
BOUNDS AND QUOTIENT ACTIONS OF INNATELY

TRANSITIVE GROUPS.

JOHN BAMBERG

()

Abstract

Finite innately transitive permutation groups include all finite quasiprimitive and primitive permutation

groups. In this paper, results in the theory of quasiprimitive and primitive groups are generalised to

innately transitive groups, and in particular, we extend results of Praeger and Shalev. Thus we show that

innately transitive groups possess parameter bounds which are similar to those for primitive groups. We

also classify the innately transitive types of quotient actions of innately transitive groups.
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1. Introduction

A finite permutation group G acting on a set Ω is said to be innately transitive if it

contains a transitive minimal normal subgroup. We call such a subgroup a plinth for G.

Now G can have at most two transitive minimal normal subgroups (see [1, Lemma 5.1]),

and if it has two, then there is an element in the normaliser of G that interchanges them.

So up to permutational isomorphism, any of the at most two minimal normal subgroups of

G can be taken to be the plinth of G. Innately transitive groups have been studied in depth

by the author in work coauthored with Praeger [1], and their interest and application is

outlined in the introduction of [1].
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Let G be a group acting on a set Ω, and suppose B is a G-invariant partition of Ω.

Then the action of G on B is called a quotient action of G. A quotient action is essentially

the image of a permutational transformation, which is an ‘intertwiner’ between two group

actions and exists categorically as the natural weakening of a permutational isomorphism.

Similar objects have been widely studied in homological algebra and representation theory,

and they provide a more general context for results on quotient actions.

A transitive permutation group G on a finite set Ω is imprimitive if there exists a

nontrivial G-invariant partition B of Ω (that is, 1 < |B| < |Ω|). A transitive permutation

group is primitive if it is not imprimitive. Every nontrivial normal subgroup of a prim-

itive group is transitive (see [3, Theorem 1.6A]), but the converse is not true. A finite

permutation group G is called quasiprimitive if every non-trivial normal subgroup of G

is transitive. Every primitive group is quasiprimitive, and every quasiprimitive group is

innately transitive. The similarity in the structure theorems for primitive groups (see [5]),

quasiprimitive groups (see [6]), and innately transitive groups (see [1]) indicate that results

on the properties of primitive groups might also be true for quasiprimitive and innately

transitive groups. However, a quasiprimitive group has at most two minimal normal sub-

groups, but for an arbitrary integer k, there exist innately transitive groups which have at

least k minimal normal subgroups. Recently, Heath-Brown, Praeger, and Shalev [4] have

proved that for most positive integers n, the only finite innately transitive permutation

groups of degree n are An and Sn in their natural action (which are primitive groups).

It was the study of properties of quasiprimitive groups by Praeger and Shalev (see

[10]) that motivated this paper. Their goal was to generalise classical results about finite

primitive permutation groups to quasiprimitive ones. Our goal is similar, in that we lift

results on quasiprimitive groups to the context of innately transitive groups. Given an

imprimitive quasiprimitive group G acting on a finite set Ω, there exists a maximal G-

invariant partition B of Ω. The finite permutation group GB induced by the action of

G on B is primitive and isomorphic to G. Praeger and Shalev’s technique, in almost all

of their results, was to analyse this special type of quotient action and transfer classical

results about primitive groups to quasiprimitive groups via this natural correspondence.

In this paper, we find that a similar technique can be used for innately transitive groups.

If G is innately transitive but non-quasiprimitive, the permutation group induced by the

action of G on the orbits of the centraliser of the plinth is quasiprimitive. Hence we

can transfer some results on quasiprimitive groups to innately transitive groups via this
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correspondence.

In this paper, we analyse bounds, innately transitive types, and other properties of

innately transitive groups. We already know from [1] some useful properties of innately

transitive groups.

Lemma 1.1. Let G be an innately transitive group on a set Ω with plinth K, and let

α ∈ Ω. Then we have the following:

1. G is quasiprimitive if and only if CG(K) = 1 or CG(K) is transitive.

2. Kα is a normal subgroup of the setwise stabiliser K∆ in K of the CG(K)-orbit

∆ = αCG(K), and K∆/Kα
∼= CG(K).

3. If Kα is a subdirect subgroup of K, and K is nonabelian and nonsimple, then G is

quasiprimitive.

4. The group GC induced by the action of G on the set of CG(K)-orbits in Ω is

quasiprimitive with kernel CG(K), K acts faithfully, and the permutation group KC

induced by the action of K is the plinth of GC.

5. CG(K) is semiregular.

It is also true that if CG(K) is transitive, then G is primitive (see [1, Lemma 5.1]).

The above properties are essentially properties of the quotient action of G on the or-

bits of the centraliser of the plinth. Similar results also hold for abstract permutational

transformations (see Section 5).

In the subsequent three sections, we give a brief account of the structure of innately

transitive groups, we revise some background theory and conventions, and provide some

examples of innately transitive groups which we use to prove later results. In Section 5, we

give an expository summary of the definitions and elementary properties of permutational

transformations. Our goal in Sections 5, 6, 7, and 8, is to state and prove a theorem which

encapsulates seven generalisations of results from [10]. Finally, in Section 9, we give a

complete account of the innately transitive types of quotient actions of innately transitive

groups, in a similar manner to that of Praeger’s [7] investigation of quotient actions of

quasiprimitive groups.
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2. The structure of innately transitive groups

The O’Nan-Scott Theorem (see [5]) is a result that partitions the finite primitive

groups into eight disjoint types (see also [8]). Praeger’s theorem for quasiprimitive groups

is analgous to the O’Nan-Scott Theorem and partitions the finite quasiprimitive groups

in a similar way to the case subdivision of finite primitive groups (see [8]). However

the case subdivision used to describe innately transitive groups in [1] has more parts to

the partition. The quasiprimitive type known traditionally as Product Action type, is

generalised to contain innately transitive groups that are possibly not quasiprimitive. On

top of this, there are three extra types defined: Almost Simple Quotient type, Product

Quotient type and Diagonal Quotient type. Here is a summary of the subdivision of finite

innately transitive groups:

Let G be an innately transitive group with plinth K acting on a set Ω, let α ∈ Ω, and

let ∆ = αCG(K). Note that K = T k for some simple group T and positive integer k. Then

G is of Abelian Plinth (AP), Holomorph of a Simple Group (HS), Almost Simple (AS),

Almost Simple Quotient (ASQ), Holomorph of a Compound Group (HC), Twisted Wreath

(TW), Product Quotient (PQ), Diagonal Quotient (DQ), Product Action (PA), or Diagonal

(DT) type. Certain properties of these types are summarised in Table 1, and complete

descriptions of the types are given in [1, Section 3]. We say that an innately transitive

group G with plinth K is of ASQreg type if K is a nonabelian simple group acting regularly

and CG(K) is nontrivial and intransitive. We may sometimes refer to two subcases of the

Diagonal type known as Simple Diagonal (SD) type and Compound Diagonal (CD) type,

which occur respectively when Kα is or is not a full diagonal subgroup of K. If G is of

Abelian Plinth, Holomorph of a Simple Group, or Holomorph of a Compound Group type,

then G is primitive.
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Property AP HS AS ASQ HC TW PQ DQ PA DT

K is abelian X × × × × × × × × ×

K is simple X X X × × × × × ×

K is regular X X X X X X × ×

CG(K) = 1 × × X × × X × × X

CG(K) is transitive X X × × X × × × × ×

Kα is subdirect in K × × × × × × X

K∆ is subdirect in K X X × × X × X

Table 1. A summary of the partition of finite innately transitive groups defined by certain properties.

3. Some background theory

In this section, we revise some standard background material. We will assume that the

reader is familiar with the basics of permutation group theory, such as the well known fact

that if G acts transitively on a set Ω, α is a point of Ω, and K is a transitive subgroup of

G, then G = KGα (see Dixon and Mortimer’s book [3] for an introduction to permutation

group theory). Throughout this paper, we will use the standard notation GΣ to mean the

permutation group induced by the action of G on Σ.

The holomorph of a group X is the semidirect product X o Aut(X) and is denoted

Hol(X). Furthermore, the normaliser of X in Sym(X) is isomorphic to Hol(X), and

Hol(X) acts naturally on X in that X acts on itself by right multiplication (see [1, Section

2]). Let G be a finite innately transitive permutation group on a set Ω with plinth K, and

suppose K is regular. Then it is well-known (see [1, Section 2]) that G is permutationally

isomorphic to a subgroup of Hol(K) in its natural action on K.

Let
∏

i∈I Hi be a direct product of groups. Given j ∈ I, we denote the natural

projection map from
∏

i∈I Hi to Hj by πj . A group G is a subdirect product of
∏

i∈I Hi if

there is an embedding φ : G →
∏

i∈I Hi such that φ ◦ πj : G → Hj is an epimorphism for

each j ∈ I. In the case that G is a subgroup of
∏

i∈I Hi and φ is the inclusion map, we say

that G is a subdirect subgroup of
∏

i∈I Hi. If G is a subgroup of
∏

i∈I Hi, we say that G is

a diagonal subgroup of
∏

i∈I Hi if the restriction of πj to G is injective for each j ∈ I. We

say that G is a full diagonal subgroup of
∏

i∈I Hi if G is both a subdirect and diagonal

subgroup of
∏

i∈I Hi. In this case, when G is a full diagonal subgroup of
∏

i∈I Hi, the
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direct factors Hi are isomorphic to a common group H and G ∼= H. If I = {1, . . . , n}, then

each full diagonal subgroup G of
∏

i∈I Hi is of the form {((g)γ1, (g)γ2, . . . , (g)γn) : g ∈ G}

where for each i ∈ I, γi is an isomorphism from G onto Hi. For every group H and integer

n, the set {(h, h, . . . , h) : h ∈ H} is a full diagonal subgroup of Hn called the the straight

diagonal subgroup of Hn, which we will denote by Diag(Hn).

A base of a permutation group G ≤ Sym(Ω) of degree n, is a subset of Ω that has a

trivial pointwise stabiliser in G. Let bΣ(G) denote the minimal base size of G acting on Σ.

The minimal degree mΩ(G) of a permutation group G ≤ Sym(Ω) is the minimum number

of points moved by a nontrivial element of G.

4. Some examples

Here we give some examples of innately transitive groups which are not only useful

in understanding the nature of innately transitive groups, but which will also serve as

constructions for the proof of a result (Theorem 9.2) on the quotient actions of innately

transitive groups.

Example 1 (Product Quotient type (PQ)).

Let H be an innately transitive group of Almost Simple Quotient type with regular plinth

M , and let k > 1. Then G = H wr Sk is innately transitive in product action with regular

plinth K = Mk. Moreover, CG(K) = (CH(M))k and |CH(M)| < |M |, and hence CG(K)

is not a subdirect subgroup of the left regular representation of K. Therefore, G is of

Product Quotient type by [1, Remarks 10.2 and Proposition 10.3].

Example 2 (Diagonal Quotient type (DQ)).

Let T be a nonabelian simple group, let k > 1, let K = T k, let m be a proper divisor of k,

let A be the straight diagonal subgroup of Aut(T )k/m, and let G = K o [(A×Sk/m) wrSm]

where K acts regularly on itself and (A × Sk/m) wrSm acts naturally as a subgroup

of Aut(K) = Aut(T ) wrSk. Then G is innately transitive with regular plinth K, and

CG(K) = Cm where C is the straight diagonal subgroup of the left regular representation

of T k/m. Since CG(K) is a subdirect product of K, we have that G is of Diagonal Quotient

type by [1, Remarks 10.2 and Proposition 10.3].

Example 3 (Almost Simple Quotient type (ASQ)).

Let K be a nonabelian simple group and let K0/K1 be a section of K where K1 is corefree
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in K0 and K0 < K. Let Ω = [K : K1] and let K act by right coset multiplication on Ω.

Let G be the direct product (K0/K1)×K and define the action of K0/K1 on Ω by:

(K1u)K1v = K1v
−1u,

for all u ∈ K and v ∈ K0. It turns out that G is innately transitive on Ω of Almost Simple

Quotient type.

Example 4 (Product Action type (PA)).

Now let T be a nonabelian simple group, let R be a proper subgroup of T , let k > 1, let

A be a cyclic subgroup of Sk of order k, let S be a proper normal subgroup of the straight

diagonal subgroup Diag(Rk) of Rk, and let C = Diag(Rk)/S. Consider G = C× (T wrA),

G0 = S × A < T wr A, and Ω = [G : G0]. If S is nontrivial, then G is innately transitive

on Ω of Product Action type with plinth K = T k. (Note: If S = 1, then G is innately

transitive on Ω of Product Quotient type with plinth K = T k.)

5. Permutational transformations

Let G be a group acting on a set Ω and let H be a group acting on a set Γ. Then

(θ, µ) is a permutational transformation from G on Ω to H on Γ if θ : G → H is a group

homomorphism and µ : Ω → Γ is a function such that for all g ∈ G and ω ∈ Ω, we have the

intertwining relation (ωg)µ = (ω)µ(g)θ. We say that (θ, µ) is a permutational isomorphism

if θ and µ are both bijections. Note that in the above definition, if G acts faithfully on

Ω, it may not be true that (G)θ acts faithfully on (Ω)µ. The kernel of the action of (G)θ

on (Ω)µ is the image of E = {g ∈ G : (ωg)µ = (ω)µ, for all ω ∈ Ω} under θ. We say that

(θ, µ) is a faithful permutational transformation if E = ker θ; that is, (G)θ acts faithfully

on (Ω)µ. Recall that if f is a function with domain Ω, then a fibre of f is a preimage of

a point in the image of f . If ω ∈ Ω, then we denote the f -preimage of (ω)f by [ω]f .

Now if B is a G-invariant partition of Ω, then there is an induced action of G on B. This

is called a quotient action of G. We can reframe this concept in terms of permutational

transformations. Let E be the kernel of the action of G on B, and consider the faithful

projective action of G/E on B. (If G acts on a set Σ and N is a normal subgroup of G

contained in the kernel of the action of G on Σ, then the projective action of G/N on

Σ is defined by σNg := σg for all σ ∈ Σ and Ng ∈ G/N .) Let θ : G → G/E be the

canonical projection homomorphism and let µ : Ω → B be the map which selects for each
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element of Ω, the unique part of B it belongs to. Then (θ, µ) is a faithful permutational

transformation from the action of G on Ω to the quotient action of G on B. Conversely,

given a permutational transformation (θ, µ) with domain G acting on Ω, the fibres of µ

form a G-invariant partition B of Ω, and it follows from the proposition below that the

permutation group induced by the action of G on B is permutationally isomorphic to the

action of (G)θ on (Ω)µ.

Proposition 5.1 (The First ‘Permutational’ Isomorphism Theorem). Let G be a

group acting on a set Ω and let H be a group acting on a set Γ, and suppose that (θ, µ)

is a permutational transformation from G on Ω to H on Γ. Then there is an action of

G/ ker θ on the fibres of µ defined by

[ω](ker θ)g
µ := [ωg]µ,

for all g ∈ G and ω ∈ Ω, and this action is permutationally isomorphic to the action of

(G)θ on (Ω)µ.

Proof. Let Fµ be the set of fibres {[ω]µ : ω ∈ Ω} of µ. The First Isomorphism The-

orem in Group Theory states that the map Φ : G/ ker θ → (G)θ defined by ((ker θ)g)Φ =

(g)θ is a well-defined isomorphism. Similarly, the First Isomorphism Theorem for sets

states that the map ν : Fµ → (Ω)µ defined by ([ω]µ)ν = (ω)µ is a well-defined bijec-

tion. So (Φ−1, ν−1) and the intertwining relation, induce an action of G/ ker θ on Fµ as

illustrated below. Let g ∈ G and ω ∈ Ω. Then,

[ω](ker θ)g
µ = (((ω)µ)ν−1)((g)θ)Φ−1

= ((ω)µ(g)θ)ν−1 = ((ωg)µ)ν−1 = [ωg]µ,

which is precisely the action given above. So we see that (Φ, ν) is a permutational isomor-

phism from the action of G/ ker θ on Fµ (given above) to the action of (G)θ on (Ω)µ.

The following lemma lists some basic results on faithful permutational transformations.

Lemma 5.2. Let G be a group acting on a set Ω and let H be a group acting on a set

Γ, and suppose that (θ, µ) is a faithful permutational transformation from G on Ω to H

on Γ. Then we have the following:

1. If G is transitive on Ω, then (G)θ is transitive on (Ω)µ.

2. If (G)θ is semiregular, then G/ ker θ is semiregular on Ω (in its projective action).
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3. If G is faithful and innately transitive on Ω and θ is nontrivial, then (G)θ is innately

transitive on (Ω)µ.

4. If G is faithful and primitive on Ω and θ is nontrivial, then (G)θ(Ω)µ is permuta-

tionally isomorphic to GΩ.

Proof.

(1) Suppose G is transitive and let ω1, ω2 ∈ Ω. Since G is transitive, there exists g ∈ G

such that ωg
1 = ω2. Hence (ω1)µ(g)θ = (ωg

1)µ = (ω2)µ and (G)θ is transitive on (Ω)µ.

(2) Suppose (G)θ is semiregular and suppose ω(ker θ)g = ω for some g ∈ G and ω ∈ Ω.

Then ωg = ω and hence (ωg)µ = (ω)µ. So (ω)µ(g)θ = (ω)µ and therefore (g)θ = 1. Thus

g ∈ ker θ and G/ ker θ is semiregular on Ω.

(3) Suppose G is innately transitive on Ω with plinth K. Assume that (K)θ = 1 and fix a

point ω ∈ Ω. Since K is transitive, every element of Ω is of the form ωy for some y ∈ K.

Hence every element of (Ω)µ is of the form (ωy)µ = (ω)µ(y)θ = (ω)µ and thus (Ω)µ has

only one element. This implies that (G)θ is the trivial group (as it acts faithfully on (Ω)µ),

which is a contradiction. Therefore (K)θ is a nontrivial normal subgroup of (G)θ (as K

is a normal subgroup of G). If M is a normal subgroup of (G)θ contained in (K)θ, then

the preimage of M under θ is a normal subgroup of G contained in K. It then follows

that (K)θ is a minimal normal subgroup of (G)θ. By (1), (K)θ is transitive on (Ω)µ and

hence (G)θ is innately transitive on (Ω)µ with plinth (K)θ.

(4) Suppose GΩ is primitive. Then the fibres of µ are trivial as they form a G-invariant

partition of Ω and (θ, µ) is faithful. Since θ is nontrivial, it follows that [ω]µ = {ω} for all

ω ∈ Ω. Hence µ is injective and thus ker θ = 1 (as (θ, µ) is faithful). By Theorem 5.1, we

have that GΩ is permutationally isomorphic to (G)θ(Ω)µ.

Similarly, one can prove that 2-transitivity and quasiprimitivity are preserved by per-

mutational transformations and we leave this as an exercise for the reader. Now suppose a

group G acts transitively on a set Ω, and (θ, µ) is a faithful permutational transformation

from G on Ω to the action of a group H on a set ∆. Recall that if K is a transitive normal

subgroup of G and α ∈ Ω, then G = KGα. Suppose that we have another homomorphism

θ′ : G → H such that (θ′, µ) is a permutational transformation where the restriction of θ′
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to K is equal to the restriction of θ to K. Then for all y ∈ K and g ∈ Gα, we have

(g)θ′(g−1)θ(y)θ = (g)θ′(g−1yg)θ(g−1)θ = (g)θ′(g−1yg)θ′(g−1)θ

= (y)θ′(g)θ′(g−1)θ = (y)θ(g)θ′(g−1)θ.

Therefore (g)θ′(g−1)θ ∈ C(G)θ((K)θ)∩(Gα)θ. Note that for all h ∈ Gα, we have (α)µ(h)θ =

(αh)µ = (α)µ and hence every element of (Gα)θ fixes (α)µ. Similarly (Gα)θ′ fixes (α)µ.

By Lemma 5.2, (K)θ is innately transitive on (Ω)µ and hence C(G)θ((K)θ) is semiregular

(by Lemma 1.1(5)). So it follows that C(G)θ((K)θ)∩(Gα)θ = 1 and (g)θ = (g)θ′. Therefore

θ = θ′ as G = KGα. Hence every faithful permutational transformation with domain G

acting on Ω, is determined by its action on a transitive normal subgroup K. So we see

that the faithful permutational transformations whose domain G is innately transitive, are

completely determined by the plinth of G.

6. Generalising Praeger and Shalev’s results

In Praeger and Shalev’s paper [10], they extend classical results of primitive groups

to quasiprimitive groups. These results include bounds on the order of a quasiprimitive

group in terms of its degree, a bound on the number of fixed points of a quasiprimitive

group containing special permutations, a bound on the base size of a quasiprimitive group,

and a bound on the minimal degree of a quasiprimitive group. Praeger and Shalev also

give a nice exposition of the literature in [10], which we do not repeat here.

Below we generalise the following results of Praeger and Shalev: Theorems 2.1, 2.2,

4.1, 4.2, 4.4, 4.3, 7.2.

Theorem 6.1. Let G be an innately transitive permutation group on a set Ω with

plinth K, and let n = |Ω|. Then

1. if G contains a p-cycle, for some prime p, then G is primitive;

2. if for some prime p, there is an element in G of order p with q cycles of length p in

Ω, where 2 ≤ q < p. Then either,

(i) n− qp ≤ 5q/2− 2, or

(ii) G is quasiprimitive;

3. either |G| ≤ n!/((n + 1)/2)! or G contains An;
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4. either |G| < 4n or G contains An;

5. there exist constants d and d′ such that either

(i) |G| ≤ nd log(n), or

(ii) for positive integers m, k, l such that k ≤ d′, l ≤ d′ and m > 4d′, we have

G/CG(K) ≤ Sm wr Sl with K ∼= Al
m and (Am−k)l ≤ Kα ≤ (Sm−k × Sk)l ∩ K

where α is a point in Ω. Also, |CG(K)| ≤ (k!)l ≤ (d′!)d′;

6. either b(G) ≤ 4
√

n log(n) or G contains An;

7. either m(G) ≥ (
√

n− 1)/2 or G contains An.

Remarks 1. The bound in (3), which was originally found by Bochert [2] for primitive

groups, is reasonably accurate for small degrees and was the best bound of its time (circa

1889). The bound in (4), found by Praeger and Saxl [9] for primitive groups, has the

advantage that it has a simple algebraic expression and holds for all innately transitive

groups. Cameron’s bound, which is generalised as (5) above, is asymptotically the best of

the bounds above on the orders of primitive groups. However, its proof depends on the

Classification of Finite Simple Groups.

7. Preliminary results

In order to prove Theorem 6.1, we will need some basic facts first. The lemma below

generalises (2) and (5) of Lemma 1.1, and to some extent, (4) as well.

Lemma 7.1. Let G be a finite innately transitive permutation group acting on a set

Ω with plinth K, let H be a group acting on a set Γ, and suppose that (θ, µ) is a faithful

permutational transformation from G on Ω to H on Γ. Then the action of (G)θ on (Ω)µ

is permutationally isomorphic to the action of G/ ker θ on the orbits of ker θ in Ω, defined

by

(ωker θ)(ker θ)g = (ωg)ker θ

for all g ∈ G and ω ∈ Ω. Moreover, ker θ ≤ CG(K) and if ∆ is the ker θ-orbit of a point

α in Ω, then Kα is a normal subgroup of K∆ and ker θ ∼= K∆/Kα.
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Proof. Let Fµ be the set of fibres of µ and let Σ be the set of ker θ-orbits in Ω. Then

the map ν : Fµ → Σ defined by ([ω]µ)ν = ωker θ is a bijection and it induces a natural

action of G/ ker θ on Fµ which is permutationally isomorphic to the action of G/ ker θ on

Σ given above. Therefore, by the First Permutational Isomorphism Theorem, the action

of (G)θ on (Ω)µ is permutationally isomorphic to the action of G/ ker θ on the orbits of

ker θ.

Since K is transitive, we have that (K)θ is transitive by Lemma 5.2. So K is not

contained in ker θ (as (K)θ is nontrivial) and hence by the minimality of K, we see that

ker θ is a normal subgroup of G that intersects K trivially. It then follows that ker θ

centralises K.

Let α be a point in Ω and let ∆ = αker θ. Let y ∈ K∆ and suppose there are elements

c, d of ker θ such that αy = αc and αy = αd. Since ker θ is a subgroup of CG(K), by

Lemma 1.1(5), ker θ is semiregular and hence Gα ∩ ker θ = 1. Now cd−1 ∈ Gα ∩ ker θ

and hence c = d. So there is a map ϕ : K∆ → ker θ where for each element y ∈ K∆,

(y)ϕ is the unique element of ker θ such that y(y)ϕ ∈ Gα. We prove now that ϕ is a

group homomorphism. Let y1, y2 ∈ ker θ. Then αy1y2(y1)ϕ(y2)ϕ =
(
αy1(y1)ϕ

)y2(y2)ϕ
as ker θ

centralises K. Therefore αy1y2(y1)ϕ(y2)ϕ = α and so by uniqueness, (y1)ϕ(y2)ϕ = (y1y2)ϕ

and ϕ is a homomorphism. Clearly kerϕ = Kα. Therefore, Kα is a normal subgroup of

K∆ and ker θ ∼= K∆/Kα.

We will frequently make use of the following lemma in the proof of Theorem 6.1.

Lemma 7.2. Let G be an innately transitive permutation group on a set Ω with plinth

K, let H be a group acting on a set Γ, let (θ, µ) be a faithful permutational transformation

from GΩ to HΓ, and let m = |(Ω)µ| > 1. If (G)θ contains Am, then one of the following

holds:

1. G contains Am.

2. G is of ASQreg type, G = Am−1 ×Am or G = (Am−1 ×Am).2, and K = Am.

3. G has degree 15, G is of Almost Simple Quotient type, K = A5, ker θ is cyclic of

order 3, and |G : (ker θ ×K)| = 1, 2.

Proof. First, if GΩ is primitive, then by Lemma 5.2, (G)θ(Ω)µ is permutationally

isomorphic to GΩ and (1) holds. This is also true in the general case when ker θ = 1 (by
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Theorem 5.1). Suppose ker θ > 1 (so necessarily, G is imprimitive). If ker θ is transitive,

then CG(K) is transitive, as ker θ ≤ CG(K) by Lemma 7.1, and hence G is primitive (see [1,

Lemma 5.1]) – a contradiction. So ker θ is an intransitive normal subgroup of G. Therefore

GΩ is not quasiprimitive and hence K is nonabelian. Let α ∈ Ω and let ∆ = αker θ. Then

by Lemma 7.1, Kα is a proper normal subgroup of K∆ and ker θ ∼= K∆/Kα. Let c = | ker θ|

and let n = |Ω| = mc.

Since K is nonabelian, we must have that m ≥ 5. So Am is a simple group and hence

K ∼= (K)θ = Am as Am is the unique minimal normal subgroup of both Sm and itself.

The m fibres of µ are simple the orbits of ker θ in Ω. So K∆ = Am−1 and Kα is normal in

K∆. We have two subcases: m = 5 or m 6= 5. In the latter case, K∆ is simple, and since

Kα is a proper normal subgroup of K∆, we have that Kα = 1. Thus ker θ ∼= K∆ = Am−1

and G is of ASQreg type. Note that the only subgroups of Sm that intersect Am in Am−1

are Sm−1 and Am−1. Since Am ≤ (G)θ ∼= G/ ker θ ≤ Sm and G ≥ ker θ×K = Am−1×Am,

it follows that G ∈ {Am−1 ×Am, (Am−1 ×Am).2}, and we are in case (2).

Finally, let m = 5. Then K∆ = A4 and Kα ∈ {1, V4} as Kα is a proper normal

subgroup of K∆. If Kα = 1, then G is of Almost Simple Quotient type with a regular

plinth K, ker θ ∼= K∆/Kα
∼= A4, and by a similar argument as before, G ∈ {Am−1 ×

Am, (Am−1 × Am).2} where m = 5, and we are in case (2). So suppose that Kα = A4.

Then ker θ ∼= K∆/Kα
∼= Z3 and n = 5|K∆ : Kα| = 15. Since (G)θ ∼= G/ ker θ ≤ S5 and

G ≥ ker θ ×K = Z3 ×A5, case (3) holds.

Notice that for the case where the permutational transformation (θ, µ) is just the

quotient action of G on C, the orbits of CG(K), we have that if c = |C| and GC contains

Ac, then Lemma 7.2 implies that one of the following holds:

1. G contains Ac;

2. G is of ASQreg type, G = Ac−1 ×Ac or G = (Ac−1 ×Ac).2, and K = Ac;

3. G has degree 15.

The only innately transitive groups of degree 15 that are not quasiprimitive, are isomor-

phic to one of the two groups Z3×A5 or (Z3×A5).2. One can construct the latter group G

as follows. Note that Aut(Z3×A5) ∼= 〈a : a2 = 1〉×S5 and let c = (a, (1, 2)) ∈ Aut(Z3×A5).

It turns out that G = (Z3 ×A5) o 〈c〉. The point stabiliser for this group is H o 〈c〉 ∼= S4,

where H ∼= A4.
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Praeger and Shalev showed that if G is a quasiprimitive group on a set Ω, and B is

a G-invariant partition for G in Ω, then bΩ(G) ≤ bB(G). They used the fact that G acts

faithfully on B, which does not necessarily hold for an arbitrary innately transitive group.

Similarly, they showed that the the minimal base size of G on Ω is no less than s ·mB(G)

where s is the size of a block in B. A more general result can be achieved in the context

of faithful permutational transformations.

Lemma 7.3. Let G be an innately transitive permutation group on a set Ω with plinth

K, let H be a finite transitive permutation group on a set Γ, let (θ, µ) be a faithful per-

mutational transformation from G on Ω to H on Γ, and let c = |Ω|/|(Ω)µ|. Then,

1. bΩ(G) ≤ b(Ω)µ((G)θ);

2. mΩ(G) ≥ c ·m(Ω)µ((G)θ).

Proof.

1. Let ∆1, . . . ,∆b be a base for (G)θ in (Ω)µ, and let α1, . . . , αb be elements of Ω such

that (αi)µ ∈ ∆i for all i. Suppose g ∈ G fixes each of the αi. Hence (g)θ fixes the ∆i, and

therefore g ∈ ker θ as ∆1, . . . ,∆b is a base. But ker θ is semiregular on Ω and hence g = 1

and α1, . . . , αb is a base for G in Ω. Therefore bΩ(G) ≤ b(Ω)µ((G)θ).

2. First note that the ker θ orbits have a common cardinality (as G is transitive) which

is equal to the constant c (by Lemma 7.1). Let g be a non-identity element of G and set

m = m(Ω)µ((G)θ). If g /∈ ker θ, then (g)θ acts nontrivially on (Ω)µ and hence moves at

least cm points of Ω. If g ∈ ker θ, then since ker θ is semiregular, g must move every point

in Ω. Therefore mΩ(G) ≥ c ·m.

The following result will be used to settle a case in the proof of Theorem 6.1(7).

Lemma 7.4. Let n ≥ 5 and consider the natural action of Aut(An) on An. Consider

Hol(An) = An o Aut(An) in its natural action on An. Then

m(Hol(An)) = m(Aut(An)) = n!/2− (n− 2)!.

Proof. First we assume that n 6= 6 and identify the action of Aut(An) with the

conjugation action of Sn on An. Since Aut(An) ≤ Hol(An), it is clear that m(Hol(An)) ≤

m(Aut(An)). Let g ∈ Hol(An) such that g 6= 1 and g permutes m(Hol(An)) points.

Since Hol(An) is transitive, we may assume that g fixes the identity of An and hence
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g ∈ Aut(An). So m(Hol(An)) ≥ m(Aut(An)) and therefore m(Hol(An)) = m(Aut(An)).

By the definition of the action, g fixes exactly |CAn(g)| points and so m(Hol(An)) =

|An| − |CAn(g)|. By the definition of minimal degree, |CAn(g)| is the maximum number of

fixed points over all g ∈ Aut(An) with g 6= 1. Let τ be the automorphism induced by the

transposition (n − 1, n). Since (n − 1, n) centralises itself and An−2, we have that τ has

(n−2)! fixed points. So m(Aut(An)) ≤ n!/2−(n−2)!. It is clear that the transpositions of

Sn centralise the most number of elements of An. Therefore m(Aut(An)) = n!/2−(n−2)!.

For n = 6, it can be calculated by using a computer program such as GAP, that

m(Hol(An)) = m(Aut(An) = n!/2 − (n − 2)!. Therefore m(Hol(An)) = m(Aut(An)) =

n!/2− (n− 2)! for all n ≥ 5.

8. Proof of Theorem 6.1

We can finally prove Theorem 6.1.

Proof. We prove the parts of Theorem 6.1 consecutively. Let K be the plinth of G,

let c = |CG(K)|, and let C be the set of CG(K)-orbits in Ω.

1. Let g ∈ G be a p-cycle of Ω. Let α1, α2, . . . , αp ∈ Ω be such that αg
1 = α2, . . . , α

g
p−1 = αp

and αg
p = α1. For all i = 1, . . . p, let ∆i = α

CG(K)
i . Now if |Ω| = p, then G is clearly

primitive (since the size of a block for G divides the size of Ω). Suppose |Ω| > p. Since

CG(K) is semiregular, g /∈ CG(K) and hence G 6= CG(K). By Lemma 1.1(4), K acts

faithfully on C and hence G acts nontrivially on C. Also, CG(K) is the kernel of the action

of G on C (by Lemma 1.1(4)) and hence g induces a p-cycle ∆1, . . . ,∆p on C.

Now the points in the union of the ∆i must consist wholly of elements of the p-cycle,

α1, . . . , αp, otherwise g would fix a point in one of the ∆i and hence fix an orbit in its

action on C (and the ∆i would not be pairwise distinct). So the size of the orbits must

divide p. Since the ∆i are distinct, the orbits in C must be singleton sets, and hence

CG(K) = 1. Therefore G is quasiprimitive by Lemma 1.1(1) and so G is primitive by the

proof of Praeger and Shalev’s result [10, Theorem 2.1].

2. Suppose that G is not quasiprimitive, so by Lemma 1.1(1), 1 < c < n. Let g ∈ G be

an element of order p with q cycles of length p in Ω (where 2 ≤ q < p), and let f be the

number of fixed points of g in Ω, that is, f = n − qp. If f = 0, that is n = qp, then (i)

holds. Suppose f > 0. Then g /∈ CG(K) since CG(K) is semiregular and g fixes at least
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one point. So by Lemma 1.1(4), G acts nontrivially on C with kernel CG(K) and hence

g 6= 1 and each cycle of g of length p in C corresponds to c cycles of length p of g in Ω.

Since q < p, it follows that g has q′ = q/c < p cycles of length p in C, and f ′ = f/c fixed

points in C. Now GC acts quasiprimitively on C, and so by Praeger and Shalev’s result,

one of the following holds:

(a) f ′ ≤ 5q′/2− 2,

(b) GC = An/c or Sn/c,

(c) GC = Ad or Sd on ordered pairs (n/c =
(

d
2

)
, d ≥ p, q′ = d− (p + 1)/2).

In the first case, f/c ≤ 5 q
2c − 2 and hence f ≤ 5q/2− 2c ≤ 5q/2− 2, so (i) holds. Suppose

now that (b) holds. By Lemma 7.2 either G is of Almost Simple Quotient type and

Am−1×Am ≤ G ≤ (Am−1×Am).2 where m = n/c > 5, or n = 15 and c = 3. In the latter

case, computer calculations (in GAP) show that (p, q) ∈ {(3, 5), (3, 7), (5, 3)} and hence

(i) holds. In the former case, p > c = |Am−1|, and since m ≥ p we have p > 1
2((p − 1)!)

which is impossible for p ≥ 5. Hence p = 3, but in this case m ≥ 6 and again this is not

true.

Finally, consider case (c). Here q′ = d − (p + 1)/2 ≥ (p − 1)/2 and as q = cq′ < p, it

follows that c = 2, q = p−1, and d = p. In this case g has no fixed points on C, and hence

no fixed points on Ω, and (i) holds.

3. If G contains a 3-cycle, then by Theorem 6.1(1), G is primitive and the conclusion

follows from Bochert’s result. If G does not contain a 3-cycle, then by Bochert’s original

argument (see [2] or [3, Theorem 3.3B]), we have that |G| ≤ n!/((n + 1)/2)!. (The author

would like to thank Dr. Peter M. Neumann for suggesting the proof of this result.)

4. Recall that GC acts faithfully and quasiprimitively on C, and so by Praeger and Shalev’s

result [10, Theorem 4.2], if GC does not contain An/c, then |G| = c|GC | < c4n/c. Now if

c4m/c ≤ 4m for some m ≥ c, then c4(m+1)/c = c4m/c41/c ≤ 4m41/c ≤ 4m+1. The smallest

case, m = c, holds since c41 = 4c ≤ 4c. So by induction, we see that c4m/c ≤ 4m for all

m ≥ c. Therefore |G| < 4n.

So assume now that An/c ⊆ GC . By Lemma 7.2, one of the following holds: G is

quasiprimitive, G is isomorphic to a subgroup of (An/c−1 × An/c).2, or n = 15 and c = 3.

In the first case, the result holds by [10, Theorem 4.2]. In the latter case, |G| = c|GC | ≤

3 × 5! = 360 < 415. In the case that G is embedded in (An/c−1 × An/c).2, recall that
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n = (n/c)!/2 since the plinth An/c is regular, and hence |G| ≤ n2/2. Now n 7→ 4n − n2

is an increasing function on the natural numbers, and is equal to 3 when n = 1. So

4n − n2 > 0 for all positive integers n and hence |G| < 4n.

5. Since GC is quasiprimitive on C, by Praeger and Shalev’s result [10, Theorem 4.4] (which

depends on Cameron’s result and hence the Classification of Finite Simple Groups), there

exist constants d and d′ such that either |GC | ≤ (n/c)d log(n/c) or, for positive integers m,

k, l such that k ≤ d′, l ≤ d′ and m > 4d′, we have GC ≤ Sm wr Sl with KC = Al
m and

(Am−k)l ≤ KC
∆ ≤ (Sm−k × Sk)l ∩K (for some ∆ ∈ C). In the former case, |G| = c|GC | ≤

c(n/c)d log(n/c) ≤ nd log(n), and we have that (i) holds.

So assume that we are in the second case and let J = (Am−k)l < K (note KC ∼= K).

Since J is a minimal normal subgroup of K∆, we have two cases; namely J ∩ Kα = 1

or J ≤ Kα. In the latter case, |CG(K)| = |K∆|/|Kα| (by Lemma 1.1(1)) and K∆ ≤

NK(Kα) ≤ NK(Al
m−k) = (Sm−k × Sk)l ∩ K and hence |CG(K)| ≤ (k!)l ≤ (d′!)d′ . So (ii)

holds. So suppose that J ∩Kα = 1. Then |J | divides |K∆ : Kα| and hence ((m− k)!/2)l

divides c. Now

|G| = c|GC | ≤ c(m!)ll! =
n(m!)ll!

( m
k )l

= n(l!) (k!(m− k)!)l

≤ n(l!)(k!)l2lc ≤ nc(d′!)(d′!)d′2d′ = nc2d′(d′!)d′+1

≤ n2b(d′)

where b(d′) = 2d′(d′!)d′+1. (We could replace the constant d′, given by [10, Theorem 4.4],

with b(d′).) So we have that G satisfies (i).

6. If An/c * GC , then by Lemma 7.3, b(G) = bΩ(G) ≤ bC(G) = 4(n/c)1/2 log(n/c) ≤

4
√

n log(n). On the other hand, if An/c ⊆ GC , then by Lemma 7.2 one of the following

holds: G is quasiprimitive, G ≤ Hol(Am) for some m ≥ 5, or n = 15. In the third case,

b(G) ≤ 15 ≤ 4
√

15 log(15). If G ≤ Hol(Am) (where m ≥ 5), then b(G) ≤ b(Hol(Am)).

Now Hol(Am) is primitive (as the point stabilizer of 1 in Hol(Am) is Aut(Am), which is

maximal in Hol(Am)), and so it follows from Babai’s result that b(G) ≤ 4
√

n log(n). If

G is quasiprimitive, then by Praeger and Shalev’s result [10, Lemma 5.1], either b(G) ≤

4
√

n log(n) or G contains An.

7. Suppose GC does not equal An/c or Sn/c. Then by Theorem [10, Theorem 7.2] and

Lemma 7.3, mΩ ≥ c · mC(G) ≥ c(
√

n/c − 1)/2 ≥ (
√

n − 1)/2. Suppose now that GC ∈

{An/c, Sn/c}. Then by Lemma 7.2, one of the following holds: G is quasiprimitive, G is of
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Almost Simple Quotient type and K is regular, or c = 3 and n = 15. In the third case,

m(G) ≥ 2 as G acts faithfully on Ω, and hence m(G) ≥ (
√

15−1)/2. If G is quasiprimitive,

then by [10, Theorem 7.2], either m(G) ≥ (
√

n− 1)/2 or G contains An. Now we turn to

the case where G is of Almost Simple Quotient type with a regular plinth. Note that G is

permutationally isomorphic to a subgroup of Hol(An/c) acting naturally on An/c, and so

by Theorem 7.4, m(G) ≥ (n/c)!/2− (n/c− 2)! ≥ (
√

n− 1)/2.

9. Quotient actions of innately transitive groups

If G acts quasiprimitively on Ω, then the kernel E of the action of G on a G-invariant

partition B of Ω, is an intransitive normal subgroup of G. So we must have that E = 1

and hence GB is quasiprimitive and isomorphic to G. However, the quasiprimitive types

for GΩ and GB may be different. The possible types for GΩ and GB were determined by

Cheryl Praeger in [7, Theorem 1], which we recast below.

Theorem 9.1 (Praeger). Let G be an imprimitive quasiprimitive permutation group

of type X on a finite set Ω, and let B be a non-trivial G-invariant partition of Ω. Then GB

is quasiprimitive of type XB, where XB ∈ {AS, SD, CD,PA}, X ∈ {AS, SD, CD, TW,

PA}, and the (X, XB)-entry in the Quotient Action Matrix in Figure 2 is the symbol X.

Conversely, if the symbol Xoccurs in the (X, Y )-entry, then there exists a finite imprimitive

quasiprimitive group of type X with a non-trivial quotient action of type Y .

AS SD CD PA

AS X × × ×

SD × × X ×

CD × × X ×

TW × X X X

PA × X X X

Table 2. Quotient Action Matrix

Now if instead G is innately transitive on Ω, it is not necessarily true this time that

the kernel of the action of G on B is trivial. We generalise Praeger’s theorem below.

Theorem 9.2. Let G be an imprimitive innately transitive permutation group of type

X on a finite set Ω, let H be a finite permutation group on set Γ, and let (θ, µ) be a faithful
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permutational transformation from GΩ to HΓ. Then (G)θ is innately transitive on (Ω)µ of

type Y , where X, Y ∈ {AS, ASQ, TQ, SD, CD,PA, DQ,PQ}, and the (X, Y )-entry in the

Quotient Action Matrix in Figure 3 is the symbol X. Conversely, if the symbol Xoccurs in

the (X, Y )-entry, then there exists an innately transitive group of type X with a quotient

action of type Y .

AS ASQ TW SD CD PA DQ PQ

AS X × × × × × × ×

ASQ X X × × × × × ×

TW × × X X X X × ×

SD × × × X X × × ×

CD × × × × X × × ×

PA × × × X X X × ×

DQ × × × X X X X ×

PQ × × × X X X × X

Table 3. Quotient Action Matrix

Proof. First recall that (G)θ is innately transitive with plinth (K)θ and (K)θ is

isomorphic to K. So (K)θ is simple if and only if K is simple, and hence X ∈ {AS, ASQ}

if and only if Y ∈ {AS, ASQ}. By Lemma 5.2, if (K)θ is regular then K is regular.

Hence if Y ∈ {TW,DQ,PQ} then X ∈ {TW,DQ,PQ}. We also know that if GΩ is

primitive (resp. quasiprimitive) then (G)θ(Ω)µ is primitive (resp. quasiprimitive). Since

GΩ is imprimitive, GΩ and (G)θ(Ω)µ are not of Abelian Plinth, Holomorph of a Simple

Group, or Holomorph of a Compound Group type. So far we have ruled out values of

(X, Y ) indicated in the following table.
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AS ASQ TW SD CD PA DQ PQ

AS X × × × × × × ×

ASQ X × × × × × ×

TW × × X × ×

SD × × × X × ×

CD × × × X × ×

PA × × × X × ×

DQ × × X

PQ × × X

Table 4. Impossibilities thus far.

So suppose now that K is non-simple, and let α ∈ Ω and ∆ = αker θ. Note for all

x ∈ ker θ, that (αx)µ = (α)µ(x)θ = (α)µ and hence (∆)µ = {(α)µ}. So for all y ∈ K∆,

we have (α)µ(y)θ = (αy)µ ∈ (∆)µ = {(α)µ} and hence (K)θ(α)µ contains (K∆)θ. Now by

comparing orders (and using Lemma 7.1) we see that (K)θ(α)µ is equal to (K∆)θ:

|(K)θ(α)µ| = |(K)θ|/|(Ω)µ| = |(K)θ|| ker θ|/|Ω|

= |K|||K∆ : Kα|/|K : Kα| = |K∆|.

In the case that X ∈ {DQ, PQ}, we have that G is not quasiprimitive and hence CG(K)

is nontrivial. Thus K∆ is nontrivial and (K)θ is not regular. So if X ∈ {DQ, PQ},

then Y /∈ {TW,DQ,PQ}. The only cases we must rule out now are (X, Y ) = (SD,PA),

(X, Y ) = (CD,SD), and (X, Y ) = (CD,PA).

Suppose Kα is a subdirect subgroup of K. By the proof of [1, Proposition 5.5], Kα is

self-normalising and hence Kα = K∆ (by Lemma 7.1). Thus it follows that (K)θ(α)µ is

a subdirect subgroup of (K)θ. So if X ∈ {SD,CD} then Y ∈ {SD,CD}, and (X, Y ) /∈

{(SD,PA), (CD,PA)}. Finally, suppose (X, Y ) = (CD,SD). Then (K∆)θ is a full

diagonal subgroup of (K)θ. So in particular, (K∆)θ is isomorphic to each simple direct

factor of (K)θ. This implies that K∆ is isomorphic to a simple direct factor of K, and

hence K∆ is simple. However, Kα is a proper nontrivial normal subgroup of K∆ – a

contradiction. Therefore (X, Y ) 6= (CD,SD) in this case.

This analysis verifies that the crossed entries in Table 3 are correct. Next we prove

that examples exist for each checked entry in Table 3. By Praeger’s Theorem, we have

examples for most of our table except the cases X = ASQ, PQ, DQ. We complete the
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table with the following examples.

X=ASQ: Let G be an innately transitive group of Almost Simple Quotient type (for an

example, see Example 3) and let C be the set of orbits of the centraliser of the plinth of

G. Then GC is quasiprimitive of Almost Simple type as the plinth of GC is isomorphic to

the plinth of G. So we have examples where (X, Y ) = (ASQ, AS).

X=PQ: Let G be an innately transitive group on a set Ω with plinth K, and suppose

G is of Product Quotient type. Let C be the orbits of CG(K). Then the stabiliser K∆

of an element ∆ ∈ C is not a subdirect subgroup of K. Therefore GC is quasiprimitive

of Product Action type. Now consider the example given in Example 4 for X = PA. If

one chooses S = 1, then G = Diag(Rk)× (T wrA) is innately transitive on Ω of Product

Quotient type. The centraliser of K in G is C and GC is precisely the quasiprimitive

group of Product Action type given in [7, Example 5]. In this example, Praeger shows

that GC has quasiprimitive quotient actions of Simple Diagonal and Compound Diagonal

type. Hence our group G also has quotient actions of Simple Diagonal and Compound

Diagonal type.

X=DQ: Let G be an innately transitive group on a set Ω with plinth K, and suppose

G is of Diagonal Quotient type. Let C be the orbits of CG(K). Then by Lemma 1.1(2)

(or Lemma 7.1) the stabiliser K∆ of an element ∆ ∈ C is a subdirect subgroup of K.

Therefore GC is quasiprimitive of Diagonal type. The innately transitive group G in

Example 2 is an example where GC is of Diagonal type. In this example, if m = 1 then

GC is of Simple Diagonal type, otherwise GC is of Compound Diagonal type. We will

show now that there is an example where (X, XB) = (DQ, PA). Take Example 2 where

G = K o [(A × Sk/m) wrSm], C = Diag(T k/m), and CG(K) = Cm (in the left regular

representation of K). Let M be a proper nontrivial subgroup of Cm in the right regular

representation of K. So M is a diagonal subgroup of K, but is not subdirect. Now G acts

on B = [G : G1M ], where G1 is the stabiliser in G of the identity element, and induces an

innately transitive group on B with plinth K. Since M is a point stabiliser for the plinth

in this action, and M is nontrivial and not subdirect, it follows that GB is of Product

Action type.

Therefore, examples exist for each checked entry in Table 3.
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