

(ii) There is a point y, y ~ p, for which y® =y. Put T = {p,y}*, U = {p,y}*+. Then TU{p,y} C
PycT CU, and L € By iff L joins a point of T with a point of U N Py.

(#ii) The substructure of elements fized by 0 forms a subquadrangle Sy of order (s',t), where 2 < s’ <
s/t<t, sot<s

Let 6 be a whorl about p. If § = id or if 6 fixes no point of P — pt, then 6 is an elation about p. If
6 fixes each point of p*, then 6 is a symmetry about p. It follows from 8.1.1 that any symmetry about
p is automatically an elation about p. The symmetries about p form a group. For each z I p, x # p,
this group acts semiregularly on the set {L € B||z I L,p ¥ L}, and therefore its order divides ¢. The
point p is called a center of symmetry provided its group of symmetries has order ¢. It follows readily
that every center of symmetry must be regular. Symmetries about lines are defined dually, and a line
whose symmetry group has maximal order s is called an azis of symmetry and must be regular. There
is an immediate corollary of 1.9.1.

8.1.2. If S has a nonidentity symmetry 6 about some line, then st(1+ s) = 0(mod s +t).
The following simple result is occasionaly useful.
8.1.3. Let o, 0 be nonidentity symmetries about distinct lines L, M, respectively. Then
(i) 00 =60 iff L ~ M.
(ii) o0 is not a symmetry about any line (or point).

Proof. First suppose that L and M meet at a point z, and let y € P —z. Let L’ be the line through
y meeting L and M’ the line through y meeting M. It follows readily that both y°% and 3%° must be
the point at which (M’)? meets (L'%). But if 0@ and 6o have the same effect on points of P — =,

105
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clearly 08 = 0. Now suppose that L «~ M. Clearly L » L, so that L% # LY but L°% = LY. This
proves (i).

For the proof of (i) note that if L I = I M, then 2°¢ = z, 47 ~ y # y°%, iff y € 2+ — {z}, and
yo? oy iff y & o+, And if L = M, then y?% < y for all y not incident with any line of {L, M}+. Tt
follows readily that o6 is not a symmetry about any line (or point). O

8.2 Elation Generalized Quadrangles

In general it seems to be an open question as to whether or not the set of elations about a point must
be a group. One of our goals is to show that this is the case as generally as possible, and to study
those GQ for which it holds. If there is a group G of elations about p acting regularly on P — p*, we
say S is an elation generalized quadrangle (EGQ) with elation group G and base point p. Briefly, we
say that (8(p), G) or S®) is an EGQ. Most known examples of GQ are EGQ, the notable exceptions
being those of order (s — 1,s + 1) and their duals. In this chapter we will be concerned primarily
with the following special kind of EGQ: if (S®), @) is an EGQ for which G contains a full group of
s symmetries about each line through p, then S is a translation generalized quadrangle (TGQ) with
base point p and translation group G. Briefly, we say (S®),G) or (S§®) is a TGQ.

A TGQ of order (s,t) must have s < t since it has some regular line. At the opposite line of
the spectrum is the following kind of EGQ which will be studied in more detail in chapter 10: if
(8®). @) is an EGQ fo which G contains a full group C of ¢ symmetries about p, we say (S®) is
a skew-translation generalized quadrangle (STGQ) with base point p and skew-translation group G.
Briefly, we say (S®), Q) is a STGQ. Since a STGQ (S, G) has a regular point p, t < s. Until further
notice let (S(p), G) be a EGQ of order (s,t), and let y be a fixed point of P—p*. Let Lo, ..., L; be the
lines incident with p, and define z; and M; by L; 1 2, TM; Ty, 0 < i <t. Put S; ={6 € GHMZG = M;},
Sy =1{0 € G|2¢ =2z}, and J = {S;]|0 <i < t}. Then |G| = s?t; J is a collection of 1+ ¢ subgroups
of G, each of order s; for each ¢, 0 <7 < ¢, S is a subgroup of order st containing S; as a subgroup.
Moreover the following two conditions are satisfied:

K1. S;8; NS, = 1, for distinct ,j,k.
K2. §f NS, =1, for distinct 7,5

Conversely, suppose that K1 and K2 are satisfied, along with the restrictions on the orders of the
groups G, S;, S} given above. Then it was first noted by W.M. Kantor [39] that the incidence
structure S(G, J) described below is an EGQ with base point (o).

Points of S(G, J) are of three kinds:

(i) elements of G,
(ii) right cosets Sfg, g € G, i€ {0,...,t},
(iii) a symbol (o0)
Lines of S(G, J) are of two kinds:
(a) right cosets S;g, g € G, i € {0,...,t},
(b) symbols [S;], 7 € {0,...,t}.

A point g of type (i) is incident with each line S;g, 0 < i < t. A point S}g of type (ii) is incident with
[S;] and with each line S;h contained in S}g. The point (co) is incident with each line [S;] of type (b).
There are no further incidences.

It is a worthwhile exercise to check that indeed S(G,J) is a GQ of order (s,t). Moreover, if we
start with an EGQ (S®), G) to obtain the family .J as above, then we have the following.
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8.2.1. (8W), @)= S8(G,J)

Proof. Of course y9 corresponds to g, 2] corresponds to S;g, p corresponds to (00), M{ corresponds
to Sig, and L; corresponds to [S;]. O

Now start with a group G and families {S;} and {S;} as described above satisfying K1 and K2,
so that S(G, J) is a GQ. It follows rather easily (cf. 10.1) that S} = S;U{g € G||S;gNS; = ¢ for 0 <
j < t}, from which part (iii) of the following theorem follows immediately.

8.2.2. (i) G acts by right multiplication as a (maximal) group of elations about (c0)
(ii) S; is the subgroup of G fizing the line S; of S(G, J).
(11i) Any automorphism of G leaving J invariant induces a collineation of S(G,J) fizing (00).

(iv) Si is a group of symmetries about [S;| iff S; < G (so that S(G,J) is a TGQ if S; < G for each
i) only if [S;] is a regular line iff S;S; = S;S; for all Sj € J.

(v) C =nN{S}|0 < i <t} is a group of symmetries about (0o) iff C 9 G. Moreover if C < G and
|C| =t., then S(G, J) is an STGQ with base point (c0) and skew translation group.

Proof. The details are all straightforward, so we give a proof only of part (iv), assuming that the
first three parts have been proved. Then h € G determines a symmetry about [S;] iff the collineation
it determines by right multiplication fixes each line of the form S;g iff S;gh = S;g for all g € G iff
ghg=! € S; for all g € G. Hence h is a symmetry about [S;] iff all conjugates of h lie in ;. It follows
that S; is a group of symmetries about [S;] iff S; < G, in which case [S;] is a regular line. Now let
g be an arbitrary point not collinear with (c0). The set S;S5;¢ consists of those points not collinear
with (co) which lie on lines of {[S;], Sjg}L, i # j. Similarly, the set S;S;g consists of those points not
collinear with (co) which lie on lines of {[S;], S;g}*. Hence ([S;],S;g) is regular iff S;S;g = S;S;g iff
SiSj = S;jS;. So [S;] is regular iff S;S; = S5;5; for all j =0,1,...,¢t. O .
There is an immediate corollary.

8.2.3. If (SV), @) is an EGQ with G abelian, then it is a TGQ.

8.2.4. Let S = (P,B,1) be a GQ of order (s,t) with s < t, and let p be a point for which {p,z}*+ =
{p,z} for allx € P —p*. And let G be a group of whorls about p.

(i) If y ~ p, y # p, and 0 is a nonidentity whorl about both p and y, then all points fixed by 0 lie on
py and all lines fixed by 0 meet py.

(ii) If 0 is a nonidentity whorl about p, then 0 fizes at most one point of P — p*.

(iii) If G is generated by elations about p, then G is a group of elations, i.e. the set of elations about
P 1S a group.

(iv) If G is transitive on P —p* and |G| > s%t, then G is a Frobenius group on P — p*, so that the
set of all elations about p is a normal subgroup of G of order s*t acting reqularly on P —p*, i.e.
S®) s an EGQ with some normal subgroup of G as elation group.

(v) If G is transitive on P — p and G is generated by elations about p, then (S¥), Q) is an EGQ.

Proof. Both (i) and (ii) are easy consequences of 8.1.1. Suppose there is some point z € P — p* for
which |G| # |G| # 1. Then by (ii) G is a Frobenius group on z¢ (cf [37]). So the Frobenius kernel
of G acts regularly on 2%. If G is generated by elations about p (so trivially |G| # |G| if |G| > 1),
Then G itself must act regularly on 2¢. Since this hold for each x € P — pt, each element of G is an
elation about p. Parts (iii), (iv) of the theorem are now easy consequences. O
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8.2.5. If S®) is an EGQ of order (s,t) with elation group G, s < t and |{z,p}**| = 2 for all
x € P —p*, then G is the set of all elations about p.

Proof. Let 6 be an elation about p, and put G; =< G, 6 >. Then G = G by 8.2.4, implying 6 € G.
Od

TGQ were first introduced by J.A. Thas [188] only for the case s = ¢, and the definition was
eqivalent to but different from that given here. An EGQ (S®),G) of order (s,s) was defined in
[188] to be a TGQ provided p is coregular, in which case it was shown that G is abelian, so the two
definitions are indeed equivalent. Moreover, if p is a coregular point of S, The set £ of elations about
p was shown to be a group. Some of the technical details were isolated and sharpened slightly by S.E.
Payne in [129], from which we take the following.

8.2.6. Let (p,L) be an incident point-line pair of the GQ S of order s. Let € be the set of elations
about p, and let 0 € £. Then the following hold:

(i) The collineation 0 induced by § on the projective plane 1, (as in the dual of 1.3.1) is an elation
of mr, with axis p, if L is regular.

(ii) &€ is a group if L is reqular

(iii) If p is regqular and € is a group, then the collineation @ induced by 6 on the projective plane T
(as in 1.3.1) is an elation with center p.

Proof. Suppose L is regular. Then 6 clearly induces a central collineation § on 7, with axis p. The
problem is to show that the center of § must be incident with p in 77. Suppose otherwise, i.e. there
is a line M of S that as a point of 77, is the center of §, and meets L at a point y, y # p. Then
M =M 9, so 0 permutes the points of M different from gy, and hence by 8.1.1 must be the identity.
Hence 6 splits points of M different from y into cycles of length n, where n is the order of §. So n|s.
The same argument applies to the s — 1 points of L different from p and y shows that n|(s—1). Hence
n = 1. Consequently, if § # id, then the center of # must be on p in 7, proving (i).

For the proof of (ii) it suffices to show that & is closed. Let 61,6, € &£, and suppose that 610y
fixes a point y, y = p. Let y I M I 21 L, with L regular. Then #; and 6, induce elations #; and 65,
respectively, on 77, with axis p. Hence 61605 induces an elation 6160, = 6,0, with axis p. But clearly
0162 = 6,05 fixes M, so must be the identity on piy. Hence 6,65 fixes y, y = p, and also fixes every
line meeting L. By 8.1.1 01605 = id, completing the proof of (ii). O

For the last theorem of this section we adopt the following notation.

(8P, @) is an EGQ identified with S(G,J) as in 8.2.1, and 1 denotes the identity of G. Further, £
is the set of all elations about p = (c0), W the group of all whorls about (00), H = W; = the group
of whorls about (co) fixing 1, and A the group of automorphisms of G for which & = S§; for all
i =0,1,...,t. Finally, the elation group of S(G,J) which corresponds to G will also be denoted by
G.

8.2.7. (i) Nw(G)N'H = Ny(G)=AcH.
(1)) € =G iff € is a group, in which case A ="H.

Proof. Here we are identifying an element g € G' with the elation 6, defined by h% = hg, (S;h)% =
Sihg, etc. As mentioned above, S is the union of S; together with those cosets of S; which are
disjoint from all S;. Hence if o € A, then S = S; implies (S)* = S/, so that « defines a whorl
about (oo) with fixed point 1, with (Sjg9)* = S;¢® and (S;g)* = S/g“. Hence A C 'H. Now suppose
a € H and o 'Ga = G. We must show a € A. Clearly o defines a permutation of the elements of
G, and since S3* = 5; for all i+ = 0,...,t we need only show that a preserves the operation of G. By
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hypothesis, if g € G, then a 10,0 € G. But 197 09 = g%, so a 0,0 = 40 (or, by identification of
g and 0, alga = g%). Hence (gh)* = (1%%)> = e bgaa 0 — 1650-0he — gope Thig shows
that Ny (G) C A. Now suppose o € A. We claim a 'Ga = G. For g, h € G, ho 0o — (ho‘_lg)a =
ho‘ilo‘go‘ = h% | implying a"'0,a = 040 € G. This essentially completes the proof of (i).

For the proof of (ii), clearly £ is a group iff £ = G. So suppose £ = G and let « € H. Then
a 'Ga C £ =G, implying a € Ny(G)=A. O

8.3 Recognizing TGQ

8.3.1. Let S = (P, B,1) be a GQ of order (s,t). Suppose each line through some point p is an azis of
symmetry, and let G be the group generated by the symmetries about the lines throught p. Then G is
abelian and (S®), Q) is a TGQ.

Proof. For s =t =2, § = W(2), so since s < ¢t we may assume t > 2. Let Lg,...,L; be the
lines through p, with S; the group of symmetries about L;, 0 < i < ¢, so that |S;|] = s < t. For
i # j, each element of S; commutes with each element of S; (cf. 8.1.3). For each i, 0 < i < ¢, put
Gi =< 85[0<j<t,j#i> So[S;,G;]=1and G = S;G;. One goal is to show that G = G;, from
which it follows that S; is abelian and G is abelian.

The first step is to show that Gj is transitive on P — p*, and with no loss in generality we consider
i=0. Let z1,...,x, be the points on Ly different from p. If a point y of P — p* is collinear with zj,
there is a symmetry about L; moving y to a point collinear with x;. Hence we need only to show that
G is transitive on xf N(P— pL). Let My, M> be two distinct lines through z1, Ly # M;, and let
yi I My, y; # x1, © = 1,2. It suffices to show that y; and ys are in the same Gp-orbit. First suppose
some point u € {y1,y2}*, u # x1 is collinear with zj,2 < j < s. Let Lj, be the line through p meeting
the line y;u, i = 1,2 (note j; # 0). As y; and u are in the same Sj,-orbit, ¢ = 1,2, it follows that
y1 and yo are in the same Gg-orbit. On the other hand, if each point in {y;, 32} is in p*, let y3 be
a point of P — pt for which (y1,%2,¥3) is a triad with center z; and y3 & {y1,%2}*". (Such a point
exists since t > 2 and s > 1.) Hence by the previous case y3 and y; are in the same Gg-orbit, i = 1, 2.
It follows that Go (and hence also G) is transitive on P — p*.

The next step is to show that G = G;, where again we may take i = 0. As |P — p| = s%t, if
y € P—pt, |G| = s*tk, where k = |G|, and |Go| = s*tm, where m = |(Gp),|. Clearly m|k, say
mr = k. Then stk = |G| = |SoGo| = ||§,‘;ugg“ — |§J3r§glo‘, implying r|Sp N Go| = s. Hence r|s and r|k.
Let ¢ be a prime dividing . Then there must be a collineation § € G, having order q. Let M be the
line through y meeting Ly at x;. Clearly 6 fixes Ly and M. The orbits of 8 on M consist of cycles of
length ¢ and fixed points including y and z;. As ¢|s, there are at least ¢ + 1 points of M fixed by 6.
Moreover, each point of {y,p}~ is fixed by #. Considering the possible substructures of fixed elements
allowed by 8.1.1 if 0 # id, we have a contradiction. Hence r = 1, implying G = Gy.

At this point we know that G is an abelian group transitive on P — p*, and hence by elementary
permutation group theory must be regular on P — pt. By 8.2.3 the proof is complete. O

8.3.2. The translation group of a TGQ is uniquely defined and is abelian.

Proof. Let (S (v), G) be a TGQ. If G’ is the group generated by the symmetries about lines through
p, then by 8.3.1 we have st = |G’|. As also s*t = |G| and G' < G, clearly G = G’. O
If (S?),G) is a TGQ, the elements of G are called the translations about p.

8.3.3. (J.A. Thas [159]). If (8©¥), Q) is an EGQ with s =t and p coregular, then (SP),G) is a TGQ.
Moreover, G = €£.

Proof. By 8.2.6 (i) the elations in G fixing a line M not through p are symmetries about the line
through p meeting M. Hence each line through p is an axis of symmetry and all these symmetries



110 Finite generalized Quadrangles

are in G, implying (S®, G) is a TGQ. By 8.2.6 (ii) and 8.2.7 (ii) we have G' = &, which finishes the
proof. O

8.4 Fixed Substructures of Translations

Let (S®), @) be a TGQ, so that G is abelian and s < t. As above let Ly, ..., L; be the lines through p
and S; the group of symmetries about L;, 0 < ¢ < t. With J = {Sp, ..., S¢}, recall the coset geometry
notation of 8.2. Then 6 € G fixes a point Sfg of [S;] iff @ € g~1SFg = SF iff 0 fixes all points of L;,
and S is the point stabilizer of L;.

8.4.1. The substructure Sy = (Py, By,lg) of the fixed elements of the nonidentity translation 6 must
be given by one of the following:

(i) Py is the set of all points on r lines through p and By is the set of all lines throughp, 1 < r < 14t.
(ii)) Py ={p} and By is the set of lines through p.

(iii) Py is the set of all points on one line L; through p and By is the set of all lines concurrent with
L;, i.e. 8 is a symmetry about L;.

Proof. By the remark preceding 8.4.1 and by 8.1.1 we have possibilities (i), (ii) or Py is the set of
all points on one line L; through p, and By consists of at least ¢ + 2 lines concurrent with L;. In the
last case let LY = L, p ¥ L, and assume z? = y with I L, z ~ p. Since the translation group acts
regularly on P — p', 6 must be the unique symmetry about L; with 2/ =y. O

There is an easy colrollary.

8.4.2. Let x € P —pt. For each z € P — p* there is a unique 0 € G with z° = z. Moreover, (p,x, 2)
1 a triad iff 0 is not a symmetry about some line through p, in which case the number of centers of
(p,x, z) is the number r of lines of fixed points of 6.

8.4.3. (i) |S;nSi=t, if0<i<j<t.
(i) [S;NS;NSE>L if0<i<j<k<t

Proof. With the notation of 8.2, 57 N S} acts regularly on {z;, zj}+ — {p}, proving (i). And for i, j, k

o IS;NS;1-155 . . ..
distinct, we have (S} N S7)Si| = W < |G], implying (ii). O

Part (ii) of the preceding result has the following corollary.

8.4.4. If S®) is a TGQ, any triad of points with at least two centers and having p as center must
have at least 1 + ﬁ centers.

Proof. A triad having p as center and having g as center must be of the form (S}g, 559, S;g). But
then g~ (SF N SN S )g is a subgroup fixing the triad and whose orbit containing g provides at least
L (#p) of the triad. O

8.5 The Kernel of a TGQ

Let (S®),G) be a TGQ with S;, SF,J, etc. as above. The kernel K of S®) (or of (S®),G) or of J)
is the set of all endomorphisms « of G for which S{* C S;, 0 < ¢ < t. With the usual addition and
multiplication of endomorphisms, K is a ring.

As the only GQ with s = 2 and ¢t > 1 are W (2) and Q(5,2), we may assume in this section that
2 <s.
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8.5.1. K is a field, so that S = S;, (S})* =S} for alli=0,1,...,t and all « € K* = K — {0}.

Proof. If each a € K° is an automorphism of G, then clearly K is a field. So suppose some
a € KY is not an automorphism. Then < Sp,...,S; >= G D G* =< S§§,...,5% >, implying
S¢ # S; for some i. Let g =1, g € S; — {1}. If 7,4,k are mutually distinct and ¢’ € S; with
{g'} # S; N Stg~", then gg’ = hh' with h € Sy, ' € S, for a uniquely defined I,1 # k,j. (This holds
because S}, SpSo — Sk, SkS1 — Sk, ..., SpS: — Sy (omitting the term S;S), — Si) is a partition of the
set G.) Hence h®h'® = ¢'* implying that h* = h'* = ¢’* =1 (by K1). Since ¢’ was any one of s — 1
elements of Sj, |ker(a) NS;| > s —1 > §, implying S; C ker(a). This implies S; C ker(a) for each
J»J # 1, so that G = G; C ker(a), recalling G; from the proof of 8.3.1. This says a = 0, a contradiction.
Hence we have shown that that K is a field and S = S; fori =0,...,t and o € KO, Since S is the
set-theoretic union of S; together with all those cosets of S; disjoint from (J{S;||0 < i < t}. (cf. teh
remark preceding 8.2.2), we also have (S7)* =57, O

For each subfield F' of K there is a vector space (G, F) whose vectors are the elements of G,
and whose scalars are the elements of F'. Vector addition is the group operation in G, and scalar
multiplication is defined by ga = g%, g € G, o € F. It is easy to verify that (G, F) is indeed a vector
space. There is an interesting corollary.

8.5.2. G is an elementary abelian, and s and t must be powers of the same prime. If s < t, then there
is a prime power q and an odd integer a for which s = ¢® and t = ¢**+'.

Proof. Let |F| = g, so q is a prime power. Since G is the additive group of a vector space, it must be
elementary abelian. Moreover, S; and S may be viewed as subspaces of (G, F'). Hence |S;| = s =¢"
and |SF| = st = ¢"T™. By 8.1.2 ¢""™(1 4 ¢") = 0 (mod ¢" + ¢™) implying 1+ ¢"™ = 0 (mod 1 + ¢™ "),
if s <t,ie. m #mn. Since n < m < 2n we may write m =n+ v, with 0 < v <n, so (14 ¢")|(1+¢").
Putn=av+r, 0<r<wv. Then 14+¢"=1+(¢")%" =14 (—1)%" = 0(mod 1+ ¢"). This is possible
only if r = 0 and a is odd, in which case s = ¢" = (¢*)* and t = ¢ = ¢""* = (¢*)**!. O

The kernel of a TGQ is useful in describing the given GQ in terms of an appropriate projectice
space. Before pursuing this idea, however, we obtain some additional combinatorial information.

8.6 The Structure of TGQ

Let (S®,G) be a TGQ of order (s,t). If s =t, then p is regular when s is even, antiregular when s
is odd (cf. 1.5.2), so that a triad containing p has 1 or 1+ s centers when s is even and 0 or 2 centers
when s is odd. For the remainder of this section we suppose s = ¢%, t = ¢+, where ¢ is a prime
power and ¢ is odd. And we continue to use the notation S;, S}, J, etc. of the preceding sections.

8.6.1. Let = be a fized point of P — p*, and let N; be the number of triads (p,x,y) having exctly i
centers, 0 <1 < 1+4t. Then the following hold:

. s—1)(s%—
(Z) No = X (?_ﬁt) U]

B 2_1)62
(ZZ) N1+q = (t(s_,_lt))

(i1ii)) N; =0 fori¢ {0,1+ q}
(iv) t = s% if q is even

Proof. Suppose (p, z,y) is a triad with r centers, and let 6 be the unique translation for which % = .
Then using 8.4.2 and 1.9.1 with f =1+ rsand g = (t+1—r)s, we have r = 0(mod 1 + ¢). Hence
N; # 0 implies ¢ = 0 (mod 1 + ¢). In particular N; = 0 for 0 < i < 1+ ¢, so that by 1.7.1, (iii) must
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hold, as well as (i) and (ii). Finally, from 1.5.1 (iii), if ¢ is even then Ny = 0, so (iv) follows from (i).
|
Of course from 1.7.1 (i) we also have the following.

8.6.2. FEach triad of points in p- has exactly 1 + q centers.
Interpreting these results for G, S;, S, etc., we have
8.6.3. (i) If i,j, k are distinct, then |S; N STNSE=q (cf. 84.3 and 8.4.4).

(i1) If 0 € G belongs to no S;, then it belongs to S} for exactly 1+ q values of i or for no value of 1,
with the latter actually occuring precisely when a > 1, i.e. when t < s2.

8.6.4. If (SV) Q) is a TGQ of order (s,t), s <t, then G is the complete set of all elations about p.

Proof. . For s =t see 8.3.3. For s < t it follows from 8.6.1 that |{p,z}**| = 2 for each z € P — p™,
so the proof is complete by 8.2.5. O

8.6.5. The multiplicative group K° of the kernel is isomorphic to the group of all whorls about p fizing
a gien y,y ~ p.

Proof. This is an immediate corollary of 8.6.4 and 8.2.7 O

8.7 T(n,m,q)

In PG(2n + m — 1,q) consider a set O(n,m,q) of ¢" + 1 (n — 1)-dimensional subspaces PG (n —
1,q),... ,PG(qm)(n —1,q), every three of which generate a PG(3n — 1, ¢), and such that each element
PG® (n—1,q) of O(n,m,q) is contained in a PG(i)(n + m — 1,¢q) having no point in common with
any PG(j)(n — 1,q) for j # i. It is easy to check that PG® (n +m — 1,q) is uniquely determined,
i=0,...,¢". The space PG® (n+m—1,q) is called the tangent space of O(n,m,q) at PG® (n—1,q).
Embed PG(2n+m—1,¢q) in a PG(2n+m, q), and construct a point-line geometry T'(n, m, q) as follows.
Points are of three types:

(i) The points of PG(2n +m,q) — PG(2n+m —1,q)

ii) The (n + m)-dimensional subspaces of PG(2n + m, q) which intersect PG(2n +m — 1,¢q) in one
of the PG (n+m —1,q).

(iii) The symbol (c0)
Lines are of two types:

(a) The n-dimensional subspaces of PG(2n +m, ¢) which intersect PG(2n4m —1,¢) in a PG® (n —
1,9)

(b) the elements of O(n, m,q)

Incidence in T'(n,m, q) is defined as follows: A point of type (i) is incident only with lines of type (a);
here the incidence is that of PG(2n + m,q). A point of type (ii) is incident with all lines of type (a)
contained in it and with the unique element of O(n,m,q) contained in it. The point (c0) is incident
with no line of type (a) and with all lines of type (b).

8.7.1. T'(n,m,q) is a TGQ of order (q",q"™) with base point (c0) and for which GF(q) is a subfield
of the kernel. Moreover, the translations of T(n,m,q) induce the translations of the affine space
AG(2n 4+ m,q) = PG(2n + m,q) — PG(2n+m — 1,q). Conversely, every TGQ for which GF(q) is a
subfield of the kernel is isomorphic to a T'(n,m,q). It follows that the theory of TGQ is equivalent to
the theory of the sets O(n,m,q).
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Proof. It is routine to show that T'(n,m, q) is a GQ of order (¢", ¢"). A translation of AG(2n+m,q)
defines in a natural way an elation about (c0) of T'(n, m, q). It follows that T'(n,m, q) is an EGQ with
abelian elation group G, where G is isomorphic to the translation group of AG(2n + m,q), and hence
T(n,m,q) is a TGQ. (With the ¢" translations of AG(2n+m, ¢) having center in PGO(n—1, q) there
correspond ¢" symmetries of T'(n,m, q) about the line PG® (n—1,q) of type (b).) It also follows that
GF(q) is a subfield of the kernel of T'(n,m,q): with the group of all homologies of PG(2n + m,q)
having center y € PG(2n +m — 1, q) and axis PG(2n +m — 1, q) there corresponds in a natural way
the multiplicative group of a subfield of the kernel (cf. 8.6.5).

Conversely, consider a TGQ (S®, Q) for which GF(q) = F is a subfield of the kernel. If s =
q" and t = ¢, then [(G,F) : F|] = 2n + m. Hence with S®) there corresponds an affine space
AG(2n + m,q). The cosets S;g of a fixed S; are the elements of a parallel class of n-dimensional
subspaces of AG(2n + m,q), and the cosets S;g of a fixed S} are the elements of a parallel class of
(n 4+ m)-dimensional subspaces of AG(2n + m, q). The interpretation in PG(2n + m, q) together with
K1 and K2 prove the last part of the theorem. O

8.7.2. The following hold for any O(n,m,q):
(i) n=m orn(a+ 1) =ma with a odd.
(ii) If q is even, then n.=m or m = 2n.

(ii3) If n # m (resp., 2n = m), then each point of PG(2n +m — 1,q) which is not contained in
an element of O(n,m,q) belongs to 0 or 1 4+ ¢™™™ (resp., to exactly 1 + q") tangent spaces of
O(n,m,q).

(i) If n # m, the ¢™ + 1 tangent spaces of O(n,m,q) form an O*(n,m,q) in the dual space of
PG(2n+m —1,q). So in addition to T'(n,m,q) there arises a TGQ T*(n,m,q).

(v) If n #m (resp., 2n = m), then each hyperplane of PG(2n +m — 1,q) which does not contain a
tangent space of O(n,m,q) contains 0 or 1+ ¢q™ ™ (resp., contains exactly 1 + q") elements of

O(n,m,q)

Proof. Since T'(n,m,q) is a TGQ of order (¢",q™), by 8.5.2 n = m or ma = n(a + 1) with a odd,
which proves (i).

Let q be even. Then t = s by 8.6.1 (iv), i.e. m = 2n.

Next, let n # m and let x be a point of PG(2n + m — 1, ¢) which is not contained in an element
of O(n, m, q). Consider distinct points y, z of type (i) of T'(n, m, q), chosen so that x,y, z are collinear
in PG(2n +m — 1,q). Then |{(c0),y, z}*| is the number of tangent spaces of O(n,m, q) that contain
z. By 8.6.1 (iii) [{(00),y,2}*| € {0,1+¢™ "}, If 2n = m, i.e. t = s2, then clearly |{(c0),y,2}*| =
s+1=4¢"+1, so that (iii) is completely proved.

Now consider the tangent spaces PG (n+m—1,q9) = m, PG(j)(n+m— 1,q) =7}, PG (n+m—
1,q) = m of O(n,m,q), with 4, j, k distinct. If = is a point of type (i) of T'(n,m,q), then the spaces
x7;, T, Ty are points of type (ii) of T'(n,m,q). Clearly |{zm;, xm;, zmp} 1| = ¢" + 1, with r — 1 the
dimension of m; N7j N7, By 8.6.1 and 1.7.1 (i) ¢" = ¢, i.e. r =m —n. Now (iv) easily follows.
(The tangent spaces of O*(n,m,q) are the elements of O(n,m,q).)

Finally, by applying (iii) to O*(n,m, q), (v) is obtained.

8.7.3. Let (SP) Q) be a TGQ of order (s,t).
(i) If s is prime, then S = Q(4,s) or S = Q(5, s).

(i3) If all lines are reqular, then S = Q(4,q) ort = s%.
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Proof. If s is a prime, then either n = 1 = a, m = 2, or n = m = 1. Moreover, T'(1,m,s) is a
Tn+1(0) of J. Tits, m = 1,2 (cf. 3.1.2). If s is prime, then the oval or ovoid, respectively, is a conic
or elliptic quadric, so that S = Q(4,s) or § = 9Q(5,s). (cf. 3.2.2 and 3.2.4).

Now assume all lines are regular. If s = ¢, then S = Q(4,s) by 5.2.1. So suppose s < t. By 1.5.1
(iv) s + 1 divides (2 — 1)¢2, but with s = ¢", t = ¢", s + 1 must divide t* — 1. Since ma = n(a + 1),
a odd, we have t? — 1 = ¢*™ — 1 = qw_l = (q”)Qq%n_1 = q%n (mod ¢"™ + 1), implying n < 27", or
a<?2ie. a=1landt=s> O

The only known TGQ are T5(O) and T3(O) of J. Tits, and it is useful to have characterizations of
these among all TGQ.

8.7.4. Let (SV) Q) be a TGQ arising from the set O(n,2n,q). Then SP) = T3(0) if and only if any
one of the following holds:

(i) For a fized point y,y ~ p, the group of all whorls about p fixing y has order s — 1.

(ii) For each point z not contained in an element of O(n,2n,q), the ¢"+ 1 tangent spaces containing
at least three elements of O(n,2n,q) contains exactly " + 1 elements of O(n,2n,q).

Proof. In view of 8.6.5, the condition in (i) is just that the kernel has order s, which means S ®) ig
aT(1,2,q"),ie aT3(0). We now show that the condition in (ii) is equivalent to the 3-regularity of
the point p. Consider a triad (p,z,y). Then all points of {p,z,y}*, which clearly are s + 1 points
of the second type, are obtained as follows. Let z be the intersection of the line xy of PG(4n,q)
and the hyperplane PG(4n — 1,q). If PG(il)(3n -1,q9),..., PG(iS+1)(3n —1,q) are the tangent spaces
of O(n,2n,q) through z, then {p,z,y}* consists of the 3n-dimensional spaces zPG(ij)(3n - 1,q),
j=1,...,5+1. Notice that every point of the line xy which is not in PG(4n — 1,q) is in {p,z,y} =,
so that [{p,z,y}**| > 1+q. Finally, |{p, z,y}*| = ¢" + 1 iff the ¢" 4 1 spaces PG)(3n —1,¢) have
an (n — 1)-dimensional space in common, which proves (ii).

Condition (iii) for O(n,2n,q) is merely condition (ii) for O*(n,2n,q). Hence (iii) is satisfied
iff T*(n,2n,q) = T3(0*) for some ovoid O* of PG(3,q¢"). If T"(n,2n,q) = T3(0*) and O* is not
an elliptic quadric, then the point (co) of T3(O*) is the only coregular point of T3(O*) (cf. 3.3.3
(iii)), and consequently the points (co) of T7(n,2n,q) and T5(O*) correspond to each other under
any isomorphism between these GQ. On the other hand, if T*(n, 2n, q¢) = T5(0*) and O* is an elliptic
quadric, then there is always an isomorphism between these GQ mapping the point (c0) of T*(n, 2n, q)
onto the point (co) of T3(O*). Suppose that O(n,2n, q) satisfies (iii). Since T3(O*) has ¢" — 1 whorls
about (oo) fixing any given point y ~ (00), also T%(n,2n,q) has ¢" — 1 whorls about (co) fixing
any given point z ~ (0c0). As T*(n,2n,q) is the interpretation of 73(0O*) in the 4n-dimensional
space over the subfield GF(q) of the kernel GF(¢"), it is clear that O*(n,2n, q) satisfies (iii). Hence
O(n,2n, q) satisfies (ii), and then by the preceding paragraph T'(n, 2n,q) = T3(0O). Conversely, assume
that T'(n,2n,q) = T3(0) for some ovoid of PG(3,¢™). Again by the preceding argument O(n,2n,q)
satisfies (iii). O

8.7.5. Consider a T(n,2n,q) with all lines reqular. Then T(n,2n,q) = Q(5,q") if the following
conjecture is true:

Conjecture: In PG(4n — 1,q) let PG(i)(n —1,9),i = 0,1,...,4", be ¢" + 1 (n — 1)-dimensional
subspaces, any three of which generate a PG(3n —1,q). Suppose that each PG® (n—1,q) is contained
in a PGO (n,q), in such a way that PG® (n,q) N PG(j)(n —1,q) = @, that PG® (n,q) N PG(j)(n,q)
is a point, and that the (2n — 1)-dimensional space spanned by PG(i)(n —1,q9) and jelel®) (n—1,q)
contains a point of PG (n,q) wheneveri,j, k are distinct. Then the ¢" + 1 spaces PG® (n—1,q) are
contained in a PG(3n —1,q).

Proof. Consider the TGQ T'(n,2n, q) arising from the set O(n, 2n,q) = {PG(O) (n—1,q),..., PG@™) (n—
1,9)}, and assume that all lines of T'(n,2n,q) are regular. Let Lo, L1 be two nonconcurrent lines of
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type (a), with Ly ~ PG(iO)(n —1,q9), L1 ~ PG(il)(n —1,q), and ig # 1. Further, let {Lo,L1}+ =
{Mo, My,...,Mgp} and {Lo, Li}*t = {Lo,L1,...,Lgn}, with L; ~ PG (n —1,q) ~ M;, j =
0,1,...,¢" If PG(ij)(n—i— 1,q) is the space spanned by M; and Lj, then let PG(if)(n—i— 1,q)NPG(4n —
1,q) = PG(iJ)(n,q), with PG(4n — 1, ¢q) the projective space containing the elements of O(n,2n,q).
Clearly PG (n —1,¢) ¢ PG (n,q) € PGU)(3n — 1,q), with PGU%)(3n — 1,¢) the tangent space
of O(n,2n,q) at PG(if)(n —1,q). Since PG(iﬂ')(n +1,q) and PG (n +1,q), j # k, have a line in
common, clearly PG(ij)(n, q) N PG(ik)(n, q) is a point. Further, the 2n-dimensional space containing
M; and PG(i’“)(n —1,q) (and hence also L), i # k, has a line in common with PG(i”)(n +1,q9), j, k,r
distinct. Hence the (2n — 1)-dimensional space spannend by PG (n — 1,¢) and PG (n — 1,q)
contains a point of PG(”)(n, q).

If the conjecture is true, then the ¢ 4 1 spaces PG(i’“)(n —1,9), k=0,1,...,q", are contained in
a PG(3n —1,q). By 8.7.2 (v) PG(3n — 1, ¢) contains exactly ¢" + 1 elements of O(n,2n,q). Now it
follows from 8.7.4 (iii) that T'(n,2n,q) = Q(5,¢"). O

8.7.6. If s = q" = p? with p prime, then any T(n,2n,q) with all lines reqular must be isomorphic to
(5, s).

Proof. Clearly n =1 or n = 2. If n = 1, the resulting 7'(1,2,p?) is clearly a Tits quadrangle T'(O).
Since all lines are regular it must be isomorphic to Q(5,s) (cf. 3.3.3 (iii)). Now suppose n = 2, so
g = p, and let O(2,4,p) = {PG(O)(I,p),...,PG(p4)(1,p)}. Use the notation of the proof of 8.7.5.
Then, from PG(iO)(Q,p) project the lines PG(ij)(l,p), j=1,...,p% onto a PG(4,p) C PG(7,p) skew
to PG(iO)(2,p). There arise p? lines PG(tf)(l,p), j = 1,...,p? having in pairs exactly one point in
common. So these lines either have a point in common or are contained in a plane. If PG(3,q)
contains PG(iO)(Q,p) but is not contained in PG(iO)(5,p), then we know that PG(3,p) has a point in
common with p elements of O(2,4,p) — {PG(iO)(l,p)} (every plane of PG(3,p) through PG(iO)(l,p),
but different from PG(iO)(Q, p), contains exactly one point of some element of O(2,4,p)). Hence each
point of PG(4,p) is contained in at most p of the lines PG(tj)(l,p), j =1,...,p% It follows that
the p? lines PG(tJ‘)(l,p)7 j =1,...,p% are contained in a plane. Hence the p? + 1 lines PG(ij)(l,p),
j = 0,...,p% are contained in a PG(5,p). By 8.7.2 (v) PG(5,p) contains exactly p? + 1 lines of
0O(2,4,p). Now it follows from 8.7.4 (iii) that T'(2,4,p) = Q(5,p?). O

For the remainder of this section we assume n =m, i.e. s=1
Consider a line L = PG® (n—1,q) of type (b) of T'(n,m,q). Then L is regular. So with L corresponds
a projectieve plane 7y, of order ¢" (cf. 1.3.1). By projection from PG® (n—1,q) onto a PG(2n,q)
skew to it in PG(3n,q), it is seen that m; is isomorphic to the plane 7 described as follows: points
of 7 are the points of PG(2n,q) — PG(3n — 1,q), with PG(3n — 1, ¢) the (3n — 1)-dimensional space
containing O(n,m,q), and the (n — 1)-dimensional spaces PG(i)(Qn —1,9) N PG(2n — 1,q) = Ao,
< PGO(n — 1,9),PGU(n — 1,q) > NPG(2n — 1,q) = A;, for all j # i, with PG(2n — 1,q) =
PG(3n — 1,q) N PG(2n,q); lines of m are PG(2n — 1,q) ant the n-dimensional spaces in PG(2n, q)
which contain a Ay, k =0,...,¢", and are not contained in PG(2n — 1, q); incidence is containment.
Hence up to an isomorphism 7y, is the projective completion of the affine translation plane defined by
the (n — 1)-spread [50] {Ao,...,Agn} =V; of PG(2n — 1, ¢).

Let g be even. Then by 1.5.2 the coregular point (co) is regular. It follows that all tangent
spaces of O(n,n,q) have a space PG(n — 1,¢) in common (cf. also [182]). This space is called the
nucleus or kernel of O(n,n,q). By projection from PG(n — 1,q) onto a PG(2n,q) skew to it (in
PG(3n,q)), it is seen that the projective plane 7, arising from the regular point (co) is isomorphic
to the plane m described as follows: point sof = are PG(2n — 1,q) = PG(2n,q) N PG(3n — 1,q)
(with PG(3n — 1, q) the space containing O(n,n,q)) and the n-dimensional spaces in PG(2n, ¢) which
contain a Iy, =< PG(n—1,¢),PG®(n—1,¢) > N"PG(2n—1,q), k =0,...,¢", and are not contained
in PG(2n —1, q); lines of 7 are the points of PG(2n, ¢) —PG(2n—1, ¢) and the spaces 'y, ...,T'yn; and
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incidence is containment. Hence up to an isomorphism 7, is the dual of the projective completion
of the affine translation plane defined by the (n — 1) spread {I'g,...,I'¢n} =V of PG(2n — 1, ¢).

Now let ¢ be odd. Then by 1.5.2 the coregular point (cc) is antiregular. It follows that any
point of PG(3n — 1,q) which is not contained in O(n,n,q) is in exactly 0 or 2 tangent spaces of
O(n,n,q) (cf. also [112]). Let PG(2n,q) be a 2n-dimensional subspace of PG(3n, ¢) which contains
the tangent space PG(i)(Qn — 1,q) of O(n,n,q) and is not contained in PG(3n — 1,¢q). Then the
affine plane 7((00), PG(2n,q)) (cf. 1.3.2) is easily seen to be isomorphic to the following structure
7 points of 7 are the n-dimensional spaces of PG(2n, ¢) intersecting PG®(2n — 1,¢) in an element
PCGUl(n —1,¢9) = PGO(2n — 1,q) N PGY)(2n — 1,q), j # i; lines of 7 are the spaces PGUl(n —1,¢),
j # i, and the points in PG(2n,q) — PG(i)(2n — 1,q); incidence is containment. The projective
completion of 7 is the dual of the projective translation plane arising from the (n — 1)-spread V;* =
(PG (n—1,¢)} U{PGUl(n—1,¢),7 # i} of PG (2n — 1,¢).

It T(n,n,q) is isomorphic to a T»(0) of J. Tits, then all corresponding projective or affine planes
are desarguesian, and hence all corresponding (n — 1)-spreads are regular [50].

8.7.7. (L.R.A. Casse, J.A. Thas and P.R. Wild [77]). Consider an O(n,n,q) with ¢ odd. Then at
least one of the (n —1)-spreads Vo, ..., Vyn is reqular iff at least one of the (n — 1)-spreads Vi, ...,V
are regular. In such a case all (n — 1)-spreads Vo, ..., Ven, Vi, ..., Vi are regular and T(n,n,q) is
isomorphic to Q(4,q").

Proof. Let V*, i € {0,...,q"}, be regular. Then by 5.2.7 T'(n,n,q) = Q(4,¢"). Consequently all
(n—1)-spreads Vo, ..., Von, Vi, ..., Vi are regular. Next, let V;, 7 € {0,...,¢"}, be regular. Since g is
odd, the set {PG(O)(Qn— 1,q),... , PG (2n—1, q)} of all tangent spaces of O(n,n, q) is a set O(n, n,q)
relative to the dual space PG(3n — 1,¢) of PG(3n — 1,¢). The elements of O(n,n,q) are the tangent
spaces of O(n,n, q). Clearly the (n — 1)-spreads V; and f/j* (resp., f/j and V]*), j=0,...,¢", may be
identified. Since VZ* is regular, by the first part of the proof all (n — 1)-spreads Vo, ..., an, ‘70*, ey Vq’Z
are regular. Hence V', ..., Vi, Vo, ..., Vyn are regular, and the theorem is completely proved. O



Chapter 9

Moufang conditions

Most of the results and/or details of proofs in this chapter either came from or were directly inspired
by the following works of J.A. Thas and/or S.E. Payne: [114, , 215, 216].

9.1 Definitions and an easy theorem

Let S = (P, B,I) be a GQ of order (s,t). For a fixed point p define the following condition.

(M), : For any two lines A and B of S incident with p, the group of collineations of S
fixing A and B pointwise and p linewise is transitive on the lines (# A) incident with a
given point z on A (z # p).

S is said to satisfy condition (M) provided it satisfies (M), for all points p € P. For a fixed line L € B
let (M) be the condition that is the dual of (M), and let (M) be the dual of (M). If s # 1 # t and S
satisfies both (M) and (M) it is said to be a Moufang GQ. A celebrated result of J. Tits [221] is that
all Moufang GQ are classical or dual classical. His proof uses deep results from algebra and group
theory, and it is one of our goals to approach this theorem using only rather elementary geometry
and algebra. At the same time we are able to study Moufang conditions locally and obtain fairly
strong results, and there are some intermediate Moufang conditions that have proved useful. We say
S satisfies (M), provided it satisfies (M), for all lines incident with p. The dual condition is denoted

(M)r. A somewhat weaker condition is the following:

(M), : For each line L through p and each point z on L, x # p, the group S, of collineations
of S fixing L pointwise and p and z linewise is transitive on the points (not p or z) of each
line (# L) through p or = .

A main use of this condition is the following.

9.1.1. If S satisfies (M), for some point p, then p has property (H).

Proof. We must show that if (z,v,2) is a triad of points in p* with = € cl(y, 2), then y € cl(z, 2). So
suppose T ~ w € {y, 2}, By (M), there is a collineation # which is a whorl about p, a whorl about
pz, and which maps w to z. Tt follows that 4 € {x, 2}, so that y € cl(z, 2). O

An immediate corollary of this result and 5.6.2 is the following.

~

9.1.2. If S satisfies condition (M), then one of the following must occur:
(i) All points of S are regular (so s =1 or s > t).

(ii) |{z,y}*+*| = 2 for all points z,y, with = % y.
(iii) S = H(4,s).

117
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9.2 The Moufang conditions and property (H)
Let S = (P, B,I) be a GQ of order (s,t), s # 1 and t # 1.

9.2.1. Let 0 be a nonidentity collineation of S for which 0 is a whorl about each of A,p, B where A
and B are distinct lines through the point p. Then the following hold:

(i) 6 is an elation about p.
(i) A line L is fixed by 0 iff L1 p.
(i5i)) f x TA, yI B, x oy, and z € {z,y}*+, then 2/ = 2.

(iv) If 2% = z for some z not on A or B, then there are points z,y on A, B respectively, for which
x,, z are three centers of some triad containing p.

(v) If p is regular, then € is a symmetry about p.
(vi) If p is antiregular, a point z is fixed by 0 iff z ison A or B .
Proof. This is an easy exercise starting with 8.1.1 (and its dual). O
There is an immediate corollary.
9.2.2. (i) A pointp of S is a center of symmetry iff p is a reqular point for which S satisfies (M)y,.
(ii) S®¥) is o TGQ iff p is a coregular point for which S satisfies (1\7[),,.

9.2.3. Suppose S satisfies (M), for some point p. Let A and B be distinct lines through p with x 1 A,
yl B, x o0 y. Let 6 be a nonidentity collineation of S which is a whorl about each of A,p, B, and with
Py as its set of fized points. Then the following hold:

(i) If z € Py — {p}, so z € p*, then each point on pz is in Py.
(i3) cl(z,y) Np*t C Py.
(iii) For any 2',y" with o' T A,y 1 B, 2’ ~ 4/, cl(z,y) Np*t = cl(z',y") Np .

Proof. Let z be a point of Py not incident with A or B. Let L be any line through z different from
pz. By (M,) there is a collineation #" which is a whorl about each of B,p, and pz, and for which
(Lo)e’ = L. Then 6¢ is a whorl about both B and p, and L% = L, 2% = 2. Clearly each point of L
is fixed by 66’, and by 8.1.1 we have 89’ = id. Hence 0 fixes each point of pz, proving (i). From 9.2.1
(iii) it follows that cl(z,y) N pT C Py, proving (ii).

Now suppose x,x’ are points of A,y,y" are points of B, with x ¢ y, 2’ # y'. We claim cl(z/,y") N
pt C c(z,y) Np*. Solet 2 € cl(x,y') N pt. Clearly we may assume that 2’ is not on A or B. Let
v1,v2 be any two points of {z,y}* — {p}, and let z be the point on pz’ collinear with v;. By (M),
there is a collineation 6 which is a whorl about A,p and B, and which maps yv; to yvs. It follows
that v{ = vy. Since 2’ € cl(2/,9') N p*, by the preceding paragraph 6 fixes each point of pz’. Hence
(zv1)? = zvy, implying that vy ~ z. It follows that z € {x,y}**, so that 2’ € cl(x,y) Np*. This shows
that cl(z',y") N p*t C cl(x,y) Np*, and (iii) follows. O

As an immediate corollary of part (iii) of 9.2.3 we have the following.

9.2.4. If S satisfies (M), for some point p, then p has property (H).
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Hence if S satisfies condition (M), then each point has property (H). This result and its dual
along with 9.1.2 and its dual yield the following approximation to the result of J. Tits.

9.2.5. Let S be Moufang with 1 < s <t. Then one of the following holds:
(i) FEither S or its dual is isomorphic to W(s) and (s,t) = (q,q) for some prime power q.
(ii) S =2 H(4,s) and (s,t) = (¢%,¢3) for some prime power q.

(iii) SV is a TGQ for each point p, and (s,t) = (q,q?) for some prime power q.

(iv) {z,y}*++| = {L,M}**+| =2 for allz,y € P, x %y, and all L, M € B, L o« M. (In Section 9.5
we shall show that case (iv) cannot arise).

Proof. In listing the cases allowed by 9.1.2 and 9.2.4 and their duals, the cases that arise are (i), (ii),
(iv) and the following : All lines are regular, s < ¢, and |{z,y}**| = 2 for all points z,y with = % y.
But in this case 9.2.2 implies S®) is a TGQ for each point p, and t = s? with s a prime power by 8.7.3
and 8.5.2. O

9.3 Moufang conditions and TGQ

Let S = (P, B,I) be a GQ of order (s,t), s # 1 and t # 1.
9.3.1. If SV is a TGQ then S satisfies (M),.

Proof. Let Lo Il p 1 Ly, Lo # L1, p#x1 Lo, Ala1 B, A# B # Ly # A. On L; choose a point v,
y # p, and define points z and u by Alz ~ y, B1u ~ y. If 6 is the (unique) translation for which
2% = u, then 2% = z, y? =y, A’ = B, and 8.4.1 implies that 6 fixes Ly and L, pointwise. It follows

that S satisfies (M),,. O

At this point we know that if S® is a TGQ, then p is a coregular point for which S satisfies both
(M), and (M)p. Conversely, we seek minimal Moufang type conditions on S at p that will force S®
to be a TGQ. Let G, be a minimal group of whorls about p containing all the elations about p of
the type guaranteed by (M),. Without some further hypothesis on S it is not possible to show even
that G, is transitive on P — p. For example, if p is regular then (M), implies that p is a center of
symmetry so that G, is just the group of symmetries about p. And there are examples (e.g. W (s)
with s odd) for which S (?) is not a TGQ and p is a center of symmetry. Moreover, notice that a GQ
with a regular point p and s # ¢ has s > t, and hence is not a TGQ. As the regularity of p does not
seem to be helpful, we try something that gets away from regularity.

For the remainder of this section (with the exception of 9.3.6) we assume that p is a point of S for
which S satisfies (M),, with G, defined as above, and that p belongs to no unicentric triad.
Then {p,z}*+ = {p,z} for all z € P — p*.

9.3.2. The point p is coregular, so that s < t.

Proof. Let L,M € B, L & M, pI L. Let Ny, N3, N3 be distinct lines in {L, M} with pI Ny. If there
were a line concurrent with N7 and N» but not concurrent with N3, there would be points y; on N,
i=1,2,3, with y1 ~ y2, y1 ~ y3, Y2 % y3. Then (p, y2,y3) would be a triad with center y;, and hence
by hypothesis would have an additional center u. Since S satisfies (M), there must be a 6 € G, fixing
p linewise, py; and pu pointwise, and mapping y1y2 to y1y3. Define v; € P by N; L v, I M, i = 2,3,
It follows that yg = ys3, N29 = N3, MY = M, and vg = v3. Define w € P by vg ~ w I pu. Then
(ww)g = wus, giving a triangle with vertices w, va, v3. This impossibility shows that the pair (L, M)
must be regular, and p must be coregular. O
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9.3.3. (S(p),Gp) is an EGQ and G, is the set of all elations about p.

Proof. By 8.2.4 and 8.2.5 we need only show that G, is transitive on P — pt. First, let (p,z,y) be
a centric triad, hence with at least two centers u and v. By (M), there is a § € G}, for which 6 is a
whorl about each of pu, p, pv, and (uz)? = uy. Clearly 2 = y. Second, let z,y € P — p* with 2 ~ y.
Put M =xy, and let pI L, L # M. Define u; by p ~ u; I M, y ~ uo I M, and ug3 is any element of
{ug,us}t — {p,y}. As (p,z,u3) and (p,y, u3) are centric triads, 2 and us, respectively y and ug3, are
in the same Gp-orbit. Hence = and y are in the same G), orbit. Finally, suppose that (p,z,y) is an
acentric triad. Let u € {z, y}l, so u & pt. Then x,u,y are all in the same Gp-orbit by the preceding
case. Hence G, is transitive on P — pr. ]

9.3.4. If 0 € G), fizes a line M not incident with p, then 6 is a whorl about the point on M collinear
with p .

Proof. Let 6 be any nonidentity elation about p. First suppose there is some point z € P — p* for
which (p, z, ma) is a centric triad, and hence has at least two centers v and v. It follows that 6 is the
unique element of G, mapping z to 2% ie. 6 is a whorl about each of pu, p, pv. By 9.2.1 6 fixes
no line not incident with p. Second, suppose no triad of the form (p, z,z?%) is centric. And suppose
MY = M for some line M not through p. Let z be the point on M collinear with p. If some line N
through z is moved by 6, let y be any point on N, y # z. Then (p,y,ye) would be a centric triad.
Hence 6 must be a whorl about z. O

9.3.5. (S(p),Gp) is a TGQ. If t is even, then t = s2.

Proof. By 9.3.3 (S®), Gp) is an EGQ, so that we may shift to the coset geometry description S(Gp, J),
J = {So,..., S}, etc., of Section 8.2. Since p is co- regular, by 8.2.2 we know that S5;5; = S;.5; for
0 <14, j < t, implying S;5; is a subgroup of order s? if i # j. Moreover, the condition in 9.3.4,
when interpreted for S; and S, says that 5;S;, 0 < i < t. Put T;; = SN S;-‘, i # j. Then
Gp = 57,8]* = SZ'SJ‘T;;J', if ¢ 7& j Since Ej C NGP(Si) N NGP(Sj)7 clearly SlS]<SZS],fTU> = Gp, if ¢ 75 ]
Hence each conjugate of \S; is contained in S;S;, if @ # j. But if 4, j, k are distinct, S;S; N S; Sk = S,
by K. It follows that S;G,, 0 <i <t, and by 8.2.2 S; is a (full) group of symmetries about the line
[S;]. From 8.3.1 it follows that (S, G,) is a TGQ. By 8.6.1, if ¢ is even either t = s or t = s%. Clearly
t # s, because then p would be regular and hence belong to some unicentric triad. O

9.3.6. Let S = (P, B, 1) be a GQ of order (s,t), and suppose that S satisfies (M), for some point p,
with G, a minimal group of whorls about p containing all elations of the type guaranteed to exist by

(M),
(i) If p is coregular and t is odd, then (S(p),Gp) is a TGQ.
(i) If each triad containing p has at least two centers, then (S®),G,) is a TGQ and t = s°.
(iii) If t = s%, then (SP),G)) is a TGQ.
Proof. In each case the hypotheses guarantee that p is in no unicentric triad, so that the results of
this section apply. To complete the proof of (ii), use part (i) of 8.6.1 if s < ¢t. And if s = ¢, p must

belong either to an acentric or a unicentric triad according as ¢ is odd or even (i.e. according as p is
antiregular or regular (cf. 1.5.2, (iv) and (v))). O
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9.4 An application of the Higman-Sims technique

For any GQ S = (P, B,I) of order (s,t), s # 1 # t, let O be a set of points with |O| = ¢ > 2. A line
of § will be called a tangent, secant or exterior line according as it is incident with exactly 1, at least
2, or no point of O. Let A be a set of tangent lines, and put Ag = B — A . Suppose {Ay,...,Af} is
a partition of A satisfying the following:

Al. f>2.
A2. For 1 <i < f, each point of O is incident with € lines of A;, 6 a nonzero constant.

A3. If z and y are noncollinear points of O, then each line of A through = meets a line of Ay through
y, 1<k <f.

Put 0; = |A;], 0 < i < f. Then the following is clear:

g0 =0;,1 <i < f, s0dg=(1+1t)(1+st)—qfe. (9.1)

Put 055 = [{(L,M) € Ay x Aj || L # M}|,0<14,j < f. For 0#1i# j#0, each line of A; meets 0
lines of Aj, so that each line of A; misses (¢ — 1)6 lines of A;. Hence

Let O = {z1,...,z,} and suppose z; is collinear with b; points (# x;) of O (necessarily on
secants through x;), 1 <i < q. Let L be a fixed line of A; meeting O at z; (1 < j < f,1 <1 <gq).
There are ¢ — 1 — b; points of O lying on at least one line (# L) of A; that meets L at a point not in
O. So L meets § + ¢ — 1 — b; lines of A; and misses ¢0 — (§ +¢—1—1b;) = (¢ —1)(0 — 1) + b; lines of
A;. Tt follows that 6;; = >0 1 0((¢—1)(0 —1)+b;) =¢b(qg—1)(0 — 1) + >7 , b;.

Put b=>"%,b;/q. Then

0jj/0; =(¢—1)(0—-1)+b1<j<f (9.3)

Since Ej'c:o §j;/0; = st?, we may calculate

i0/0i = st> —b— (¢ —1)(0f —1),1<i < f. (9.4)

Since 610/(51 is independent of ¢ for 1 < 7 < f, SO is 50i/50 = ((510/51)(51/50) . Write e = 500/50,

a = 0i0/di, b = 00i/0,1 < i < f; ¢ = 8;5/0i,1 < i,j < fi # g5 d = 65;/0;1 < j < f. Put
BA = (5ij/5i)0§i,j§f- It follows that

e b...b
pr— |’ : (9.5)
cJ +(d—c)l
a

where J is the f x f matrix of 1’s, and [ is the f x f identity matrix.

For each j, 2 < j < f, define o5 = (vg,v1,...,v¢)T by v1 = 1,v; = —1, vy, = 0 otherwise. Then v;
is an eigenvector of B2 associated with the eigenvalue d — ¢ = b — g + 1. By the theorem of Sims as
applied in Section 1.4 (but dualized so as to use lines instead of points, and interchanging s and t),
we have —t <b—q+ 1, or

q<1+t+b. (9.6)
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Moreover, if equality in (9.6) holds, T; may be extended to an eigenvector of the matriz B (dually
defined in Section 1.J) associated with the eigenvalue —t, by repeating v; d; times, 0 <i < f.

Suppose in fact that equality does hold in (6). Then writing out the inner product of a row of
B indexed by a line of A meeting O at x; and the extension of v;, 1 <i < ¢, 2 < j < f, we find that
b; =b.

Ifqg=1+t+0b, thenbj=b=q—1—-1t1<i<q. (9.7)

The following theorem gives a general version of the setting in which the basic inequality (9.6)
is to be applied.

9.4.1. Let O and 2 be disjoint sets of points of S for which there is a group G of collineations of S
satisfying the following:

(i) 0| > 2; QF = Q; G is not transitive on .
(it) |Gy| is idependent of y for y € Q.
(iii) Each element of Q is collinear with a constant number r (r > 0) of points of O.
(iv) Ifx ~y, x €0, y €Q, and z is any point of the line xy different from x, then z € y©.

(v) If x,y € O, x # y, there is a sequence x = g, x1,...,Tn =y of points of O for which x;—1 #
z;, 1 <1< n.

Then |O| < 1+t + b, where b is the average number of points (# x) of O collinear with a given point
z of O.

Proof. Let O = {z1,...,z4} , and let b; be the number of points (# ;) of O collinear with x;,
1<i<q Ifye Qand L is a line through y meeting O in a point x;, then L has s points of €2
and is tangent to O by (i) and (iv). Let A be the set of all tangents to O containing points of .
By hypothesis G splits €2 into orbits €21,...,Qr, f > 2. Put A; equal to the set of tangents to O
containing points of Q;, 1 < ¢ < f. By (iv) A; consists of tangents each of whose points outside O is
in ;. Then {Ay,...,As} is a partition of A, and we claim (O, Aq,...,Ay) satisfies the conditions
A1,A2/A3. Clearly Al holds by (i) and A3 holds by (iv).

Let z € O and suppose A; has 6; lines ng), e ,Lé?, incident with x. Next let 2’ € O with
z o ', and suppose A; has 6/ lines through 2’. The 6; lines through 2z’ meeting ng), e Lé? must
lie in A; by A3, so 6; < 6. Similarly, §; < 6;, so by (v) 6; is independent of z in O. Then for any
y € O, |G| = |]|Gy| = ¢bisr~t|Gy| (making use of (iii) and (iv)), implying that 0; = r|G|/qs|G,| is
independent of i. Hence A2 is satisfied. Then (9.6) finishes the proof. O]

Remark: If |O] = 1+t + b, then (9.7) has an obvious consequence in the context of 9.4.1.

We now specialize the setting of 9.4.1.
9.4.2. Let Lo, L1,...,L, ber+1 lines (r > 1) incident with a point p of S . Let O be the set of points
different from p on the lines Ly, ..., L, and put Q = P — p. Suppose G is a group of elations about

p with the property that G is transitive on the set of points of § incident with a line tangent to O. If
r > t/s, then G must be transitive (and hence regular) on ).

Proof. Suppose G has f orbits on { with f > 2. Since r > 1, the hypotheses of 9.4.1 are all satisfied
with b =b; =s — 1. Hence ¢ = [O]| = s(r +1) <1+t —1),ie < t/s. O

There are two corollaries.
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9.4.3. Let S be a GQ of order (s,t), t > s, with a point p for which |{p, 2} =2 for allz € P —p*.
If S satisfies (M), and G, is the group generated by all the elations guaranteed to exist by (M), then
(S(p), Gp) is an EGQ with G, consisting of all elations about p. If G is the complete group of whorls
about p, either G = G, or G is a Frobenius group on P — pt.

Proof. Use 8.2.4, 8.2.5 and 9.4.2. O

9.4.4. If (S(p), G) is a TGQ and r > t/s, then G is generated by the symmetries about any 141 lines
through p.

Proof. Immediate. O

9.5 The case (iv) of 9.2.5

The fact that case (iv) of 9.2.5 cannot arise is an immediate corollary of the theorem of this section.
Hence to complete a proof of the theorem of J. Tits it would be sufficient to show that if S®) is a
TGQ of order (s,s?), s # 1, for each point p of S, then S = Q(5, s).

9.5.1. There is no GQ S = (P, B,I) of order (s,t), 1 < s <t, with a point p for which the following
hold:

(i) S satisfies (M),.
(i) |{p,z}**| =2 whenever x € P — p*.
(117) S satisfies (M),.
(iv) |{L, M}*++| =2 whenever pIL and M € B — L= .

Proof. From hypotheses (i) and (i) and 9.4.3 we know (S, G)) is an EGQ, where G, is the set
of all elations about p. Hence we recall the group coset geometry description S = (G,,J), with
J ={So,..., 5}, Sg,...,5;, ete. (cf. 8.2). Suppose some § € G), fixes a line M not through p, and
define the point y by p ~ yIM. If zIM, z # y, then 6 must be the unique element of G, mapping 2
to 2¢. Hence 6 must be the collineation guaranteed by (M), to map z to 2% and is therefore a whorl
about y (and also about p and py). In terms of J, this means that S; < S for each i = 0,...,t.
Now suppose p # y = y? for some 6 € Gp. If 0 fixes some line M through y,p ¥ M, then 0 is a
whorl about py as in the preceding case. If M? # M for some M through y, use (M), to obtain
a ¢ in G, which is a whorl about py and maps M ® to M. Hence ¢ € Gy is a whorl about py
and about y, forcing 6 to be a whorl about py. The fact that any 6 € G, fixing a point y, y # p,
must be a whorl about py, may be interpreted for J to say that S} < G, for all i. We claim that
Ng,(S;) = S;. For suppose g € Ng,(5;) — S;. Any coset of S; not in S} must meet some member
of J, since {S},S;So — Si, SiS1 — Si, ..., SiSy — Si} (omitting S;S; — S;) is a partition of the set G).
Hence there is a j (5 ¢) for which there is a 0; € S; N Sig, say 0; = o,¢g for some o; € S;. Then
0j =09 € Ng,(S;). For any o € S;, (Sjoj)o = Sioj, since 0 € S; = Jj_lSmj. But as o fixes the line
S;o; through Sfo;, it must be a whorl about S;o;. Hence each element of S; fixes each line meeting
any one of p, S}, S0, and it follows that the lines S;, Sjo;, and [S;] are all concurrent with [S;]
and with the s images of S; under the action of S;. This says that |{[S;], S;}+| > 2, contradicting
hypothesis (iv) of the theorem. This shows that Ng,(S;) = S;. For convenience, specialize i = 0,
Jj=1. As S5 <G,, ST <Gy, clearly S§ NS} <« S5. And S5 = So(S5 N ST) with Sy <.S;. Hence Sj is the
direct product of Sp and S5 N ST, implying that each element of Sg N ST commutes with each element
of Sy (and also with each element of S;). Put H = (Sp, S1) N (S§ N ST). Clearly each element of H
commutes with each element of (Sp, S1) and with each element of S§N.ST, hence also with each element
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of G, = SpST = SoS51(S5 N ST) C (S0, 51)(Sg N ST). So H C Z(Gp) C NiNg,(S;) = MiS; = {e},
where this last equality holds since any nonidentity element of N;S; would be a symmetry about p
(cf. 8.2.2) and force a contradiction of hypothesis (ii). Then H = {e} and G, = (So,S1)(S5 N ST)
imply [(So, S1)| = 52, i.e. (S0, 51) = SoSi. Similarly, S;S; is a group whenever i # j, so S;S; = S;5;,
implying each line through p (or (c0)) is regular (by 8.2.2), contradicting hypothesis (iv). This
completes the proof. ]

9.6 The extremal case g =1+ s>+

Recall the setting and notation of Section 9.4 and let (O, Aq,...,Ay) be a system satisfying A1, A2,
and A3. Moreover, suppose that [O] = ¢=1+s2+b (t > 1,58 > 1). Ast < s by D.G. Higman’s
inequality, it follows from (9.6) that t = s> and b; = b for 1 < i < ¢q. By 1.10.1 applied to the set O,
b+1<s+¢q/(1+5s). Byb+1=¢q—s?><s+q/(1+s), which is equivalent to ¢ < (1+ s)2. And of
course ¢ = 1 + b+ s% implies ¢ > 1 + s2. Hence

1+s2<q<(1+5)2 (9.8)

Let L € Aj, 1 < j < f. Let Pr, be the set of points in O, together with the points on lines of
A; meeting L and the points off O lying on at least two secant lines. The number of such points is
v =80 +1+b+s(g—1—0b)+ 6, where § is the number of points off O but lying on at least two
secants. Hence

|Pr| =v' =80 +q—s*+5°+0. (9.9)

9.6.1. Suppose that Py, is the pointset of a subquadrangle S'. Then S’ has order (s,s) and one of the
following three cases must occur:

(i) qg=1+820=1+56=0,b=0, and O is an ovoid of S’ (i.e. each line of S’ is incident with
a unique point of O).

(ii) g=s5(1+s),0 =s,0 =1,b=s—1, and O is the set of all points different from a given point T
but incident with one of a set of 1 + s lines all concurrent at x.

(i) ¢ = (1+5)%,0 =5—1,0 =0,b = 2s, and O is the set of points on a grid.
Moreover, each of the above cases does arise.

Proof. Since each point on a line of A; meeting L is in Py, by definition, S’ has order (s,t’) for some
t’. Since f > 2, &’ must be a proper subquadrangle, so ¢ < ¢, implying ¢’ < s by 2.2.2. We claim each
line of A is a line of S’. Let L meet O at ; and suppose M € A;. If z; is on M, then M is a line of
S’. So suppose M is incident with x, € O, x, # x;. If z; + x,, let y be the point on M collinear with
z;. By A3 z;y € Aj, and as both y and z, belong to &’ so does M. So suppose z; ~ x,. Each point
off O on M is collinear with -on average- 1+ (¢ — 1 —b)/s = 1 + s points of O. Hence some point
zof M, z ¢ O (i.e. z# x,) is collinear with at least s points of O different from x,, say uq, ..., us.
If uq,...,us are all collinear with x; , then uix;, ..., usz;, z,2; would be s+ 1 lines of &’ through x;,
giving a total of at least 1 + 6 + s lines of &’ through x;, an impossibility since 1 +6 +s > 1+ s >
1++t. Hence we may suppose that us ¢ x;. Then usz belongs to 8’ by a previous argument, implying
zx; = M belongs to S’. Thus each line of A; belongs to §’.  Let M € A; and recall that the points
off O on M are collinear with -on average- 1+ s points of O. But no such point is collinear with more
than 1+ s points of O since ¢’ < s. Hence each point off O on M is collinear with exactly 1+ s points
of O, and t' = s. Hence |P| =v' =1+ s+ s> + 5%, and from (9.9) we have

0=2s+1—(¢q+d—1)/s. (9.10)
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From (9.8) we have that ¢ > 1+ s2 , so that (9.10) implies
§<1+s. (9.11)

Since each point of O is on 6 lines of A;, and each point off O on some line of A; is collinear
with 1+ s points of O, it follows that v' = qfs/(1+ ) +q+ 6 = 56 + ¢ — s> + s> + 6. Solving for 6 we
find

0=s(s—1)(s+1)/(g—s—1). (9.12)

As ¢ < (1+5)% from (8), ¢ —s— 1< (1+s)s, and # > s — 1. This proves
s—1<6<s+1. (9.13)

Setting = s+1, s, s— 1, respectively, in (9.12) and solving for ¢, yields ¢ = 1+s2, s(1+s), (1+5)2,
respectively. Then (9.9) may be used to solve for § in each case, since v/ = 1+ s + s + s, and (9.7)
may be used to determine b as stated in the theorem.

In case (i), b =0 and ¢ = 1 + s? force O to be an ovoid of S'.

In case (ii), b = s — 1 and § = 1. Since §# = s and S’ has order (s,s), the s — 1 points z; € O
different from but collinear with a fixed point z; of O must all lie on the only line M}, of S’ through
x; and not tangent to O. So there arise 1 + s lines My, ..., Ms, each incident with s points of O, no
two having a point of O in common, and no point of M; in O being collinear with a point of M, in
O, i # j. Hence each point of M; in O must be collinear with that point of M; not in O. It follows
that My, ..., My all meet at a point x not in O, which is evidently the unique point lying on two (or
more) intersecting secants.

In case (iii), b = 2s. Since § = s — 1 and S’ has order (s,s), the 2s points z; € O for which
xj is collinear with but distinct from a given point x; in O must lie on two lines through z;. From
q = (1+ s)? it follows readily that O is the pointset of a grid.

To complete the proof of 9.6.1 we give several examples to show that each of the above cases does
arise.

Examples 1.

Let S be the GQ Q(5, s) of order (s, s?) obtained from an elliptic quadric @ in PG(5,s). Let P; be a
fixed PG(3, s) contained in PG(5, s).

(i) If @ N Ps is an elliptic quadric O, let P}, ... ,Pf be f (> 2) PG(4,s)’s containing O and not
containing an intersection of @ and the polar line of Py with respect to @ (i.e. PiN @ is not a cone).
Then the linesets Aq,...,Af of PLNQ,... ,PI N Q, respectively, yield an example with |O] = 1 + s2.
(i) If P3N Q is a cone O with vertex xg, then f (> 2) PG(4, s)’s containing O and intersecting @ in
a nonsingular quadric yield an example with O = O" — {x¢}, |O] = s(1 + s).

(iii) If P3N @ is an hyperbolic quadric O, then f (> 2) PG(4, s)’s containing O will yield an example
with |O| = (1 + 5)%.

Examples 2.

Consider the GQ T5(€2) with © an ovoid of PG(3,¢) = P3 and P3 an hyperplane of PG(4,q) = Pj.

(i) ¢ =1+ s2. Let L be a line of Py containing no point of Q. Let 7 be a plane of P; meeting P; in
L. Let my,...,7m5 (2 < f < s—1) be distinct planes of P3 containing L and meeting (2 in an oval. Put
Py = (m,m;) . Let O = (7 — P3) U{(00)}. Then A; is to be the set of lines of P; meeting P; in a point
of mNQ together with the points of N2 considered as lines of type (b) of T3(2). Here # = s+ 1 and
O is an ovoid in the subquadrangle whose lineset is A;.

(ii) g = s(1 + s). (a) Let m be a plane of P3 meeting € in an oval €. Let O be the set consisting of
the s(1 + s) points of type (ii) or T5(f2) that are incident with the 1 + s elements of €’ considered as
lines of type (b) of T5(f2). Let Psi,... ,Pg be distinct PG(3,s)’s meeting P3 in 7, 2 < f < s. Then
A; is the set of lines of Pi meeting Ps in a point of . (b) Let L be a line of P; which is tangent
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to {1 at the point x. Let 7 be a plane of P, meeting P3 in L. Let my,..., 7y be distinct planes of P3
containing L and meeting 2 in an oval, 2 < f < s, and put Pi = (7, 7;). There is one point Pj of type
(ii) containing the plane 7 . Set O = (7 — P3)U { points of type (ii) distinct from P5 and incident with
the point = considered as a line of T3(€2)} U {(c0)}. Then A, is the set of lines of Pi not contained in
7 and meeting Ps in a point of m; N €2, together with the points of (7 N ) — {z} considered as lines
of Tg(Q)
(iii) ¢ = (1 + s). Let L be a line of P; containing two points of . Let 7y,...,7s be distinct planes
of P3 containing L, 2 < f < s+ 1, so necessarily m; meets {2 in an oval ;. Let zo be a fixed point
of Py — P3, and put Pi = (z9,m;). So Pin P = (wo,L) if i # j. Put O = ((xo, L) — L) U {(c0)}U
{Pj || P5 is a hyperplane of P, meeting P; in a plane tangent to {2 at one of the two points of L N Q}.
Then A; is the set of lines of P§ meeting P3 in a point of ; but not contained in m = (xg, L), together
with the points of Q; — L considered as lines of 73(12).

Notice that in all these examples the line L may be chosen arbitrarily in A; U... U Ay. This
completes the proof of 9.6.1. O

Remark : Suppose that f =4 in Example 2 (i). Put A} = Aj U Ag, A, = Az U Ay, and let O be
the same as in that example. Then we have ¢ — 1 — b = s?> = t and each set A of tangents is a union
of linesets of subquadrangles of order (s, s) containing O, and ¢’ = 2(1+ s). For f =mk <s—11itis
easy to see how to generalize this example so as to obtain 6/ = k(1 + s).

Moreover, there is a kind of converse of the preceding theorem which is obtained as an application
of the theory (1)-(6) : In a situation sufficiently similar to one of the cases (i), (ii), (iii) considered
above, a GQ S’ of order (s, s) must arise in the manner hypothesized in 9.6.1. We make this precise
as follows.

Let O and Aq,...,Ay be given with A1, A2, A3 satisfied, assuming as always that |O| > 2 and
s>1,t> 1.

(i)’ Suppose O consists of pairwise noncollinear points, so b = 0. Then |O| = ¢ < 1+t by (6).
Suppose |O| =1+ s? | implying t = s. For each L € Aj and each z on L, z € O, suppose that
z is on at most (or at least) s+ 1 lines of Aj, so that in fact z is on exactly 1+ s lines of A; .
The number of points on lines of A; is v/ = (s2 +1)fs/(s + 1) + % + 1, so that s + 1 divides 6.
Fix a line L € A; and consider all lines of A; concurrent with L. Counting points on these lines
we have s2 + 0s + 1, which equals v’ iff § = s + 1. If § = s + 1, then v/ = (1 + s)(1 + s?) and
each of the v’ points is incident with 1 + s lines of A;. It follows that there is a subquadrangle
S’ of order (s,s) whose lines are just those of A;. If = k(s + 1) with k£ > 1, it is tempting to
conjecture that A; must be the union of linesets of k subquadrangles having O as an ovoid, as
is the case in the first paragraph of this remark.

(ii)” Suppose O consists of those points different from a point x incident with r lines Lq,..., L,
concurrent at z. From (6) it follows that » < 1 +¢/s. Now suppose r = 1+ t/s =1+ s. Fix
a line L € Aj. For each point z on L, 2z € O, z is collinear with exactly 1+ s points of O on
1 + s lines of Aj. The number of points on lines of A; together with = is v/ =1+ s(s + 1)+
s(s+1)0s/(s+1) =1+ s+ s*>+ 0s%. And the number of points on lines of A; concurrent with
L, together with the points on the line L; meeting L, is 1 + s + 0s + s3, which must be at most
v'. Then 1+ s+ 0s+ 53 <1+ s+ s>+ 0s? implies s < 6. If = s, there arises a subquadrangle
S’ of order (s, s).

(iii)” Let Li,..., Ly, (resp., My,...,M,), 2 < m,n, be pairwise nonconcurrent lines with L; ~ M;
1 <4 <m,1 <j <mn. Suppose O consists of the ¢ = mn points at which an L; meets an
M;. Then (6) implies (m — 1)(n — 1) < t. Suppose that m = n = s + 1, implying ¢ = s? and
q¢= (1+s)?. Fix aline L € A;. For each point z on L, z ¢ O, z is collinear with 1 + s points of
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O. The number of points on lines of A; is v/ = (1+5)20s/(1+5)+ (1+5)2 = (1+5)(1+ s+ 0s).
And the number of points on lines of A; concurrent with L, together with the points of O, is
14 25+ 0s + s3. As this number cannot exceed ¢’, it follows that s — 1 < 6. If § = s — 1, there
arises a subquadrangle S’ of order (s, s).

9.7 A theorem of M. Ronan

M.A. Ronan [151] gives a characterization of Q(4,¢q) and Q(5,¢) which utilizes the work of J. Tits
[221, ] on Moufang GQ. M.A. Ronan’s treatment includes infinite GQ and relies on topological
methods. We offer here an “elementary” treatment which, although it still depends on the theorem
of J. Tits, is combinatorial rather than topological, and which corrects a slight oversight in the case
t=2.

Let S be a GQ of order (s,t), s > 1 and t > 1. A quadrilateral of S is just a subquadrangle of
order (1,1). A quadrilateral ¥ is said to be opposite a line L if the lines of ¥ are not concurrent with
L. If ¥ is opposite L, the four lines incident with the points of ¥ and concurrent with L are called
the lines of perspectivity of ¥ from L. Two quadrilaterals ¥ and ¥/ are in perspective from L if either
¥ = X' is opposite L, or ¥ # ¥ and X, ¥ are both opposite L and the lines of perspectivity of X
from L are the same as the lines of perspectivity of ¥’ from L.

9.7.1. Let L be a given line of the GQ S = (P,B,I) of order (s,t), s > 1 and t > 2. Then L is
an axis of symmetry iff the following condition holds: Given any quadrilateral 3 opposite the line L
and any point ©', ' ¥ L, incident with a line of perspectivity of X from L, there is a quadrilateral '
containing ¥’ and in perspective with X from L.

Proof. Let L be an axis of symmetry. Suppose that X is a quadrilateral opposite L and that 2/, 2" ¥ L,
is incident with a line of perspectivity of ¥ from L. Let 2’ I X ~ L and x I X with z in X. By
hypothesis there is a symmetry 6 of S with axis L and mapping x onto z’. Clearly § maps X onto a
quadrilateral ¥’ containing z and in perspective with 3 from L.

Conversely, suppose that given any quadrilateral ¥ opposite L and any point =/, 2’ ¥ L, incident
with a line of perspectivity of ¥ from L, there is always a quadrilateral ¥’ containing z’ and in
perspective with ¥ from L. We shall prove that L is an axis of symmetry of S.

First of all we show that L is regular. Let Ly ¢ L, let My, My, Mo be distinct lines of {L, L }*, and
let Ly € {Mo, My}* — {L,L1}. We must show that Ly ~ Ms. So suppose Ly o~ Mo. If Ly Ty 1 My,
then let V be defined by y I V and V ~ Ms. Further, let V 1 z 1 My and Lo I u I My. Since
t > 2, there is a quadrilateral Y containing w,y, z, Lo,V and which is opposite L. Clearly there is
no quadrilateral ¥’ containing My N L; and which is in perspective with ¥ from L, a contradiction.
Hence Ly ~ My and L must be regular.

We introduce the following notation : If x (resp., y, z,u,...) is not incident with L, then the line
which is incident with z (resp., y, z, u, ...) and concurrent with L is denoted by X (resp., Y, Z,U,...).
Let 2~ 2, 2# 2, 2 L¥72 and Z = 22/ ~ L. Then we define as follows a permutation 6(z, 2’) of
P U B. First, put 2/(®*) = z for all I L and 2/**) = 2/ Now let y ~ z, y ¥ Z. Then y?(>*) = ¢/ is
defined by v/ ~ 2’ and ¥/ 1 Y. Next, let d  z and d ¥ L. If u € {z,d}*, with w } Z and u F D, then
d = d°*%) is defined by ' I D and d’' ~ o where o/ = u?®*). We show that d’ is independent of
the choice of u. For let w € {z, d}L, with w # v and Z Fw ¥ D. Then the quadrilateral ¥ containing
z,u,d,w, is opposite the line L. Hence there is a quadrilateral ¥’ containing 2z’ and in perspecttive
with ¥ from L. It follows immediately that w defines the same point d’. (Note : Since ¢t > 2, d’ is
uniquely defined.)

Let d¥ L, d ¥ Z and d' = d?**). Then clearly 2’ = 2/(44) Now we show that for any point u,
with u ¥Z, u ¥ D, u ¥ L, we have that /(52" = 0(dd),
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First let z ~ d. If u € zd, then by the regularity of L it is clear that u?*?) = 49(@4)  Now suppose
that u € - Ud", u & 2d, e.g. assume u € d-. Then d € {z,u}L, implying that uw?=%) is incident
with U and is collinear with d’. Hence u?*#) = ¢#(&d)  Finally, let ¢ 2+ Ud*. Suppose that w is
the point which is incident with zd and collinear with w. Since L is regular, the line W is concurrent
with the line z/d’. If U # W, then u?(**) as well as u?(@%) is the point which is incident with U and
collinear with w’ = WN2z'd. Soassume U =W. Let D ~ R~ L, R# L and R # D, let r be incident
with R and collinear with z, and let h € {r,d}* with rh ¢ {R,72} and rh # U. (This is possible
since t > 2.) By preceding cases we have : W= = ue(r”"l), with r’ = re(z’zl); wfrr’) = ue(h’h/),
with A/ = Rorr) — h@(z,z’); wfhh') — u@(d,d”)7 with 4" = q0h) — 00rr") — 9(22') — &' Hence
ue(z,z’) — ue(d,d’)_

Now suppose that z % d. If u € z- Ud*, eg. u € d-, then 20(dd) — 0(uu) with o = of(dd),
Hence 2/ = 20(@dd) — 29(“’“/), and u' = ue(z’zl), proving that uw?=7) = f(@d) S5 agsume now that
w2zt Udt. Let we {z,d}*, w¥Z and w ¥ D, and let w' = w?(®*) = /@4 Since t > 3 we may
assume that w FU. Then u/(*?) = ¢fww') — ,#(dd)  Hence again u?(##) = f(dd),

At this point the action of 0(z,2’) is defined on all points except those of Z different from z and
not on L. Solet ¢I Z and ¢ ¥ L. If d ¥ Z and d ¥ L, then define ¢ = &2 by ¢ = £@dd),
with & = d?*"). We show that ¢’ is independent of the choice of d. Let u ¥ Z, u ¥ L, u # d, and
u = w1t U # D, then v/ = u*#) = ¢0dd) and fdd) = Hwv) If 7 = D, then choose a
point w with w ¥ Z, w ¥ L, W # D. We have Add) — c‘g(“”“’/)7 with w' = we(z’zl), and Ffwv) =

O(ww')  Hence Hdd) = Hluu),

c

It is now clear that 0(z, z’) defines a permutation of the pointset P of S. We next define the action
of 0(z,2') on the lineset B of S.

For all M ~ L we define M?%=%") = M. Now let N ¢ L and N & Z. The point which is incident
with V and collinear with z is denoted by d. Further, let u I N with v # d. If d = d?=%) and
u' = u?**) | then since d € {z,u}*, we have d’ ~ u/. We define N%*) = N’ to be the line d'v’, and
we show that N’ is independent of the choice of u. To this end, let w I N, d # w # u, and v’ = w?(®*),
By the regularity of L there holds W ~ d'u’. Since d € {z,w}*, we have w’ = W N d'u/. Hence it is
now clear that N’ is independent of the choice of u. Finally, let N # L and N ~ Z. If c=ZNN
and d I N, d # ¢, then ?(®%) = 0dd) — ¢/ with d' = d°**"). Hence ¢ ~ d'. Define N9=2) = N’
to be the line ¢/d’. We show that N’ is independent of the choice of d. Let u I N, ¢ # u # d, and
v = u?®#). By the regularity of L we have U ~ ¢/d’. Clearly v/ = v?®#) = ¢0@d) — ynd.
Consequently N’ is independent of the choice of d.

In this way 60(z, z') defines a permutation of the lineset B of S. It is also clear that for all h € P
and R € B, h I R is equivalent to h?**) I R%(=%)_ Hence 0(z,72') is an automorphism of S. Since
M=) = M for all M ~ L, 0(z,2') is a symmetry with axis L and mapping z onto z’. It follows that
L is an axis of symmetry. ]

9.7.2. (M.A. Ronan [151]). The GQ S = (P, B,I) of order (s,t), s > 1 and t > 2, is isomorphic to
Q(4,q) or Q(5,q) iff given a quadrilateral 3> opposite a line L and a point 2’, ' VL, incident with a
line of perspectivity of ¥ from L, there is a quadrilateral ¥’ containing x' and in perspective with %
from L.

Proof. Let 8 = Q(4,q) or S = Q(5,q), so S has order (q,q) or (q,q?), respectively. Each line is an
axis of symmetry (recall that S is a TGQ with base point any point of S (cf. 8.7)), and the conclusion
follows from 9.7.1.

Conversely, suppose the quadrilateral condition holds, with ¢ > 2, s > 1. Then by 9.7.1 each line of
SAiS an axis of symmetry. By 8.3.1 S®) is a TGQ for each point p. Now by 9.2.2 and 9.3.1 S satisfies

(M), and (M), for each line L and each point p, i.e. S is a Moufang GQ. By the theorem of J. Tits
[221] S is classical or dual classical. Since all lines of S are regular S = Q(4,q) or S = Q(5, q). O
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Remark : Thecaset =2. If t = 2 and s > 1, then S = Q(4,2) or § = H(3,4) (cf. 5.2.3 and
5.3.2). Let L be a line of S and assume the quadrilateral ¥ is opposite the line L. The points of 3 are
denoted by z,y, z,u, with x ~y ~ z ~u ~ x. Since t = 2, it is easy to show that XN L =2ZNL and
Y NL=UnNL. Also, it is easy to verify that given a line L there is always at least one quadrilateral
Y opposite L. Now let 2’ T X, 2/ ¥ L and = # 2. Since S is Moufang, there is an automorphism 6
of § fixing L point- wise, X N L and Y N L linewise, and mapping = onto z’. Then 6 maps ¥ onto a
quadrilateral ¥’ containing x’ and in perspective with ¥ from L. Hence for t = 2 and s > 1, i.e. for
Q(4,2) and H(3,4), M.A. Ronan’s quadrilateral condition of the preceding theorem is satisfied.

9.8 Other classifications using collineations

In this section we state three results that are in the spirit of this chap- ter but for whose proofs we
direct the reader elsewhere.

Let S = (P, B,I) be a finite GQ of order (s,t), 1 < s, 1 < t. The first result, which has appeared
so far only in [55], answers affirmatively a conjecture of E.E. Shult.

9.8.1. (C.E. Ealy,Jr. [55]). Let the group of symmetries about each point of S have even order.
Then s is a power of 2 and one of the following must hold : (i) S = W (s), (it) S = H(3,s), (iii)
S=H(4,s).

9.8.2. (M. Walker [230]). Let G be a group of collineations of S leaving no point or line of S fized.
Suppose that S has a point p and a line L for which the group of symmetries about p (respectively,
about L) has order at least 3 and is a subgroup of G. Then S contains a G-invariant subquadrangle
S’ isomorphic to W(2") (for some integer n > 2) such that the restriction of G to this subquadrangle
contains PSp(4,2").

For the third result we need a couple definitions. Let z,y € P, x # y. A generalized homology
with centers x,y is a collineation 6 of S which is a whorl about x and a whorl about y. The group of
all generalized homologies with centers x,y is denoted H(z,y). S is said to be (x,y)-transitive if for
each z € {z,y}* the group H(z,y) is transitive on {x, z}**+ — {z, 2} and on {y, z}**+ — {y, 2}.

9.8.3. (J.A. Thas [211]). Let S be (z,y)-transitive for all x,y € P with x ¢ y. Then one of the
following must hold : (1) S = W(s), (i) S = Q4,s), (i) S = Q(5,s), (iv) S = H(3,s), (v)
S=H(4,s).
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Chapter 10

Generalized Quadrangles as Group
Coset (Geometries

10.1 4-gonal Families

Let G be a group of order s, 1 < s, 1 < t. Let J = {Sp,...,S;} be a family of ¢ + 1 subgroups
of GG, each of order s. We say J is a weak 4-gonal family for G provided J satisfies condition K1 of
Section 8.2.

K1. S5;5; NSy, = 1 for distinct 1, j, k.

Given a weak 4-gonal family J, we seek conditions on J that will guarantee the existence of an
associated family J* = {S{,...,S}} of subgroups, each of order st, with S; C S, and for which
condition K2 is satisfied.

K2. §;nS; =1 for distinct 4, j.

Clearly the family J* is desired so that W.M. Kantor’s construction of the GQ S(G, J) is possible.

So suppose J is a weak 4-gonal family for G. Put Q = Uﬁ:o S;. In the t members of J —{S;} there
are t(s — 1) nonidentity elements, no two of which may belong to the same coset of S; by condition
K1. Hence there are st —t(s —1) —1 =t — 1 cosets of S; disjoint from Q. Let S} be the union of these
t — 1 cosets together with S;, i.e. Sf = [J{Sigllg € G and S;g N Q C S;}. It is clear that if there is
a subgroup A7 of order st containing S; and for which A7 N S; = 1 whenever j # 4, then necessarily
A =S¥ Put J* = {S/|0 < i<t}

If a construction similar to that given by W.M. Kantor actually yields a GQ, it follows that S
must be a group for each ¢. Hence we make the following definition: the weak 4-gonal family J for G
is called a 4-gonal family for G provided S} is a subgroup for each ¢. In any case the set S is called
the tangent space of Q1 at S;.

10.1.1. (S.E. Payne [150] and J.A. Thas [191]). Let J = {So,..., St} be a weak 4-gonal family for
the group G, |G| = s%t, |S;| =s, 1 <s,1<t,0<i<t.

(i) If there is a subgroup C of ordert for which C < G and S;CNS; =1 fori# j, then Sf = S;C;
hence SF is a subgroup for each i and J is a 4-gonal family. If S = S(G, J) is the corresponding
GQ of order (s,t), then S() is a STGQ.

(ii) If s =t and each member of J is normal in G, then J is a 4-gonal family. If S = S(G, J) is the
corresponding GQ of order (s, s), then S is a TGQ.

Proof. First suppose there is a subgroup C satisfying the hypothesis of part (i). As S;C contains ¢
cosets of S; whose union meets €2 in S;, clearly S} = S;C, so that S is a group. As C acts as a full
group of symmetries about (co), S(>) must be a STGQ (implying s > t).

131
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Now suppose that each member of J is normal in G and that s = t. Suppose that ¢ : G — G/Sy
is the natural homomorphism, and put Sy = ¢(S5) = {g1,-..,3s}, with g1 = Sp, and S; = ¢(S;),
1 <i<s Clearly S; 2 S, 1 <i < s As {55551 — So,...,58Ss — So} is a partition of G,
{80, S1,...,5s} is a partition of G/Sy. We will show that Sy is closed under multiplication and hence
is a group, forcing Sg = »~1(Sp) to be a group. Similarly, each S} is a group, forcing J to be a 4-gonal
family.

So suppose gi, g; are arbitrary nonidentity elements of Sy for which g;g; ¢ So. Hence g;,g; € Sk
for some k > 0. Form #n, 1 <m,n < s, Syu.Sy = G/Sp. In particular, for m # 0, k, S;,.S5: = G/Sp.
Hence for each m € {1,...,s} — {k}, §i = wum¥m, with up, € Sy, — {G1}, vm € Sk — {G1}. Suppose
Um = VUpy With m # m’. Then u,, = gv,,! = gw;n,l = Upy € (S N Sp) — {51}, an impossibility.
Hence each of the nonidentity elements of S}, serves as a unique v,,. In particular, Gig; = vm for some
m # 0, k. S0 §i = UmUm = un(Gig;), implying g; = g; 'u'gi € Spm (Sm < G implies Sy, < G/Sy),
le. g; € So N Sy — {51}, an impossibility. Hence Sy must be closed, completing the proof that .J is
a 4-gonal family for G. Then because S; < G, S; is a full group of symmetries about the line [S;] of
S =8(G,J), and S is a TGQ by Section 8.2 (cf. 8.3 also). O

It is frustrating that for s < ¢ we have no satisfactory criterion for deciding just when a weak
4-gonal family is in fact a 4-gonal family.

10.2 4-gonal Partitions

Let J be a family of s + 2 subgroups of the group G, each of order s, |G| = s, with ABNC =1 for
distinct A, B,C € J. Then J is called a 4-gonal partition of G.

10.2.1. (S.E. Payne [129]) Let J be a 4-gonal partition of the group G with order s> > 1.

(i) A GQ S = S(G,T) of order (s —1,s + 1) is constructed as follows: the points of S are the
elements of G; the lines of S are the right cosets of members of J; incidence is containment.

(ii) If J ={C, So,...,Ss} with C < G, then J = {Sp,...,Ss} is a 4-gonal family for G. Moreover,
S(G,J) is a STGQ of order s with base point (00), and S(G,J) is the GQ P(S(G,J), (0))
(cf 3.1.4).

(iii) If two members of J are normal in G, say C < G, Sy < G, then G is elementary abelian and s
is a power of 2.

Proof. S(G, J) is readily seen as a tactical configuration with s points on each line, s+2 lines through
each point, and for which any two distinct points are incident with at most one common line. The
condition AB N C =1 for distinct A, B,C € J says there are no triangles. Hence a given point z is
on s+ 2 lines and collinear with unique points on each of (s +2)(s — 1)(s + 1) other lines, accounting
for all lines of S(G, J). It follows that S(G,J) is a GQ of order (s — 1, s + 1), completing the proof
of (i). Part (ii) is an immediate corollary of 11.1.1(i) and 3.1.4.

For part (iii), suppose J = {C, So,...,Ss} with C <G, Sp < G. So J = {So,...,Ss} is a 4-gonal
family with S* = 5;C, 0 < i <'s. Since Sy <9 G, [So] is an axis of symmetry with symmetry group
So. Moreover, if §, is the collineation of S(G,J) derived from right multiplication by g, g € G, then
by 8.2.6(i) 6, induces an elation , (with axis (00)) of the plane my derived from the regularity of [Sy].
The map 6, — 6, into the group of elations of 7wy with axis (co) has kernel {,]lg € So} and image
of order s?. Hence the plane m is a translation plane with elementary abelian translation group.
By 8.2.6(ii) and (iii) the collineations 6, are mapped to elations , of the plane 7o, derived from the
regularity of the point (c0) of S(G,J). The map 6, — 6, into the group of elations of 7 with center
(00) has kernel {6,]|g € C} and image of size s?. Hence the plane 7, is a dual translation plane, so
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the corresponding (dual) translation group is elementary abelian. Let g1, g2 be distinct elements of
G, and put g = g1929; ! 9s ! By the previous remarks, 4 must fix all points of (00)t and all lines of
[So]t, ie. g € C'NSp. Hence g must be the identity, implying that G is abelian. Hence each [S;] is
an axis of symmetry and S(G, J) is a TGQ with (00) a regular base point, forcing s to be a power of
2 (cf. 1.5.2(iv) and 8.5.2). O

10.3 Explicit Description of 4-gonal Families for
TGQ

10.3.1. T»(O)

Let s =t = q = p% p aprime. Let FF = GF(q), G = {(a,b,¢)|la,b,c € F} with the usual
vector (pointwise) addition. Put A(oo) = {(0,0,¢)|lc € F}. Let a : F — F be a function, and
for t € F put A(t) = {(MA M)A € F}. Put J = {A(c0)} U{A(t)|It € F}. As A(o0) is just
the set of all scalar multiples of (0,0,1) and A(t) is the set of all scalar multiples of (1,¢,t%), it
follows readily that J is a weak 4-gonal family (and hence a 4-gonal family by 10.1.1) provided the

1t ¢
matrix | 1 w u® | is nonsingular for distinct ¢,u,v € F. The determinant A of this matrix is
1 v v®
A= (u—t)(v*—t*) — (v —t)(u®* — t*), which is nonzero iff % # % for distinct ¢,u,v € F.
In this case J is an oval O in PG(2,q), and S(G,J) is isomorphic to T>(0O). It is easy to see that
each T»(0O) can be obtained in such a way. By B. Segre’s result [1558] we may assume « : z — 22 if
q is odd. When ¢ is even it is necessary that « be a permutation. Then C' = {(0,5,0)||b € F'} is the
subgroup (the nucleus of the oval J) for which {C'} U J is a 4-gonal partition of G (i.e. a (¢ + 2)-arc
of PG(2,q)). In this case several examples in additon to « : x — 2 are known, and much more will
be said on the subject in Chapter 12.

10.3.2. T3(0)

(i) s2 =t = ¢%, q a power of an odd prime.

Let ¢ be a nonsquare in F' = GF(q). Put G = {(xo,x1,22,23)||z; € F)}, with the usual pointwise
addition. Put A(cc) = {(0,A,0,0)||\ € F}. For a,b € F, put A(a,b) = {(\, —=A(a? — b3c), Aa, \b) ||\ €
F}. Then J = {A(c0)} U{A(a,b)||a,b € F} is a 4-gonal family for G. Clearly J is an ovoid O of
PG(3,q), in fact an elliptic quadric, and S(G, J) = T3(0) = Q(5,q).

(i) s2 =t = ¢°, ¢ a power of 2.

Let 0 be an element of F for which 22 4z +4 is irreducible over F. Put G = {(zq, 1,2, 23)||z; € F)},
with the usual addition. Put A(co) = {(0,,0,0)||A € F}. For a,b € F put A(a,b) = {(\, M(a? + ab+
5b%), Aa, \b)||

A € F}. Then J = {A(c0)} U{A(a,b)|la,b € F} is a 4-gonal family of G. Clearly J is an ovoid O of
PG(3,q), in fact an elliptic quadric, and S(G, J) = T3(0) = Q(5,q).

(iii) s2 =t =¢* ¢q=2%" and e > 1.

For F = GF(q) let o be the automorphism of F defined by o :  — 22, Put A(co) = {(0,\,0,0)[|A €
F}. For a,b € F, put A(a,b) = {(\,A(ab + a®? + b*F2) Xa, )|\ € F}. Put J = {A(x)} U
{A(a,b)||la,b € F}. As in the preceding examples G = F* with pointwise addition. Then J is a
4-gonal family for G. In fact, J is a Tits ovoid O in PG(3,22¢*1) the only known type of ovoid in
PG(3,¢) not a quadric, and S(G, J) = T3(0).
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10.4 A Model for STGQ

Let F' = GF(q), ¢ = p°, p prime. For m and n positive integers, let f : F"™ x F™ — F" be a fixed
biadditive map. Put G = {(a, ¢, 8)|la, B € F™,c € F"}. Define a binary operation on G by

(a,¢,8).(c, ¢, 3") = (a+d e+ + f(B,d), B+ ). (10.1)

This makes G into a group that is abelian if f is trivial and whose center is C' = {(0,¢,0) € G||c € F"}
is f is nonsingular. Suppose that for each ¢t € F™ there is an additive map d; : F™™ — F™ and a
map g; : F™ — F™. Put A(cc) = {(0,0,8) € G||3 € F™}. For t € F™ put A(t) = {(a, ge(a),a®) €
Glla € F™}. We want A(t) to be closed under the product in G, so that it will be a subgroup of order
q™. Writing out the product of two elements of A(t) we find that A(t) is a subgroup of G iff

gila+ B) — gi(a) — gi(B) = f(aét,ﬂ) for all o, 8 € F™,t € F". (10.2)

Put =0 1in (10.2) to obtain
9:+(0) =0 for all t € F". (10.3)

From now on we suppose that condition (10.2) holds, and put J = {A(c0)} U{A(t)|t € F™}. With
A* = AC for A € J, we seek conditions on J and J* = {A*||A € J} that will force K1 and K2 to
hold, i.e. that will force J to be a 4-gonal family. Clearly A* is a group of order ¢"™™ containing A
as a subgroup. We note that

A*(0) = {(0,c,8) € Glce F", B € F™},
A*(t) = {(a,c,a) e Glla € F™ ce F"},t e F™ (10.4)

It is easy to check that A*(co) N A(t) =1 = A*(t) N A*(oc0) for all t € F™.
An element of A*(t) N A(u) has the form (a,c,a®) = (o, gu(a), ). For t # u this must force
a=0,s0 A*(t)NA(u) =1 iff

5 6

o(t,u) :a— « a’* is nonsingular if ¢ # w. (10.5)

From now on we assume that (10.5) holds. Then J will be a 4-gonal family for G iff ABN D =1
for distinct A, B, D € J. Before investigating this condition we need a little more information about

9t-
Put 3 = —a in (10.2) to obtain —gi(a) — gi(—a) = f(a®, —a) = —f(a’,

a) = —(g¢(2a) — 2g+(v)), implying
9t(2a) = 3gi(@) + gi(—av). (10.6)

Using (10.2) and (10.6) we obtain g:((n + 1)a) = (n + 1)gi(a) + g¢(na) + ngi(—a), from which an
induction argument may be used to show that

atna) = ("5 Yate) + (3 )a-a). (107

Note: If gi(—a) = —gi(a), then gi(na) = ngi(«).
If gi(—a) = gi(a), then gi(na) = n2g;(a).
Let g € A(00).A(t) N A(u), t # u, so g has the form g = (0,0, 5).(«, g:(),

%) = (a, gi(@) + f(B, ), B+ %) = (a, gu(@), ). So gi(a) — gu(a) = —f(3,a), with 3 = b,
should imply a = 0. That is: gu(@) — gi(@) = f(a’,a) = f(a”, @) = (gu(2a) = 29u()) — (g:(22x) —
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2g1(a)) = (gu(@) + gu(—a)) — (g¢(a) + g¢(—a)) should imply o = 0. Hence A(c0).A(t) N A(u) =1 (for
t # u) iff
gi(a) = gu(a),t # u, implies a = 0. (10.8)
It is routine to check that, for ¢ # u, also A(t).A(co) NA(u) = 1 iff A(t).A(u)NA(co) = 1 iff (10.8)
holds. Hence we assume (10.8) holds and proceed to the hard case: What does A(t).A(u) N A(v) =

mean when ¢, u,v are distinct? An element of this intersection would be of the form (a + 3, gi(«) +
gu(B) + f(a®, 3),ad% + %) = (a+ B, go(a + 3), (. + 3)%"). Hence the intersection is trivial provided

91(@) + gu(B) + f(a®, B) = guo(a + B)
Oéat 4 /85u — (Oé + ﬁ)év = o= ﬁ = 0. (109)
t, u,v distinct

Solving for  in (10.9) we find g = @S0 (wu) - Py v =al = 9(wu)  The first equality
of (10.9) becomes

0 = gi(a)+gu(B) + f(a, B) = gu(@) — gu(B) — f(a™, B)
= gi(a) — go(@) + gu(B) — gu(B) + F(a*), B)
= gi(a) = go(a) + gu(B) — g (ﬁ)+f(ﬂ5”) B)
= gi(@) — gu(@) + gu(B) — 9u(B) + (90(B) + gu(=8)) — (9u(B) +
gu(—0))

= gi(a) — gu(a@) + guo(—B) — gu(=0)-

Hence (10.9) is equivalent to:

—1 — — —1
gt (7" ) = o3 ) - gy (=7 ) — gy (=7 ) = 0 (10.10)
implies v = 0 if ¢, u, v are distinct.

We summarize these results as follows.

10.4.1. (S.E. Payne [155]). J is a 4-gonal family for G provided the following hold:
(i) ge(a+B) = gi(@) = gui(B) = f(a,8) = f(B%,a) for all a,f € F™, t € F".

(ii) 8(t,u) : o — ¥ — ad is nonsingular for t # u.
) 9
v)

() = gu(a), t # u, implies a = 0.

(10.10) holds.

(iii

(i

If J is a 4-gonal family, the resulting GQ S = S(G,J) has order (s,t) = (¢™,¢"). As C is a
group of ¢t symmetries about (o) (cf. 8.2.2), it follows that (S(°), @) is a STGQ and m > n. By 8.1.2
g™ (14¢") =0 (mod ¢™+¢"). Then exactly the same argument as the one used in the proof of 8.5.2
shows that either s = ¢ or there is an odd integer a and a prime power ¢¥ for which s = ¢™ = (¢*)**!,
t =q" = (¢*)* Hence s =t or s* = t**1 with a odd. Tt may be that there is a theory of the kernel of
a STGQ analogous to that for TGQ which will lead to s =t or s* = t**! with a odd for all STGQ,
but we have been unable to show this. In any case the known examples of STGQ have s =t or s = ¢2.
Hence we complete this section with the known examples of STGQ having s = ¢ and devote the next
section to the case s = t2.

10.4.2. Ezamples of STGQ of order (s, s)
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First note that if (S(p),G) is any TGQ of order s with s even, then p must be regular and G
induces a group of elations of the plane m, with center p. The kernel of this representation of G' must
have order s and hence be a full group of symmetries about p. Therefore (S ®) G) is also a STGQ.

The known GQ of odd order s also provide examples as follows.

In the notation of this section let m = n = 1, ¢ odd or even. Put f(a,b) = —2ab, a® = —at,
and gi(a) = a®t for all a,b,t € F. It is easy to check that the first three conditions of 10.4.1
are satisfied. We have g;(a) = g;(—a) and 67 '(¢t,v) : @ — —a/(t —v). Hence (10.10) becomes:
(—a/(t —v))%(t —v) = (—a/(v — u))?(u — v) implies a = 0 if ¢, u, v are distinct. As this clearly holds,
we have a STGQ which, in fact, turns out to be the dual of the example of 10.3.1 where « is defined
by a : 2 +— z? (i.e., turns out to be isomorphic to W (q)). That these two examples are duals of each
other may be seen as follows.

Let S be the STGQ described in the preceding paragraph. Since the point (c0) is regular, it is
clear that S = W (q) if all points of S not in (co)* are regular. Since S is an EGQ with base point
(00) it is sufficient to show that the point (0,0,0) is regular. By 1.3.6(ii) the point (0,0,0) is regular
iff each triad containing (0,0,0) is centric. Before proving this we note that (a,c,b) ~ (da/,c, V') iff
c—c —adb +ab+adb—all =0.

Consider a triad ((0,0,0), (a,c,b), (a1,c1,b1)). This triad has a center of the form (a’,c,b’) iff
——adt =0,c—c —adb+ab+ab—ab =0, and ¢ — —a't/ +ar1b; +a'by — a1/ = 0. So the triad
has a unique center of the form (a’,c, V') if ba; # ab;. Now assume ba; = aby. If a = a3 = 0, then
A*(o0) is a center of the triad. If a = 0 = b (resp., a; = 0 = by), then each A*(¢), t € FFU {0}, is a
center of the triad ((c0), (0,0,0), (a,c,b)) (resp. ((c0),(0,0,0), (a1,c1,b1))), hence (((0,0,0), (a,c,b))
(resp. ((0,0,0), (a1, c1,b1))) is regular and ((0,0,0), (a,c,

b), (a1,c1,b1)) is centric. If a # 0 # a;, then A*(—b/a) is a center of the triad.

Next consider a triad ((0,0,0), (a,c,b), A*(c0).(a1,c1,b1)). This triad has a center (a/,c,b’) iff
a =ay, - —db =0and c—c —a'l +ab+a'b—al =0. If a # 0, there is a unique solution in
a,d,b. If a = 0, then A*(00) is a center of the triad.

Now consider a triad ((0,0,0), (a,c,b), A*(t).(a1,¢1,b1)), t € F. This triad has a center (a’,c,b')
iff - —ad'b=0,c—c —dV/+ab+adb—abl =0and (/,d,V) € A*(t)(a1,c1,b1). If b+ at # 0 there
is a unique center of this type. If b+ at = 0, then the triad has center A*(t).

Since (co) is regular, any triad ((0,0,0),z,y) with x,57 € (co)t is centric. Hence each triad
containing (0,0, 0) is centric, i.e. (0,0,0) is regular, which proves that S = W (q).

10.5 A Model for Certain STGQ with (s,t) = (¢%,q)

Throughout this section [f] will denote a certain 2 x 2 matrix over F' = GF(q) subject to appropriate
restrictions to be developed below. Put f(a, 3) = a[f]87, for a, 3 € F2. For each t € F let K; be a
2 x 2 matrix over F' and put o’ = aKj, for @ € F2. Then f(a%,3) = aK;[f]fT is symmetric in o
and [ iff K;[f] is symmetric. Hence from now on we require the following:

K,[f] is symmetric for each ¢t € F. (10.11)

Then for part (i) of 10.4.1 to be satisfied it is sufficient that g;(a) = aA;a”, where A; is an upper
triangular matrix for which

A + AT = K[ f]. (10.12)

And part (ii) of 10.4.1 is equivalent to

K; — K, is nonsingular for ¢ # u. (10.13)
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We say B € My(F) is definite provided aBa’ = 0 implies o = 0 (for o € F?). If B = < CCL 2 >,

then B is definite iff the polynomial az? + (b + ¢)z + d is irreducible over F. In case ¢ is odd, B is
definite precisely when (b + ¢)? — 4ad is a nonsquare in F. Hence if B is symmetric and q is odd,
then B is definite iff —detB is a nonsquare in F. In either case (¢ odd or even) B is definite iff ¢B is
definite (0 # ¢ € F) iff PBPT is definite (P nonsingular).

It is easy to check that (iii) of 10.4.1 is equivalent to

Ay — A, is definite for ¢ # w. (10.14)
Now 70~ () = ~ (K, — K,)™%, and (iv) of 10.4.1 is equivalent to

(K — Ko) 7 (AL — A (K — Kp) ™ HT + (10.15)
(Ky — Ky) 1Ay — A (K — K,) YT is definite.

When ¢ is odd, B € My(F) is definite iff B + BT is definite. And if B is the matrix displayed
in (10.15), then M = B+ BT = [f](K¢ — Ky) ' + (Ky — Ku) ™) = [f]1(K: — Ky) K — Ky) (K —
K,)™hHT. This completes the proof of the following theorem.

10.5.1. The family J (as given in 10.] but using [f], O, etc., as given in this section) is a 4-gonal
family for G provided the following conditions (i),...,(v) hold:

distinct t,u,v € F.

Moreover, if q is odd, then (v), (vi) and (vii) are equivalent.

(vi) [FI((Ee = Ko)7' = (Ky — Ko) ™) = [fI((Ke — o)~ (K — Ko)(Ky — Ku)™)7 is definite for
distinct t,u,v € F.

(vii) —det[f]det(K; — K,)det(K; — K,,)det(K, — K,,) is a nonsquare in F.

Define 6 : G — G by (a,¢,8)? = (a,c — gi(a), 8 — a’), for some fixed t € F. It is routine
to check that 6 is an automorphism of G fixing A(co) elementwise and mapping A(z) to A(z) =
{(a, Go(),a%)||a € F}, where g.(a) = gz(a) — g¢(a) and o = a®@H. Moreover, gi(a) = 0 and
o’ = 0. Hence putting t = 0 we may change coordinates so as to assume that go (o) = 0 and §p = 0.
From now on we assume

go(a) = 0 and o® = 0 for all a € F*(and so we assume Ay = Ky =0). (10.16)

10.5.2. Let A,B,C,D,E,K,M € My(F), x € F. Define §: G — G by (a,c,3)? = (0«A + BB, cx +
aCa® +aDp? + BERT,aK + BM). Then 6 is a group homomorphism iff the following hold:

(i) alf] + DT = M[f]A”.

(i) O+ CT = K[f]AT.
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(iii) £+ ET = M[f]BT.
(iv) D = K[f]BT.

Proof. ((a,c,B).(a!, ¢, 1)) = (a,c, 8)1.(a, ¢, B)° iff 2B[f)(o!)T +
aC(a)" + o/Ca” + aD(F)" + o'DB" + BE(B) + 'EST = aK[f]AT (o) + aK[f]BT(8)" +
BM[f]AT (/)T + BM[f]BT(3")". This must hold for all o, 3,0/, 3 € F?. Collecting terms involving
the pairs (8, '), (o, &), (8,3), (a, ), respectively, gives conditions (i), (ii), (iii), (iv), in that order.
O

In1052put A=M=al, B=C=D=FE=K =0, for 0# a € F. Then an isomorphism 6, of
G which leaves invariant each member of J is defined by

0q: (a,c,B) — (ac, a’c,af). (10.17)

Clearly {0,]la € F} may be considered to be a group of whorls about the point (oco) which is
isomorphic to the multiplicative group F*° of ' and which fixes the point (0,0,0) of S(G, J). It seems
likely that an appropriate definition of kernel of S(G, J) should lead to the field F.

Suppose an automorphism 6 of the type described in 10.5.2 were to interchange A(oo) and A(0).
Then by (10.16) A = M =0, and C and E are skewsymmetric (with zero diagonal). Hence we may
assume C = E = 0. For any choice of B € GL(2, F) put D = —z[f]" and K = —z[f]"(B~)T[f]!,
so that the conditions of 10.5.2 are satisfied. Then if x # 0, 6 is an automorphism of GG interchanging
A(oco) and A(0) and appearing as

(a,¢,8)" = (BB, x(c— a[f]"87), —zalf]T(B~HT[f171). (10.18)

Here we tacitly assumed that B and [f] are invertible, which is indeed the case in the examples to
be discussed below. Of course, we would like for 6 to preserve J. So suppose there is a permutation
t — t' of the nonzero elements of F for which 6 : A(t) — A(#'). Direct calculation shows that
(o, el aKy)? = (oK B, x(aAa” — o[f]T KL aT), —za[f]T(B~HT[f]™)
= (aK;B, —zaAal, —za[f]T(B~)T[f]~!). Writing out what it means for this last element to be in
A(t') completes the proof of the following.

10.5.3. An automorphism 0 of G as decribed in 10.5.2 (with x # 0, B and [f] in GL(2,F)) in-
terchanges A(oco) and A(0) and leaves J invariant iff there is a permutation t — t' of the nonzero
elements of F' for which the following hold:

(i) K;BKy = —z[f]" (B Y)T[f]~! (is independent of t), and
(ii) K;BAyBTK} + xA; is skewsymmetric (with zero diagonal).

(Note: In these calculations we use freely the observation that aAaT = aATaT, since these matrices
are 1 x 1 matrices.)

Now suppose that some 6 as described in 10.5.2 fixes A(c0), so B = D = 0 and we may assume
E = 0. The conditions of 10.5.2 become z[f] = M[f]AT and C + CT = K[f]AT. Then for any choice
of C' and nonsingular A we must put K = (C + CT)(AT)~1[f]7! and M = x[f](AT)~1[f]~!. Hence 0
appears as

(o, ¢, 8) = (A, zc+ aCal, o(C + CTYAD) L7 + 2611 AT L[]~ H. (10.19)

Note that 6 is an automorphism of G iff 0 # x.

Suppose in addition that the 6 of (10.19) leaves J invariant, so that there is a permutation ¢ +— ¢’ of
the elements of F' for which 6 : A(t) — A(t'). Then (o, aAia”, aK;)? = (aA, zada” + aCa® aK +
aKiM) = (aA, aAAy AT o™ aAKy). From this equality the following is easily deduced.
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(er, gefo), o)
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I
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A(w) {0, 0,0)
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‘I(OQ‘)LU! __q?r-((:k]s _ar& Jxx"'“-hq_“_h I .
o) e g (0, —gula), —afu) =
(er, gl —ex), —af ) (e, 0,0}
Figure 10.1

10.5.4. An automorphism 6 as described in 10.5.2 (with x # 0, A and [f] in GL(2,F)) fizes A(oco)
and leaves J invariant iff there is a permutation t — t' of the elements of F for which the following
hold for allt € F:

(i) Ky[f] = A"HC+CT + 2K [f)(ADT, and
(i) zA;+C — AAt/ is skewsymmetric (with zero diagonal).

To close this section we seek conditions related to the regularity of the point A*(co) in the GQ
S(G,J). In particular, consider the noncollinear pair (A*(c0), («,0,0)), o # 0. With the help of
Figure 10.1 it is routine to check that

{A*(0), (2,0,0)}F = {A*(0).(,0,0),(0,0,0)} U (10.20)
{(0, —gu(@), —a®)||0 # u € F},
{(0,0,0), A*(00).(, 0,00} = {(,0,0), A*(c0)} U (10.21)

{(o, ge(@),a™)[0 £ t € F}.

Hence the pair (4*(c0), (a, 0,0)) is regular iff (a, g¢(a), a®) and
(0, —gu(a), —a®) are collinear for all ¢,u € F°. This is the case precisely when there is some v € F
for which (a, gi(), a®).(0, —gu(a), —a%)™' = (a, gi(a) + gu(),a® + o) € A(v). This holds iff

9¢(@) + gu(a) = go(a) and o + = a’. This essentialy completes a proof of the following.

10.5.5. For the 4-gonal family J of this section, the pair (A*(o0),(,0,0)) (o # 0) of noncollinear
points of S(G, J) is reqular iff for each choice of t,u € F° there is av € F for which both the following
hold:

(i) a(K, - K;— K,) =0,
(ii) (A, — Ay — Ay)al =0.

10.6 Examples of STGQ with Order (¢?,¢q)

10.6.1. H(3,¢%) has a STGQ (adapted from W.M. Kantor [50])
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2 I
T —2$0
irreducible over F' = GF(q). It is easy to see that [f] is definite iff ¢ is odd and is nonsingular in any

_ _ 2 1
case. Put K; = tI, so Ki[f] = t( 1 —2r0

In the notation of the two preceding sections put [f] = < >, where 22 — 1z — 20 is

) is symmetric regardless of the characteristic of F.

1 I
0 —X0
A+ Al = Ky[f] and A; — A, = (t —u)D, t # u, is definite iff D is definite. When ¢ is even, D is
definite provided 22 + 12 + xq is irreducible. When ¢ is odd, D is definite iff D + DT = [f] is definite.
Hence in either case A; — A, is definite for ¢ # u. The matrix of 10.5.1(v) is ((t —v)™' + (v —u)~H) D,
which is definite since D is. Hence we at least have that S = S(G, J) is a STGQ of order (¢2,q). Here
the group of automorphisms of G leaving J invariant is doubly transitive on the elements of J (put
A=M=C=E=0,D=-[f]f, K=—-I, B=1,x =1 for af (as in 10.5.3) that interchanges
A(o0) and A(0) and maps A(t) to A(~t™');put A=M =1, B=D=E=0,C=A,, K=ul,
x =1 for a f (as in 10.5.4) fixing and mapping A(t) to A(t + u)).

Now we show that all lines incident with (co) are 3-regular. By the preceding paragraph and
since S is a STGQ), it is sufficient to prove that any triple of the form ([A(c0)], A(0), A(t)(ev, ¢, B)), for
t € GF(q) and A(0) # A(t)(«, ¢, 3) is 3-regular.

The points not belonging to (co)’ and incident with a line L € {[A(c0)],

A(0)}+, are of the form (aq, f(B1, 1), 31), with a1, 81 € F2. A point (a1, f(B1,a1),51) is incident
with the line A(t)(a, ¢, ) if there is an ag € F? for which (ag, g:(ao), agt)(a, ¢, B) = (a1, f(B1,00), B1),
or equivalently ag + o = aq, gi(ag) + ¢+ f(agt,a) = f(f1,a1), and ocgt + 8 = (1. Hence the point
(v, gt (), agt)(a, ¢, 3) is incident with a line of {[A(cc)], A(0)}~ iff

Then K; — K, = (t —u)I is clearly nonsingular for ¢ # u. Put D = ( >, and A; = tD. Then

F(B, a0 + @) + f(adt, a0) = gilag) +c. (10.22)

These lines of {[A(c0)], A(0)}* are incident with the points (ag + a,0,0) of A(0), with ag + «
determined by (10.22). Let ap + o = (r1,72), @ = (a1,a2) and 8 = (b1, ba), with r1, 79, a1,a2,b1,bs €
GF(q). Then (10.22) is equivalent to

2 I ™
(b bg)(gg1 _2$0><r2>+ (10.23)
2 il T — aq
t(rl—al TQ—QQ)(xl —23:0)(7'2—@2):
1 =z T —a
i nma) (o 2O (020 )

(2b1 + ble)T’l + (blxl . 2()21’0)7“24- (10.24)

t((r1 — a1)® + (r2 — a2)(r1 — a1)x1 — 2o(r2 — a2)?) = c

or

First, let ¢t # 0. Then, since S has order (¢2,q), we know that (10.24) has exactly ¢ + 1 solutions
(r1,72). Clearly the same solutions are obtained by replacing by, ba, ¢, ¢, respectively, by £by, £be, lt, lc,
¢ € F°. Note that A(0) 7 A(t)(a, ¢, B) is equivalent to b? + bybowy — b3xzo + te — t(2bray + x1(azby +
a1by) — 2xgagby) # 0, which clearly shows that also A(0) % A(¢t)(«, le,3) for any ¢ € F°. Since
{A(0), [A(00)], A(¢t) (e, e, £3)}+ is independent of ¢ € F°, the triple (A(0),[A(c0)], A(t)(a, ¢, B)) is
3-regular.

Now let ¢ = 0. Then, since S has order (¢2,¢), we know that (10.24) has exactly ¢ solutions
(r1,7m2). Clearly the same solutions are obtained by replacing b1, bg, ¢, respectively, by ¢by, £by, lc,
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¢ € F°. Note that A(0) % A(0)(«, ¢, 3) is equivalent to 5 # 0, which clearly shows that also A(0) #
A(0)(a, be, £3) for any £ € F°. Since {A(0), [A(00)], A(0)(cv, Le, £3)}+ is independent of £ € F°, the
triple (A(0), [A(c0)], A(0)(ev, ¢, B)) is 3-regular.

Hence all lines incident with (co0) are 3-regular. By 5.3.1 the GQ S is isomorphic to the dual of a
T3(0). Moreover, by Step 3 of the proof of 5.3.1 all points of (co)* are regular. So in T3(0) all lines
concurrent with some line w of type (b) are regular. Now by 3.3.3(iii) we have T3(0) = Q(5,¢) i.e.
S = H(3,¢%.

10.6.2. W.M. Kantor’s examples K*(q)

The description given in 3.1.6 of W.M. Kantor’s examples K (q) was of a GQ of order (¢, ¢?). In
this section we give a description of the dual GQ K*(q) as a STGQ of order (¢2, ¢). This construciton
is adapted directly from [89] (cf. [135]).

_ : 0 -3 —t2 =23

Let ¢ = 2 (mod 3), ¢ a prime power, F' = GF(q). Put [f] = < 1 0 > Ky = < op 342 ),

3 2 3 2
so Ki[f] = ( _?j; Eth > is symmetric, and put A; = ( _g Etgt ) It is easy to check that
det(K; — Ky) = (t — u)* # 0 for t # u, so that K; — K, is nonsingular.

Before checking conditions (iv) and (v) of 10.5.1 it is expedient to consider some automorphisms

of G. To obtain a 6 as described in 10.5.2 and 10.5.4, put B=D=FE =0, =1, A= ( Ly ),

0 1
3 2 2,3
_ (v 3y _ (1 3y (v v
C’-( 0 -3y >,M—<O 1 ),K—<2y 33/2)' Then 6 fixes A(co) and maps A(t) to
A(t+y). To obtain a 6 as described in 10.5.2 and 10.5.3, put A=C=FE=M =0, B= ( (1) _01 ),
0 -1 0 -1 .
D = ( 3 0 >, K = ( 10 ), x = 1. Then 6 interchanges A(co) and A(0) and maps A(t) to

A(—t~1) for t # 0. Hence the group of automorphisms of G' leaving J invariant is doubly transitive
on the elements of J.

From Section 10.4 (cf. (10.5)) and the nonsingularity of K; — K, for t # u we know that condition
K2 holds for the family J. And by the previous paragraph, to show that K1 holds it suffices to show
that A(c0).A(0)NA(u) =1 if u # 0. But this is the case provided (10.8) holds with ¢ = 0, which holds

3 _ 9,2
iff B=Ag— A, = < % 5’5 ) is definite for u # 0. If ¢ is odd, B is definite iff —det(B + BT) is a

2

uc o\ . .
0 1 ) is definite

nonsquare in F' iff —3 is a nonsquare in F' iff ¢ = 2 (mod 3). If ¢ is even, B = u <
iff 2 + x 4 1 is irreducible over F iff ¢ = 2 (mod 3).

Hence K*(q) really is a STGQ of order (¢?,q) for each prime power ¢, ¢ = 2 (mod 3). The
point (00) of K*(q) = S(G,J) is regular, in fact a center of symmetry. Moreover, we claim that
for ¢ > 2 the point (c0) is the unique regular point of K*(g). Since the group of collineations of
K*(q) fixing (o0) is (doubly) transitive on the lines through (co) and transitive on the points not
collinear with (00), we need only find some o € F?, a # 0, for which the pair (A*(c0), («,0,0)) is
not regular. By 10.5.5 we need an « such that for some nonzero t,u € F' there is no v € F for
which a(K, — K; — K,) = 0 and a(4, — 4; — Ay)a” = 0. For ¢ odd, put o = (0,—1). Then
a(K, — Ky — Ky) = (2(t + u — v),3(t + u? — v?)), which cannot be zero for any choice of nonzero
t and u. For ¢ even, put @ = (1,0). Then a(K, — K; — K,) = 0 holds iff v = t + u, in which case
a(A, — Ay — Ay)a® = tu(t + u). So for ¢ > 2, choose t and u to be any distinct nonzero elements of
F.

Of course, when ¢ = 2, K*(q) is the unique GQ of order (4,2) and hence must have all points
regular. The above paragraph shows that W.M. Kantor’s examples are indeed new, since the previously
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Ty = U Ua il Uy UaUsUalisUs = T Ustialistis = 1
50 &1 52
T = IR TRI000 I 0lly =Ty
1 53
Tip = thlnly U3l =Ty
810 9
To = U Uiz Us = T5
S0 a5
Ty = b Tr=1 1 =Ty
s2 57 6
Figure 10.2

known examples of GQ of order (g2, q) are just the dual of the TGQ T3(0O), and T3(O) has a coregular
point.

As was indicated in 3.1.6, W.M. Kantor [39] gave a geometrical construction of K(g) in terms of
the classical generalized hexagon H(q). To complete this section we sketch this approach to K(q).

By J. Tits [221] the generalized hexagon H (q) can be constructed as follows. Let Uy = {(x,0,0,0,0,0)||z €
GF(q)},...,Us = {(0,0,0,0,0,z)|z € GF(q)} be six groups isomorphic to the additive group of GF(q).
The representative of x € GF(q) in U; is denoted by xz;. Further, let Uy = U;.Us.Us.Uy.Us.Ug =

{(z,y, z,u,v,w)||z,...,w € GF(q)} be defined by the commutation relations (we may assume (a,b) =
a"'b~lab):

(r1,y4) = (21,93) = (21,02) = (22,45) = (22,43) =

(3,95) = (23,04) = (2a,95) = (w3,06) = (v5,56) = 1

(z1,95) = (—zy)s;

(z2,94) = (3zy)s;

(z1,96) = (2y)2 ( y*)s(@y?)a(zy®)s;

(z2,96) = (=32%y)3 (2961/) (3zy?)s;

(1,96) = (3zy)s.

The generalized hexagon H(q) may now be described in terms of the group Uy.
Let T, 0 < i < 11, be defined by

Tr=Trand T; =T, if 1 <i<5and Tg =T7 = Uy,
(Here subscripts are taken modulo 12.)

Points (resp., lines) of the generalized hexagon are the pairs (s;,u) with i € {0,...,11} and i odd
(resp., even), and u an element of the group 7; above s; in Figure 10.2. Incidence is defined as follows:
(si,u) I (sj,u’) & i€ {j—1,j+1} (mod 12) and the intersection of the cosets of 7}" and T} in U
containing u and u/, respectively, is nonempty.

Let ¢ = 2 (mod 3) and define as follows the incidence structure §* = (P*, B*,I*), with pointset
P* and lineset B*.

The elements of P* are:
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(a) The points of H(q) on the line L = (sg,1), i.e. the points (s7,1) and (s5,u), u € Us.

(b) The lines of H(q) at distance 4 from L, i.e. the lines (510,u), u € U1UsUs, and (s2,u), u €
UsU4UsUs.

The elements of B* are:
(i) The line L = (sg,1).
(ii) The points of H(q) at distance 3 from L, i.e. the point (sg,u), u € UUs, and (s3,u), u € UsUsUs.
(iii) The lines of H(q) at distance 6 from L, i.e. the lines (sg,u), u € UyUsUsUUs.
Incidence (I*) is defined by:

A point of type (a) is defined to be incident with L and with all the lines of type (ii) at distance
2 (in H(q)) from it; a point of type (b) is defined to be incident with the lines of type (ii) and
(iii), respectively, at distance 1 or 2 (in H(q)) from it. Hence: (s7,1) I* (s, 1); (s7,1) I* (s9,u),
u € UpUs; (55,u) I* (56,1), u € Us; (S5,’LL) I* (Sg,u/), u € Us, u' € UyUsUg with UiUsUsu’ C
U1U>U3U4Usu; (Slo,u) I* (39,u’), u € UiUsyUs, u € U1Us, with UyUsUgu C U3U4U5U6u’;
(s10,u) I* (sp,u), u € U UsUs, v € UyUUsUsUs with Ugt' C UsUsUgu; (s2,u) T* (s3,u’),
u € UsU4UsUs, = U4UsUg, with UiUsu C U1U2U3u’; (SQ,’U,) I* (So,u/), u € UsUyUsUs,
u € U1U,U3U4Us, with Usu' N U Usu 75 .

This description os §* may be interpreted as follows.
The elements of P* are:

(a) (s7,1) = [0o] and the cosets of UyUsUsUsUs.
(b) The cosets of UsUsUg and U1 Us.
The elements of B* are:
() L= ().
(ii) The cosets of UsUyUsUg and U1UaUs.
(iii) The cosets of Us.
Incidence (I*) is given by:

(00) is incident with all points of type (a); a coset of UsUsUsUs is incident with [oo] and with
each coset of U4UsUg contained in it; a coset of U1 UsUs is incident with the coset of UyUsUsUyUs
containing it and the cosets of U1Us contained in it; a coset of Ug is incident with the coset of
U,UsUg containing it and with the cosets of U1Us having a nonempty intersection with it.

Let G be the group U1UsUsUsUs (= Tp). The elements of G are of the form (a,b,c¢,d,e,0) =
(a,b,c,d,e). It can be shown that (a,b,c,d,e).(a',V, ¢,
d,e)=(a+ad,b+¥V,ct+c +ade—3bdd+d,e+e) and that z5'(a,b,c,d, e)ze
= (a,b+ azx,c — 3b%xr — 3abx?® — a®x3,d + 2bx + az?, e + 3dx + 3bz? + ax?), with x¢ the representative
of x in Us.

Now let us make the following identifications:

Each coset of G in U, is identified with its intersection with Ug; each coset of UyUsUs is identified
with its intersection with G; the coset
U1Usuguqugugugus, u; € U;, of U1Us is identified with the coset
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uglUlUgu(;ulunguwg) of uglUlUguG in G; each coset of UsUusU5Ug is identified with with its in-
tersection with G; the coset UiUsUsuguiugusgugus, u; € U;, of U1UsUs is identified with the coset
uglU1U2U3u6u1UQU3U4U5 of uglUlUgUguﬁ in G; each coset of Uy is identified with its intersection
with G.

The description of §* may be reinterpreted once more as follows.
The elements of P* are:

(a) [oo] and the elements [u] with v € GF(q).
(b) The cosets of A(co) = UsUs in G, and the cosets of A(u) = ug ' UiUsug, u € GF(g), in G.
The elements of B* are:
() (o).
(ii) The cosets of A*(00) = UsUsUs in G, and the cosets of A*(u) = ug 'U1UsUsug, u € GF(q), in G.
(iii) The elements of G.
Incidence (I*) is defined by:

(00) is incident with all points of type (a); a coset of A*(00) is incident with [co] and all cosets of
A(o0) contained in it; a coset of A*(u) is incident with [u] and with the cosets of A(u) contained
in it; an element of G is incident with the cosets of A(occ) and A(u) (for each u € GF(q))
containing it. Since

Aloo) = {(0,0,0,d,e)]ld,e € GF(g)},
A(w) = {(a,au+b,—a*u® — 3abu® — 3b%u, au® + 2bu,
au® + 3bu?)|a,b € GF(q)},
A*(o0) = {(0,0,¢,d,e)llc,d,e € GF(q)},
A*(u) = {(a,au+b, —a*u® — 3abu® — 3b%u + ¢, au® + 2bu,
au® + 3bu?)||a, b, c € GF(q)},
or
A(oo) = {(0,0,0,d,e)||d,e € GF(q)},
A(w) = {(a,b,—a*u® + 3abu® — 3b%u, —au® + 2bu,
—2au® + 3bu?)||a, b € GF(q)},

A*(00) = {(0,0,c,d,e)llc,d,e € GF(q)},
A*(u) = {(a,b,c, —au® + 2bu, —2au® + 3bu?)|a, b,c € GF(q)},

S* clearly is isomorphic to the dual K(q) of K*(q).

Thus we have a purely geometrical description of K (g) in terms of the generalized hexagon H(q).
It was this description which was given in 3.1.6 as the definition of K(q).

10.7 4-gonal Bases: Span-Symmetric GQ
Let S = (P, B,1) be a GQ of order (s,t) with a regular pair (Lo, L1) of nonconcurrent lines, so that

1 <s<t<s? Put {Lo, L1}t = {Mo,..., M}, {Lo, L1} = {Lo,...,Ls}. Let S; be a group of
symmetries about L;, 0 < i < s. Suppose that at least two (and hence all) of the S;’s have order s (if
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0 € Sp sends Ly to Lj, j # 0, then 015,60 = S;). It follows that each L; is an axis of symmetry, and
we say that S is span-symmetric with base span { Ly, Ll}ﬂ-. The general problem which this section
just begins to attack is the determination of all span-symmetric GQ. However, in this section we begin
to consider the general problem, with special emphasis on the case s = ¢t. In that case S may be
described as a kind of group coset geometry.

Put G =< Sp,...,8: >=<5;,9; >, 0< 1,5 <s,1# j. Using 2.4 and 2.2.2 it is routine to verify
the following result.

10.7.1. Ifid # 0 € G, then the substructure Sy = (Py, By, 1p) of elements fized by 6 must be given by
one of the following:

(i) Po = @ and By is a partial spread containing {Lo, L1}~.

(ii) There is a line L € {Lo, L1}~ for which Py is the set of points incident with L, and M ~ L for
each M € By ({Lo, L1}* C By).

(iii) By consists of {Lg, L1} together with a subset B' of {Lo,L1}'“; Py consists of those points
incident with lines of B'.

(iv) Sy is a subquadrangle of order (s,t') with s <t' <t. This forcest' = s and t = 5.

10.7.2. Ift < s? then G acts regularly on the set Q of s(s + 1)(t — 1) points of S not incident with
any line of {Lo, L1},

Proof. That G acts semiregularly on Q is immediate from 10.7.1. That G is transitive on € follows
from 9.4.1, as we now show. For suppose G is not transitive on 2. Put O = P — Q. It is easy to
check that conditions (i) through (v) of 9.4.1 are satisfied, with |O] = (1 + s)2, b = 2s. Hence s% < t,
contradicting the hypothesis of 10.7.2. O

Note that Sp, ..., Ss form a complete conjugacy class of subgroups of order s in the group G. Put
S¥ = Ng(S;), 0 <i < s. It is routine to coplete a proof of the following, assuming that t < s2.

10.7.3. (i) |G| =s(s+1)(t—1).
(i) SF=Gpr, 0<i<s.
|S¥| =s(t—1),0<i<s.

(iv) [S;nSil=t—1,i#j,0<i,j<s.

(iii
(v) [S;nS;l=1,ifi#37,0<4,j<s.

)
)
)
(vi) 15:5; NSkl =1, if 0 < 4,4,k < s with 4, j, k distinct.

Put ¥ = {Lo,...,Ls}. Then G is doubly transitive on ¥, and S* = (), S} is the kernel of this

action. W.M. Kantor [38] has used results of C. Hering - W.M. Kantor - G. Seitz - E.E. Shult on
doubly transitive permutation groups to give a group-theoretical proof of the following.

10.7.4. (W.M. Kantor [S5]). If s < t < 52, then no span-symmetric GQ of order (s,t) exists.

We would like to see a more elementary proof of this result. And in the case t = s?> we have seen
no proof that S = Q(5, s) even using heavy group theory.
For the remainder of this section we assume s =t.
Thus G is a group of order s — s, s > 2, having a collection 7 = {Sp,...,Ss} of 1+ s subgroups,
each of order s. 7 is a comlete conjugacy class in G; S; N Ng(S;) = 1if i # j, 0 < 4,5 < s; and
5;8; NSy = 1 for distinct 7,7, k, 0 < 4,7,k < s. Under these conditions we say that 7 is a 4-gonal
basis for G. Conversely, our main goal in this section is to show how to recover a span-symmetric GQ
from a 4-gonal basis 7. First we offer a simple lemma.
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10.7.5. Let S be a GQ of order (s,s) with a fixed reqular pair {Lo, L1} of nonconcurrent lines. If
each line of {Lg, L1} is reqular, then each line of {Lq, L1} is reqular.

Proof. We use the same notation as above: {Lg, L1}** = {Lo, ..., Ls}, {Lo, L1}* = {My,..., M}.
Let M be any line not concurrent with M; for some fixed i, 0 < i < s. Then M must be a line not
concurrent with M; for some fixed 7, 0 <7 < s. Then M must be incident with a point x = L; N M,
for some j and k (s = ¢ implies each line meets some Mj},). Since L; is regular, it follows that the pair
(M;, M) is regular, and hence M; must be regular. O

Return now to the case where S is span-symmetric with G, S;, 2, etc., as above. Let xy be a
fixed point of Q. For each y € € there is a unique element g € G for which z§ = y. In this way
each point of € is identified with a unique element of GG. Let INV; be the line through xy meeting L;.
Points of V; in € correspond to elements of S;. Let z; be the point of L; on N;, 0 < i < s. For i # 7,
S; M S} acts regularly on the points of {z;, zj 3t N Q. It follows that Sf = S;(S; N S7) = (57N S5)S;
(SN S7)S; € Sf and [(S7 N S7)Si| = |7 = s(t — 1)) acts reularly on the points of z- N €, so that
the elements of a given coset gS; = S;g of S; in S} correspond to the points of a fixed line through
z;. Hence we may identify S} with z;. Suppose that lines of {Lo, L1}* are labeled so that SF =z
is a point of M;. Let g € G map zp to a point collinear with L; N M; (keep in mind that g fixes
M;). Then each point of ngg is collinear with L; N M;, so we may identify L; N M; with S}g. In this
way the points of M; are identified with the right cosets of S} in G, and a line through S’G (not in
{Lo, L1}t U{Lo, L1}*) is a coset of S; contained in S}g. Hence the points of L; consist of one coset
of S7 for each j = 0,1,...,s. If 57 N S7g (with S} # S7g) contains a point y = zh, then S;h is the
line joining S and y, and S;h is the line joining S7g and y. Hence if S7g is a point of L; (and hence
collinear with S7), i # j, it must be that S N Sig = @. We show later that for each j, j # ¢, S is
disjoint from a unique right coset of S;-k, so that the points of L; are uniquely determined as S} and
the unique right coset of S¥ disjoint from S} for j =0,1,...,s, j # i.

Conversely, now let G be an abstract group of order s3> — s with 4-gonal basis 7 = {S,...,Ss}.
Put S = Ng(5i). Clearly s +1 = (G : 5}), so [Sf| = s(s —1). Since 5;NS; =1 for i # j,
S; acts regularly (by conjugation) on 7 — {S;}, and hence S} acts transitively on 7 — {S;}. Since
any inner automorphism of G moving S; to S also moves Sj to Si, S; also acts transitively on
{Sg, ..., SE}—{S;}, and {S§,..., Sk} is a complete conjugacy class in G. As the number of conjugates
of SfinGisl+s = (G: Ng(5)), and 1 +s = (G : S5)), it follows that S} = Ng(SF). As S}
acts transitively on 7 — {S;}, the subgroup of S} fixing S;, i # j, has order |S}|/s = s — 1, ie.
|57 NS7|=s—1, and S} is a semidirect product of S; and S} N S7.

10.7.6. Let S;g; and S3g; be arbitrary cosets of S; and S, i # 3. Then Sfg; N 559 =< iff gjgfl
sends S to S} under conjugation. Moreover, if S7g; N S7g; # @, then |S¥gi N S;‘gj\ =s—1.

Proof. If z € 57N S7g, a standard argument shows that S; N S7g = {tz||t € S;NST}, so [SFNSTg| =
s — 1. Since S]] = s(s — 1), S} meets s cosets of S7 and is disjoint to from the one remaining. Two
elements z,y € G send ST to the same S iff they belong to the same right coset of Ng(S;) =57,
ie. iff zy~! € S3. Suppose g maps 57 to 57 S = g_lS;-‘g, i # j. Then g ¢ S, so @ = g_lS]* nsy,
implying @ = g_lS;g NS;g=5;7NS;g. Hence S7NS7g =@ for all g in that coset of ST mapping 57
to S7. Translating by g;, we have S7g; N S7gg; = @ ift (ggi)gjl =g maps ST to Sf. O

10.7.7. Let i, j, k be distinct, and S} g;, S} g;, Sp.gx be any three cosets of S, ST, Sy. If SfgiNS;g; = @
and 57 g; N Spgr = 9, then S7g; N Spgr = <.

Proof. If 57¢;NS;g; = @ and S;gr NS gi = &, then gjgi_1 maps S7 to S and gigk_1 maps S; to S}.

Hence (g;9; 1) (g9, ") = g;9; - maps S} to Sf, implying S7g; N Sigr =92. O
We are now ready to state the following main result.
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10.7.8. (S.E. Payne [170]). A span-symmetric GQ of order (s, s) with given base span {Lg, L1}'* is
canonically equivalent to a group G of order s> — s with a 4-gonal basis T .

Proof. We show that for each group G with 4-gonal basis 7 there is a span-symmetric GQ of order
(s,s), denoted S(G,T). However, we leave to the reader the details of showing that starting with a
span-symmetric GQ S of order (s, s), with base span {Lg, L1}, deriving the 4-gonal basis 7 of the
group G generated by symmetries about lines in {Lg, L1}, and then constructing S(G,7) insures
that S and S(G,7) are isomorphic.

So suppose G and 7 are given, |G| = 53 — 5. Then S(G,7T) = (P, B,
I7) is constructed as follows.
Pr consists of two kinds of points:

(a) Elements of G (s — s of these).
(b) Right cosets of the Si’s ((s + 1)? of these).
B1 consists of three kinds of lines:
(i) Right cosets of S;, 0 < i <s ((s+1)(s? — 1) of these).
(ii) Sets M; = {S/gllg € G}, 0 <i <s (s+ 1 of these).
(iif) Sets L; = {SjgllS; NSjg=2,0<j <s,j#itU{S}, 0<i<s (1+ s of these).

I7 is the natural incidence relation: a line S;g of type (i) is incident with the s points of type (a)
contained in it, together with that point S}g of type (b) containing it. The lines of types (ii) and (iii)
are already described as sets of those points with which they are to be incident. By 10.7.7 two cosets
of distinct S}’s are collinear (on a line of type (iii)) only if they are disjoint. In such a way there arise
(s + 1)%s/2 pairs of disjoint cosets of distinct S3’s. Since for a given coset S7g and given k, k # j,
there is just one coset Sph disjoint from S7g, the total number of pairs of disjoint cosets of distinct
S7’s also equals (s +1)2s/2. Hence two cosets of distinct S7’s are collinear iff they are disjoint.

It is now relativley straightforward to check S(G,7) is a tactical configuration with 1 + s points
on a line, 1 4+ s lines through each point, at most one common line incident with two given points,
1+ s+ s% + s3 points and also that many lines, and having no triangles. Hence S(G,T) is a GQ of
order (s,s) (having {L;, L;}* = {Mo, ..., Ms}, i # 7).

In the construction just given, G acts on S(G,7) by right multiplication (leaving all lines M;
invariant) so that S; is the full group of symmetries about L;, 0 < i < s, and S is the stabilizer of
L; in G. This can be seen as follows. For x € G, let & denote the collineation determined by right
multiplication by x. Clearly 2 fixes L; provided S7g N S; = & implies S7gx NS = &, which occurs
iff Sfx = S iff v € Sf. Moreover, if x € S}, then & fixes each point of L;. Let L be some line of
(i) meeting L; at, say Sig for some j # i, where g_lS;‘g = S} (implying ¢g~1S;g = S;). Then L is
some coset of S; contained in Sj’-kg, say L = Sjt;jg where t; € S;‘. And 2 : L — L iff Sjtjgz = Sjt;g iff
g_l(tj*lSjtj)gx = g_l(tj*lSjtj)g iff g~1S;92 = g71S,g iff Siz = S;. Hence S; is the set of all s € G for
which ¢ fixes each line of S(G,7) meeting L;. Now it is immediate that S(G,7) is span-symmetric
with base span {Lg, L;}*. O

Any automorphism of G leaving 7 invariant must induce a collineation of S(G, 7). In particular,
for each g € G, conjugation by g yields a collineation § of S(G, 7). But conjugation by g followed by
right multiplication by ¢! yields a collineation ¢ given by left multiplication by ¢g~'. Then g — § is
a representation of G as a group of collineations of S(G,7) in which S; is a full group of symmetries
about M;, and S is the stabilizer of M;. This is easily checked, so that we have proved the following.

10.7.9. If S is a span-symmetric GQ of order (s,s) with base span {Lo, L1}*, then each line of
{Lo, L1} is also an azis of symmetry.
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It is natural to conjecture that a span-symmetric GQ of order (s, s) is isomorphic to Q(4,s) and
G = SL(2, s).

We bring this section to a close with the observation that the unique GQ of order (4, 4) (cf. 6.3) has
an easy description as a span-symmetric GQ S = S(G, 7)), where G = SL(2,4) = Aj, the alternating
group on {1,2,3,4,5}. Let S; be the Klein 4-group on the symbols {1,2,3,4,5} — {i}, 1 <i < 5. For
example, S1 = {e, (23)(45), (24)(35),(25)(34)}. Then S} = Ng(S;) is the alternating group on the
symbols {1,2,3,4,5} — {i}. It follows that 7 = {S1,..., S5} is a 4-gonal basis for As.



Chapter 11

Coordinatization of Generalized
Quadrangles with s =t

11.1 One Axis of Symmetry

The modern theory of projective planes depends to a very great extent upon the theory of planar
ternary rings, either as introduced by M. Hall, Jr. (cf.[69]) or as modified in some relatively modest
way (e.g., compare the system used by D.R. Hughes and F. Piper [26]). An analogous general coor-
dinatization theory for GQ has yet to be worked out, and indeed seems likely to be too complicated
to be useful. In this chapter a preliminary version of such a theory is worked out for a special class
of GQ of order (s, s), starting with those having an axis of symmetry. Throughout this chapter we
assume s > 1.

Let S = (P, B,I) be a GQ of order (s, s) having a line L, that is an axis of symmetry. Then Lo,
is regular, so by 1.3.1 there is a projective plane based at L, whose dual is denoted by 7. The lines
of 7o, are the lines of S in L, and the points of 7o, are the spans of the form {M, N}** where M, N
are distinct lines in LL. Clearly the points of the form {M, N}li with M and N concurrent in L%,
may be identified with the points of § incident with L.,. The coordinatization of & begins with a
coordinatization of 7.

To begin, choose Ly, and some three lines of S meeting L., at distinct points and not lying in a
same span as the coordinatizing quadrangle of mo,. Then there is a planar ternary ring R = (R, F)
with underlying set R, |R| = s, and ternary operation F, so that R coordinatizes 7 as follows.
There are two distinguished elements of R denoted 0 and 1, respectively. The ternary operation F' is
a function from R x R x R into R satisfying five conditions (cf.[30]) :

F(a,0,c) = F(0,b,c) = c for all a,b,c € R. (11.1)
F(1,a,0) = F(a,1,0) = a for all a € R. (11.2)
Given a, b, c,d € R with a # ¢, there is a unique x € R

for which F(x,a,b) = F(x,c,d). (11.3)
Given a, b,c € R, there is a unique x € R

for which F(a,b,z) = c. (11.4)
For a,b,c,d € R with a # ¢, there is a unique pair of elements

x,y € R for which F(a,z,y) =band F(c,z,y) =d (11.5)

The line Lo, of 7 is assigned the coordinate [oo] and the other three lines in the coordinatizing
quadrangle have coordinates [0], [0,0], and [1, 1], respectively. More generally, mo has lines [o0], [m],
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[a, b], for a,b,m € R, and 7 has points (c0), (a), ((m,k)), a,k,m € R. Here [o0], [m], |a,b] are the
lines of S in LL (= [o0]t); (00) and (a) are the points of S on [oc], and ((m, k)) is a set of lines of
the form {M, N}** with M and N concurrent lines in LZ . Incidence in 7, is given by (11.6).

[a, b] is incident with (a) and with ((m,k)) provided b = F(a,m, k).
[m] is incident with ((m, k)) and with (o).

[00] is incident with (a) and with (co).

This is for all a,b,m,k € R.

(11.6)

As [o0] is an axis of symmetry as a line of S, there is an additively written (but not known to be
abelian) group G of order s acting as the group of symmetries of S about [oo]. If M is any line of 74
different from [oo], then G acts sharply transitively on the points of M (in S) not on [co]. Hence each
point z of & not on [co] will somehow be identified by means of the line of 7o, through = and some
element of G.

Let  be an arbitrary point of S on [0] but not on [0o], and let y be the point on [0, 0] collinear
with z. Give = the coordinates (0,0), where the lefthand 0 is the zero element of R and the right
hand 0 is the zero (i.e.identity) of G. Then for g € G, give 29 the coordinates (0, g). Similarly, let
the point on [m] collinear with y9 have coordinates (m,g). Then each point of S in (c0)® has been
assigned coordinates. Moreover, if g € G, then (00)? = (c0), (a)? = (a), and (m, g1)% = (m, g1 + g2).

Now let z be any point of S not collinear with (co). On [0] and [oco] there are unique points, say
(0,9) and (a), respectively, collinear with z. If the points (a) and z lie on the line [a, b], we assign to
z the coordinates (a,b, g). So (a,b, g) is the unique point on [a, b] collinear with (0, g).

Given a point (m, g) and a line [a, b], there is a unique point z on [a, b] collinear with (m, g). Then z
must have coordinates of the form (a, b, ¢’), where ¢’ = U(a, b, m, g) for some function U : R®*x G — G.
By construction it has been arranged so that

U(0,0,m,g) =g ="U(a,b,0,9). (11.7)

It is also clear that if a,b,m € R are fixed, the map

Uapm = g+— Ula,b,m, g) permutes the elements of G. (11.8)

It now remains to assign coordinates to those lines of S not concurrent with [oo]. Let L be such
a line. Then L is incident with a unique point having coordinates of the form (m,g). Moreover,
{L, [oo]}* consists of those lines through a unique point ((m,k)) of the plane 7. Assign to L the
coordinates [m, g, k]. Then ¢’ in G acts as follows.
(a.0,9) = (a.b.g + ), and [m. g, k)Y = [m. g+ ¢ k] (11.9)
For a,m,k € R, g € G, the following must hold :

(a, F(a,m, k), U(a, Fa,m, k), m, g)) is on [m, g, k]. (11.10)
Acting on the incident pair in (11.10) by a symmetry ¢’, we have

(a, Fa,m, k), U(a, F(a,m, k), m, g) + ¢') is on [m, g+ g', . (11.11)

But (a, F(a,m,k),U(a, F(a,m,k),m,g + ¢')) is on [m,g + ¢',k] and must be the only point of
la, F(a,m, k)] on [m, g+ ¢, k]. Hence

U((I, F(CL, m, k)a m, g+ g/) = U(a7 F(a7 m, k)? m, g) + gl' (1112)
So we may define Uy : R® — G by Up(a,b,m) = U(a,b,m,0), giving
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U(a,b,m,qg) = Uy(a,b,m) + g. (11.13)
Then (11.7) becomes

U()(0,0,m) = Uo(CLJ), 0) =0 (11.14)

and (11.8) is automatically satisfied.
At this point we have established the following.

11.1.1. Let S be a GQ or order s having a line that is an axis of symmetry. Then S may be realized
in the following manner. There is a planar ternary ring R = (R, F') with |R| = s. There is a group
G (written additively but not shown to be commutative) with |G| = s. Finally, there is a function
Uy : R — G satisfying (11.14). The points and lines of S have coordinates as follows :
Type 1 Type I1 ~ Type III  Type IV

points (a,b,g) (m,g) (a) ()  kabmeR

lines  [m,g,k] [a,] [m] [o0] gedq.
Incidence in S is described as follows :

o0) is on [oo] and on [m], m € R.

a) is on [0c] and on [a,b], a,b € R.

m, ) is on [m] and on [m, g, k], m,k € R, g € G.

a,b,g') is on [a,b], and on [m, g, k| provided b = F(a, m, k)

E
( (11.15)
(

and g’ = Up(a,b,m) + g, a,b,m,k €R, g,9 € G.

Conversely, given R = (R, F'), G and Uy, we would like to construct a GQ S with points and lines
described above and satisfying the incidence relation given in (11.15). Using just the properties of
R, F, Uy described so far a routine check shows that S is at least an incidence structure with 1 + s
points on each line, 1 + s lines through each point, two points on at most one common line, and
allowing (possibly) only triangles each of whose sides is a line of type I. Hence S is indeed a GQ
iff it has no triangles whose sides are lines of type I, and we now determine necessary and sufficient
conditions on Uy for this to be the case.

Consider a hypothetical triangle of S with sides of type I. There are just two cases : one vertex of
the triangle is a point of type II and the other two are of type I, or all three vertices are of type I.
Case (i). One vertex is of type II.

In this case the triangle is as indicated in Fig.11.1, where

Ty = (ai)F(aiamu ki)vUO(a%F(aiamu k2)7m) +9)
= (ai7F(al'7mlak/)7UO(aiaF(ai>m/7k/)7ml) +g,)> for i = 1>2

Furthermore, each g € G acts as a collineation of the resulting incidence structure (whether or not
it is a GQ) in the following manner.

9= (a) [00]9 = [oo] [m]? = [m]
(m,q") +9) [a,b]? =[a,b (11.16)
(a,0,9")7 = (a,0,9' + 9) [m,g', k)Y =[m, 4" + g, k].

Hence the triangle of Case (i) m

Fig.11.1.

The condition that this kind of triangle does not appear is precisely the following : If F'(a;, m, k;) =
F(a;,m' k') for i = 1,2, and if

ay be replaced (with a slight change of notation) with the triangle of
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(m, g)

[Tna q, kﬁ]

Ty

Figure 11.1:

" (m,0)

[m: U? kZ]

€2
M

Figure 11.2:
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(as, bs, G3)

[ma, g1, k1]

(a2,b2,G2) [m2, g2, k]

['f ns, gs, k3

H\(”’l; b1, d,)

Figure 11.3:

Uo(a;, F(a;, m,k;),m) = Up(a;, F(a;,m',k'),m') + g, i = 1,2, then m = m’ or a; = as. Notice that
k1 = ko iff m = m/ or a; = aa. We restate this as :

If bi = F(ai,m, /{?1) = F(ai,m',k’) for i = 1,2, and if
on(al, b1, m’) + Ug(al, bl,m) = *Uo(ag, ba, m’) + U(](CLQ, bg,m), (1117)
then m = m’ or a1 = as.

Case (ii). All three vertices are of type I.
In this case the triangle is as indicated in Fig.11.1, where b; = F(aj,m;, k;) and g; = Uy(aj, bj, m;)+gi,
for ¢ # j. Hence this triangle is impossible iff the following holds.

If bj = F(aj, mj—1, kj_l) = F(aj, mj41, kj+1), and if

Uo(aj, bj, mj—1) + gj—1 = Uo(aj, bj, mjs1) + gji1, for j =1,2,3,

subscripts taken modulo 3, (a;, b, ki,m; € R, g; € G), then it (11.18)
must follow that the m;’s are not distinct or

the a;’s are not distinct.

Let R = (R, F) be a planar ternary ring as above, G a group with |G| = |R| = s. Let Uy : R® — G
be a function satisfying (11.14), (11.17) and (11.18). Then Up is called a 4-gonal function, and the
triple (R, G, Up) is a 4-gonal set up. We have established the following theorem.

11.1.2. The existence of a GQ S or order s with an axis of symmetry is equivalent to the existence
of a 4-gonal set up (R, G, Upy) with |R| = s.

It seems very difficult to study 4-gonal set ups in general. Hence in the next few sections we
investigate conditions on (R, G, Up) that correspond to the existence of additional collineations of the
associated GQ, beginning with (essentially) a pair of concurrent axes of summetry.
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[oo] [a, k] {a, Fa,m, k"), Ug{g, k,m) +¢') = (a, k, g)
(a)
[0, 9, k]
0) [0, ] 0. 9) [m, g, k]
(0,9) m, —Up(0, k,m) + g, k]
& m
(o0) (m,¢ [m]

{m, —Up(0, k,m) + g)

Figure 11.4:

11.2 Two concurrent axes of symmetry

Let § be a GQ of order s with a line that is an axis of symmetry. Moreover, let S be coordinatized
as in the preceding section, so that [oco] is the hypothesized axis of symmetry. If there is a second line
through (co) that is an axis of symmetry, we may assume without any loss in generality that it is [0].
Our next step is to determine necessary and sufficient conditions in terms of the coordinate system
for [0] to be an axis of symmetry.

Let 6 be a symmetry about [0] moving (0) to (a), 0 # a € R. Then the point (0,%,¢g) on [0, k]
and on [m, —Uy(0,k, m) + g, k] for each m € R must be mapped by 6 to the point (a, k, g) on [0, k, g]
collinear with (a). The points and lines involved are indicated in the incidence diagram of Fig.11.2.
Here a,k,m € R, 0 # a,m, and g € G are arbitrary. Then ¢’ € G and k¥’ € R are determined by
k= F(a,m,k') and ¢’ = —Up(a, k,m) + g. This determines the effect of 6 on all points of [m]

(m, 9)? = (m,—Up(a, k,m) + Uy(0,k,m) + g). (11.19)

Hence —Up(a, k, m) + Up(0, k,m) must be independent of k for fixed nonzero a,m € R. Putting k = 0
yields the following

(m, 9)” = (m, —Us(a,0,m) + g). (11.20)
[m, g, k)® = [m, —Us(a,0,m) + g, k'], where k = F(a, m, k'). (11.21)
Uo(a, k,m) = Uy(0,k,m) + Uy(a,0,m), for a,k,m € R. (11.22)

For t,m,k € R, m #0, g € G, consider the incidences indicated in Fig.11.2.

The image of (¢, F(t,m, k), Uy(t, F(t,m,k), m) + g) under § must be on [0, Uy(t, F(t,m,k),m) +
g, F(t,m,k)] and on [m,—Uy(a,0,m) + g, k'], where by (11.21) we have k = F(a,m,k’). Hence the
image must be of the form
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(U:U{](t: F(t: m,k),m.) +g) A

(20) [rn]

A=[0,Up(t, F(t,m, k), m) + g, F(t,m, k)]
a = (t, F(t,m, k), Up(t, F{t,m, k), m) + g)

(i

Figure 11.5:

(t, F(t,m,k),Up(t, F(t,m,k),m)+ g), where (¥)

F(t,m,k) = F(t,m, k), and

Uo(t, F(t,m,k),m) + g = Uy(t, F(t,m, k"), m) — Up(a,0,m) +

Hence

F(t,m,F(a,m,k)) = F(t,m,k), where (t)°

Put m =1 and k& = 0 to obtain

t=F(t,1,a), so F(t,m,F(a,m,k)) = F(F(t,1,a),m, k) for m,t,k € R.

For a,b € R, define a binary operation “+” on R by

a+b=F(a,l1,b).

It is easy to show that (R, +) is a loop with identity 0.
By (11.26) with m =1 we know “+” is associative. Hence (R, +) is a group. Then by (11.24) with k

chosen so that F(t,m,k) = 0, we have

Uo(t,0,m) + Uy(a,0,m) = Up(F(t,1,a),0,m) = Uy(t + a,0,m).

Hence for each m # 0, a — Up(a,0,m) is a homomorphism from (R, +) to G.
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(11.23)

(11.24)

(11.25)

(11.26)

(11.27)

(11.28)

If [0] is an axis of symmetry, the symmetries about [0] are transitive on the points (m, g) for fixed
m # 0. In that case it is clear by (11.20) that a — Up(a,0,m) is 1-1 and onto. The information
obtained so far is collected in the following theorem.

11.2.1. Let [0] be an azis of symmetry (in addition to [o0o]). Then the following are true for all

a,t,mke€R
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(i) Uo(a, k,m) = Up(0,k,m)+ Up(a,0,m).
(i1) F(t,m,F(a,m,k)) = F(F(t,1,a),m,k) = F(t+ a,m,k).
(iii) Up(t,0,m) + Up(a,0,m) = Up(F'(t,1,a),0,m) = Up(t + a,0,m).
(iv) For fited m € R, 0 # m, the map a — Uy(a,0,m) is an isomorphism from (R,+) onto G.

Conversely, it is straightforward to verify that if (i), (ii) and (iii) hold, then the map 6 given below
is a symmetry about [0] moving (0) to (a).

(00)? = (00) ()7 = (F(t,1,a)) = (t +a)
(m’ 9)60: (m7 _UO(a7 0’ m) + g)

(7 = (F(61 000 = 4 0 129)
[t,1]% = [F(t,1,2), k] = [t + a, k]

[m, g, k]? = [m, —Ug(a,0,m) + g, k'], where k = F(a, m, k).

For the remainder of this section we assume that [0] is an azis of symmetry.

11.2.2. The point (o) is regular iff Up(a,b,m) is independent of b. In that case put Uy(a,b,m) =
Uo(a,m). Then Uy(a,m) = Uy(a,m’) implies either a =0 or m =m/.

Proof. Since the group generated by all symmetries about [co] and [0] fixes (c0) and any of its
orbits consisting of points not collinear with (co) contains an element of the form (0, k,0), the point
(00) is regular iff the pair ((00), (0, k,0)) is regular. But {(c0), (0,0,0)}*+ = {(0)} U {(m,0)|m € R},
and {(0),(0,0)}* = {(00)} U {(0,k,0)]k € R}. Hence ((c0),(0,k,0)) is regular for all k € R iff
((00),(0,0,0)) is regular iff (0, %,0) and (m,0) are collinear for all k£ and m iff 0 = Uy(0, k, m) for all
k and m. By part (i) of 11.2.1 this is iff Up(a, b, m) is independent of b.

Now let (00) be regular and put Up(a,m) = Uy(a,0,m). Let a,m,m’ be given. Choose k; so that
by = F(a,m, ki) = F(a,m’,0), and choose ko so that by = F(0,m, ko) = F(0,m',0), i.e. by = ky = 0.
By (11.17), if =Up(a,m’) + Up(a,m) =0, then a =0 or m =m/. O

Let 7 be any nonidentity symmetry about [0] and 6, any nonidentity symmetry about [oo] as
given in (11.16). Since S has no triangles, the only fixed lines of 706, = 6 are the lines through (00).
Then the result 1.9.1 applies to § with f + g = 1 + s + s, implying that f is odd. If (0)” = (a), the
fixed points of § must lie on lines of the form [m], m # 0, and are determined as follows :

(m,q)? = (m,=Us(a,0,m) +g+g) = (m,g) iff

11.30
Uo(a,0,m) =g+g —g. ( )

The number of fixed points of §# = 706y is 1 plus the number of pairs (m, g) satisfying (11.30).
If for some m there is a g satisfying (11.30), then there are |Cs(¢’)| such g (here Cg(h) denotes the
centralizer of h in G). So each line that has a fixed point in addition to (co) has precisely 1+ |Ca(g')|
fixed points. If there are k such lines having fixed points other than (c0), then f =1+ k|Cg(¢')|. If
s is odd, then |G| is odd, so f being odd implies k is even.

In the known examples (00) is coregular and hence is regular when s is even and antiregular when
s is odd. Under these conditions it is possible to say a bit more about the fixed points of 6.

11.2.3. Let 0 = 7 o0y as above. Then (still under the hypothesis that both [oco] and [0] are azes of
symmetry) we have the following :

(i) If (00) is regular, the fixed points of 0 are the points of a unique line L through (oo) and the fized
lines of O are precisely the lines through (00). Moreover, s is a power of 2 and G is elementary
abelian.
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(ii) If (00) is antiregular, then either (co) is the unique fixed point of 6, or the fixed points of 6 are
precisely the points on two lines through (00). The fized lines are just the lines through (o).

Proof. (i) First suppose that (co) is regular and let § = 706, as above. The projective plane based
at (oc0) is denoted by 7. Clearly # induces a central collineation § on 7 with center (00). Since (00) is
the only fixed point of § on [0], respectively [0c], the collineation 6 is an elation with axis some line
L through (oc0). It follows readily that the points of L are the fixed points of §. We already noticed
that, since S has no triangles, the only fixed lines of 6 are the lines through (o0).

Since [oo] and [0] are axes of symmetry in S, clearly the plane 7 is ((00), [00])- and ((c0), [0])-
transitive. By a well-known theorem [36] the group H of elations of © with center (c0) is an elementary
abelian p-group of order s%. Since the number of fixed points of 8 is f = 1 + s, which must be odd,
s is even. Hence p = 2. As G is (isomorphic to) a subgroup of H, G is also an elementary abelian
2-group. This completes the proof of (i).

(ii) Suppose that oo is antiregular. By 1.5.1 s is odd. Assume that some line L through (co) has
a second point y fixed by 6. Let my be the affine plane whose points are the points of (oo)L -yt
and whose lines are the lines through (co) different from L and sets of the form z = {z, (c0)}* — {y},
for z € y* — (c0)*. Let m denote the projective completion of 7. It follows that # induces a central
collineation 6 of m with center (c0). Since 6 fixes no point of P — (c0)*, the only lines of 7 fixed by @
must be incident with (oc). Hence (6) is an elation and must have as axis some line A of 7 through
(00). If A is a line of S through (0c0) and distinct from L, i.e. A is not the line at infinity of mg, then
the points of A are the only fixed points of # other than points on L. Then interchanging the roles of
y and some point different from (co) on A shows that each point of L is fixed. Hence the fixed points
of 0 are precisely the points of A and L. Finally, let A be the line at infinity of mg. Then 6 fixes each
line through y, a contradiciton since § = 7 o § fixes only the lines through (c0). O

11.3 Three concurrent axes of symmetry

11.3.1. Let Lo, L1, Lo be three distinct lines through a point p in a GQ of order s. Let Lo be regular,
and suppose that the group H; of symmetries about L; is nontrivial for both i = 1 and i = 2. Then
the group H; is elementary abelian.

Proof. Let 7 be the plane based at Ly. Elements of H; induce elations of = with center L; and axis the
set of lines through p, i = 1,2. Let 0 ~— @ be this “induction” homomorphism. Put H = (5|0 € Hy Hs).
Then H is elementary abelian by a well-known theorem [36]. Moreover, H; is isomorphic to its image
in H, since the kernel of the map o + & has only the identity in common with H;. Hence H; is
elementary abelian. O

We now return to the case where S is a GQ (with [co] and [0] as axes of symmetry) coordinatized
by (R,G,Up). It there is some m # 0 for which the group of symmetries about [m] is nontrivial, we
may suppose that m = 1. Our major goal in this section is to determine just when [1] is an axis of
symmetry.

11.3.2. Let 0 # a € R. If there is a symmetry about [1] moving (0) to (a), then
(i) G and (R,+) are elementary abelian.
(ii) Up(0,a + k,m) = Up(0,a,m) + Up(0, k,m), for all k,m € R.

(i) F(t,m,k)+a=F(t,m,k+a).
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[oc] la,a + k| (a,a+ k,Up(a,q + k,1) + g)
(a)
L, g, k]
(0) [0, 4] (0, k,Up(0,k,1) + 9) g, K]

(1:(;) [T'.*‘l-,ﬁ,k]

{mm, g i

{(m,g) (m # 1)

Figure 11.6:

Proof. Let 6 be a symmetry about [1] moving (0) to (a). By 11.3.1 we know G is elementary abelian,
and then by part (iv) of 11.2.1 (R, +) is elementary abelian. The incidence indicated in Fig 11.3 must
be valid, where

g
g = —-Up(a,a+ k,m)+Us(a,a+k,1) + g, and (11.31)
a

It follows that

(mag)e = (m7 _UO(O7 kam) + UO(Oa k) 1) + 9)9 =

11.32
(magl) = (m,—UO(a,a—i—k’,m)+U0(a,a+k, 1)+g) ( )
For k = 0 this says
(m, 9)? = (m, —Us(a,a,m) + Up(a,a,1) + g). (11.33)
Using (11.31), (11.32) and (11.33) we obtain
_UO(av a—+ kam) + Uﬂ(aaa + k? 1) = _UO(a7a7m) + UO(a7a7 1)
—Up(0, k,m) 4+ Up(0, k, 1). (11.34)

This is for fixed a # 0, all £k € R, and 1 # m € R. But of course it clearly holds for m = 1. Put
m =0 1in (11.34) and use (11.22) to obtain

Up(0,a+ k,1) = Up(0,a,1) + Uy(0, k, 1). (11.35)
Then use (11.35) in (11.34)

Uo(0,a + k,m) = Uy(0,a,m) + Uy(0, k,m). (11.36)

This proves part (ii) of 11.3.2, and along with 11.2.1 (i) and (iii) and the fact that G is abelian shows
the following.
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For each m € R, the map (a,b) — Up(a,b,m) is an additive
homomorphism from R & R to G. (11.37)

Since [m, g, k]? = [m, ¢, k'] in Fig.11.3, where a is fixed, a # 0, m # 1, a,m,k € R, and g € G,
and (11.31) holds, and using (11.37), we find that

[mvg7k;]0 = [mv _UO(avau m) + UO(CL,CL, 1) + 9, kl]a
for all m,k € R,g € G, with a + k = F(a,m, k).

Now for arbitrary ¢,k € R, g € G, © = (t,t + k,Up(t,t + k,1) + g) is incident with [1, g, k]
and also with [0, Uy(t,t + k,1) + g,t + k]. Applying 6 (and using (11.37) freely) we find that 2/ =
(t+a,t+k+a,Up(t+a,t+k—+a,1)+g). It is now easy to check that § has been completely determined
as follows.

(11.38)

(00)? = (00) (1)’ =(t+a) [00]’ =[oq] [m]’ = [m]
(mvg)e - (ma _UO(aa a, m) + U()(CL, a, 1) + g)
(t,0,9)" = (t + a,b+a,Up(a,a,1) + g)

(t,k]? = [t +a,k +d]

[mvgv k]e = [m? 7U0(a7 a, m) + Uo(a, a, 1) +9, k/]a
where a + k = F(a,m, k).

(11.39)

But then since (¢, F'(t,m, k), Uy(t, F'(t,m, k), m)+ g) is on [m, g, k|, it must be that (¢t +a, F(t,m, k) +
a,Up(a,a,1) + Up(t, F(t,m,k),m) + g) is on [m,—Up(a,a,m) + Uy(a,a,1) + g, k'], where a + k =
F(a,m,k"). This last incidence implies the following.

F(t,m,k) +a= F(t+a,m,k"),where a + k = F(a,m, k). (11.40)

By (11.26), F(t+a,m,k") = F(t,m, F(a,m,k")) = F(t,m,a+ k), and the proof of 11.3.2 is complete.
O

It is easy to check that the conditions of 11.3.2 are also sufficient for there to be a symmetry about
[1] moving (0) to (a).

11.3.3. If [1] is an azis of symmetry (in addition to [cc] and [0]), then
(i) G is elementary abelian.
(ii) For each m € R, the map (a,b) — Uy(a,b,m) is an additive homomorphism from R @ R to G.

(iii) Define a multiplication “o” on R by aom = F(a,m,0). Then F(a,m,k) = (aom)+ k for all
a,m,k € R, and (R,+,0) is a right quasifield.

(iv) Each line [m], m € R, is an axis of symmetry.

Proof. Parts (i), (ii) and (iii) follow from 11.3.2 and 11.2.1. In view of part (iv) of 11.2.1 we may view
(R,+) as G, so that Uy : R* — R. Then for any 1,092,053 € R, consider the map 0 = (o1, 02,03)
from S to S defined as follows.

Eac,y3 2)? = ( (-T+0173/+U(272+U3))) [ﬁ]:—[[o]o]

x,y:a:y—i—o—Ua,a, ul” = |u

(@ = @ 21) fusol? = u+01,0+ o0 (1141
(oo)a (00) [U,U,w]ez[U,U+03—Ug(01,02,u),w+02—O‘lou].
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Using the first three parts of 11.3.3 a routine check shows that 6 is a collineation of S. For each
i € RU{oo}, let H; denote the group of symmetries about [i]. An easy check yiels the following

Hy ={6(0,0,0)|lc € R} (11.42)
H,, ={0(c,0 om,Up(c,0 om,m))|oc € R}, m € R. (11.43)

Hence each line through (c0) is an axis of symmetry. O
11.3.4. Let S satisfy the hypothesis of 11.3.3. Then
(1) condition (11.17) is equivalent to (11.44), and

(ii) condition (11.18) is equivalent to (11.45).

Uo(a,a om,m) = Uy(a,aom,m') implies that either a =0 or m = m/.

(11.44)
If mg, m1, mo are distinct elements of R, and if for ag,a1,as € R,
0=37gai = ga;om; = Uo(aia; omi,m;), then
ag — a1 = ag = 0. (1145)
Proof. The proof of (i) is an easy exercise. For the proof of (ii) first note that
(a,b,9) is on [m, g, k] iff b =aom + k and g = Up(a,b,m) + g. (11.46)

Then reconsider the Case (ii) of 11.1 that led to (11.18), i.e. assume there is a triangle whose vertices
and sides are all of type I. We may assume one of the sides is [mg, 0, ko]. Then the two vertices on
this side are
yi = (ai,a; o mgy + ko, Up(ai,a; o mg + ko,mp)), @ = 1,2, a; # az. The other side on y; is L; =
[mi, U(j(ai, a;omo—+kog, mo) —Uo(ai, a;omg—+kog, ’ITLZ'), aiomo—l—k‘o—aiomi], i =1,2. If the sides L1 and Lo
meet at a point with first coordinate as, this point must be (as, agom;+a;omo+ko—a;om;, Uy(as, (a3—
a;)om;+a;omo+ko, m;)+Uo(as, a;omo+ko, mo) —Uo(ai, a;omo+ko, m;)) = (a3, (a3—a;)om;+a;omo+
ko, Up(as — a;, (a3 — a;) om;, m;) + Up(ai, a;omo+ ko, mo)), i = 1,2. Since the coordinates of this point
must be the same whether i = 1 or i = 2, it follows that (ag—aj)omi+(az—ag)oma+(a; —az)omgy = 0,
and U()(ag —as, (a3 —al) oms, ml) + Uo(a1 —ag, (a1 —a2> omy, mo) +U0<a2 —as, (ag — a3) oms, mQ) =0.

For the triangle to be impossible it must be that either aj,as,as are not distinct and/or the
mg, m1, My are not distinct. Geometrically it is clear that if the my, mo, mg are distinct, then neces-
sarily a1 = ag = ag. This is easily restated as condition (11.45). O

Let R = (R, +,0) be a right quasifield with |R| = s = p°, p prime. Let Uy : R? — R be a function
satisfying the following :

(i) Uo(a,b,0) =0 for all a,b € R.

(ii) The map (a,b) — Uy(a,b,m) is an additive homomorphism from R & R to R, for each m € R.
(i) Up(a,a om,m) = U(a,a om,m’) implies a = 0 or m = m/, for a,m,m’ € R.
)

(iv) If 0 = Z?ai = Zi’ai om; = Zi’ Uo(ai, a; o mj,m;), for a;,m; € R, i = 1,2,3, then either
a1 = as = ag = 0 or the m;’s are not distinct.
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Then the pair (R, Uy) is called a T-set up and Uy is a T-function on R.
The following theorem summarizes the main results of this section.

11.3.5. Let S be a GQ of order s. Then S has a point ps, = (00) for which some three lines through
Poo are axes of symmetry iff each line through pe is an axis of symmetry iff S is coordinatized by a
T-set up (R,Up) in the following manner. Points and lines of S are as in 11.1.1. Then incidence in
S is defined by :

(00) is on [00] and on [a], a € R.

(m) is on [00] and on [m,b], m,b € R.

(a,b) is on [a] and on [a,b,c], a,b,c € R.

x,y,z) is on [x,y] and on [u,v,w] iff y =z ou+w and
z=Up(z,y,u) +v, z,y,z,u,v,w € R.

For convenience in computing with collineations, etc., all collinearities and concurrencies are listed
in the following table.

(00) ~ (z) on [o0] [

00) ~ (u,v) on [u] [ (

) ~ (y) on [o0] [u] ~ 00)

) [u] ~

[u,
[z,

oo] ~ [u] at (c0)
oo] ~ [1]1, v] at (u)

(
~ (z,y,2z) on [x,y] u] ~ [u,v,w| at (u,v)
s ) ~ (t,10) on [u] o] ~ [u,w] at (u)
u,v) ~ (z,y,2) on [u,v,y — x o ul Y] ~ [u,v,w] at (z,y,v + Up(z,y,u))

provided z = Up(z,y,u) + v provided y = zou +w

(x,y,21) ~ (z,y,22) on [z,y] [u, v, w1] ~ [u, v, ws] at (u,v)

(z1,91,21) ~ (@2,Y2, 22) on [u1, v1, wi] ~ [uz, v2, wo] at

[u, zi — Uo (i, Yi, u), yi — @i o u] (2,7 0 u; + w;, v + Up(w, T 0 uj + wi, u;))
i =1 or 2, provided x1 # x2, i =1 or 2, provided uj # uo,

y1 — y2 = (1 — x2) o u, and w1 — Wo = —T 0 U] + T o Uy, and

Z1 — k2 = Uo(:t?l —x2,Y1 — yg,u) V1 — Vg = *Uo(x,l‘ ouy + wl,ul)

—|—U0(flf, T oug + wa, UQ).
Note that a GQ S or order s coordinatized by a T-set up as above is a TGQ with base point (o0) and
the group of s3 collineations given in (11.41) is the group of all translations (elations) about (co).

11.4 The kernel of a T-set up

Let () be a TGQ coordinatized by a T-set up (R,Up) as in 11.3.5. By 8.6.5 we know that the
multiplicative group K° of the kernel is isomorphic to the group H of whorls about (o) fixing (0,0, 0).
We now study H in terms of the coordinate system.

Let 6 € H, 6 # id. Then the following points and lines are fixed by 6 : (c0), (0,0, 0), (0), (m,0),
for all m € R; [o0], [m], [0, 0], [m, 0, 0], for all m € R. There must be a permutation m; of the elements
of R fixing 0 and for which

(a)? = (m1(a)),a € R. (11.47)

Similarly, there are functions 75 : R? — R, m3 : R? — R and 74 : R? — R, such that # has the
following partial description

(2,9,2)" = (m1(2), m2(2,y, 2), m3(, y, 2)) (11.48)
(use (a) ~ (z,y, 2) iff a = x),
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(m, )" = (m,m4(m, g)). (11.49)
As (z,y,2) ~ (m,g) iff z=Up(z,y,m) + g, it follows that
(71'1(33), 772('%'7 Y, U()(II?, Y, m) + 9)7 71—3(‘737 Y, U()(l', Y, m) + g) ~ (m7 7T4<m7 g))? lmplylng
ms3(2,y, Uo(z, y, m) + g) = Up(m(2), m2(z, y, Uo(z,y,m) + g),m) + ma(m, g). (11.50)
Putting m = 0 in (11.50) yields

m3(x,y,9) = m4(0,9) = m3(g), i.e. w3 is a function of one variable. (11.51)
So (11.50) simplifies to

7r3<U0($7 Y, m) + g) - U()(ﬂ'l(.’ﬂ), 7T2([IJ, Y, U()((L‘, Y, m) + g)? m) + 7r4(m, g) (1152)
Now (z,y1,21) ~ (z,y2, 22) iff y1 = y2. Put y = y1 = y2 and apply 6 to obtain (71 (x), ma(z,y, 21), m3(21)) ~
(Wl(.%’), 7T2(x7 Y, ZQ)a 7T3(22>), so that

mo(x,y,z) = mo(x,y),i.e. my is a function of its first two variables only. (11.53)

As (0,0,0) is fixed, m2(0,0) must be 0. Putting z =y = 0 in (11.52) yields

m3(g) = ma(m, g). (11.54)

Hence we drop 74 altogether, and (11.52) may be rewritten as

m3(Uo(z,y, m) + g) = Uo(m1(x), m2(x,y), m) + 73(g). (11.55)
Put ¢ =0 in (11.55) and note that 73(0) = 0 since (0,0, 0) is fixed, to obtain

m3(Uo(x,y,m)) = Up(mi(x), m2(z, y), m). (11.56)
Putting this back in (11.55) easily yields (using e.g.11.2.1 (iv)) that 73 is additive. Also, the line [m, 0, 0]
is fixed. It is incident with the fixed point (m,0) and with the points (x,x om, Uy(z, z 0om,m)), which
must be permuted by 6. It follows that (m(z),ma(z,x o m), 73(Up(z,x 0 m,m)) = (m(x),m(z) o
m, Up(m1(z), m1(x) o m,m)), which implies

mo(x,xom) =mi(x)om (11.57)

and

m3(Uo(x,z 0om,m)) = Up(mi(z), m1(x) o m,m). (11.58)
Now (0,9)? = (0,73(g)) implies [0,g,k]® = [0,73(g), 75(0, g, k)] where 75 : R? — R is defined by
[m, g,k]° = [m,m3(g), 75(m, g,k)]. The line [0, g, k] is incident with the points (z,k,g), * € R, in
addition to (0,g). So (z,k,g)? = (m(x), ma(x, k), m3(g)) must lie on [0, 73(g), 75(0, g, k)], implying
71'2(1', k) = 7'['5(0,9, k)v Le. 7T2(l',y) = 772(2/)' (1159)
So (11.57) becomes

mo(x om) = w1 (x) om. (11.60)
With x = 1, this is
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ma(m) = w1 (1) om. (11.61)
Put m =1 in (11.60) and use (11.61)

mo(x) = m(z) = m(1) o . (11.62)

At the present time we know 6 has the following description as a permutation of the points

1)ox,m(1) oy, m3(2))
y)) (11.63)

Here we also know 73 is additive and (11.56) may be written as

m3(Uo(z,y,m)) = Up(m1(1) oz, m1(1) 0y, m). (11.64)
Let t = 71(1), and denote 6 by 6;. The effect of 6; on the lines of S is as follows :

» 95 k] & (maw?)(g)?ﬂ-f)(maga ]{7)}

,k]&[toa,tok]

]2 [m]

3

Q

(11.65)

3

1% [oo].

8

As (0,k,Up(0, k,m)+g) is on [m, g, k], it must be that (0, tok, m3(Up(0, k,m)+g)) is on [m, w3(g), 75(m, g, k)],
implying
ms(m, g, k) =tok, ie[m,g, k% = [m,m3(g),t okl (11.66)
Then more generally, (a,aom + k,Up(a,aom+ k,m) + g) on [m, g, k] implies that (toa,to (aom +
k), m3(Up(a,a om + k,m) + g)) is on [m,m3(g),t o k]. But this proves the following :
to(aom+k)=(toa)om+tok. (11.67)

Then (11.67) provides an associative and a distributive law :

(toa)om=to(aom)andto(a+k)=toa+tok. (11.68)
The equalities (11.64) and (11.68) essentially characterize those t for which 6, € H.
Let K denote the set of ¢ in R satisfying the following conditions :
(i) to(a+b)=toa+tobforall a,beR.
(ii) to(aob) = (toa)ob forall a,b € R.

(iii) If Up(a,b,m) = Up(a’,b',m’), then Uy(toa,tob,m) = Uy(tod',tot/,m’), for all a,b,m,a’,b',m’ €
R.

Then K is called the kernel of the T-set up. By (i) and (ii) K is a subset of the kernel of the right
quasifield (R, +, o), and hence any two elements of K commute under multiplication. If 6, is an element
of H, we have seen that t € K\ {0}. It is easy to see that distinct elements of H determine distinct
elements of IC\ {0}. Conversely, for each t € K\ {0} there is a 6, € H defined by the following :
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(00) 25 (00)

@,y ,zg (toz,toy,m(z)) [oo}fw ]

(z,y) & (2, 73(y)) [m] = [m] 11.69

(a) % (toa) [a, k] & [toatok] (11.69)
[

m, g, k] ¥ [m, m3(g), t o K.

Here m3 : R — R is the map determined by 73(Up(a,b,m)) = Uy(t o a,t o b,m). Note that 73 is
well-defined by the definition of K and by 11.2.1 (iv). Further, for fixed m # 0, w3(Uy(a,0,m)) =
Uo(t 0 a,0,m) shows that 73 is a permutation. Also, using the properties of Uy, the definition of K,
and the fact that a — Upy(a,0,m) is a permutation if m # 0, it is easy to show that 73 is additive.
Hence 0, — t, 6; € H, defines a bijection from H onto K \ {0}.

As 040y — t' ot = tot', with 6,0y € H, it is clear that K \ {0} is a commutative (cyclic!) group
under the multiplication of R. And by 11.3.3 (ii) it follows that for any ¢,¢ € K the sum ¢+ ¢’ satisfies
the condition (iii) in the definition of K. Hence K is a subfield of the kernel of (R, +,0). Since H is
isomorphic to the multiplicative group of the kernel of the TGQ S(*), the following result has been
established :

11.4.1. The kernel of a TGQ of order s is isomorphic to the kernel of a corresponding coordinatizing
T-set up.



Chapter 12

Generalized quadrangles as
amalgamations of Desarguesian planes

12.1 Admissible Pairs

If p© is an odd prime power, there is (up to duality) just one known example of a GQ of order p°. In
the case of GQ of order 2¢ a quite different situation prevails. There are known at least 2(¢(e) — 1)
pairwise nonisomorphic GQ of order 2¢, with ¢ the Euler function. Each of these has a regular point
Zoo incident with a regular line Lo,. S.E. Payne [122] showed that a GQ S of order s contains a regular
point x incident with a regular line L., if and only if it may be constructed as an “amalgamation
of a pair of compatible projective planes”, which of course turn out to be the planes based at =
and L, respectively. Moreover, in [133] it was shown that the two planes are desarguesian iff S
may be “coordinatized” by means of an “admissible” pair (a, ) of permutations of the elements of
F = GF(s), and in that case x, is a center of symmetry, Ly, is an axis of symmetry, and s is a power
of 2. All the known GQ of order 2¢ are of this type, and in this chapter we wish to proceed directly
to the construction and study of such examples.

Let o and 3 be permutations of the elements of ' = GF(s), with s = 2° and e > 1. For convenience
we assume throughout that

0% =0 and 1% = 1. (12.1)
Define an incidence structure S(a, 3) = (P, B,1) as follows. The pointset P has the following elements:

(i

(ii
i
i

00),

a),a € F,
(iii
(iv

u,v), u,v € F,

) (
) (
) (
) (a,b,¢), a,b,c,€ F.

The lineset B has the following elements:

(a) [oo],

(b) [u], ue F,

(c) [a,b], a,b € F,

(¢) [u,v,w], u,v,w € F.

165



166 Finite generalized quadrangles

Incidence I is defined as follows: the point (00) is incident with [co] and with [u] for all u € F; the
point (a) is incident with [co] and with [a,b] for all a,b € F'; the point (u,v) is incident with [u] and
with [u, v, w] for all u,v,w € F’; the point (a, b, ¢) is incident with [a, b] and with [u, v, w] iff b4+w = au
and ¢ + v = a®uP.

It is straightforward to check that S(a, 3) is a tactical configuration with s+ 1 points on each line,
s+ 1 lines on each point, 1+ s + s2 + s points (respectively, lines) and having two points incident
with at most one line. Hence a counting argument shows that S(«, ) is a GQ of order s iff S(«, 3)
has no triangles.

For convenience we note the following:

z, xu + w, 2" 4+ v) is on [u, v, w] for all x € F;

x,y,z) is on [u, 2%’ + z, zu + y] for all u € F;

i) 21 # @2 and ((y1 + y2)/ (21 + 22))° = (21 + 22) /(2 + 29);

(
(
(z1,91,21) ~ (22,92, 22) iff (i) 21 = 22 and y1 = yo or (12.2)
(
(x1,y1,21) ~ (w2, y2) iff 21 = xi"xg T 4.

12.1.1. S(o, B) = (P, B,1) is a GQ of order s = 2° iff the following conditions on o and (3 hold: For
distinct u; € F and distinct x; € F, 1 =1,2,3,

3 3
Zul'(l'i+1 + ;1) =0 and Zuf(:ﬁf‘H +z,)=0 (12.3)
1 1

(subscripts being taken modulo 8) never hold simultaneously.

Proof. The proof amounts to showing that there are no triangles precisely when (12.3) holds and is
rather tedious. We give the details only for the main case of a hypothetical triangle in which all three
vertices are points of type (iv) and all three sides are lines of type (d).

So suppose [us, v, w3 is one side of the triangle having two of the vertices (1, x1us+ws, x‘l"ug—i-vg)
and (xg, xous + w3, J:g‘ug + v3) with x1 # x2, which in turn lie, respectively, on the sides [ug, :U(fug +
xf‘ug + vz, z1u2 + x1u3 + ws] and [uq, x%u? + wg‘ug + v, Tou1 + xous + ws] with ug # ug # uy. Then
the third vertex of the triangle must be (x3,x3us + x1u2 + x1u3 + wg,xg“ug + a:'fug + x‘f‘ug + v3)=
(3, x3U1 + T2U1 + To2U3 + W3, x%u? + x%uf + xg‘ug + v3) with z1 # x3 # zo. Setting equal these two
representations of the third vertex yields the two equations of (12.3). All other triangles may be ruled
out without any additional conditions being introduced. O

The pair (a, 3) of permutations of the elements of F' = GF(2°) is said to be admissible provided it
satisfies both (12.1) and (12.3), in which case there arises a GQ S(«, ).

12.1.2. Let v be an automorphism of F an let o an dB be permutations of the elements of F'. Then
(o, B) is admissible iff (ay,By) is admissible iff (ya,yfB) is admissible, in which case S(a, ) =
S(ay, By) = S(ya,vB). Also, (o, B) is admissible iff (B, ) is admissible, in which case S(«, ) is
isomorphic to the dual of S(B,a). Finally, (c, 3) is admissible iff (a1, 371) is admissible, but in

general it is not true that S(a, ) = S(a™t, 871).

Proof. All parts of this result are easily checked except the last claim concerning S(«a,3) %
S(a~t, 1), However, we postpone a discussion of this until later. O

12.1.3. If (a, ) is admissible, then in S(a, 3) the point (00) is a center of symmetry and the line
[0o] is an axis of symmetry. Specifically, for oo,03 € F there is a collineation 0 of S(«, 3) defined as
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follows:
[u,v ,ue)] [u, v + o3, w + 03] (00)0& (c0)
[a,b] = [a,b+ o] (a) = (a) 194
[u] & [u] (u,v) 5 (u,v + o3) (12.4)
[o00] LA [00] (a,b,c) A (a,b+ o2,c+ 03)

The symmetries about (00) are obtained by setting o3 = 0; those about [co] are abtained by setting
oo = 0.

Proof. Easily checked. 0O
It also follows readily that the planes based at (00) and [0o], respectively, are both desarguesian,
but we will not prove that here.

12.1.4. Let (o, 3) be admissible. Then in S(a, 3) the following are equivalent:
(i) The pair ((ag), (a,b,c)) is reqular for some ag,a,b,c € F with ag # a.
(ii) B is additive (i.e. (x+y)° =2’ +y® for all z,y € F).

(iii) (a) is regular for all a € F.
(iv) (a) is a center of symmetry for all a € F'.

Dually, ([uo], [u,v,w]) is reqular for some ug,u, v, winF with uy # w iff o is additive iff [u] is reqular
for all uw € F iff [u] is an axis of symmetry for each u € F.

Proof. Because (00) is regular, each point (ag) of [co] forms a regular pair with each point (u,v)
collinear with (00). So suppose some point (ag) forms a regular pair with some point (a, b, c) not
collinear with (c0), and with ag # a so that (ap) and (a, b, ¢) are not collinear. Using a collineation of
the type given by (12.4), we see this is equivalent to saying that ((ao), (a,0,0)) is regular, a # ay.
(), (a0,0,0)}* = {(a0)} U {(a, x(a + ao), 2%(a® +a§)) || = € F},
{(a0), (0, 0)}* = {(a)} U {(ao, yla + a0), y*(a® + a§)) || y € F}.
Hence ((ap), (a,0,0)) is regular iff (ag,y(a + ag),yB(a® + a)) ~ (a,z(a + ag),’(a® + ag)) for all
z,y € F. This is iff (cf (12.2) ((z+y)(a+a0)/(a+ap))’ = (z+y)’ = (27 +y")(a* +af))/(a* + af),
which holds iff ? + 3 for all z,y € F.

At this point we clearly have (i) < (ii) < (iii) < (iv). Hence to complete the proof we assume 3
is additive and exhibit 2¢ symmetries about (t), t € F. Rather, for ¢t,0 € F, we let the reader check
that the map ¢ given below is a symmetry about the point ().

(a,b,c) R (a,a(t;—a)—i—b,oﬂ(ta%—a"‘)%-c) (OO)¢ (00)

(u,v) & (u+ 0,05t +v) (a) v (a)

w] " [u+ 0, 0% + v, ot + w] [00] & [o0] (125)
[u] &

a,0] = [a,0(t +a) + ] u] = [u+ 0]

This completes the proof of the first half of the result. The dual result follows similarly. O
Note: If (a, ) is admissible and S = S(a, ), then « (respectively, (), is additive iff S(>) (respectively,
Sy is a TGQ.
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12.2 Admissible pairs of additive permutations

The goal of this section is to determine all admissible pairs («, ) in which both « and g are additive.

For elements ag, . ..,a.—1 of ' = GF(2°) define the e x e matrix [ag, ..., ac—1] = (as), where a;; =
a[zjtz}, 1 <i,j < e, where in ay, [k] indicates that [k] is to be reduced modulo e to one of 0,1,...,e—1.
Put

D = det([ag, - - ., Ge-1])-

12.2.1. (B. Segre and U. Bartocci [165]). D* = D, so that D = 0 or D = 1. Moreover, if o is the
additive map defined by x% = Zf;é a;z?", then a is a permutation iff D = 1.

Proof. Since z — 2? is an automorphism of F, it follows that for any square matrix (b;;), (det(b;;))? =
det(b?j). Hence D? is the determinant of a matrix whose rows are obtained by permuting cyclically
the rows and columns of the matrix [ag, ..., ae—1]. It follows that D* = D, implying D = 0 or 1.

Suppose that « is not bijective, so that for some z # 0, 0 = Zf;ol a;x®. Hence the following
equalities hold:

€
0 = aox—l—al:p2 + ...—}—ae,lazz

e—1
= a§_1 + a%x2 + ...+ ag_QzL‘Q

0 = o z+a2 22+, . +a2 22
It follows that the matrix [ag, . .., a._1] has the characteristic vector (z, 22, ... ,xQe_l)T associated

with the characteristic root 0, i.e. D = 0.
Conversely, suppose D = 0. It suffices to show that « is not onto. Let y be an arbitrary image
under «, say

e—1
Yy = aopr+ a1x2 +...+ ae_lxz . Hence
2 2 2,2 2 2e-1
Y = Qe T aprT + ...t a; o )
26—1 26—1 26—1 2e—1 25—1
] = a7 r+a; +...4+ay <« .
Since D = 0, there are scalars Ay, ..., Ae_1, at least one of which is nonzero, such that
) )
ag ai B
2, @ .. a,
(0,...,0) = (Aoy---sAe—1)
2:3—1 25—1 213—1
1 2 ag
Hence
x

(0, oo ,0) = (}\0, ey /\6_1)[a0, e .,ae_l]
ge—1

= (Aoy--+yAe1)
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This says that the homomorphism T : y — Zf;é )\iyzi of the additive group of F' (which is not
the zero map) must have all elements y of the form y = 2 in its kernel. Hence aaa is not onto. O

12.2.2. (S.E. Payne [153]). Let a and eta be additive permutations of the elements of F = GF(2°) that
fix 1 and for which x +— x®/xP permutes the non-zero elements of F. Then o~ '3 is an automorphism
of F' of mazximal order e.

Proof. For e € {1,2} the theorem is easy to check. So assume that e > 3. Since « and B are

7

additive maps on F' there must be scalars a;,b; € F, 0 <@ 1 for which a : z — ZZ o air” and
B Zf_g bwzi [80]. Let A = [ag, ..., ac—1] = (aij), 0 a;j = a[; ;> and B = [bo, . ..y be—1] = (bij), so
bij b[Q; Z], < 4,7 < e. Since a and 3 are permutations, by (12.2.1) both A and B are nonsingular.
Slnce x — xo‘/atﬁ is a permutation of the elements of F* = ' — {0}, for each A € FO there must be
a unique nonzero solution z to ® + Az® = 0. Hence ZZ: (a; + Ab;)z* = 0 has a unique nonzero

solution x for each A € F. By (12.2.1) the matrix C) = ((afj—q + )\b[j_i])Q(i —1),1<4,7 <e, has
zero determinant for each A € F°. And 0 # detA...detB, so detA = detB = 1.

It follows that detC' is a polynomial in A of degree 2¢ — 1 with constant term 1, leading coefficient
1, and having each nonzero element of F' as a root. This implies

detCy = \>"71 1. (12.6)

For 1 <t < 2° — 2 we now calculate the coefficient of A\! in detCy and set it equal to zero. Let
iy, tiy, - .., i, be the nonzero coefficients in the binary expansion Zf;ol t;2¢ of t. Then the coefficient
of X in detC) is easily seen to be the determinant of the matrix obtained by replacing rows t;, ..., t;,
of A with rows ¢;,,...,t;, of B. Hence we know the following: the rows of A are independent, the rows
of B are independent, and any set of rows formed by taking some r rows of A and the complementary
e — r rows of B is a linearly dependent set, 1 < r < e — 1. In particular, the first row of B is a

linear combination of rows 2,3, ...,e of A. Let 3; be the ith row of B, so 3; = (bfli:], e b%i_le —1i]).
Then there are scalars dy, . . .,d.—1 (at least one of which is nonzero) such that g; = (0,dy, ..., de—1)A.

Apply the automorphism z — 2 to this latter identity to obtain

(b3,..., 0% 1) =(0,d2,... d*°_ )(a[J W <k, j<e. (12.7)

On the left hand side of 12.2 permute the columns cyclically, moving column j to position j + 1,
j=1,...,e—1, and column e to position 1. There arises

P2 = ( e—1,0, d s 7d372)A' (128)

Doing this ¢ times, ¢ < e — 1, we obtain

Bip1 = (d% ..., d* ,0,d¥,...,d* , )A, (12.9)

where the d;’s are unique.
Let «; denote the ith row of A. For some A1, lambdas, not both zero, we have

€

M\ B + lambdas By = Z = (A2d?_y, Mida + Xads, .., \idy + dod? L)AL (12.10)
j=3

Hence, as the rows of A are independent, /\ng_l =0 = A\d;. If Ay #£0, then dy = 0. If Ay # 0, then
de—1 = 0.
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Now suppose that
d1 = d2 =...=0j-1= 0 and de,1 = de,Q = ... = de—(k—j) =0 (12.11)

with k € {2,...,e—2} and j € {1,...,k} (notice that j —1 < e — (k — j) and that (12.11) holds for
k = 2 and some j € {1,2} by dide—1 = 0). We wish to show that d;d._(,—;+1) = 0, i.e. we wish to
show that (12.11) holds for k replaced by k + 1 and j replaced by at least one of j, j + 1.

So assume that djd._(;—j41) # 0. We have the following:

ﬁl - (07"'707dj7'"7def(k57j+1)707'"7O>A7
By = (0,...,0,d§,...,dg_(k_j+1),0,...,0)A (12.12)
N,
position j + 2
Bo = (d*_1,0,...,0,d%, ...,d°> )Aif j =k,

) j?

Lo
position j + 2

etc.
Since 0 < k+ 1 < e, there are scalars A1,..., A\g1+1, at least one of which is not zero, for which
foill ArBr is some linear combination of agyo,...,a.. Use (12.12) to calculate the coefficients of
al,...,0,1+1 (which must be zero) in Zfill ArfBr. The coefficient of o is >‘k+1dgi(k;—j+1)‘ Hence
Ai+1 = 0. If j > 1, the coefficient of a1 is /\kdzk__(;_jﬂ), implying Ay = 0. Continuing, we obtain
Akt1 = A = ... = M—j2 = 0. The coefficient of a1 is A1d;. Hence A1 = 0. The coefficient of a2

is )\gd?. Hence Ay = 0. Continuing, we obtain Ay = Ay = ... = A\;_j;11 = 0, so that in fact A\, = 0 for
1 < r < k+ 1. This impossibility implies that djd,_ ;1) = 0 as desired. Hence by induction on k
(12.11) holds also for k = e — 1 and some j € {1,...,k}.

It follows that only one d; can be nonzero, say d = d,, # 0, 1 < m < e — 1. This says that

bj =daf" ., 0<j<e—L (12.13)

Our assumption that 1 = 1% = 17 implies that d = 1. So

bj=af’ ., 0<j<e-L (12.14)
Clearly (12.14) is equivalent to z° = (*)?", i.e. 8 = a-2™. Since x + 2%/2” permutes the nonzero
elements of F', also x +— (:Ua)@m_l) permutes the nonzero elements of F. Hence y — y?" ~1 permutes
the nonzero elements of F', implying that (m,e) = 1. Consequently o'/ is an automorphism of F of
maximal order e. O

The following immediate corollary is equivalent to the determination of all translation ovals in the
desarguesian plane over F' = GF(2°) and was the main result of S.E. Payne [119].

12.2.3. If 3 is an additive permutation of the elements of F = GF(2¢) for which x — x/2° permutes
the nonzero elements of F, then 8 has the form a8 = da®" for fived d € F°, (u,e) = 1.

The next result is the main goal of this section.

12.2.4. (S.E. Payne [173]). Let (a,3) be a pair of additive permutations of the elements of F =
GF(2°) fizing 1. Then the following are equivalent:

(i) The pair (o, 3) is admissible.

(ii)) 0 = Z? VjZ; = Z? vz for distinct, nonzero vi,va tmplies 21 = 29 = 0.
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(iii) For each c € F°, the map pe : v+ v¥(c/v)? permutes the elements of F°.
(iv) For each ¢ € F°, the map \. : mapsto(cz)® /2% permutes the elements of F°.
(v) « and B8 are automorphisms of F for which a3 is an automorphism of mazimal order e.

Proof. Since § is additive, in (12.3) u;41 + u;—1 may be replaced by z;, so that the condition for
admissibility becomes

3 3 3
inzi =0, fo‘zlﬁ =0, Zzi =0 (12.15)
1 1 1

cannot hold for distinct x; € F' and for distinct nonzero z;’s € F. Now, using the additivity of o and
B add 3.3 x32; = 0 to the first equation in (12.15) and 3.3 x?zf = 0 to the second equation of (12.15),
and replace x; + x3 = v;, so that v = 0, to obtain condition (ii). In (ii) put z; = ¢/v; to obtain (iii).
In (ii) put v; = cza, v2 = cz; to obtain (iv). It follows readily that (i)-(iv) are equivalent. The crux
of the proof is to show that (iv) implies (v).

So let (o, 3) be a pair of additive permutations of the elements of F' fixing 1 and satisfying (iv).
Putting ¢ = 1 in (iv) we see that a~!3 is an automorphism of F of maximal order e by 12.2.2.
For 0 =# inF, let a. denote the additive permutation a, : z +— (cx)® for all x € F. Then
8 = acve = bca for unique additive permutations 7. and 6.. For A; as in (iv), A\c = ¢ - (1 — 7.),
implying that 1 — 7, : w — w/w’ is also a permutation of the elements of F°. By 12.2.3 it follows
that v, : « — d.zP for some nonzero scalar d. and some automorphism 3, : x — thC, (te,e) =1,
1<t.<e As1=10 =1%% = (¢*)% = d,(c*)?*, d, is easily calculated, and

2P = g = ((cx)o‘/co‘)?c for xz,ce F, ¢#0 (12.16)
In particular, let ¢ = ¢, so (12.16) implies the following:
B=a-2. (12.17)

It is easy to check that (c,3) is an admissible pair of additive permutations iff (a~!, 37!) is. Hence
Bl = a ! 6" implies that 6;! (and hence §.) has the same form as 7., i.e. 6. : z — d.o** for
some nonzero scalar d., and (g.,e) =1, 1 < g. < e. Then 1 = 18 = 1%% = (d.)* = (cd,)® implies
d. = ¢!, from which it follows that 2% = 2% = (¢ 1z2** )% = 22" ie. Ba~! = 29 = 29 for all c.
Hence we have
=29 -a=a-2" and a = 29027 (12.18)

Now we have #° = ((Cx>a)2tc . t\ot (by (12.16))
= ((F2¥)27 /()" ) (by (12.18))
((dx?’)/d)2 427" (where d = ¢2")

(

= (2 F)2 e by (12.16)).

This proves the following:
B =29.p.2 et (12.19)

And so by (12.18)
o = 2 et (12.20)

From (12.18) and (12.20) it follows that 3~ 'a = 27! = 27t+t—cta_je,

te=tgifd=c*. (12.21)
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Since z — 22’ is an automorphism of maximal order, it follows that if ¢ and d are nonzero conjugates
then t. = t4. Now suppose that ¢ and d are distinct nonzero elements of F' for which t. = t4. We
claim t.qq = te.

2P = ((ca:)a/ca)?56 = ((dm)a/do‘)Qtd with t. = t4 implies
(dz)® = d*(cx)*/c”. (12.22)

Then zf =

(((c+ d)a)™/(c+ d)*)* ™ = (((cx)® + (dx)®)/(c* + d*))?™*
— ( +
(

((c+ + (d
((cx)® + d*(ca)® /™) /(e + d*) 2™ (by (12.22)) Since this string of equal-
(cz)® fe)2 "

lx e F, we have (using (12.16))

ities holds for all x

T (12.23)
By the Normal Basis Theorem for cyclic extensions (cf. [92]) there is an element ¢ € F' for which the
conjugates of ¢ (i.e. ¢,c?, ¢, ...) form a linear basis over the prime subfield {0,1}. As t. = t4 for d

any conjugate of ¢ and then for d equal to any nonzero sum of conjugates, it follows that there is only
onet : t=t.forall ce F°. Put ¢ =1 in (12.22) to see that « preserves multiplication. Hence «
is an automorphism of F'. By (12.18) also ( is an automorphism of F'. This completes the proof that
(iv) implies (v). The converse is easy. O

12.3 Collineations
Let («, ) be an admissible pair giving rise to the GQ S(«, 3) of order 2¢.

12.3.1. (S.E. Payne [153]). Let G denote the full collineation group of S = S(«, ). Then at least
one of the following must occur:

(i) All points and lines of S are regular and S = Q(4, 2°).

(ii) Each element of G fixes (00).

(iii) Each element of G fixes [o0].

Proof. Suppose that neither (ii) nor (iii) holds. Let 6 be a collineation moving (oo). First suppose
that (00)? ¢ (00). As (00)? is regular, by 12.1.4 it follows that S[™ is a TGQ, so that G is transitive
on the set of lines not meeting [0o]. In this case [0c]? # [oc]. If [o0]? # [oc], then every line not
meeting [oc] is regular, so all lines are regular and S = Q(4,2¢). So suppose [00]? meets [oc] at (m),
where (m) # (00) since (00)? % (00). As S<l” must also be a TGQ, in particular (00)? is a center of
symmetry, so G must be transitive on the lines through (m) but different from [oc]?. Tt follows that
each point collinear with (m) is regular, implying that each point of S is regular (by 1.3.6 (iv)). Hence
if (00)? £ (00), then S = Q(4,2°). Dually, if [0c]? £ [oc], then S = Q(4, 2°).

Now suppose that (00)? is a point different from (c0) on a line [a], a € F. Then we may suppose
[00]? = [a], in which case S(®) is a TGQ. It follows that each line through (c0)? is regular. But as
S(®) is a TGQ, G is transitive on lines meeting [a] at points different from (co). This implies that all
lines meeting [a] and hence all lines of S are regular.

Finally suppose each 6 € G maps (c0) to a point of [co], and dually, each § € G maps [00] to a line
through (00). It follows that each § moving (oo) fixes [oo], and vice versa. But by hypothesis there is
a  moving (co) and a ¢ moving [0o]. Then #¢ must move both (co) and [oo], completing the proof.
O



Generalized quadrangles as amalgamations of Desarguesian planes 173

Let 7 denote the projective plane based at (oc), and let f denote the isomorphism from 7 to
PG(2,2°) with homogeneous coordinates as follows:

(c0) 2 (0,1,0) o] & 0,0, 1]7
(a) & (1,a%,0) (m] 5 [1,0,m%T (12.24)
(m,v) L (mP,0,1) {(a), (0,0)} 4 L [a, 1,47,

Here (x,9, 2) is incident in PG(2,2°¢) with [u, v, w]T iff 2u + yv + 2w = 0.

Let 6 be a collineation of S fixing (c0), so that # induces a collineation 6 of 7. Then f~'6f must
be a collineation of PG(2,2¢) and hence given by a semi-linear map. This means there must be a 3 x 3
nonsingular matrix B over F' and an automorphism § of F for which f~16f is defined by

and (12.25)
f7f : [u,v,w]" — B ul, v, wl].

As 6 fixes (00), we may assume that

bir b2 bi3
B=| 0o 1 o |. (12.26)

b31 b32 bs3

Dually, let 7’ denote the projective plane based at [00], and let g denote the isomorphism from 7’ to
PG(2,2°) defined as follows:

(00) ¥ (0,1,0)  [oc] ¥ [0,0,1]7
[m] & (1,m,0) (a) * [1,0,a]” (12.27)
[a,b] % (a,b,1) {[m],[0,0]}++ % [m,1,8)7.

Now let 0 be a collineation of S fixing [oc], so that § induces a collineation 6 of '. Then gilég must
be a collineation of PG(2,2¢) and hence given by a semi-linear map. This means there must be a 3 x 3
nonsingular matrix A over F' and an automorphism v of F for which ¢g~'fg is defined by

~

g 09 : (z,y,2) — (27,y7,27)A

~

12.28
g '0g : [u,v,w]" — A7 uY, v w? ( )

I
As 0 fixes [00], we may assume that

aip ai2 ais
A= 0 1 o0 |. (12.29)

aszy azz2 az3

For the remainder of this section we assume that 6 is a collineation fixing both (cc) and [o0], so that
it simultaneously induces ¢ and 6 as described above.
Using the fact that 6 fixes [oo] and 6 fixes (c0), we find that

a13 = 0 # arrass; b1z = 0 # bi1bss. (12.30)
1
: anan 0
At=| 0 1 o |, (12.31)
asy aizasi asa 1

a11a33 a11a33 ass a33
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1 bia 0

b11 b11
Bl=1|0 1 0
b3y b12b31 b3o 1

bi11b3z  b11b33 b3z b33

Then calculate as follows:

bia + a®

(@) =(a)?IDI = (( o) and
) 3_11 7 (12.32)
(a)? = (a)oto oo™ = (BLTMD )y o sl g e F,
ass
Also 85
(m]? = [m])fU 0Nt = [(M)ﬁ—l] and
) oo 117{? (12.33)
[m]e = [m]9(97199)971 = [127] for all m € F.
aii
Hence we have the following necessary conditions for 6 to be well defined.
((a31 + ancﬂ)o‘ = (b12 + Gaé)/bn for all a e F. (12.34)
((a12 + m”)/(an)ﬁ = (b31 + bnmﬁ‘s)/bgg for all m € F. (12.35)

Conversely, if (12.34) and (12.35) can hold it can be shown that 6 is well defined and is a collineation.
We shall not need this general a 6, however, and content ourselves with the following special case.

12.3.2. Every possible whorl of S(a, 3) about (c0) fizing (0,0,0) exists iff o is multiplicative. Dually,
every possible whorl of S(a, B) about [o<] fixzing [0,0,0] exists iff 5 is multiplicative.

Proof. Let 6 be a whorl about (c0) fixing (0,0,0), so € fixes each [m|, m € F. With m = 0 in
(12.33), we find b3y = a2 = 0. Then m = 1 yields a;; = 1 and by; = b33, so that m = m? =
mP7P" for all m € F implies v = § =id. As the point (0,0,0) is fixed, so is the line [0,0,0]. But
0,017 = [0,0099 0997 = (a3, a32,a33)9 = (az1/ass, aza/azs,1)9 = [az1/ass,aze/ass). Hence
az1 = azz = 0. Since (0)? = (0) we have bys = 0 by (12.32). Since (m,0)? = (m,0), we have by = 0.
It is easily checked that (12.35) is now satisfied and that (12.34) says (a/as3)® = a®/b1; for all a € F.
Putting a = 1, we obtain (1/as3)* = 1/b11, and (a/as3)® = a®*(a/as3)®. It follows that the whorl 6
exists for each nonzero asz iff « is multiplicative. Moreover, in that case a complete description of 6
is easily worked out to be as follows, where ¢ = a§31.

(12.36)

The dual result for multiplicative § is proved analogously. O

We conjecture that when a and § are both multiplicative, then o and 8 must be automorphisms.
This has been verified for 2¢ < 128 with the aid of a computer (cf. [111]), but nothing else seems to
have been done on the problem.

12.4 Generalized quadrangles T5(O)

In this section we assume that S(°) is a TGQ whose kernel has maximal order 2¢, where S = S(a, ).
Hence S(a, ) is a T5(O) of J. Tits (cf. 8.7.1). From 12.3.2, 12.1.4 and 8.6.5 this is equivalent to
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assuming that o is an automorphism, in which case S(a, 3) = S(1,8a~!). Hence throughout this
section we assume that o = 1 and denote S(1, 3) by Sg when it is necessary to indicate a specific 3.

By (12.3) the set O = {(0,0,1)}U{(1,z,2”) || = € F} is an oval of PG(2,2°). Embed PG(2,2°) as
the plane o = 0 in PG(3,2°) and consider the GQ T5(0). Then we have the following isomorphism
of Sg onto T»(0).

(00) — (00),
(a) — plane of PG(3,2¢) which is tangent to O at (0,0,0,1) and which

contains the point (1,a,0,0),

(u,v) — plane of PG(3,2¢) which is tangent to O at (0,1, u,u”) and

which contains the point (1,0,0,v),

(a,b,c) — point (1,a,b,c) of type (i) of T2(0O), (12.37)
[co] = (0,0,0,1) € O,

[u] — (0,1,u,u") € O,

[a, b] — line of type (a) of T»(O) consisting of the

points (1,a,b,¢), c € F and (0,0,0,1) of PG(3,2°),

[u, v, w] — line of type (a) of T5(QO) consisting of the

points (1,a,b,c), b+w = au and ¢ + v = au®, and

(0,1, u,u”) of PG(3,2°)

Then for each triple (01,09, 03) of elements of F there is a translation 7(o1, 02, 03) about (c0) given
by the following, where 7 = 7(01, 02, 03):

(m,y,z);(x—i—al,y—i—@,z—i—ag) (OO)'L(OO)
(xay) 'l) ($’y+01x6+03) (I) 'l) ($—|—O’1) (12 38)
[, v,w] V> [u,v + 01w + o3, w + o1u+ 03] [00] > [o0] '
[u, v] V> [u+ o1, v + 09] [u] V> [u]
For each t € F, t # 0, there is a whorl about (oc0) fixing (0,0,0) given as follows:
(2,9,2) ™ (t,ty, 1) (00) & (ox)
(2.) © (.1y) (2) & (t2)
) ) (12.39)
[u, v, w] = [u,tv, tw] [o0] 5 [o0]
[, 0] % [tu, ] [u] # [u]

If 6 is an arbitrary collineation of S fixing (o0) and [0o], so that (12.24) and (12.35) are valid, we
may follow 6 by a suitable translation about (c0) and then a whorl about (co) fixing (0, 0,0) so as to
obtain a collineation fixing (0,0,0) and (1). So we assume 6 is a collineation of S fixing (c0), (1), [o0]
and (0,0,0). Then the corresponding matrices A and B are determined as follows:

a1 a2 0 1 0 0
A=lo 1 o |, B=[o0o 10 |. (12.40)
0 0 ass b31 0 b33

In this case (12.34) is equivalent to
v =6 and a11 = ass. (12.41)
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In (12.35) put m = 0 to obtain
bs1 = bsz(a12/an)’. (12.42)

In (12.35) put m = 1 to obtain
byg = ((a12 +1)/an)” + (ar2/an)”. (12.43)
Then using (12.41) - (12.43), (12.35) may be rewritten as follows:

(a2 +m")/an)’ = (a12/a11)’ + (((a12 + 1)/an)’
+(a12/a11)6)m67, m € F. (12.44)

It follows that for each choice of aj2,a11,7y, where v € Aut(F), aj1,a12 € F, a;1 # 0, there is a
collineation € determined uniquely in 12.3 if and only if (12.44) holds. Put d = b3_31 and o = b3y /bszs =
(a12/a11)?. Tt is now possible to work out the effect of 6 on points and lines.

(12.45)

] Y, (0 + dv®)P T 4+ (1 u)ef
L0, W) 2, [(o + duP)P™"  dv, (o 4 dw?7)8" 487",

For ease of reference, the collineation 6 described by (12.45) will be denoted 7 (o, d, ), where (12.44)
is satisfied by ai1,a12,7, and ¢ = b§31 is defined by (12.43), and o = (CL12/CL11>’8.

12.4.1. If B is multiplicative, there is a collineation w(0,d,~y) of S for each d € F° and each 7y €
Aut(F). If B is multiplicative, there is a collineation w(o,d,~) for some o # 0 iff B is an automorphism
iff m(o,d,~y) is a collineation for each choice of 0 € F', d € F°, v € Aut(F).

Proof. Since 0 = (a12/a11)%, o = 0 iff ajo = 0. And it is easy to check that (12.44) holds if o = 0
and 3 is multiplicative. We note that since 3 is multiplicative there is an integer 7, 1 < 7 < 2° — 1,
with (7,2¢ — 1) = 1, for which 3 : x + 2! for all z € F, so that 3 and v commute. Now suppose
that there is a collineation 7 (o, d,y) for some ¢ # 0 and that ( is multiplicative. Hence (12.44) holds
for some aj2,a17 € F° and v € Aut(F'). Using the multiplicativity of 3, multiply through by afl in
(12.44) to obtain

(a1 +m")? = a?, + ((a12 + 1) + ay)m™ for all m € F. (12.46)
Putting m = a,;’; we obtain (a9 +1)% 4+ a2, = 1. So (12.46) becomes
(a12 +m")° = an +m?. (12.47)
Wrote m” = ajpz and use the multiplicativity of 3 to rewrite (12.47) as
(1+2)=1+4° forallzeF. (12.48)
It now follows readily that ( is also additive and hence an automorphism.

Conversely, if # is an automorphism (and hence an automorphism of order e), it is easy to check
that (12.44) is satisfied for all aj2,m € F, a1y € F°, v € Aut(F). O
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12.4.2. (i) S = S(«, B) has a collineation moving (c0) iff § =2 and S = Q(4, 2°).

(i) Let 8 be multiplicative and fix z € P\ (00)*. Let G (o0) o]y b€ the group of collineations of S
fixing (co) and [oo], and let G, be the stabilizer of 2 in G (o) (x])- Then G is transitive on the lines
of B\ [oc]* through z if and only if 3 is an automorphism.

Proof. If S has a collineation moving (co) then by 4.3.3 (i) S = Q(4,2¢). Hence O is a conic and § = 2.
Suppose 3 is multiplicative. As G((oo) (o)) I8 transitive on P\ (00)t, we may assume z = (0,0,0). If 3
is an automorphism, (o, 1,id) maps [u, 0, 0] to [u+0ﬁ71,0, 0] for each o € F. On the other hand, let 0
be any collineation in G, with z = (0,0,0). There is a 6; as in (12.39) for which 6-6; ' = (o, d,~) for
some choice of ¢ € F, d € F°, v € Aut(F). Then [u,0,0]? = [u,0,0]™ @) = [(g 4+ du®)?"",0,0].
Since f is multiplicative, {m(0,d,~ || d € F°, v € Aut(F)} is transitive on the set of lines of the form
[w,0,0], u # 0. But [0,0,0] is moved by some 7(0o,d,~) iff & # 0, so the proof of (ii) is complete by
124.1. O

12.4.3. If c € F satisfies (c%)P # (c?)2, then (00) is the unique regular point on the line [c].

Proof. Let (¢?)? # (c?)2, so that 0 # ¢ # 1. As the translations about (co) are transitive on the
points of [c] different from (o0), it suffices to show that the pair ((c,0),(0,0,1)) is not regular. Use
(12.2) to check the following.

1 m m?
{(.,(0,0,0} = {(¢,0), (0,0, 1} VA{(-5—5 5> - gs) | mEF m# e}
1 u e

{(c,0),(0,0,00}* = {(e,1),(0,0,1)} U{( )l weF, usch

uP 4B ub + B uf + P

1 m mP
mP 4+ P mbP 4+ B’ mb + b

Hence ((c,0),(0,0,1)) is regular iff (

1 U P
<uﬁ+cﬁ’u5+cﬁ’uﬁ+cﬁ
(PP = (P)? if (¢,0) regular. O

Put A={3 | (1,0) is admissible}. Using (12.3) with o = id, ug = 23 = 0, u1 = x1, ug = w2, it is
easy to show that the map z — a:ﬁ/:v permutes the elements of F°. Since 57! is a permutation of F°
as well as the map z — z !, it follows that the map A : z — x(x*1)5*1 permutes the elements of
F°. Let 8* be the inverse of A\. With a little juggling it can be seen that for x,y, 2z € F°, the following
holds

)~

) whenever u # ¢ # m. Put m = 0 and v = 1 and use (12.2) to obtain

(y/x)’ = z/z iff (y,2)" =z/2. (12.49)

12.4.4. If B € A, then * € A and there is an isomorphism 7 : Sg — Sg+ in which (00)s - (00)g*,

[00] 3 = [0]g«, [0]g = [o0]g+. (Subscripts B,B* are used to indicate to which structure, S(1,3) or
S(1, 5%), the given object belongs.)

Proof. g* € A iff S(1,*) is a GQ, and it suffices to exhibit an isomorphism 7* : Speta — SE.
In fact, it suffices to exhibit 7" as a collinearity preserving bijective mapping on point. Then using
(12.2) and (12.49) it is routine to check that the 7* exhibited in (12.50) satisfies x ~ y in S(1, 3) iff
7 ~y" in S(1,5%).
Z,Y, $)ﬁ*

*)—1 .
(1/2g) )" a1 fag) g, if @0 # 0

( il

( g (

(0,21)p — (1)~ (12.50)
(

(

\‘*I

0,:60)5*
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We leave the details to the reader. O

Put M = {3 || 3 is a multiplicative permutation of the elements of F' for which 8 : z + z7/x
permutes the elements of F*°}.
Put D = MNA. For g € D, it follows that 5* = 3/(8—1), using exponential notation, and (5*)* = .
(In fact (5*)* = g for all § € A.) Hence we can extend the definition of the map * : §+— §* to AUM
be defining 8* = B/(8 — 1) for all B € M. It still follows that (8*)* = . Moreover, for § € M it
follwos that 8 € D iff 3~ € D iff 3* € D. Hence for f € M each of the following elements of M is in
D or none of them is in D:

B,beta” = B/(B—1), (B—1)/B, 1—B. (1-B)~", 8. (12.51)

12.4.5. Let B € D. Then one of the following must occur: (i) f = 2 and Sg = Q(4,2°); (ii) 5 # 2
and S has 2° + 1 = s + 1 collinear regular points, either on [0o]g or [0]g according as 3 or §* is an
automorphism of F; (iii) 8 # 2 and (00)g is the unique regular point of Sg.

Proof. Suppose 3 € D and that some point z (z # (00)g) is regular. if z € P\ (c0)t, clearly all
points are regular, Sg = QQ(4,2°), and § = 2. So suppose Sg 2 (4, 2°¢). First consider the case where

x is incident with [o0o]g. In this case [ is an automorphism of F' by 12.1.4 adn the group G((oo),[oo])g

is transitive on the 2¢ lines [m]g, m € F', by 12.4.1. Since S/E,OO) is a TGQ, the group G((o0),jo0)) aCtS
transitively on the 2¢ points incident with the line [0o]s (resp., [m]|3, m € F') and distinct from (co)g.
If Sg has a regular point not incident with the line [oo]g, then it follows readily that all points of
(oo)é are regular. By 1.3.6 (iv) all points of Sg are regular, a contradiction. It follows that a point
is regular iff it is incident with [oco]g. Now suppose z is incident with [0]z. Using the isomorphism
" Sg — Sp+, we see that §* is an automorphism and [0]g is the unique line of regular points of
Sp. Finally, suppose z is incident with some line [c]g, 0 # ¢ € F. Since G ((s0),[s0)) 5
lines of the form [c]g, 0 # ¢ € F, it follows from 12.4.3 that mP = m? for all m # 0, and hence that
B =2, ie Sg=T(0)=Q(4,2°), a contradiction. O

is transitive on the

12.4.6. For € A, if Sg has a regular point other than (00)g, then Sg = Sy for some v € Aut(F).

Proof. If z ¢ (oo)é is regular, then Sg = Q(4,2°) and 8 = 2. So suppose x € (oo)g \ {(c0)} is
regular. If I [00]g, then by 12.1.4 3 is additive, and so by 12.2.4  is an automorphism. Finally,
assume z I [u]g, u € F. In the plane PG(2,2¢) of the oval O = {(0,0,1)}U{(1,2,2”) || z € F} a new
coordinate system is chose in such a way that the point (1,u,u?) is the new point (0,0, 1), that the
new points (1,0,0), (1,1,1) are new on O, and that the nucleus of O is again the point (0,1,0). Then
in the new system O = {(0,0,1)} U {(1,z,27) || « € F} with v € A. We have Sg = T»(0) = S,
Since there is a regular point other than (c0), and incident with [oo],, v is an automorphism. O

12.5 Isomorhpisms

Let (aq, 41) and (a2, B2) be admissible pairs. We begin this section by seeking necessary and sufficient
conditions for the existence of a type-preserving isomorphism 6 from S(a1,01) to S(ae,B2). Let
(00)4, (@)s, (a,b)i, (a,b,c); denote the points of S(ay, 5;), i = 1,2. Use analogous notation for lines.
Let 7; denote the plane based at (00); and 7 the plane based at [0ol;, ¢ = 1,2. Functions f; : m; —
PG(2,2°), i = 1,2, are defined as in (12.24). Similarly, functions g; : m — PG(2,2°) are defined
as in (12.27). Let 0 : S(aq, 1) — S(az,[2) be an isomorphism for which 6 : (c0); — (00)2 and
0 : [o0]1 +— [o0]g, i.e. B is type-preserving on points and lines. Then 6 induces an isomorphism
6 : m — m and an isomorphism 6 : 7 — mh. Just as in Section 12.3, f° L9 f, is a semi-linear
map of PG(2,2°) as in (12.25) and g; g, is a semi-linear map as in (12.28). Using symmetries about
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(00)2 and about [0o]y we may assume that the image of (0,0); under 6 is of the form [d, 0]s for some
d € F. Hence there are nonsingular matrices A, B and automorphisms 9§, of F' for which

g 0gs : (2,9,2) = (27,97, 20)A; [u,0,w]" e AT, 07w ‘
The specific assumptions on 6 allow us to write
I
a1 a2 0 ai ai
A=[(0 1 0 AT =10 1 0 ,
az; 0O ass asi 12031 1
ajiass  fgijass  ass (12.53)
b bz 0 b by
B=|0 1 0 , B'=1]o0 1 0
bs1 0 bssz bsi  bigbsi 1
bi1bss  biibss b33
—14 —1 TP _ _
And 6 : (a); — (a)gln(gl 092)9; ~ _ ([1,0’G]T)(gl 0929, " _ (A*1[1,0?QV]T)92 t
= ([0, BLE MOyt (g g, S O rygt (B Fonaly
aii a11a33 as3 as3
Also 0 : () (a)/1UT O (1 qon )0 — (1,00, 0)B) 3 =
B b a1l B b ard
— <b11;b12 +a0415’0)f2 ! — (17 ﬁ,g)fz ! = ((&)O‘Ql)}
b11 b11
Equating these two values of the image of (a); under @ yields
b a1 o'
RO (@M frallae F (12.54)
b1 ass
Similarly, equating the two values for the image of [m]; under 6 yields
Y: g g y
(bs1 + b11m516)/633 = ((a12 + Tn’y)/au)ﬁ2 for all m € F. (12.55)

This proves the following:

12.5.1. If there is an isomorphism 6 : S(aq,B1) — S(ag,B2) with § : (00); — (00)2 and 6
[00]1 > [00]2, then there are automorphisms v, of F and scalars bia,bi1,bs1,bss, ai1,a12,as1,ass in
F with ajiassbiibss # 0 for which (12.54) and (12.55) both hold.

A converse holds, but we won’t need it here. We now restrict our attention to Sg, 8 € A.
Let 6 € Aut(F), and let 75 be the permutation of points and lines of Sg obtained by replacing
each coordinate by its image under §. Hence for 3 € D, 7y is just the collineation 7(0,1,6) of 12.4.1.

12.5.2. Let o, 3 € A and suppose that 0 is an isomorphism from S, to the dual of Sg. Then Sg
is self-dual and is isomorphic to Sy for some v € Aut(F). Moreover, for B € D, Sg is self-dual iff
B € Aut(F) or p* € Aut(F'), in which case Sp is self-polar iff e is odd.

Proof. Let o, € A and suppose that  is an isomorphism from S, to the dual of Sg. If 3 = 2,
then Sg = Q(4,2°) is self-dual. Suppose [ # 2. Suppose § : (00)q — L. As f # 2 and L is
coregular, L must be incident with (c0)g which is an axis of symmetry with desarguesian plane at L
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when coordinates were set up, perhaps with a permutation v different from 5. So Sg = S, with [oo],
coregular and hence 7 is an automorphism by 12.1.4 and 12.2.4. We have already seen that if § € D,
B # 2, then Sg has a line of regular point iff 3 or 8* is an automorphism. So we must now exhibit a
duality of Sg when f is an automorphism.

Let 8 be an automorphism of F' of order e. Then 6 defined by (12.56) is a duality

(z,y, z()9 Y, [x,yﬁ,z] [u, v ,w} (uﬂ v wﬁ)

u,v) — uﬁ v i i B

Exiém[ " {uiéw (> " 1220
(00) % [oc] [oc] & (00).

It is easy to check that # preserves incidence and #? = mg. If e is even then Sg is not self-polar by
1.8.2. If e is odd, there is a o € Aut(F) for which o2 =id. Then v = 0r, = 7,0 is easily seen to be
a polarity. O
12.5.3. Let a,3 € D. Then
(i) Sq is isomorphic to the dual of Sg iff @ or o is an automorphism and a = § or a = 3*.
(i) So =2 Sgiff a = B or a = §*.

Proof. If o or a* is an automorphism and o = (8 or a = 3%, then clearly S, is isomorphic to the
dual of Sg. Then as S, and S have coregular lines, by 12.4.5 either o or o* is an automorphism and
either § or B* is an automorphism. As S, = S, and Sg = Sg«, using the duality of (12.56) we see
that all four of these GQ and their duals are isomorphic. Hence the result will follows from (ii), which
We Now prove.

If « = or a = % then clearly S, = S3. Let o, € D and suppose 0 Sa — Sp is an
isomorphism. We may suppose also that o # 2 # 3, since otherwise the conclusion is clear. In this
case it is also clear that 6 : (00)q — (00)g.

First suppose that either o or o* is an automorphism. If « is an automorphism, then S, is self-
dual, hence Sg is self-dual, implying that 8 or 8* is an automorphism; if a* is an automorphism, then
8o+ is self-dual, hence S, and Sp are self-dual, implying that 3 or 8* is an automorphism. By 12.1.4
and 12.4.4 each point incident with the line [00], or [0]y (resp. [0o]g or [0]3) is regular. By 12.4.5 6
maps at least one of the lines [00]q, [0]o to at least one of the lines [0o]g, [0]3. By means of 7 (cf.
(12.50)) we may replace o and o* and/or § and §* if necessary and assume that § : [oo]q — [00]g
(i.e. we assume that o and (3 are automorphisms) Now we apply 12.5.1 with a; = as =id, f1 = «a,

B2 = . Then in the notation of (12.54) and (12.55), (12.54) becomes
bz + ié =38y (a11 Ja” for all a € F. (12.57)
b bin asz  ass
bia _ am: B _
It follows readily that — , bi11a11 = ass, and § =y
bii  ass
Then (12.55) becomes
bsi b v, mP
b—?’l bﬂ =224 T forallme F. (12.58)
33 33 ay,  ayg
b31 a’B b11 1
Putting m = 0, we obtain — = %, and then putting m = 1 we have — = 5 Hence m® = m?0
33 a 33 a
11 11

for all m € F. As 3 = 36, clearly a = .
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Now suppose that no one of «, a*, 3, 5* is an automorphism. We show that # maps the two lines
(00w, [0]a to the two lines [00]g, [0]3. Since « (resp., () is not an automorphism, each collineation of
Sa (resp., Speta) fixing (00)q and [00], (resp., (00)g and [oo]g) also fixes [0], (resp., [0]g) by 12.2.1.
Since a* (resp., #*) is not an automorphism, each collineation of Sy (resp., Sg+) fixing (00)a+ and
[00]* (resp., (00)g+ and [00]+) also fixes [0]q« (resp., [0]g+). Hence each collineation of S, (resp., Sg)
fixing (00), and [0], (resp., (c0)g and [0]) also fixes [00], (resp., [00]s). suppose that [oc]? (resp.,
[0]%) is [u]g, With u # 0, 00. Then each collineation of Sg fixing [u]s and (00)g also fixes some line [v],

u # v, and each collineation of Sg fixing [v]3 and (00)g also fixes [u]g. Since (3 is multiplicative there is
a collineation 7(0,u~1,2). Since Mw(o,u—l,z) = [u]g, also [U]W(O’u_l’m = [v]g, i.e. w2 =, or v = 0.
It follows that a collineation of S fixing (00) s will fix [00]s iff it fixes [0]g iff it fixes [u]g. Consequently
[u]g(o’dm = [u]g, i.e. u=du?, for all d € F° and each v € Aut(F'). Hence F' = GF(2), implying o and
3 are automorphisms contrary to hypothesis. This shows that {[oc]%,[0]%} = {[oc]s, [0]5}. By means
of 7% (cf. (12.50) we may represent § with §* if necessary so as to assume that 6 : [o0]q — [00]g.

Now we apply 12.5.1 with ay = as =id, #1 = a, 2 = (. Then in the notation of (12.54) and
(12.55), (12.54) becomes

bia/b11 + a® /b1 = az1/azs + (a11/asz)a” for all a € F. (12.59)

It follows readily that bi2/b11 = asi1/ass, bi1air = ass, and 6 = 7.
Then (12.55) becomes

(b31 + b11ma§)/b33 = ((a12 + m‘s)/au)ﬂ for all m € F. (12.60)

) b b ad
(12.60) came from the fact that 6 : [m], — [a12 tm g =1( 31 +b um
ain 33
it follows that a;o = b33 = 0. Hence (12.60) says (using 5 € D) that maé(bnafl/bgg) = m3, for all

m € F. Put m =1 and use §3 = 39 to see that @ = 3. This completes the proof. O

)81, Since [0]a > [0]3,

12.6 Nonisomorphic GQ

For o =id, condition (12.3) may be rewritten to say that

peAiffy— (28 +y?)/(x +vy), y # x, is an injection for

each z € F. (Compare with 10.3.1) (12.61)

Since the determination of all 8 € A is equivalent to the determination of all ovals in PG(2,2°¢), it
is unlikely that such a project will be completed in the near future. However, all known complete
ovals, except the one in PG(2,16) not arising from a conic (cf. D. Glynn [65], M. Hall, Jr. [71] and
S.E. Payne and J.E. Conklin [139]), do arise from an oval O = {(0,0,1)} U {(1,z,2°%) || = € F} with
B € D. Hence we consider the known examples arising from § € D.

It is an easy exercise to prove the following:

For 3 € M, /B €D iff u (14 (1+u)?)/u permutes the

elements of F°. (12.62)

For e = 1 and e = 2 there is a unique GQ of order 2°. For e = 3 it is not too difficult to show that
there are exactly two TGQ, both self-polar, given by f = 2 and § = 4 (cf. S.E. Payne [130]). For
e = 4, there are exactly three T5(0)’s: S2 and Sg are self-dual (and distinct by 12.5.3), and there is one
other complete nonself-dual example arising from the unique nonconical complete oval in PG(2, 16)

(Cf' [ 3 ]) Now let e > 5. Let Bl = 25 ﬂ? = 2_1 = 26_17ﬂ3)ﬂ4 = ﬂgla'” 7/82t71aﬁ2t = /6275171 be



182 Finite generalized quadrangles

the 2t = ¢(e) automorphisms of F' of order e arranged in pairs so that 31 = 2 and f9; = ﬂ;il_l. Then
ng is self-dual for 1 < j < ¢(e). Moreover, for t —1 > i > 1, Bi=1-— B2i+1 yields an additional,
nonself-dual example. This give a total of 2(¢(e) — 1) pairwise nonisomorphic GQ of order 2¢ with
o(e) of them being self-dual. If e is odd, there are some additional examples arising from ovals in
PG(2,2°) discovered by B. Segre and U. Bartocci [163] and D. Glynn [65].

12.6.1. For e odd, 6 € D.

Proof. Since e is odd, z — 2% and z — z° permute the elements of F°. Hence we need to show that
2 (14 (1+2)%) /2 = 2+ 22 + 2° permutes the elements of F°. So suppose 0 = (z + 23 + 2°) + (y +
¥+ =(x+y) (22 +y2 + 12+ (22 + 92 + 1) (zy + 1) + (zy + 1)?), with 2 # . Since e is odd,
2?2 + 2+ 1 = 0 has no solution in F. Tt follows that if zy + 1 = 0, then (2% + y*> + 1)2 = 0 has no
solution. An if zy # 1, then for T = (22 +y? + 1)/(wy + 1), T? +t + 1 = 0 has no solution. Hence
6eD. O

If e = 5, then 67! = —5, so that (6*)"! =(6—-1)/6=1—-6"'=1+5=6. It can be shown (by
hand calculations) that all the distinct S arising from D are the following: Sa, S16, S4, Ss, Ses and its
dual, Sg and its dual.

Now suppose e > 7. Then for e odd, let 67! denote the multiplicative inverse of 6 modulo 2¢ — 1.
Then Sg, Sg-1,S—5 and their duals provide six additional examples. This proves the following.

12.6.2. Ife is odd, e > 7, there are at least 2(p(e) + 2) pairwise nonisomorphic GQ of order 2°.

M. Eich and S.E. Payne [56], and J.W.P. Hirschfeld [79, 80], have independently verified that for
e = 7 there are precisely two additional examples arising from D: Sy and its dual. Also, for e = 8, it
follows from computations in J.W.P. Hirschfeld [80] that the only distinct GQ arising from D are the
2(¢(8) — 1) = 6 mentioned just preceeding the statement of 12.6.1.

12.7 The ovals of D. Glynn

Let F' = GF(q), ¢ = 2¢, e odd. Define two automorphisms z — 27 and x +— 7 of F as follows:

o =202 (12.63)

,Y:{2,1fe:4 -1 (12.64)

28 if e =dn + 1
It follows that v = ¢ and v* = 62 = 2 (mod ¢ — 1). The goal of this section is to prove the following.
12.7.1. (D. Glynn [65]). (i) o+~ € D; (ii) 30 +4 € D.

Before beginning the proof of this result we review certain facts about F'.

Let a be an automorphism of F' of maximal order e, say a« : x +— 2%, (t,e) = 1. Define
Ly : F— Fby Ly(§) = £+ & Then L, is an additive automorphism of (F,+) with kernel {0,1},
so that the image of L, is a subgroup of order 2°~!. Suppose § € Im(L,), say £€* = £ + 6. Then a
finite induction shows that €% = & +§ + 6~ + 5" 4+ ...+ 6" Since €% = ¢ and o has maximal

e—1 e—1
order e, there holds 0 = § + 0% + 5 4 6T = Z 62", The map § — Z 62" is an additive map
i=0 i=0
of F whose kernel contains the image of L. It is well known that such a map is never the zero map,
e—1
but of course with e odd it is clear that 1 is not in the kernel. Moreover, since 2621 is invariant
i=0
under the map \ — M2, its value is always 0 or 1. This completes a proof of the following lemma.
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12.7.2. The elements of F' are partitioned into two sets, an additive subgroup Cy of order 2671 whose
elements are said to be of first category, and its coset Co = 1 + C whose elements are said to be of
second category. For § € F', and for any automorphism a of mazimal order

e—1
i _ [ 0iff 6 €Criff 6 € Im(La),
,;62 N { Liff § € Oy iff § & Tm(Ly). (12.65)

Moreover C’f) =5, 1 =1,2, for any automorphism 0 of F.

Of course, since the kernel of L, has order 2, each element of first category is the image under L,,
of exactly two elemetns of F'.

12.7.3. Let a be an automorphism of F' of mazximal order e. Then

one solution iff a = 0,
%+ axr+b=0 has two solutions iff a # 0 and b/a®/(@=1) € Cy,
no solutions iff a # 0 and b/a®/(@=1) € Cy.

Proof. This is an easy corollary of 12.7.2.

For an integer k, ¢ < k, put D(k) = {(0,1,0), (0,0, 1)} U{(1,\,\*) || A € F}. Then we know that
D(k) is a (q + 2)-arc of PG(2,q) iff p : x> 2F isin D iff (k,q—1) =1 and y — (z* +9*)/(z +7)
is a bijection from F' \ {z} to F'\ {0} = F° (for each z € F) iff (k,¢q—1) =(k—1,g—1) =1 and
t + ((1 +t)* + 1)/t permutes the elements of F°.

We are now ready for the proof of 12.7.1.

Proof. (i) (6 +7y)(—y ' +0o—~v+1)=1 (mod ¢—1) (use ¥ = o and 02 = 2 (mod ¢q — 1)), so that
(0 +7,q—1) = 1. Further, (¢ +v—1)(cy+~v—1)3"1 =1 (mod ¢ — 1), so that (¢ +~v—1,¢g—1) = 1.
Hence it remains to show that ¢ +— ((1 4 )7t + 1)/t = t°77~1 4 ¢~ 4 771 = f(¢) permutes the
elements of F°. If f(¢t) =0 and ¢ # 0, then (14 ¢)°*t7 = 1. Since (6 +7,g—1) =1, we have 1 +¢t =1
and ¢t = 0, a contradiction. It follows that f(t) = 0 iff t = 0. Hence it suffices to show that f(t) # f(s)
if st(s+1t) # 0.

From now on we assume st(s +t) # 0, and put Y = st(s +t) 2. For each non-negative integer a,
put o = (s7+t?)/(s+t) and B, = stag(s+t) =TV, Then f()+ f(s) # 0iff @pyy—1+0o—1+ay—1 #0
iff /BO'+’Y—1 +ﬂa—1(3+t)77+/8'y—1(3+t)70 7é 0 iff X757_1 +X/8cr—1 +ﬁa+v—1 7é 07 where X = (S+t>7ﬂya
so that (s +¢)77 = X7. Hence it suffices to show that

X"By-1+ XBo1+ Boty—1 # 0 (12.66)
(for s,t € F with st(s+t) # 0).
Bo = stag/(s+1) =0; By =st/(s+1)* =Y. (12.67)
If = s*, 1 <k, then
By =st(s+1)71 /(s + )T =V (12.68)

Now notice that if 1 < r < a, (s"+17) (s "L 4077 ) pst(s" L4771 (5977 +4977) = (s+1)(s* +1%).
Multiply this equation by st(s + t)~(¢F3) to obtain

Ba =Y ' BrBacrs1 + Br—1Ba—y for 1 <7 < a. (12.69)

Thus f3, is a polynomial in Y for each nonnegative integer a. With a = 2+t —1, 7 = 2™ m > 0, and
using (12.68) and (12.69), a finite induction shows

Bomir_y = » Y% (12.70)
1=0
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From (12.70) it follows that

By =Y +Y2+Y* 4. +Y/%and

12.71
Bro1 =Y + Y24 Y44 +Y9/2 (12.71)

Also from (12.68) and (12.69) we have

Boty—1 =Y + Bo—18y-1. (12.72)
Furthermore, since Y = st(s +1)72 = s/(s +t) + (s/(s +t))? is of first category, it must be that

e—1
> v =o. (12.73)
=0

Using (12.71) and v? = o (mod ¢ — 1) we have

By-1+ (By-1)" = Bo1- (12.74)

Put K = 3,-1, 50 -1 = K + K? and Byir—1 =Y + K? + K7! (by (12.72). Since K =Y + Y2 +
e—1

Y4+ ...+ Y72 and (12.73) holds, it follows that K + K7+ K7° + K7 =3 Y* +Y =Y. Hence
=0

from (12.66) we know that o+~ € Diff X7K+ X(K+K?)+ K+ K2+ KV + K7 + K7 + K7+ +£ 0,
which we write as

XK+ X(K+K)+K+K*+ K+ K™ 4+ K7+ K77 #0 (12.75)

for all X # 0 and for all K = 3,1 (st(s+1t) #0).
Since st(s +t) # 0 we have both K = 8,1 # 0 and f,—1 # 0. Since G,—1 # 0, we have
K+ K7 = f3,_1 # 0, and hence K"~ # 1. Then divide (12.75) by K and use 12.7.3 to obtain

1+ K+ K7 4+ K7+ Kol 4 Kot

co+veDiff W = A3 Ko1)o

€0y (12.76)

where g= (v —1)"' = (6 +1)(y + 1) (mod ¢ — 1), so that v/(y —1) = g+ 1 (mod ¢ — 1).

Now put A =14+ k"1 so K = (A+1)%; K71A7 = Ko 4 K971 K771 = (A 4+ 1)900-1) =
(A+1)9/@+1) = (A41)7*1, Then substituting into (12.76) we have W = (A4+ KA+ K7 1A%)/A9+! =
A9+ (A+1)9+ (A+ 1) A7) = A797797 71 (1 + (497 + 1)(A7 + 1)(AY + 1)(A+ 1) + (AY +
1)(A+1)A°~1). After expanding and regrouping, this becomes

W= (14 (A" 4 A7) 4 (A1 (A771)7) 4 (A7 4 (A=) )+
(A0 4 (A=77)) o (47077 4 (A977)0 4 (A0 1 (1277)
(A=0=171)7) + (A0 (A7),

It follows by 12.7.2 that W € C3, completing the proof of (i).

(ii) Since (30+3,¢—1) = 1, then by 12.4.4 we have 30+4 € D iff (6+2)/3 = (30+4)(30+3)~! € D.
Let h = (0 4+ 2)/3 (mod g — 1) with h a positive integer. Our strategy is to show that each line of
PG(2, q) intersects D(h) in at most two points.

a) fzo + x1 = 0 intersects D(h) in {(0,0,1), (1,4, ¢")}.

b) Lz + zo = 0 intersects D(R) in {(0,1,0), (1,¢,0)}, with ¢/" = ¢.

¢)If k, £ € F with k # 0, fxg+dz1 +x2 = 0 intersects D(h) in {(1,z,2") || {+kx+2" = 0}. Define
m and y by the substitutions z = k3@t y3 and m = (k=374 Then ¢+ kx + 2" = 0+ ka +2(0+2/3 =
0+ K3oH4y3 4 gBotdyot2 — p3otd(m 493 4+ 49+2). Hence we have

(0 +2)/3€Diff 0=m+ 9>+ y” 2 has at most two solutions y. (12.78)
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We may suppose (12.78) has at least two solutions o, 3 € F. Then (y+a)(y+8) = y*+(a+B8)y+aB =0
for y € {a, B}. Consequently y* = (a+ 3)%y? +a?6% = (a+ B)*((a+ B)y+aB) +a?3? = (a+6)3y +
af(a+ B)? 4+ a?B%. Proceeding in this way we obtain

Yy =ay+b (12.79)

for some a,b (functions of « and ) if y € {a, 8}. Hence y"2 =y2 =a%y" +b° =a’ Yy +a’bh+0°,
then o + 8 = a°*! and a8 = a®b + b°. Now substitute y° = ay + b and y?> = a® 'y + a”b + b° into
(12.78) to obtain (after some simplification):

0=y*(y" +y) + m=(a***(a+1) + (a7 + %) (a + 1) + " b)y+

(@b +b%)(a® L (a + 1) +b) +m, (12.80)

for y € {«, B}. But since the equation in (12.80) is linear and has two distinct roots, it must be trivial.
In particular
a? 2 (a4+1) =" (a + 1) + ba’. (12.81)

If a = 0, then y? = ay + b has only one solution, an impossibility. So a # 0. Multiply (12.81) by
(a +1)%29%2/q29+2 to obtain

(a+ 1)1 (a+ 1)1

o+2
(a+1)77 = ( qo+2 o +2

)7 € C. (12.82)

Then a®t? = (a® + 1)(a®> + 1)+ a” +a?>+1 = (a+1)°t? + (a°?> +a)®> +1 € C, + C1 + Cy = Cy. Hence
a+pB=a"t = (a"?)7? € Cs. (12.83)

The essence of (12.83) is that the sum of any two roots of (12.78) must be in Cy. Hence if there were a
third root p, it would follow that each of a+ 3, a+p, 5+ p would be in C5, a blatant impossibility. This
shows that the equation in (12.78) has at most two solutions and completes the proof that 30 +4 € D.
|
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Chapter 13

Generalizations and Related Topics

13.1 Partial Geometries, Partial Quadrangles and Semi Partial Ge-
ometries

A (finite) partial geometry is an incidence structure S = (P,B,I) in which P and B are disjoint
(nonempty) sets of objects called points and lines, respectively, and for which I is a symmetric point-
line incidence relation satisfying the following axioms :

(i) Each point is incident with 1 + ¢ lines (¢ > 1) and two distinct points are incident with at most
one line.

(ii) Each line is incident with 1 + s points (s > 1) and two distinct lines are incident with at most
one point.

(iii) If = is a point and L is a line not incident with x, then there are exactly o (aw > 1) points
T1,T9,...,Tq and « lines Ly, Lo,..., Lo suchthat z 1 L; 1 x; 1L, i=1,2,...q.

Partial geometries were introduced by R.C. Bose [10]. Clearly the partial geometries with o = 1 are
the generalized quadrangles.
It is easy to show that |P| =v = (1+s)(st + a)/a and |B| = b= (1 +t)(st + o)/« Further, the

following hold: a(s+t+1—a)lst(s+1)(t+1) [17, 77], (t +1—2a)s < (t+1 —a)?(t — 1) [34], and
dually (s +1—2a)t < (s+1—a)?(s—1).
For a survey on the subject we refer to F. De Clerck [11, 12], J.A. Thas [195], and A.E. Brouwer

and J.H. van Lint [22].
A (finite) partial quadrangle is an incidence structure S = (P, B,1) of points and lines satisfying
(i) and (ii) above and also:

(iii)" If z is a point and L is a line not incident with x, then there is at most one pair (y, M) € P x B
for which x IM IyI L.

(iv)" If two points are not collinear, then there are exactly p (1 > 0) points collinear with both.

Partial quadrangles were introduced and studied by P.J. Cameron [31]. A quadrangle is a generalized
quadrangle iff p =t + 1.

We have |P|=v =1+ (t+1)s(1+st/u), and v(t +1) = b(s + 1) with |[B] = b [31]. The following
hold: po <t +1, p|s?t(t +1), and b>vif u#t+1 [31]. Moreover D = (s — 1 — p)? +4((t + 1)s — p)
is a square (except in the case p = s = ¢t = 1, where D = 5 (and then S is a pentagon)) and
(t+1)s+ (v —1)(s—1—u++vD)/2)/VD is an integer [31].

A (finite) semi partial geometry is an incidence structure S = (P, B, 1) of points and lines satisfying
(i) and (ii) above and also satisfying:

187
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(iii)” If x is a point and L is a line not incident with xz, then there are 0 or @ (a > 1) points which
are collinear with x and incident with L.

(iv)” If two points are not collinear, then there are p (1 > 0) points collinear with both.

Semi partial geometries were introduced by I. Debroey and J.A. Thas [17]. A semi partial geometry
is a partial geometry iff 4 = (¢ 4+ 1)a; it is a generalized quadrangle iff « =1 and p =t + 1.

We have [Pl =v =14+ (t+1)s(1+t(s—a+1)/u), and v(t + 1) = b(s + 1) with |[B| = b [47].
The following also hold: a? < u < (t+ Do, (s + D|t(t + V)(at + a — p), p|(t + 1)st(s +1 — a),
alst(t + 1), alst(s + 1), a|u, o?|ust, o?[t((t + 1)a — p), and b > v if p # (¢ + 1)a [47]. Moreover
D= (tla—1)+s—1—pu)2+4((t+1)s — p) is a square (except in the case y = s =t = a = 1, where
D =5 (here S is a pentagon)) and ((t+1)s+ (v —1)(t(a — 1) + s — 1 — u++/D)/2)/+/D is an integer
17,

For a survey on the subject we refer to I. Debroey [15, 16] and I. Debroey and J.A. Thas [17].

If we write “—” for “generalizes to” then we have the following scheme:

generalized quadrangle — partial geometry
l !
partial quadrangle — semi partial geometry

13.2 Partial 3-Spaces

Partial 3-spaces (involving points, lines and planes) have been defined as follows by R. Laskar and J.
Dunbar [93].

A partial 3-space S is a system of points, lines and planes, together with an incidence relation for
which the following conditions are satisfied:

(i) If a point p is incident with a line L, and L is incident with a plane 7, then p is incident with 7.

(ii) (a) A pair of distinct planes is incident with at most one line.

(b) A pair of distinct planes not incident with a line is incident with at most one point.

(iii) The set of points and lines incident with a plane forms a partial geometry with parameters s, ¢
and a.

(iv) The set of lines and planes incident with a point p forms a parital geometry with parameters
s*, t and o, where the points and lines of the geometry are the planes and lines through p,
respectively, and incidence is that of S.

(v) Given a plane 7 and a line L not incident with 7, 7 and L not intersecting in a point, there
exist exactly u planes through L intersecting n in a line and exactly w — u planes through L
intersecting 7 in a point but not in a line.

(vi) Given a point p and a line L, p and L not incident with a common plane, there exist exactly u*
points on L which are collinear with p, and w* — u* points on L coplanar but not collinear with

p.

(vii) Given a point p and a plane 7 not containing p, there exist exactly  planes through p intersecting
m in a line.
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Many properties of S are deduced in R. Laskar and J. Dunbar [93], and several examples are described
in R. Laskar and J.A. Thas [94]. In J. A. Thas [202] all partial 3-spaces for which the lines are lines of
PG(n, q), for which the points are all the (projective) points on these projective lines, and for which the
incidence of points and lines is that of PG(n,q), are determined. Among these “embeddable” partial
3-spaces there are several examples for which the partial geometries of axiom (iii) (resp., axiom (iv))
are classical generalized quadrangles.

13.3 Partial Geometric Designs

A “non-linear” generalization of parital geometries is due to R.C. Bose, S.S. Shrikhande and N.M.
Singhi [20].

A (finite) partial geometric design is an incidence structure S = (P, B,1) of points and blocks for
which the following properties are satisfied:

(i) Each point is incident with 1+ ¢ (¢ > 1) blocks, and each block is incident with 1+ s (s > 1)
points.

(ii) For a given point-block pair (z, L), = ¥ L (resp., x I L), we have ZyIL [z,y] = « (resp., ), where
[, y] denotes the number of blocks incident with x and y.

For the structure S we also use the notation D(s,t,a,3). A D(s,t,a,s+t+ 1) is just a partial
geometry; a D(s,t,1,s+t+ 1) is just a generalized quadrangle.

13.4 Generalized Polygons

Let S = (P,B,I) be an arbitrary incidence structure of points and blocks. A chain in S is a finite
sequence X = (zg,...,x) of elements in P U B such that x;_1 I z; for ¢ = 1,...,h. The integer
h is the length of the chain, and the chain X is said to join the elements xy and xj of S. If S is
connected, in the obvious sense that any two of its elements can be joined by some chain, then d(z,y) =
min{h|| some chain of length h joins = and y} is a well-defined positive integer for all distinct z,y €
P UB. Put d(z,z) = 0 for any element x of S.

We now define a generalized n-gon, n > 3, as a connected incidence structure S = (P, B,I)
satisfying the following conditions:

(i) d(z,y) <nforall x,y € PUB.
(ii) If d(x,y) = h < n, there is a unique chain of length h joining  and y.
(iii) For each z € P U B there is a y € P U B such that d(z,y) = n,

Generalized n-gons were introduced by J. Tits [217] in 1959, in connection with certain group theo-
retical problem.

A generalized polygon is an incidnece structure which is a generalized n-gon for some integer n.
Clearly any two distinct points (resp., blocks) of a generalized polygon are incident with at most one
block (resp., point). From now on the blocks of a generalized n-gon will be called lines. A finite
generalized n-gon has order (s,t), s > 1 and ¢t > 1, if there are exactly s + 1 points incident with each
line and exactly ¢ + 1 lines incident with each point. A generalized polygon of order (s,t) is called
thick if s > 1 and ¢ > 1. Notice that the generalized n-gons of order (1,1) are just the polygons with
n vertices and n sides in the usual sense.

If S is a generalized n-gon of order (s,t), then by a celebrated theorem of W. Feit and G. Higman
[57, 91, 153] we have (s,t) = (1,1) or n € {3,4,6,8,12}. Further, they prove that there are no thick
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generalized 12-gons of order (s,t) and they show that if a thick generalized n-gon of order (s, t) exists,
then 2st is a square if n = 8 and st is a square if n = 6.

The thick generalized 3-gons of order (s,t) have s =t and are just the projective planes of order
s. The generalized 4-gons of order (s,t) are just the generalized quadrangles of order (s,t).

In [67] W. Haemers and C. Roos prove that s < #3 < s? for thick generalized 6-gons of order (s, ),
and in [78] D.G. Higman shows that s < t? < s* for thick generalized 8-gons of order (s, ).

For more information about generalized polygons we refer to P. Dembowski [50], W. Feit and G.
Higman [57], W. Haemers [66], M.A. Ronan [118, , , 152], J. Tits [217, , , , 225], A.
Yanushka [237, 238].

13.5 Polar Spaces and Shult Spaces

A polar space of rank n, n > 2, is a pointset P together with a family of subsets of P called subspaces,
satisfying:

(i) A subspace, together with the subspaces it contains, is a d-dimensional projective space with
—1<d<n-—1(dis called the dimension of the subspace).

(ii) The intersection of two subspaces is a subspace.

(iii) Given a subspace V' of dimension n — 1 and a point p € P — V, there is a unique subspace W
such that p € W and V N W has dimension n — 2; W contains all points of V' that are joined to
p by a line ( a line is a subspace of dimension 1).

(iv) There exist two disjoint subspaces of dimension n — 1.

This definition is due to J. Tits [220]. Notice that the polar spaces of rank 2 which are not grids or
dual grids (cf. 1.1) are just the generalized quadrangles of order (s,t) with s > 1 and ¢ > 1.

By a deep theorem due to F.D. Veldkamp [227, , 229] and J. Tits [220] all polar spaces of finite
rank > 3 have been classified. In particular, if P is finite, then the subspaces of the polar space (of
rank > 3) are just the totally isotropic subspaces [50] with respect to a polarity of a finite projective
space, or the projective spaces on a nonsingular quadric of a finite projective space.

In [30] F. Buekenhout and E.E. Shult reformulate the polar space axioms in terms of points and
lines. Let P be a pointset from which distinguished subsets of cardinality > 2 are called lines (we
assume that the lineset is nonempty). Then P together with its lines is a Shult space if and only if for
each line L of P and each point p € P — L, the point p is collinear with either one or all points of L.

A Shult space is nondegenerate if no point is collinear with all other points, and is linear if two
distinct lines have at most one common point. A subspace X of the Shult space is a nonempty set of
pairwise collinear points such that any line meeting X in more than one point is contained in X. If
there exists an integer n such that every chain of distinct subspaces X; C X5 C --- C X; has at most
n members, then § is of finite rank.

F. Buekenhout and E.E. Shult [30] prove the following fundamental theorem:

(a) Every nondegenerate Shult space is linear.

(b) If P together with its lines is a nondegenerate Shult space of finite rank, and if all lines contain
at least three points, then the Shult space together with its subspaces is a polar space.
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13.6 Pseudo-geometric and Geometric Graphs

A graph constists of a finite set of vertices together with a set of edges, where each edge is a subset
of order 2 of the vertex sets. The two elements of an edge are called adjacent. A graph is complete if
every two vertices are adjacent, and null if it has no edges at all. If p is a vertex of a graph I', the
valency of p is the number of edges containing p, i.e. the number of vertices adjacent to p. If every
vertex has the same valency, the graph is called regular, and the common valency is the valency of the
graph. A strongly regular graph is a graph which is regular, but not complete or null, and which has
the property that the number of vertices adjacent to p; and ps (p1 # p2) depends only on whether
or not p; and py are adjacent. Its parameters are v, k, A, 4, where v is the number of vertices, k is
the valency, and A\ (resp., u) is the number of vertices adjacent to two adjacent (resp., nonadjacent)
vertices.

Let S = (P,B,1) be a partial geometry (cf. 13.1) with parameters s,¢ and «. Then a graph is
defined as follows: vertices are the points of S and two vertices are adjacent if they are collinear as
points of S. This graph is called the point graph of the partial geometry. Clearly, for a # s+ 1,
this point graph is strongly regular with parameters v = |P| = (s + 1)(st + a)/a, k = s(t + 1),
A=s—1+(a—1)tand g = (t + 1)a. For a generalized quadrangle, v = (s + 1)(st + 1),k =
s(t+1),A=s—1,u=1t+ 1. The point graph of a partial geometry is called a geometric graph, and
a strongly regular graph which has the parameters of a geometric graph is called a pseudo-geometric
graph [17]. An interesting but difficult problem is the following: for which values of s, ¢, a are pseudo-
geometric graphs always geometric?

In this context we mention the following theorem due to P.J. Cameron, J.-M. Goethals and J.J.
Seidel [31] (see also W. Haemers [(6, p. 61]).

Every pseudo-geometric graph with parameters v = (¢ + 1)(¢> + 1),k = q(¢®> + 1),\ =
w=q>+1, is geometric, i.e. it is the point graph of a generalized quadrangle of order (q,q

—1 and

q
%)
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General index

(3(19)’@)7 106 dual grid, 1

Gz(q), 28

H(d, ¢%), 25 elation, 105

H(q), 28 elation generalized quadrangle (EGQ), 106
K(q), 28 elation group, 106

ggg’, T;)”qgé 12 finite generalized quadrangle (FGQ), 1
Q(d,q), 25 generalized hexagon, 28

5(G,J), 106 generalized polygon, 189

T-function, 161 generalized quadrangle, 1

T-set up, 161 geometric graph, 191

T(O)7 TQ(O)v T3(O)a TZ*(O)v 26 grid, 1

T(n,m,q), 112

W{(q), 26 Higman-Sims technique, 6, 121

AS(q), 27 homology (generalized), 129

k-arc, 22 hyperbolic line, 2

4-gonal basis, 145

4-gonal family, 131 inversive plane, 54

4-gonal function, 153
4-gonal partition, 132
4-gonal setup, 153

kernel of a T-set up, 161, 163
kernel of a TGQ, 111

Laguerre plane, 53

acentric, 2
admissible pair, 165, 166 matroid, 76
amalgamation of planes, 165 Minkowski plane, 53
ambient space, 43 Moufang condition (M,) (with variations), 117
antiregular, 3
arc, 22 order, 1
axiom (D) (with variations), 61 orthogonal, 1
axis of symmetry, 105 ovoid, 13
base point, 106 parameters, 1
broken grid, 61 partial geometric design, 189
bundle (with variations), 66 partial geometry, 187

partial quadrangle, 187
center, 2 partial three-space, 188
center of irregularity, 39 perp, 2
center of symmetry, 105 perpendicular, 1
centric (triad), 2 perspectivity (line of), 127
classical GQ, 25 polar space, 190
closure, 2 polarity, 13
collinear, 1 projective GQ, 43
concurrent, 1 property (A) (with variations), 63
coregular, 3 property (H), 3

pseudo-geometric graph, 191
definite (2 x 2 matrix), 137

duad, 79 regular, 3
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semi partial geometry, 187

semiregular, 3

Shult space, 190

skew-translation generalized quadrangle (STGQ),
106

skew-translation group, 106

span, 2

span-symmetric, 145

spread, 13

subquadrangle, 17

symmetry, 105

syntheme, 79

tangent space, 112, 131

trace, 2

translation generalized quadrangle (TGQ), 106
translation group, 106

triad, 2

unicentric, 2

whorl, 105
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