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Abstract

The finite flag-transitive linear spaces which have an insoluble automorphism group
were given a precise description in [BDD'90], and their classification has recently
been completed (see [Lie98] and [Sax02]). However, the remaining case where the
automorphism group is a subgroup of one-dimensional affine transformations has not
been classified and bears a variety of known examples. Here we give a construction
of new one-dimensional affine flag-transitive linear spaces via the André/Bruck-Bose
construction applied to transitive line-spreads of projective space.
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1 Introduction

A linear space £ is an incidence structure of points and lines such that every
two points lie on a unique line, every point lies on at least two lines, and every
line is incident with at least two points. Furthermore, £ is nondegenerate if it
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possesses a quadrangle; i.e., four points, no three collinear. A flag of L is an
incident point and line pair.

By a result of Higman and McLaughlin [HM61], any group of automorphisms
(G acting transitively on the flags of £ must act primitively on the points of L.
Moreover, it was shown in [BDD88] by using the O’Nan-Scott Theorem, that
G is of affine or almost simple type. In the almost simple case (see [Sax02]), G
has socle isomorphic to PSL,(q), PSU,(¢?), or ?Gs(q), from which it can be
deduced that the flag-transitive linear spaces of almost simple type are projec-
tive spaces, Witt-Bose-Shrikhande spaces, Hermitian unitals, or Ree unitals.
In the affine case (see [Lie98]), if G is a subgroup of AI'L4(p), where p is a
prime and d is at least two, but G is not contained in AT'L;(p?), then the
possibilities for £ are the desarguesian affine spaces, the Liineburg planes,
the nearfield planes of order 9, the Hering plane of order 27, or one of two
linear spaces constructed by Hering which are not planes [Her85]. The lat-
ter are interesting in that they arise by considering a transitive line-spread
of the projective space PG;(3) (see [Bue91]) and applying a construction of
André [Andb4]. In this paper, we adopt a similar approach to produce new
flag-transitive linear spaces via line-spreads of projective space admitting a
transitive one-dimensional semilinear group of collineations.

There are many flag-transitive linear spaces of one-dimensional affine type
known — translation affine planes, generalised Netto systems, and “inflations”
of such examples — however, a full classification seems intractable (c.f., [Kan93,
II1.C]). Other than the families of examples given by Kantor [Kan93] and
Munemasa [Mun99], the authors are not aware of any construction of one-
dimensional affine flag-transitive linear spaces, which are not planes, that do
not depend on special number theoretic conditions. Here, we present a method
of deriving one-dimensional flag transitive linear spaces where the input is a
polynomial that induces a permutation of a projective line. Furthermore, in
Section 5 we show that our method produces linear spaces for each prime
power ¢. Thus, to the authors’ knowledge, there arise infinitely many new
flag-transitive linear spaces. Below we paraphrase the main result of the paper,
Theorem 1.

Main Theorem

Let ¢ be a prime power. If P is an irreducible polynomial over GF(¢?) of
degree d such that for all nonzero z,y € GF(¢*) we have that
xdP(x971)
y'Pyet)

then there arises a flag-transitive linear space with a one-dimensional affine
automorphism group, and ¢?? points and ¢ points on each line.

€ GF(q) implies that T e GF(q),
Y



We show in Section 5 that infinitely many such polynomials exist.

2 Background

Let V' be the d-dimensional vector space over the finite field of ¢ elements.
The projective space PG4_1(q) is the incidence geometry obtained by defining
the points to be the one-dimensional subspaces of V', the lines as the two-
dimensional subspaces of V', and incidence as symmetrised inclusion. One can
extend the structure of PG,_1(q) to have subspaces (planes, solids, etc) by
also considering the vector subspaces of V' with dimension more than 2. The
projective dimension of a subspace of PG4_1(q) is one less than the dimension
of its preimage in V', and we will use projective dimension whenever we are
referring to a subspace of PG4_1(q).

A t-spread of a vector space V = GF(¢)? is a set of (¢ + 1)-dimensional sub-
spaces of V' which pairwise intersect trivially and which cover all the vectors
of V. Necessarily ¢t + 1 must divide d for a t-spread to exist. If d is even and
t + 1 is half of d, the t-spread is referred to simply as a spread. The con-
struction of André/Bruck-Bose creates a linear space from a t-spread S of a
vector space V as follows: the points of our linear space are the elements of
V'; the lines of our linear space are all translates of all elements of S, that
is, all sets S + ¢ where S € § and ¢ € V. The resulting linear space is a
2 — (¢4 ¢"*1, 1) design. The traditional definition of a t-spread is a set of t-
dimensional subspaces of the projective space PG,_1(¢q) which are disjoint and
cover all of the points of the projective space. The above construction of a
linear space is given in [BB64] in terms of the traditional definition: PG,4_1(q)
is first embedded naturally in PGy(q) and then the points of the linear space
are the points of PG4(q)\PGy_1(¢g) while the lines of the linear space are the
t-dimensional subspaces of PG,(¢) which meet PG;_1(¢) in an element of the
spread, with incidence being containment. (Note that [BB64] only concerns
itself with spreads, in which case the resulting linear space is an affine plane.)
These constructions are equivalent, and in what follows we will use the former
definition. Frequently we will treat a field GF(¢%) as a d-dimensional vector
space over a subfield GF(q), and work with ¢-spreads of this vector space.

We say that a t-spread S of GF(q)? is transitive if the stabiliser of S in I'Ly(q)
acts transitively on the elements of S. Applying the André/Bruck-Bose con-
struction to a transitive t-spread produces a flag-transitive linear space. A
t-spread is desarquesian if its corresponding linear space is a desarguesian
affine space. We will say that two t-spreads &; and S, are equivalent if the
André/Bruck-Bose construction produces isomorphic linear spaces. If there is
such an isomorphism, then since the linear spaces are point-transitive, there
is an isomorphism which fixes 0. This isomorphism maps &; to Ss.



A map f on a vector space V over a field F is called semilinear if there is
an automorphism ¢ of F such that for all v,w € V and A € F we have
fv4+w) = f(v)+f(w)and f(Av) = A7 f(v). Semilinear maps can be written as
v — Mv? where M is a linear transformation and o is an automorphism which
is applied to each component of v. Moreover, if V' is a finite vector space of
dimension d over GF(gq), the semilinear transformations form the group I'L4(q).
Given a field F and a subfield K, the relative norm Ny_ is the multiplicative
function which maps an element z € F to the product of its conjugates of F
over K. If F = GF(¢%) and K = GF(q), we write Nga_,(z) = '+4t "+ for
this map.

By the Classification of Flag-Transitive Linear Spaces [BDD190], if £ is a
flag-transitive linear space obtained via a t-spread S of projective space then
either:

(a) S is desarguesian;

(b) S is Hering’s spread or one of Hering’s two line-spreads of PGj(3);

(c) £ has p? points (where p is a prime) and the collineations stabilising S
form a subgroup of I'Ly (p?). Moreover, the automorphism group of £ is
contained in AT'L;(p?).

The “remark on isomorphism testing” in [Kan93] gives us a way of checking
for an equivalence of two spreads S; and S, in GF(q?) as a vector space over
GF(q): if ¢ is an isomorphism of the resulting linear spaces £; and L, (and
since these linear spaces are point-transitive we may assume that ¢ maps 0
to 0) then ¢pAut(L;)p~! = Aut(L,). Now these automorphism groups have the
additive group of GF(g?) as their unique minimal normal subgroups, and so
¢ normalises this group. As a result, ¢ is additive on GF(q?). Zsigmondy’s
Theorem [Roi97] tells us that (except in the case (¢,d) = (2,6), and some
other cases when d = 2 where every t-spread is desarguesian) there exists a
prime number s which is a primitive prime divisor of ¢* — 1, that is s divides
¢® — 1 but not ¢¢ — 1 for i < d. The number of lines through 0 is divisible
by s, and since both automorphism groups are transitive on these lines, they
contain Sylow s-subgroups. A property of primitive prime divisors of ¢¢ — 1
is that they are coprime to both ¢ and d. The only s-subgroups of I'L(¢%)
are in GF(¢g?)*, which is cyclic, and so Aut(£;) and Aut(L,) have the same
Sylow s-subgroup. Thus ¢ normalises this group, and by a well known result
in representation theory (see for example [Pin96, Theorem 20, p. 7]), ¢ is
semilinear. Thus ¢ can be written as z +— axz for some field element « and
some automorphism o.



3 A line-spread admitting a transitive cyclic group

For the remainder of this paper, we will assume the following:

(i) a natural tower of fields GF(¢q) C GF(¢*) C GF(¢*™) wherever it arises,
with the “bar” map ~: x — 27 the unique automorphism of order 2 of
GF(¢*) (we also suppose that m > 2 and ¢*™ # 64 so that we do not
encounter values of ¢ and m for which a certain primitive prime divisor
does not exist);

(ii) for an element b of GF(¢*™), with 67" £ 1, we denote by £, the two-
dimensional subspace {z — bz : z € GF(¢*)} of GF(¢*™);

(iif) C'is the subgroup of nonzero elements z of GF(¢*™) satisfying N2m_2(2) €
GF(q). Note that C has order (¢ — 1)(¢*™ —1)/(¢* — 1) and is the cyclic
group generated by wit!, where w is a primitive element of GF(¢*™).

A line-spread is a 1-spread. Note that any line-spread of GF(¢*™) admitting a
transitive group G' < 'Ly, (q) is equivalent to one of the form 5 for some b.

We now state the main theorem of this paper.

Theorem 1 Let b be an element of GF(g?) with b9 = 1, let P be the minimal
polynomial of b over GF(q?), and let d be the degree of P. Then ( is a line-
spread of GF(¢®™) if and only if for any nonzero x,y € GF(¢*) we have that

[Emp(xq—l)m/d . . x
_— F lies that — F(q). 1
ym P (LY € GF(q) implies tha y € GF(q) (1)

Moreover, the following are equivalent:

(i) b € GF(¢?);

(ii) €5 is desarguesian;
(iii) (¢ admits a subgroup of GF(¢*™)* larger than C;
(iv) b, = L. for some c # b.

PROOF. Since every element of (¢ is a GF(q)-subspace of GF(¢*™), mul-
tiplication by elements of GF(q) fixes every element of ¢¢'. The size of C is
(¢*™ —1)(q —1)/(¢* — 1) and the number of nonzero elements of ¢, is ¢* — 1.
Thus the set £§ will cover all of the nonzero vectors of GF(¢*™) provided its
elements pairwise intersect in the zero subspace. There are two elements s1/;
and syfp of ff with nontrivial intersection if and only if there is s = s1/s9 € C
such that s¢, and ¢, have nontrivial intersection. Such an s exists if and only
if there are nonzero x and y in GF(¢?) such that s(z — bz) = y — by. This is



true if and only if

xr—bx
N 2m_,2 | ——— | € GF q). 2
Now, by the definition of Ngam_, g,

\ (:g - b:z:) T (w - bx)q”

2m g2 | ——— | = -

T \y=ty) 5 \y—by

and since z — 29 is a field automorphism which fixes elements of GF(g?),
this is equal to

sl CCTERN )
I (a(y/5 — b))

Now since [[%}(z/Z — b7"") = P(x/Z), we see that equation (2) is equivalent
to

7 —\m/d

PP/ ¢ GE ().

g™ P(y/g)me
Applying the “bar” map to x and y gives the hypothesis of Condition (1).
Therefore, if Condition (1) is true, sf, and ¢, can only have nontrivial inter-
section when s € GF(g), and if Condition (1) fails for a particular x and v,
there exists s = (y — by)/(x — bz) € C such that s, and ¢, have nontrivial
intersection. So in the projective space PGa,,_1(q), we have that £{ induces a
line-spread if and only if Condition (1) is satisfied.

(1) = (ii): It b € GF(¢?) and {} is a 2-dimensional GF(g)-subspace of GF(¢*™)
then ¢, = GF(¢?) (incidentally this is true whenever bb # 1.) Thus £¢ is the set
of 1-dimensional GF(g?)-subspaces of GF(¢*™), and the resulting linear space
is a desarguesian affine space.

(ii) = (iii): A desarguesian line-spread admits GF(¢*™)*.

(iii) = (iv): Suppose £§ admits a group G < GF(¢*™)* and 2z € G\C. Let
K be the kernel of the action of G on £§. Then G/K is an abelian group
acting faithfully and transitively on ¢ and any such group is regular. Thus
letting 2/ = 2(@"-D/(@~1) = IG/K] we have 2/ € K, so 2'l, = {,. Now 2/l =
{#/x = 2'bx 1 2 € GF(¢*)} = {y — (b2'/7)y : y € GF(¢*)} = £,z But since
z ¢ C we have 2’ ¢ GF(q) and so b2’/ # b.

(iv) = (i): Suppose £, = (.. Then (since any GF(g)-linear map from GF(q?)
to GF(¢?) can be written uniquely as x — uz — v¥) there exist u,v € GF(¢?)
such that

r — T = (ur — vT) — b(ur — vT)
for any x € GF(¢?). Matching the coefficients of x in this equation, we have
1 = u+bv and so either b € GF(¢?) or v = 0 and u = 1. But in the latter case
matching the coefficients of z gives ¢ = v + bu = b.
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So in particular, we have by the André/Bruck-Bose construction a flag-transitive
linear space with a one-dimensional affine automorphism group with ¢*™
points and ¢? points on each line. The following proposition provides a method
for testing equivalence of line-spreads produced by Theorem 1. We will use the
fact that a GF(g)-linear map from GF(q¢?) to GF(¢?) can be written uniquely
as r — uxr — vx, and this map is a bijection if and only if uu # vo. We will
also use the fact that for a given ¢ € GF(¢*™), and o € Aut(GF(¢*™)),

(b)) ={2° — 27 : 2 € GF(¢H)} ={y — § : y € GF(¢})} = oo
Proposition 2 Suppose (§ and (€ are line-spreads in GF(¢*™). Then (S and
(€ are equivalent if and only if

_vtuab
~ u+ob

for some u,v € GF(¢*) with ui # vv and some o € Aut(GF(¢*™)).

PROOF. By Kantor’s remark on isomorphism testing, £ and (¢ are equiv-
alent if and only if there is a map g : # +— ax® which carries £ to £. Since
C acts transitively on £, we may assume that such a map g maps ¢, to £.. So

ly=g(l.) =l = ale.

Suppose such a map g exists. Then there is a GF(g)-linear bijection f :
GF(¢*) — GF(q¢?) such that

a(r — c7z) = f(z) - 0f(x)

for all z € GF(¢?). Now f can be written uniquely as z — uxr — v¥ for some
choice of u and v with uu # v, so

afr — ET) = ux — v — b(ur — vT)
= (u+bv)r — (v+bu)z

for all z € GF(¢?). By equating coefficients, we have a = u + bv (and so
u+bv #0) and ac” = v + bu. Thus ¢ = (v + bu)/(u + bv).

Now suppose that ¢’ = (v + @b)/(u + vb) where uti # vv. Then letting o =
(u + vb) we have

alz — 7)) = (ux —vx) — b(uxr — vI)

and the map x — wxr — vZ is a bijection. Thus the map g : * — ax is an
equivalence between ¢S, and (5. 0



4 Further remarks
4.1  Permutations of the projective line:

Note that if P satisfies Condition (1), then the map
z— 2™ P(%)x)"™

induces a permutation of the ¢+1 elements of the projective line GF(¢?)/GF(q).

4.2 Inflation:

Here we briefly describe Kantor’s “inflation trick” as explained in [Kan93] in
the context of line-spreads and how it relates to the line-spreads constructed
by the theorem above. Suppose £ is a line-spread of PGy, 1(g), and that
m’ is a positive integer coprime to ¢ + 1. By Theorem 1, if P is the minimal
polynomial of b and P has degree d, then

ijP(xqfl)m/d . . T
———— € GF lies that — € GF(q).
Py (¢) implies tha b ()

Since m’ is coprime to ¢ + 1 we have that

Imm’P(xq—l)mm’/d mp (a1 m/d

. L

and so, with mm’ playing the role of m, we can apply Theorem 1 to produce
a line-spread of PGapm—1(q).

4.8 A look at one of Kantor’s examples:

One of the constructions of t-spreads (for arbitrary ¢) in [Kan93, construction
4] admits a transitive cyclic group which in the case of t = 1, is C' above. We
can treat this construction in terms of Theorem 1. Let ¢ be a generator of
GF(¢?). Also let m be an odd divisor of ¢ — 1. Then the polynomial

P(x)=2"—-(

is irreducible and satisfies Condition (1). To see that it is irreducible, let z be
a root of P. We will show that z lies in GF(¢*™) but no smaller extension of



GF(¢?). Now 2™ — ¢ = 0 implies that 2L = (@ D/m g 0* = (@ -D/my and
so for any i, using the fact that z — 27" is an automorphism, we have

o - Ci(qul)/mZ'

Thus 27" = z if and only if i is a multiple of m. Therefore z lies in GF(¢*™)
but no smaller extension of GF(¢?) and so P is irreducible.

Now, to see that P satisfies Condition (1), suppose that

g™ (x4 — ()
y™(yla=tm — ()

Then, rearranging, we have

— I € GF(q).

z?™ — ky"™ = (=™ — ky™)

and since k? = k, the left hand side of the above equation can be written as
(2™ — ky™)4. If 2™ — ky™ # 0 we have ¢ = (z™ — ky™)? ! and so ( is not a
generator of GF(¢?). Thus ™ — ky™ = 0, and so (z/y)™ € GF(q). Since m is
an odd divisor of ¢ — 1, it is coprime to ¢ + 1, and so x/y € GF(q).

4.4 Kantor’s other constructions:

Kantor gives seven types of construction of flag-transitive linear spaces with
one-dimensional affine groups in [Kan93]. How do we know when Theorem
1 gives us one of these examples? Type 2 is a special case of Type 7, the
inflation trick, and this and Type 4 are discussed in Subsection 4.2 as they
relate to Theorem 1. Type 1 describes the generalised Netto systems. The
number of points on a line in such a linear space divides v — 1 where v is the
total number of points. But the number of points in the linear space arising
from Theorem 1 is ¢?? and the number of points on a line is ¢2. If this linear
space were isomorphic to one arising from Theorem 1, then we would have
that ¢? divides ¢?? — 1; a contradiction.

Type 3 gives a linear space arising from an n — 1 spread of GF(¢/") as a vector
space over GF(q), where ¢, f are powers of a prime p and n > 1 such that p
does not divide n. The construction assumes (¢" — 1)/(q — 1) is coprime to
f — 1. One of the lines of this linear space is the set L = Ker T+ rGF(q) where
T is the trace map GF(¢") — GF(q) and r is an element of GF(q/)\GF(q)
satisfying certain conditions. Such a linear space cannot be isomorphic to one
arising from Theorem 1. Recall that ¢7 = (., so that if /¢ is equivalent to
a space of Type 3 via the map ¢ : x — az” then (< is equivalent to that
space via the map x — ax. We shall prove that Ker T + rGF(q) is not a
2-dimensional subspace of GF(¢/™) over any subfield; since the map z — ax



maps 2-dimensional subspaces to 2-dimensional subspaces, it will follow that
a space of Type 3 cannot be constructed by Theorem 1. Firstly, L is not a
2-dimensional subspace over GF(q), for this would imply that n = 2 (as Ker T’
has dimension n — 1). Then p is odd, and ¢ + 1 = (¢* — 1)/(q — 1) is coprime
to f — 1. However, this is impossible as ¢ + 1 and f — 1 are even. Now we
show that L is not a 2-dimensional subspace over GF(p¥) where p* # ¢ (note
then that ¢" = p* and p* > q). Let z € GF(p*)\GF(q), and so z € GF(q"). If
L is closed under multiplication by GF(p*), then 2r € L and so zr = X\ + ur
where A\ € Ker T and p € GF(q). This implies that A = r(z — ) and hence
that A ¢ GF(q") as z — u € GF(¢"), r € GF(¢/)\GF(q), and f is coprime to n.
However, this is a contradiction since Ker " C GF(¢").

The constructions of Type 5 do not admit a cyclic group acting transitively
on the lines through the origin. Since the line-spreads produced by Theorem 1
always give linear spaces with this property, the linear spaces of Type 5 never
arise from Theorem 1. Only Type 6 remains, and it is not clear whether these
spaces arise from Theorem 1. However, we do know that they contain a line
which is equal to one of the lines of Type 4. (This line is h(GF(¢?)) in Kantor’s
notation, or ¢, where b is the root of P given in our discussion of Type 4.) So a
linear space of Type 6 can only arise from Theorem 1 (and have a line-spread
admitting the group C) if it is also a linear space of Type 4 (which we have
treated in Subsection 4.2).

5 Examples

Here we give examples of irreducible polynomials which satisfy Condition (1).

Ezxample 1:

Let p be an odd prime. Then the polynomial

Pt —1

P(zx) = -2

r—1
=P P -1

is irreducible over GF(p) and satisfies Condition (1). To see that P(x) is ir-
reducible, we show that a root z of P is in GF(p”) but not in any proper
subfield of GF(p?). First note that z # 1 since P(1) = —1. The only proper
subfield of GF(p?) is GF(p), and if z € GF(p), then 2? = z and hence P(z) =

2ol 9= 5 1, which is certainly nonzero. It remains to show that z is in

z—1

10



GF(pP). Indeed, if z is a root of P, then writing 2Pz for 2™ gives

Pz —1
2Pz _9_0

z—1

and hence z? = (2z — 1)/z. It is not difficult to show by induction that for all
positive integers ¢ we have

Cdz—(i—1)

P

So in particular,
pr — —(p+ 1)Z_p =
pz—(p—1)
as required. Now we show that P satisfies Condition (1). Suppose that x,y €
GF(p?) and
xP P (2P )
yrPyr')
If we can prove that P(zP~1')/P(yP~') is an element of GF(p), then it will
follow that z?/y? € GF(p) and so x/y € GF(p). Suppose that zP~! # 1. Then

€ GF(p).

P(zp™) = (2P D) 1) /(2P — 1) 2= (1-1)/(2P' = 1) =2 = —2.
Now suppose 27~ = 1. Then

Pl )y=1+1+---4+1-1=—1.

p times

So P(zP~ 1) is either —2 or —1. Similarly P(y?~!) is either —2 or —1 and so
P(xzP~1)/P(y*~1) € GF(p) as we required.

To show that these linear spaces are not isomorphic to any of Kantor’s ex-
amples it suffices to compare it to those of Type 4 (see Subsection 4.4). The
number of points in this example is p?” and the number of points on a line is
p? while the number of points in a space of Type 4 is ¢"" with n > 1 and m
dividing ¢— 1, and the number of points on a line is ¢". An isomorphism would
imply ¢ = p,n = 2 and m = p, in which case p divides p — 1; a contradiction.

Ezample 2:

The following trick is analogous to Kantor’s inflation trick, in that it produces
a large linear space from a smaller one. We require the following fact, which
is part of Theorem 3.35 in [LN97]:

11



Lemma 3 Suppose that P is an irreducible polynomial over GF(q) of degree
m and order e. Ift > 3 is odd such that all prime factors of t divide e but not
(¢™ —1)/e, then P(z') is irreducible.

We begin with the assumptions laid out at the beginning of Section 3. Suppose
that P(x) is an irreducible polynomial satisfying Condition (1) and let e be
the order of P. Suppose that ¢ is an integer satisfying:

(i) ¢

(ii) ¢ is odd

(111) all pr1me factors of t d1v1de e;
)
)

t t m

Then P(z') is an irreducible polynomial satisfying Condition 1.

It is quite straightforward to see this: irreducibility follows from the above
lemma. Now suppose that

Itmp(xt(q—l))m/d
yth(yt(q—l))m/d

€ GF(q).

Then since P(x) satisfies condition (1), we have that z*/y" € GF(q). But since
t is coprime to ¢ + 1 we have that z/y € GF(q).
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