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Abstract. A finite permutation group is said to be innately transitive if it contains a transitive

minimal normal subgroup. In this paper, we give a characterisation and structure theorem for

the finite innately transitive groups, as well as describing those innately transitive groups which

preserve a product decomposition. The class of innately transitive groups contains all primitive

and quasiprimitive groups.
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1. Introduction

The result known as the O’Nan-Scott Theorem (see [12, 16]) describes the structure of finite

primitive permutation groups up to permutational isomorphism. Its applications have had sig-

nificant consequences for problems within permutation group theory and in combinatorics (for a

survey, see [13]). In 1992, the second author proved a similar theorem for a larger class of finite

permutation groups called quasiprimitive groups (see [14]). A permutation group is quasiprimi-

tive if all of its minimal normal subgroups are transitive. In particular, every primitive group is
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quasiprimitive but the converse is not true. This theorem for quasiprimitive groups has been used

to study finite 2-arc transitive graphs [14], line-transitive linear spaces [6], and to study Weiss’s

Conjecture for locally primitive graphs [7]. One of the aims of this paper is to prove an extension

of these results to an even larger class of finite permutation groups, which we introduce.

A finite permutation group G is innately transitive if it has a transitive minimal normal sub-

group. We call this subgroup a plinth of G. Every innately transitive group has at most two

transitive minimal normal subgroups (see Lemma 5.1), and if there are two, then they are regular

and isomorphic, and there is a permutational isomorphism of G that interchanges them. So up

to permutational isomorphism, any of the at most two minimal normal subgroups of G can be

taken to be the plinth of G. Clearly every finite quasiprimitive permutation group is innately

transitive. Innately transitive groups occur naturally as overgroups of quasiprimitive groups and

they also provide a natural setting for studying embeddings of subgroups of wreath products in

their product action (see [3]). It was proved recently by Michael Giudici [9] that the Polycirculant

Conjecture is true for innately transitive groups (see also [5]).

L. G. Kovács [11] introduced a “blow-up” construction for so-called primitive groups which pre-

serve a product decomposition of the underlying set. Each primitive group of product action type

can be constructed as a “blow-up” of smaller primitive groups. The construction was generalised

in [2] to a blow-up construction for quasiprimitive permutation groups that produces such groups

of product action type that preserve a Cartesian decomposition of the underlying set. However not

all quasiprimitive groups of Product Action type can be constructed by this method. We resolve

this problem in the context of innately transitive groups (see Proposition 11.1).

Define an innate triple to be an ordered triple (K,ϕ,L) consisting of a characteristically simple

group K, a subgroup L of Aut(K), and a certain epimorphism ϕ with domain the subgroup of

K corresponding to L ∩ Inn(K) if K is nonabelian, or domain K if K is abelian (see Definition

6.1). In Construction 6.6, we give a method of constructing innately transitive groups that takes

as input an innate triple. The first major result of this paper, Theorem 1.1, proves that up to

permutational isomorphism, each finite innately transitive group can be produced by Construction

6.6. Thus Theorem 1.1 is an abstract and constructive characterisation of finite innately transitive

permutation groups. The proof is given in Section 7.

Theorem 1.1. Every finite innately transitive permutation group is permutationally isomorphic

to an innately transitive group given by Construction 6.6, and every permutation group given by

this construction is innately transitive.

The second major result of this paper, Theorem 1.2, is similar to the structure theorems for finite

primitive and quasiprimitive groups (see [12, 16] and [14]). It shows that the innately transitive



GROUPS WITH A TRANSITIVE MINIMAL NORMAL SUBGROUP 3

groups may be partitioned into a number of disjoint types. These types are defined in Section 3,

and are presented in a different style and case subdivision from that in [12], [16], or [14].

Theorem 1.2. Every finite innately transitive permutation group is permutationally isomorphic to

a group of one of the five types described in Section 3. Moreover, every group described in Section

3 is innately transitive.

We give an outline of the proof of this theorem in Section 8 and complete its proof in Section

10 after examining the different types of non-quasiprimitive innately transitive groups in Sections

9 and 10.

Peter Cameron in his book [4, p. 103], calls a primitive permutation group G basic if it is not

contained in a wreath product acting by product action. He then states a version of the O’Nan-

Scott Theorem in terms of basic groups and a wreath product construction. Non-basic primitive

permutation groups can be described as subgroups of wreath products G0 wrSk in product action

where G0 is a basic primitive permutation group. We need a different definition of basic for

quasiprimitive groups. The non-basic finite quasiprimitive groups G are those which act (faithfully)

on a G-invariant point partition as a subgroup of a wreath product in product action.

One can extend this notion to innately transitive groups. However the quotient action of G on

the point partition need not be faithful in this case. In Construction 9.1, we show how to define this

possibly unfaithful quotient of a non-basic innately transitive group. The quotient is a subgroup of

a wreath product of basic innately transitive groups in product action (see Proposition 9.2). Given

one of these quotients, Construction 9.6 gives a procedure for constructing nearly all non-basic

innately transitive groups corresponding to it (see Corollary 9.8). The non-basic innately transitive

groups not given by Construction 9.6 are either of Compound Diagonal type or Affine Plinth type,

which we do not discuss in detail since they are quasiprimitive and so their structure is well-known

(see [14]). The innate triples corresponding to the quotients given by Construction 9.6 are those

triples (K, ϕ̃, L̃) such that K is nonabelian, nonsimple, and Ker ϕ̃ is not a subdirect subgroup

of K. Given a supplement K0 of Ker ϕ̃ in Dom ϕ̃, a supplement in L̃ of the subgroup of Inn(K)

corresponding to Ker ϕ̃, and a normal subgroup of K0 contained in Ker ϕ̃, we can construct another

innate triple via Construction 9.6. From this output, we can construct an innately transitive group

via Construction 6.6.

The theorem below is similar to Cameron’s structure theorem in that we have separated the

basic and non-basic innately transitive groups. Essentially it shows that innately transitive groups

satisfying (1), (2), or (3) of Theorem 1.3 play the role of the basic examples with other examples

arising from a product type construction.
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Theorem 1.3. Let G be a finite innately transitive permutation group on a set Ω with plinth

K = T k (where T is a simple group). Then one of the following is true:

(1) K is abelian,

(2) K is simple,

(3) G is quasiprimitive of Simple Diagonal type,

(4) G is quasiprimitive of Compound Diagonal type, or

(5) G can be obtained by Construction 9.6 from a subgroup of a wreath product G0 wrSk where

G0 is innately transitive as in (2).

In Section 2, we give some standard definitions needed to understand the descriptions of the

innately transitive types given in Section 3. In Section 4 we give some basic results and background

theory. In Section 5 we explore the structure of innately transitive groups, and in Section 6 we give

a general method for constructing innately transitive groups namely Construction 6.6. Theorem

1.1 is proved in Section 7 and in Section 8 we give a framework for proving Theorem 1.2. We then

characterise a particular class of innately transitive groups in Section 9. We also prove Theorem

1.3 in this section. In Section 10, we give details of the structure of innately transitive groups

with a regular plinth and complete the proof of Theorem 1.2. Finally Section 11 contains some

observations and commentary on our results.

2. Preliminaries

First we give some preliminary definitions. A permutation group G on Ω is semiregular if the

only element fixing a point in Ω is the identity element of G. In this situation, if α ∈ Ω, then

the map defined by g 7→ αg for all g ∈ G, is injective. We say that G is regular on Ω if it is

both transitive and semiregular on Ω. Let G be a group acting transitively on a finite set Ω. A

nonempty subset ∆ of Ω is called a block for G if for each g ∈ G, either ∆g = ∆ or ∆g ∩∆ = ∅.

We call {∆g : g ∈ G} a block system for G. We say that G is primitive if the only blocks for G

are the singleton subsets or the whole of Ω. Given a block system Σ, the group G acts naturally

on Σ. We denote the induced permutation group by GΣ. It is a standard result from permutation

group theory that the orbits of a normal subgroup N of G form a block system Σ for G. In this

case, GΣ is isomorphic to the factor group G/N̂ where N̂ is the kernel of the action of G on Σ,

and of course N̂ contains N .

Let G be a group acting on a set Ω and H be a group acting on a set ∆. Then G on Ω is

permutationally isomorphic to H on ∆ if there is an isomorphism θ : G → H and a bijection

β : Ω → ∆ such that for all g ∈ G and ω ∈ Ω, we have (ωg)β = (ω)β(g)θ. The pair (θ, β) is called

a permutational isomorphism. If G and H are both transitive, then they are permutationally
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isomorphic if and only if there is an isomorphism θ : G → H such that θ maps a point stabiliser

of G onto some point stabiliser of H. In particular, if G and H are both subgroups of Sym(Ω)

for some set Ω, then G and H are permutationally isomorphic if and only if they are conjugate in

Sym(Ω).

Let g ∈ G, and let ρg, λg, and ιg be the permutations of G defined by (x)ρg = xg, (x)λg = g−1x,

and (x)ιg = g−1xg = (x)λg ◦ ρg for x ∈ G. The right regular representation of G is the subgroup

of Sym(G) defined by GR := {ρg : g ∈ G}. Similarly, the left regular representation of G is the

subgroup of Sym(G) defined by GL := {λh : h ∈ G}. The map ιg is called an inner automorphism

of G, and the set of all ιg, denoted Inn(G), is called the inner automorphism group of G. For

every group V and subgroup U , define InnU (V ) = {ιu ∈ Inn(V ) : u ∈ U}. In particular, note that

Inn(V ) = InnV (V ).

The Holomorph of a group X, denoted Hol(X), is the subgroup of Sym(X) generated by XR and

the automorphism group of X, which we denote Aut(X). It follows that Hol(X) is the semidirect

product ofXR and Aut(X), with respect to the natural action of Aut(X) onXR, and we can readily

deduce that Hol(X) = NSym(X)(XR), XL = CSym(X)(XR), and XR = CSym(X)(XL). Furthermore,

if X has a trivial centre, then 〈XL, XR〉 = XL × XR = XR o Inn(X). If G ≤ Sym(Ω) and G

has a regular normal subgroup X, then G on Ω is permutationally isomorphic to a subgroup Ĝ of

Hol(X) on X via an isomorphism θ : G → Ĝ such that (X)θ = XR and bijection β : αx 7→ x (for

some fixed α ∈ Ω).

A group is said to be almost simple if it has a non-abelian simple unique minimal normal

subgroup. If a group G has a normal subgroup K such that CG(K) = 1 (for example, if G is

almost simple with minimal normal subgroup K), then G can be embedded in Aut(K) such that

its image contains Inn(K).

The core of a subgroup H of G is the intersection of all G-conjugates of H. This is the largest

normal subgroup of G contained in H and we write it as CoreG(H). We say that H is corefree in G

if CoreG(H) = 1. Let
∏
i∈I Hi be a direct product of groups. We will denote by πj :

∏
i∈I Hi → Hj

the natural projection map for all j ∈ I. A group G is a subdirect product of
∏
i∈I Hi if there is

an embedding φ : G →
∏
i∈I Hi such that φ ◦ πj : G → Hj is an epimorphism for each j ∈ I. In

the case that G is a subgroup of
∏
i∈I Hi and φ is the inclusion map, we say that G is a subdirect

subgroup of
∏
i∈I Hi. If G is a subgroup of

∏
i∈I Hi, we say that G is a diagonal subgroup of∏

i∈I Hi if the restriction of πj to G is injective for each j ∈ I. We say that G is a full diagonal

subgroup of
∏
i∈I Hi if G is both a subdirect and diagonal subgroup of

∏
i∈I Hi. In this case, the

direct factors Hi are isomorphic to a common group H. If I = {1, . . . , n}, then each full diagonal

subgroup G of
∏
i∈I Hi is of the form {((h)γ1, (h)γ2, . . . , (h)γn) : h ∈ H} where for each i ∈ I, γi
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is an isomorphism from H onto Hi. If for each i ∈ I, Hi = H and γi is the trivial isomorphism,

then we call G the straight diagonal subgroup of Hn.

The graph of a homomorphism ϕ : B → A is the subgroup of A × B defined by Graph(ϕ) :=

{((b)ϕ, b) : b ∈ B}. It follows that if ϕ is an isomorphism, then Graph(ϕ) is a full diagonal subgroup

of A×B.

Let A be a group and let B be a subgroup of Sn. Then the wreath product AwrB of A and

B is the semidirect product An o B where the action of B on An is defined by (a1, . . . , an)b
−1

=

(a1b , . . . , anb) for all (a1, . . . , an) ∈ An and b ∈ B. The subgroup An of AwrB is known as the

base group and the subgroup B is known as the top group.

Suppose now that A ≤ Sym(Γ). Then there is a well-defined action of AwrB on Γn known

as the product action, where the base group acts coordinate-wise and the top group permutes the

coordinates. Specifically, for all (γ1, . . . , γn) ∈ Γn, (a1, . . . , an) ∈ An, and b ∈ B,

(γ1, . . . , γn)(a1,...,an) = (γa1
1 , . . . , γann ), and (γ1, . . . , γn)b

−1
= (γ1b , . . . , γnb).

For 1 ≤ i ≤ n, let pi : Γn → Γ be the natural projection map (γ1, . . . , γn) 7→ γi. Then Γi =

{(γ)p−1
i : γ ∈ Γ} is a partition of Γn, and it is well-known (see for example [4, pp. 103]) that

Sym(Γ) wrSn in product action, is the full stabiliser in Sym(Γn) of the set {Γi : 1 ≤ i ≤ n}.

3. Description of Types

In the following, G is a permutation group on a finite set Ω with K a normal subgroup of G

and α ∈ Ω. We will suppose K = T k where T is a finite simple group and k a positive integer.

Theorem 1.2 states that every finite innately transitive group belongs to the following list of types,

and moreover, the categories in the list are disjoint and exhaustive, and every group G that belongs

to the list is innately transitive with plinth K.

Abelian Plinth Type. Here Ω is a k-dimensional vector space over a field of prime order p, that

is, Ω = Zkp and G = K o G0 where K is the group of all translations and G0 is an irreducible

subgroup of GL(k, p) (the group of automorphisms of the additive group of Ω). So G is contained

in the holomorph of K, that is, G ≤ K oGL(k, p) = AGL(k, p). The subgroup K is regular on Ω

and elementary abelian. In this case, G is primitive.

Simple Plinth Type. In this case, K is a non-abelian simple group, G = KGα, and Gα 6≥ K.

There are three subtypes:

(1) Holomorph of a Simple Group Type

Here Ω = K and Inn(K) ≤ Gα ≤ Aut(K). So G is contained in the holomorph of K, that

is, K o Inn(K) ≤ G ≤ K o Aut(K) = Hol(K). In this case, G is primitive.
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(2) Almost Simple Type

In this case CG(K) = 1 and K ∼= Inn(K) ≤ G ≤ Aut(K), that is, G is almost simple.

(3) Almost Simple Quotient Type

Here CG(K) 6= 1 and G 6= CG(K)Gα.

Regular Plinth Type. In this case, K is non-abelian, non-simple, and Ω = K. There is an

isomorphism ϕ from a subgroup K0 of K onto CG(K). Here G = K o Gα where Graph(ϕ) E

Gα ≤ Aut(K) = Aut(T )wrSk, Gα projects onto a transitive subgroup of Sk, and Gα intersects

Inn(K) in Graph(ϕ). So G is contained in the holomorph of K, that is, K o Graph(ϕ) E G ≤

K o Aut(K) = Hol(K). Moreover, G is conjugate in Sym(K) to a subgroup of V wrSk in product

action, where V is innately transitive with regular plinth T . In particular, we have four subtypes:

(1) Twisted Wreath Type

Here Graph(ϕ) is trivial, V is of Almost Simple type, and K is the unique minimal normal

subgroup of G. Thus G is quasiprimitive.

(2) Product Quotient Type

In this case, Graph(ϕ) is nontrivial and not subdirect in Inn(K), and V is of Almost Simple

Quotient type.

(3) Diagonal Quotient Type

Here Graph(ϕ) is a proper subdirect subgroup of Inn(K) and V is of Holomorph of a

Simple Group type. Moreover CG(K) is a direct product of m full diagonal subgroups of

T k/m for some proper divisor m of k, and G ≤ NHol(K)(CG(K)) = Ko [(A×Sk/m) wrSm],

Graph(ϕ) = Bm, where A and B are full diagonal subgroups of Aut(T )k/m and Inn(T )k/m

respectively, and the projection of Gα onto Sk/m wrSm is transitive.

(4) Holomorph of a Compound Group Type

For this case, Graph(ϕ) is equal to Inn(K), V is of Holomorph of a Simple Group type,

and G is primitive.

Product Type. There is a G-invariant partition Ψ of Ω and Ψ is the cartesian product of k copies

of a set Ψ0. Also there is an innately transitive permutation group A on Ψ0 of Almost Simple or

Almost Simple Quotient type with non-regular plinth T . Choose ψ0 ∈ Ψ0 and set U := Tψ0 . For

ψ = (ψ0, . . . , ψ0) ∈ Ψ, we have Kψ = Uk, and for α ∈ ψ, the point stabiliser Kα is a subdirect

subgroup of Uk with index the size of a cell in Ψ. Replacing G by a conjugate in Sym(Ω) if

necessary, we may assume that GΨ ≤ AwrSk ≤ Sym(Ψ0) wrSk. The point stabiliser Gα projects

onto a transitive subgroup of Sk.

Diagonal Type. In this case, K is non-simple, non-regular, a stabiliser Kα is a subdirect sub-

group of K, and CG(K) = 1. Thus G is quasiprimitive. We have Ω = ∆l and K = T k ≤ G ≤
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B wrSl ≤ Sym(∆)wrSl, in product action, for some proper divisor l of k where B is a quasiprim-

itive permutation group on ∆ with plinth T k/l, and G projects onto a transitive subgroup of Sl.

In particular, G is quasiprimitive and we have two subtypes:

(1) Simple Diagonal Type

Here l = 1 and Kα is a full diagonal subgroup of K. For more details see [14].

(2) Compound Diagonal Type

In this case, l > 1 and B is of Simple Diagonal type.

Remarks 3.1.

(i) In forming this case subdivision, the first consideration was the abstract group theoretical struc-

ture of the plinth K. In the case where K is nonsimple and nonabelian, we make a further case

subdivision according to the structure of a point stabiliser of K. This approach is similar to that

of the structure theorem for primitive and quasiprimitive groups.

(ii) The Regular Plinth Type is not the only case where an innately transitive group can have a

regular plinth. The types preceding this case in the subdivision, namely Abelian Plinth Type and

Simple Plinth Type may contain innately transitive groups with a regular plinth. In fact, every

group of the former type has a regular plinth.

(iii) The Almost Simple Quotient Type, Product Quotient Type, and Diagonal Quotient Type are

so named because any group of one of these types has a quotient action (on the orbits of CG(K))

which is quasiprimitive of either Almost Simple Type, Product Type, or Diagonal Type. See Section

11(4) for more details.

4. Fundamental Theory

First we restate some well-known or easily proven results, the first of which is the structure

theorem for finite quasiprimitive permutation groups which appeared in the second author’s paper

[14, Theorem 1].

Theorem 4.1 (Structure Theorem for Quasiprimitive Groups.).

Let G be a finite quasiprimitive permutation group and let K be a minimal normal subgroup. Then

G is permutationally isomorphic to a quasiprimitive group in exactly one of the following types

described in the previous section:

(1) Abelian Plinth Type,

(2) Holomorph of a Simple Group Type,

(3) Holomorph of a Compound Group Type,

(4) Almost Simple Type,
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(5) Twisted Wreath Type,

(6) Diagonal Type, or

(7) Product Type (with CG(K) = 1).

Now we give a lemma that can be found in Wielandt’s classic text [17, Proposition 4.3 and

Ex.4.5] and in the contemporary text of Dixon and Mortimer [8, Ex.4.2.7]. If K is a subgroup of

Sym(Ω), then the full centraliser of K is the subgroup CSym(Ω)(K).

Lemma 4.2. Let Ω be a finite set. Then

(1) A subgroup of Sym(Ω) is semiregular if and only if its full centraliser is transitive.

(2) The full centraliser of a transitive subgroup of Sym(Ω) is semiregular.

The second statement above follows from the first. The next lemma is a simple but useful result.

Lemma 4.3. Let G and G′ be groups with normal subgroups K and K ′ respectively. Let θ be an

epimorphism from G onto G′ which restricts to an isomorphism of K onto K ′. Then CG′(K ′) =

(CG(K))θ.

Proof. Let g′ ∈ CG′(K ′) and k′ ∈ K ′. Since θ is an epimorphism, g′ = (g)θ for some g ∈ G,

and since θ restricts to an isomorphism of K onto K ′, we have k′ = (k)θ for some k ∈ K. Since

g′ ∈ CG′(K ′), we have 1 = (g′)−1(k′)−1g′k′ = (g−1k−1gk)θ and hence g−1k−1gk ∈ Ker θ ∩K = 1.

Since this holds for all k′ ∈ K ′, and hence for all k ∈ K, we conclude that g ∈ CG(K). Therefore

CG′(K ′) ≤ (CG(K))θ. Now let g ∈ CG(K) and let k′ ∈ K ′. Then there exists k ∈ K such

that k′ = (k)θ and hence ((g)θ)−1k′(g)θ = (g−1kg)θ = (k)θ = k′. So (g)θ ∈ CG′(K ′) and hence

CG′(K ′) = (CG(K))θ. �

The first part of the following lemma comes from a result of Scott (see [16, Lemma, p. 328]),

and the second result can be found in [10, Proposition 5.2.5(i)].

Lemma 4.4. Let K be a finite direct product
∏
i∈I Ti of finite non-abelian simple groups, and let

M be a subgroup of K.

(1) If M is a subdirect subgroup of K, then M is the direct product
∏
Mj of full diagonal

subgroups Mj of subproducts
∏
i∈Ij Ti where the Ij form a partition of I.

(2) If M is a normal subgroup of K, then M =
∏
j∈J Tj where J is a subset of I.

Consequently, we get the following result whose proof also follows from [8, Theorem 4.3A].

Lemma 4.5. Let G be a group and N be a non-abelian normal subgroup of G. Suppose that N

is a direct product of non-abelian simple groups T1, T2, . . . , Tk. Then G acts on {T1, T2, . . . , Tk} by
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conjugation. Moreover, G is transitive on {T1, T2, . . . , Tk} if and only if N is a minimal normal

subgroup of G.

Below is a simple result which was stated in Scott’s proof of Lemma 4.4(1).

Lemma 4.6. A full diagonal subgroup of a finite direct product of non-abelian simple groups is

self-normalising.

Proof. Let K = T1 × · · · × Tk where the Ti are non-abelian simple groups and let J be a full

diagonal subgroup of K. Then there exist isomorphisms γ2 : T1 → T2, . . . , γk : T1 → Tk such

that J = {(t, (t)γ2, . . . , (t)γk) : t ∈ T1}. In particular, the Ti are all isomorphic so we may take

T1 = · · · = Tk = T and then the γi ∈ Aut(T ).

Let (t1, . . . , tk) ∈ NK(J) and let (j, (j)γ2, . . . , (j)γk) ∈ J . Then (jt1 , ((j)γ2)t2 , . . . , ((j)γk)tk) ∈ J

and hence ((j)γi)ti = (jt1)γi = (j)γ(t1)γi
i for 2 ≤ i ≤ k. So since γi is bijective and j is an arbitrary

element of J , we have that (t1)γit−1
i ∈ Z(T ) for 2 ≤ i ≤ k. Now T is a non-abelian simple

group, and thus has trivial centre. Therefore ti = (t1)γi for 2 ≤ i ≤ k. So (t1, . . . , tk) ∈ J and

NK(J) = J . �

Let Γ be a finite set, let n be a positive integer, and let W := Sym(Γ) wrSn acting in product

action. Let µ : W → Sn be the natural projection map. One can think of µ as a permutation

representation of W . Let W1 be the point stabiliser of 1 in the induced action of W on {1, . . . , n}.

Note that W1 can be factorised as Sym(Γ) × (Sym(Γ) wrSn−1). Let ν be the natural projection

map of W1 onto the first factor Sym(Γ). Let G be a subgroup of W such that (G)µ is transitive.

The component of G is defined as the subgroup (G ∩W1)ν of Sym(Γ). Note that transitivity of

(G)µ implies that the component of G is independent of the choice of stabiliser G∩Wi (1 ≤ i ≤ n)

up to conjugacy in G. The following lemma is a restatement of a result of L. G. Kovács [11, (2.2)].

Lemma 4.7. Let W = Sym(Γ)wrSn and let G be a subgroup of W such that (G)µ is transitive.

Then G is conjugate by an element of Sym(Γ)n∩Ker ν = 1×Sym(Γ)n−1 to a subgroup of V wrSn,

where V is the component of G.

Now we consider extending a transitive action of a normal subgroup to one for the group.

Lemma 4.8. Let G be a group, K be a normal subgroup of G, and Y a subgroup of G such that

G = KY . Then G has a well-defined transitive action on [K : K ∩ Y ] given by

[(K ∩ Y )x]vy = (K ∩ Y )y−1xvy (∗)

for all x, v ∈ K and y ∈ Y . Further if K = T k for some nonabelian simple group T and integer

k ≥ 1, and K ∩Y = Uk for some U < T , then the permutation group induced by G on [K : K ∩Y ]

is permutationally isomorphic to a subgroup of Sym([T : U ]) wrSk in product action.
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Proof. First we show that the definition in (∗) is independent of the coset representative x and

the expression vy for an element of G. Suppose that v1y1 = v2y2 and (K ∩ Y )x1 = (K ∩ Y )x2

for some v1, v2, x1, x2 ∈ K and y1, y2 ∈ Y . Thus y1y−1
2 = v−1

1 v2 ∈ K ∩ Y . We must show that

[(K ∩Y )x1]v1y1 = [(K ∩Y )x2]v2y2 , that is, (K ∩Y )y−1
1 x1v1y1 = (K ∩Y )y−1

2 x2v2y2. Thus we need

to prove that K ∩ Y contains

z := (y−1
1 x1v1y1)(y−1

2 v−1
2 x−1

2 y2) = y−1
1 x1x

−1
2 y2 = (y−1

1 y2)y−1
2 (x1x

−1
2 )y2. (∗∗)

Since K ∩ Y is normalised by Y , we have y−1
1 y2 = y−1

1 (y1y−1
2 )−1y1 ∈ K ∩ Y and y−1

2 (x1x
−1
2 )y2 ∈

K ∩ Y . Thus the element z in (∗∗) lies in K ∩ Y .

Now we have to prove that we indeed have a group action. It is clear that the identity element

fixes each element of [K : K ∩ Y ]. Let v1, v2, u ∈ K and let y1, y2 ∈ Y . Then v1y1v2y2 =

v1(y1v2y−1
1 )y1y2 and hence

[(K ∩ Y )x](v1y1)(v2y2) = (K ∩ Y )(y1y2)−1xv1(y1v2y−1
1 )(y1y2).

Also

([(K ∩ Y )x]v1y1)v2y2 = [(K ∩ Y )y−1
1 xv1y1]v2y2

= (K ∩ Y )y−1
2 y−1

1 xv1y1v2y2

= (K ∩ Y )(y1y2)−1xv1(y1v2y−1
1 )(y1y2)

and therefore

([(K ∩ Y )x]v1y1)v2y2 = [(K ∩ Y )x](v1y1)(v2y2).

Now suppose K = T k 6= 1 for some nonabelian simple group T and integer k ≥ 1, and suppose

K ∩ Y = Uk for some U < T . Let Γ = [T : U ]. Note that we can identify [K : Uk] with Γk via the

bijection β : Uk(x1, . . . , xk) 7→ (Ux1, . . . , Uxk). Let G act on Γk by

(Ux1, . . . , Uxk)g =
((

(Ux1, . . . , Uxk)β−1
)g)

β

for all (Ux1, . . . , Uxk) ∈ Γk and g ∈ G. Clearly this action is well-defined and faithful. By

definition, the action of G on [K : Uk] is permutationally isomorphic to the action of G on Γk. It

remains to show that the subgroup of Sym(Γk) induced by the action of G on Γk, is contained in

Sym(Γ) wrSk (in product action). Note that Sym(Γ) wrSk (in product action) is the full stabiliser

in Sym(Γk) of the set of partitions P = {{(x)p−1
i : x ∈ Γ} | 1 ≤ i ≤ k} where pi : Ω → Γ is the

natural projection map (Ux1, . . . , Uxk) 7→ Uxi (see the end of Section 2). By Lemma 4.5, G acts

on the simple direct factors of K by conjugation, and so it follows that G stabilises P. Therefore

G is permutationally isomorphic to a subgroup of Sym(Γ)wrSk in product action. �



12 JOHN BAMBERG AND CHERYL E. PRAEGER

5. Exploring Innately Transitive Groups

In this section, we will explore some properties of innately transitive groups. As mentioned

earlier, we can choose any of at most two transitive minimal normal subgroups for a plinth. The

following lemma justifies this claim.

Lemma 5.1. Every finite permutation group G on Ω has at most two distinct transitive minimal

normal subgroups. Moreover, if K1 and K2 are distinct transitive minimal normal subgroups of G,

then CG(K1) = K2, CG(K2) = K1, and there is an involution of NSym(Ω)(G) that interchanges K1

and K2, and which also centralises a point stabiliser of G.

Proof. Suppose G has three distinct transitive minimal normal subgroups K1, K2, and K3. Then

each pair of the Ki intersect trivially and hence any two of them are contained in the centraliser of

the third. For example K2,K3 ≤ CG(K1). However, by Lemma 4.2, CG(K1) is semiregular and it

follows that K2, K3, and CG(K1) are regular and hence equal, which is a contradiction. Therefore,

there are at most two distinct transitive minimal normal subgroups of G.

Suppose now that K1 and K2 are distinct transitive minimal normal subgroups of G. As was

noted above, K1 = CG(K2) and K2 = CG(K1), and they are both regular on Ω. Let K = K1.

As discussed in Section 2, NSym(Ω)(K) on Ω is permutationally isomorphic to Hol(K) on K via

an isomorphism θ such that (K)θ = KR. Let G = (G)θ. Now K2 = CG(K) is mapped by θ to

CG(KR) = KL. Let γ be the involution x 7→ x−1 (x ∈ K) in Sym(K). Then a simple calculation

shows that γ centralises Aut(K), and λγy = ρy for all y ∈ K. Thus, γ interchanges KL and KR.

Therefore, if G1 is the point stabiliser of G in its action on K, then G1 ≤ Aut(K) and hence is

centralised by γ. So G
γ

= (KRG1)γ = KLG1 = G and hence γ ∈ NSym(K)(G). The element

(γ)θ−1 ∈ NSym(Ω)(G) has the required properties. �

By the following lemma, if G is innately transitive with a regular (and nonabelian) plinth

K, then the setwise stabiliser in K of the CG(K)-orbit σ containing α can be identified with

{ρx : λx ∈ CG(KR)}.

Lemma 5.2. Let K = T k where T is a nonabelian simple group and k is a positive integer.

Suppose G ≤ Sym(K) is innately transitive with plinth KR, and let σ be the orbit of 1 under

CG(KR). Then (KR)σ = {ρx : λx ∈ CG(KR)} ∼= CG(KR).

Proof. The CG(KR)-orbit of the identity is equal to σ = {y−1 ∈ K : λy ∈ CG(KR)}. Thus,

ρx ∈ (KR)σ if and only if, for every y−1 ∈ K with λy ∈ CG(KR), we have (y−1)ρx = y−1x ∈ σ,

that is, λx−1y ∈ CG(KR). Therefore ρx ∈ (KR)σ if and only if λx ∈ CG(KR). �

The following proposition gives us necessary and sufficient conditions for an innately transitive

group to be quasiprimitive.
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Proposition 5.3. Let G be a finite innately transitive permutation group on a set Ω with plinth

K. Then G is quasiprimitive if and only if CG(K) is transitive or CG(K) = 1.

Proof. First suppose that K is abelian. Then K ≤ CG(K). But since K is transitive and CG(K)

is semiregular by Lemma 4.2, then K and CG(K) are both regular and hence equal. Recall that

each minimal normal subgroup of G distinct from K intersects K trivially and hence is contained

in CG(K). Thus, K is the unique minimal normal subgroup of G and hence G is quasiprimitive.

Suppose now that K is nonabelian. Since K is a minimal normal subgroup of G, we have

CG(K) ∩K = 1. Thus, if CG(K) = 1, then K is the unique minimal normal subgroup of G and

hence G is quasiprimitive.

Suppose that CG(K) is transitive. By Lemma 4.2(1), K is semiregular and hence regular as K is

transitive. By Lemma 4.2(2), CSym(Ω)(K) is semiregular, implying that CG(K) is also semiregular

and consequently CG(K) = CSym(Ω)(K) and is regular. Let α ∈ Ω. Since K is regular, there is an

isomorphism from Sym(Ω) onto Sym(K) which maps K, CG(K), and NSym(Ω)(K) onto KR, KL,

and Hol(K) respectively. Let G be the image of G in Sym(K).

Then G contains KL × KR = KR o Inn(K) and hence G = KR o G0 where Inn(K) ≤ G0 ≤

Aut(K) = Aut(T ) wrSk. Since KR is a minimal normal subgroup of G, by Lemma 4.5, G0 induces

a transitive subgroup of Sk, and hence G0 permutes the simple direct factors of KR, KL, and

Inn(K) transitively (and these actions are pairwise permutationally isomorphic). In particular,

KL is a minimal normal subgroup of G (by Lemma 4.5), so CG(K) is a minimal normal subgroup

of G.

If M is any minimal normal subgroup of G distinct from K, then M ≤ CG(K) and hence

M = CG(K). Since CG(K) and K are transitive on Ω, it follows that G is quasiprimitive. Finally,

suppose that CG(K) is non-trivial and intransitive. Now CG(K) is a normal subgroup of G, and

so G is not quasiprimitive. �

In the study of innately transitive groups, there are three important corner stones. They are

the “Centraliser Lemma” (4.2), “Scott’s Lemma” (4.4), and the following result, which is a gener-

alisation of [8, Theorem 4.2].

Lemma 5.4. Let G be innately transitive on a set Ω with plinth K, let α ∈ Ω, and let σ = αCG(K).

(1) For all u ∈ Kσ, there exists a unique element cu ∈ CG(K) such that cu u ∈ Kα.

(2) The map ϕ : u 7→ cu is an epimorphism from Kσ onto CG(K) with kernel Kα. In partic-

ular, Kα is a normal subgroup of the setwise stabiliser Kσ and Kσ/Kα is isomorphic to

CG(K).
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Proof. (1) Let u ∈ Kσ. Then αu ∈ σ and hence there exists cu ∈ CG(K) such that αu = αc
−1
u ,

that is αucu = α. Since CG(K) is semiregular on Ω by Lemma 4.2, there is a unique such cu.

(2) Let ϕ : Kσ → CG(K) be the mapping u 7→ cu. Let k1, k2 ∈ Kσ. So ((k1)ϕ, k1) and ((k2)ϕ, k2)

are elements of (CG(K)×K)α and hence ((k1)ϕ (k2)ϕ, k1k2) ∈ (CG(K)×K)α. Since k1k2 ∈ Kσ,

we have also that ((k1k2)ϕ, k1k2) ∈ (CG(K) × K)α. By the uniqueness proved in the previous

paragraph, (k1k2)ϕ = (k1)ϕ (k2)ϕ and so ϕ is a homomorphism. Let c ∈ CG(K). Since Kσ

is transitive on σ, there exists x ∈ Kσ such that αx = αc. Therefore ϕ is surjective. By the

definition of ϕ, the kernel of ϕ is equal to Kα. So Kα is a normal subgroup of Kσ, and by the

First Isomorphism Theorem, CG(K) ∼= Kσ/Kα. �

The next result shows that the members of a significant family of innately transitive groups

are quasiprimitive. Recall from Section 3 that an innately transitive group G with plinth K is of

Diagonal Type if and only if K is non-abelian, non-simple, a point stabiliser Kα of K is a subdirect

subgroup of K, and CG(K) = 1.

Proposition 5.5. Let G be a finite innately transitive permutation group on Ω with non-abelian

and non-simple plinth K, and let α ∈ Ω. Then Kα is a subdirect subgroup of K if and only if G is

quasiprimitive of Diagonal Type.

Proof. Let K = T1×· · ·×Tk where each Ti is a non-abelian simple group and k ≥ 2. Suppose first

that Kα is a subdirect subgroup of K. By Lemma 4.4, Kα = D1 × · · · ×Dl where l ≤ k and for

all i, we have that Di is a full diagonal subgroup of a subproduct Ki =
∏
j∈Ii Tj and the Ii form a

partition of {1, . . . , k}. So clearly, NK(Kα) =
∏l
i=1 NKi(Di). By Lemma 4.6, NKi(Di) = Di for all

i and hence NK(Kα) = Kα. Now Lemma 5.4 implies that Kα = Kσ and hence that CG(K) = 1.

Thus G is quasiprimitive by Proposition 5.3. It then follows from Theorem 4.1 and the description

of the types in Section 3 that G has Diagonal Type.

Conversely, if G is quasiprimitive of Diagonal Type, then by the description of this type in

Section 3, Kα is a subdirect subgroup of K. �

For any group G and subgroup G0, let [G : G0] denote the set of right cosets of G0 in G and

define the right coset action of G on G0 by (G0x)g = G0(xg) for all g ∈ G and G0x ∈ [G : G0].

Note that this action of G on [G : G0] is transitive with kernel CoreG(G0), and G0 is the stabiliser

of the trivial coset. We now give a definition for notational convenience.

Definition 5.6. Let G be the set of all triples (G,K,G0) where G is a finite group, K is a minimal

normal subgroup of G, the subgroup G0 of G is corefree, and G = KG0. Define a relation ≡G

on G by (G,K,G0) ≡G (G′,K ′, G′
0) if and only if there is an isomorphism φ : G → G′ such that

(K)φ = K ′ and (G0)φ = G′
0.
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Lemma 5.7.

(1) The relation ≡G is an equivalence relation on G.

(2) If (G,K,G0) ∈ G, then G is innately transitive on [G : G0] in its right coset action, with plinth

K. Moreover, for every g ∈ G, (G,K,G0) ≡G (G,K,Gg0).

(3) If G is innately transitive on a finite set Ω with plinth K, then for all α, β ∈ Ω,

(G,K,Gα), (G,K,Gβ) ∈ G and (G,K,Gα) ≡G (G,K,Gβ). Moreover, if G has another transi-

tive minimal normal subgroup K ′ distinct from K, then (G,K,Gα) ≡G (G,K ′, Gα).

(4) Two elements (G,K,G0) and (G′,K ′, G′
0) of G are equivalent under ≡G if and only if the action

of G on [G : G0] is permutationally isomorphic to the action of G′ on [G′ : G′
0].

Proof.

(1) Clearly ≡G is reflexive and symmetric, so it suffices to show that ≡G is transitive. Let

(G,K,G0), (G′,K ′, G′
0), (G

′′,K ′′, G′′
0) ∈ G and suppose that (G,K,G0) ≡G (G′,K ′, G′

0) and

(G′,K ′, G′
0) ≡G (G′′,K ′′, G′′

0). So there exist isomorphisms θ : G → G′ and θ′ : G′ → G′′

such that (K)θ = K ′, (G0)θ = G′
0, (K ′)θ′ = K ′′, and (G′

0)θ
′ = G′′

0 . Now θ ◦ θ′ is an isomorphism

from G onto G′′ and (K)θ ◦ θ′ = K ′′ and (G0)θ ◦ θ′ = G′′
0 . Therefore (G,K,G0) ≡G (G′′,K ′′, G′′

0)

and ≡G is an equivalence relation on G.

(2) Let (G,K,G0) ∈ G. By definition of G, we already have that K is a minimal normal subgroup

of G. In the coset action of G on [G : G0], we have that G0 is a point stabiliser. The condition

G = KG0 implies that K is transitive in this action. Thus G is innately transitive on [G : G0]

with plinth K.

Let g ∈ G and let θ : G → G be the inner automorphism induced by g. Indeed, θ is an

isomorphism and (K)θ = K (as K is normal in G) and (G0)θ = Gg0. Therefore (G,K,G0) ≡G

(G,K,Gg0).

(3) Let G be an innately transitive group on a finite set Ω with plinth K. Let α, β ∈ Ω. Then K

is a minimal normal subgroup of G and we have G = KGα = KGβ , so Gα and Gβ are corefree

subgroups of G (as G acts faithfully on Ω). Therefore (G,K,Gα), (G,K,Gβ) ∈ G. Since G is

transitive on Ω, there exists g ∈ G such that αg = β. Let θ : G → G be the inner automorphism

induced by g. Then as in the previous paragraph (K)θ = K and (Gα)θ = Ggα = Gβ . Therefore

(G,K,Gα) ≡G (G,K,Gβ).

Suppose G has a second transitive minimal normal subgroup K ′ 6= K. Then by Lemma 5.1,

there exists an involution g ∈ NSym(Ω)(G) that interchanges K and K ′ and centralises Gα for some

α ∈ Ω. Let θ be the automorphism of G induced by conjugating by g. Now g centralises Gα
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and hence (Gα)θ = Gα. Since (K)θ = K ′, we have (G,K,Gα) ≡G (G,K ′, Gα). By the previous

paragraph, it follows that this holds for all points α ∈ Ω.

(4) Let (G,K,G0), (G′,K ′, G′
0) ∈ G. Suppose first that (G,K,G0) ≡G (G′,K ′, G′

0). So there

exists an isomorphism θ : G → G′ such that (K)θ = K ′ and (G0)θ = G′
0. Since G0 and G′

0 are

stabilisers of the actions of G on [G : G0] and G′ on [G′ : G′
0] respectively, these actions are then

permutationally isomorphic. Conversely, suppose the action of G on [G : G0] is permutationally

isomorphic to the action of G′ on [G′ : G′
0]. So there is an isomorphism θ : G → G′ such that

(G0)θ is a point stabiliser of G′. Also (K)θ is a minimal normal subgroup of G′ and G′ = (G)θ =

(KG0)θ = (K)θ(G0)θ so (K)θ is transitive. Thus (G′, (K)θ, (G0)θ) ∈ G and is equivalent to

(G,K,G0) under ≡G . By part (3) (used twice), we have that (G′, (K)θ, (G0)θ) ≡G (G′,K ′, G′
0).

So since ≡G is transitive, we have (G,K,G0) ≡G (G′, (K)θ,G′
0) ≡G (G′,K ′, G′

0). �

Now we present another property of innately transitive groups, the importance of which will be

made clearer in Section 6. For L ≤ Aut(K), we say that K is L-simple if the only L-invariant

normal subgroups of K are 1 and K. This definition has been used, for example, in Aschbacher’s

book [1, p.23].

Proposition 5.8. Let (G,K,G0) ∈ G, let Ω = [G : G0], let α = G0 ∈ Ω, and let σ := αCG(K).

Let L be the subgroup of Aut(K) induced by the conjugation action of G0 on K. Then L ∼= G0,

K is L-simple, and L ∩ Inn(K) = InnKσ (K). In particular, if K is abelian, then K is elementary

abelian and L is an irreducible subgroup of GL(K).

Proof. Let J be a proper L-invariant normal subgroup of K. Since J is L-invariant, J is normalised

by Gα = G0. Now G = KGα (since K is transitive) and hence J is normalised by G. But since K

is a minimal normal subgroup of G, and J is a proper subgroup of K normalised by G, we have

that J must be trivial. Therefore, there are no nontrivial proper L-invariant normal subgroups

of K. Let γ : G → Aut(K) be the natural map induced by the conjugation action of G on K.

Note that Ker γ = CG(K), Gσ = CG(K)Gα, and L = (Gα)γ = (Gσ)γ. Since Gσ ∩K = Kσ, we

have L ∩ Inn(K) = (Gσ)γ ∩ (K)γ ⊇ (Gσ ∩K)γ = (Kσ)γ = InnKσ (K). So it suffices to show that

(Gσ)γ∩(K)γ ⊆ (Gσ∩K)γ. Let x ∈ K and suppose that (x)γ ∈ (Gσ)γ = (Gα)γ. Then there exists

g ∈ Gα such that (x)γ = (g)γ. This implies that xg−1 ∈ Ker γ and hence x ∈ CG(K)Gα = Gσ.

Therefore x ∈ Gσ ∩K and (Gσ)γ ∩ (K)γ ⊆ (Gσ ∩K)γ.

Now suppose K is abelian. Since K is minimal normal, it is elementary abelian and is thus the

additive group of a vector space with automorphism group GL(K). Since K is L-simple, it follows

by definition that L is irreducible. �
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6. Constructing Innately Transitive Groups

In this section, we give a method for constructing innately transitive groups from certain abstract

group theoretic information. It turns out that the subgroup L of Aut(K) defined in Proposition 5.8

and the epimorphism ϕ defined in Lemma 5.4 together with the plinth, are the crucial ingredients

for understanding an innately transitive group. We call such a triple (K,ϕ,L) an innate triple and

define these triples synthetically below.

Definition 6.1. A triple (K,ϕ,L) satisfying the three conditions below is called an innate triple.

(1) K ∼= T k where T is a simple group (possibly abelian),

(2) ϕ is an epimorphism with domain a subgroup K0 of K, with kernel corefree in K, and if

K is abelian, then K0 = K,

(3) L is a subgroup of Aut(K) such that K is L-simple, Kerϕ is L-invariant, and L∩Inn(K) =

InnK0(K).

We denote by D the set of all innate triples.

Remarks 6.2.

(i) We note that if K is elementary abelian, then condition (2) implies that Kerϕ = 1 and ϕ has

domain K so that Imϕ ∼= K.

(ii) By Proposition 5.8, if (G,K,G0) ∈ G, and L is the subgroup of Aut(K) induced by G0 acting

by conjugation on K, then L satisfies (3), and the map ϕ defined in Lemma 5.4 satisfies (2) and

hence (K,ϕ,L) is an innate triple.

Let ∆ : G → D be the function which maps each (G,K,G0) to the corresponding (K,ϕ,L)

where ϕ, L are defined with respect to G0. We will show that ∆ induces an equivalence relation

on D.

Lemma 6.3. Let (G,K,G0), (G,K,G0) ∈ G and let (K,ϕ,L) = (G,K,G0)∆ and (K,ϕ,L) =

(G,K,G0)∆. Then (G,K,G0) ≡G (G,K,G0) if and only if the following hold.

(1) There is an isomorphism θ from K onto K such that L = θ−1Lθ.

(2) There is an isomorphism Θ from Imϕ onto Imϕ.

(3) θ ◦ ϕ = ϕ ◦Θ on the domain Domϕ.

Proof. Let Ω = [G : G0], Ω = [G,G0], α = G0 ∈ Ω, and α = G0 ∈ Ω. Let σ = αCG(K) and

σ = αCG(K). We will prove the forward direction first. Since (G,K,G0) ≡G (G,K,G0), there is

an isomorphism Φ : G→ G such that (K)Φ = K and (G0)Φ = G0.

Let θ = Φ|K , let Θ = Φ|CG(K), and let τ ∈ L. Then there exists g ∈ Gσ such that (x)τ = g−1xg

for all x ∈ K. Note that (g)θ ∈ Gσ. Let y ∈ K. Then y = (x)θ for some x ∈ K. So (y)θ−1τθ =
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(x)τθ = (g−1xg)θ = (g)θ−1y(g)θ and hence θ−1τθ ∈ L. So θ−1Lθ is equal to L (clearly they have

the same size). By Lemma 4.3, we know that Φ maps CG(K) onto CG(K), and therefore the first

two conditions above are satisfied.

Now Φ maps Kσ = (G0CG(K)) ∩ K onto Kσ = (G0CG(K)) ∩ K. Let (x)Φ ∈ Kσ. By the

definition of ϕ, (x)Φ ◦ ϕ is the unique element of CG(K) such that (x)Φ ((x)Φ ◦ ϕ) ∈ Gα, but

this implies that x[(x)Φ ◦ ϕ ◦ Φ−1] ∈ Gα (see Lemma 5.4). Note that (x)Φ ∈ Kσ implies that

(x)Φ◦ϕ◦Φ−1 ∈ (CG(K))Φ−1 = CG(K), and so by the definition of ϕ, we have (x)Φ◦ϕ◦Φ−1 = (x)ϕ.

Since this holds for all x ∈ Kσ, the third condition is satisfied.

Now we will prove the converse. Assume conditions (1)-(3) hold. Let x ∈ Kα. Then (x)ϕ = 1

(by definition of ϕ) and hence (x)θ ◦ϕ = (x)ϕ ◦Θ = 1 by condition (3). Thus (x)θ ∈ Kerϕ = Kα,

so (Kα)θ ≤ Kα. Conversely, if y ∈ Kα, then y = (x)θ for some x ∈ K since θ is an isomorphism,

and (x)θ ∈ Kerϕ by the definition of ϕ. Thus by (3), (x)ϕ ◦ Θ = (x)θ ◦ ϕ = 1, and since Θ is

injective by (2), we have (x)ϕ = 1. So x ∈ Kα and (Kα)θ = Kα.

Note that G = KGα and G = KGα, and there are natural isomorphisms γ : Gα → L and

γ : Gα → L defined by (y)(g)γ = g−1yg and (y)(g)γ = g−1yg for all g ∈ Gα, g ∈ Gα, y ∈ K, and

y ∈ K. Let ξ : G→ G be defined by (yg)ξ = (y)θ(θ−1(g)γθ)γ−1 for all y ∈ K and g ∈ Gα.

First we will show that ξ is well-defined. Let y1, y2 ∈ K, let g1, g2 ∈ Gα, and suppose y1g1 =

y2g2. So z = g1g
−1
2 = y−1

1 y2 ∈ Kα and thus ((z)θ)γ = ι(z)θ = θ−1ιzθ = θ−1(z)γθ. Consequently

((y−1
1 y2)θ)γ = ((g1g−1

2 )θ)γ = θ−1(g1g−1
2 )γθ.

Now we use the fact that θ is a homomorphism and that γ is invertible to obtain the equation

((y1)θ)−1(y2)θ = (θ−1(g1g−1
2 )γ θ)γ−1.

Using the fact that γ is a homomorphism and placing θθ−1 into the equation, the right hand side

becomes (
θ−1(g1)γ θ θ−1((g2)γ)−1θ

)
γ−1.

By (1), θ−1((gi)γ)±1θ ∈ θ−1Lθ = L for each i. So since γ−1 is a homomorphism, the right hand

side becomes (
θ−1(g1)γθ

)
γ−1

(
θ−1((g2)γ)−1θ

)
γ−1,

and so

(y2)θ(θ−1(g2)γθ)γ−1 = (y1)θ(θ−1(g1)γθ)γ−1.

Therefore ξ is well-defined.

Now we will show that ξ is a bijection. Note by definition of ξ, that K = (K)θ = (K)ξ. Let

g ∈ Gα. Then (g)ξ = (θ−1(g)γθ)γ−1 ∈ Gα since L = θ−1Lθ. So (Gα)ξ ⊆ Gα. But for all g ∈ Gα,

(g)ξ = (θ−1(g)γθ)γ−1 ∈ Gα. Now for all g ∈ Gα, (θ(g)γ−1θ−1)γ)ξ = g and hence ξ maps Gα onto
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Gα. So (G)ξ contains 〈(K)ξ, (Gα)ξ〉 = 〈K,Gα〉 = G and hence ξ is surjective. Now by the above

calculations, |K| = |K|, |Gα| = |Gα|, and |Kα| = |Kα|. So |(G)ξ| = |G| = |K||Gα|
|Kα|

= |K||Gα|
|Kα| = |G|.

Therefore ξ is injective and hence bijective. A simple (but tedious) calculation shows that ξ is a

homomorphism from G onto G, and hence ξ is an isomorphism.

Since ξ maps Gα onto Gα, (G,K,G0) ≡G (G,K,G0). �

By the lemma above, we get an induced relation on the innate triples which we formalise below.

Definition 6.4. Let ≡D be the relation on D defined by (K,ϕ,L) ≡D (K,ϕ,L) if and only if

(1) there is an isomorphism θ from K onto K such that L = θ−1Lθ,

(2) there is an isomorphism Θ from Imϕ onto Imϕ, and

(3) θ ◦ ϕ = ϕ ◦Θ on the domain Domϕ.

Lemma 6.5. The relation ≡D is an equivalence relation on D.

Proof. This follows immediately from Lemma 5.7(1) and Lemma 6.3. �

We now give a construction of an innately transitive group, given an innate triple.

Construction 6.6. Let (K,ϕ,L) be an innate triple and let K0 = Domϕ and H = Graph(ϕ) =

{(u)ϕu : u ∈ K0} ≤ Imϕ × K. Then let X := (Imϕ × K) o L where L acts on Imϕ × K by

((u)ϕy)τ = (uτ )ϕyτ for all u ∈ K0, y ∈ K, and τ ∈ L. Let X act by right coset multiplication on

Ω := [X : HL].

Note that the action of L on Imϕ is well-defined since Kerϕ is L-invariant by property (3) of

Definition 6.1.

Proposition 6.7. The kernel of the action of X on Ω (as described above) is Z := {(x)ϕx ιx−1 :

x ∈ K0}, and X/Z is innately transitive and faithful on Ω (in its induced action) with plinth

KZ/Z ∼= K. Moreover Z is centralised by Imϕ×K, and CX/Z(KZ/Z) = ImϕZ/Z ∼= Imϕ.

Proof. By Definition 6.1(3), K is L-simple and hence K is a minimal normal subgroup of X. The

kernel of the action of X on Ω is CoreX(HL), a normal subgroup of X. Thus K ∩ CoreX(HL) is

also normal in X, and K ∩CoreX(HL) ≤ K ∩ (HL) = K ∩H = Kerϕ which is a proper subgroup

of K by Definition 6.1(2). Therefore K ∩ CoreX(HL) = 1. It is also true that L intersects

CoreX(HL) trivially, as the following shows. Suppose τ ∈ L ∩ CoreX(HL) and y ∈ K. Then

y−1yτ
−1
τ = y−1τy ∈ CoreX(HL) and hence y−1yτ

−1 ∈ K ∩ CoreX(HL) = 1. Therefore yτ
−1

= y

for all y ∈ K and so τ = id. Thus L ∩ CoreX(HL) = 1.

Let u, x ∈ K0, let y ∈ K, and let τ ∈ L. By Definition 6.1(3), K0 is L-invariant and

hence xτ ∈ K0. Thus ((x)ϕxιx−1)τ = (xτ )ϕxτ ι(xτ )−1 ∈ Z, and hence Z is L-invariant. Since
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((x)ϕxιx−1)y = (x)ϕy−1xιx−1y = (x)ϕy−1xyxιx−1 = (x)ϕxιx−1 , Z is centralised by K. Also since

(u−1)ϕ (x)ϕxιx−1(u)ϕ = (u−1x)ϕx(ux)ϕιx−1 = (u−1xux)ϕxιx−1 = (x)ϕxιx−1 , it follows that Z is

centralised by Imϕ. Thus Z is normal in X and centralised by Imϕ×K. Since Z ≤ HL, it follows

that Z ≤ CoreX(HL).

Now let (u)ϕyτ ∈ CoreX(HL) where u ∈ K0, y ∈ K, and τ ∈ L. Then (u)ϕyτ ∈ HL and

hence (u)ϕy ∈ H, whence y ∈ K0 and (u)ϕ = (y)ϕ. Also, (y)ϕyιy−1 ∈ Z ≤ CoreX(HL), so

((y)ϕyιy−1)−1(y)ϕyτ = ιyτ ∈ L ∩ CoreX(HL) = 1. So τ = ιy−1 and (u)ϕyτ = (y)ϕyιy−1 ∈ Z.

Thus CoreX(HL) = Z.

Therefore X/Z acts faithfully on Ω, and since X = K(HL), the normal subgroup KZ/Z is

transitive. Moreover, since K is a minimal normal subgroup of X, it follows that KZ/Z ∼= K

is a minimal normal subgroup of X/Z, so X/Z is innately transitive with plinth KZ/Z. By

Lemma 4.3, CX/Z(KZ/Z) = CX(K)/Z, so we need to determine CX(K). Since Imϕ centralises

K, we have CX(K) = (Imϕ)CKL(K). Let yτ ∈ CKL(K) where y ∈ K and τ ∈ L. Then for

all v ∈ K, (v)τ = yvy−1 = (v)ιy−1 , that is, τ = ιy−1 ∈ L ∩ Inn(K), which by Definition 6.1(3),

is equal to InnK0(K). Note that y ∈ K0 in both cases where K is abelian or not, and hence

yτ = (y−1)ϕ((y)ϕyιy−1) ∈ (Imϕ)Z. Therefore CX(K) ≤ (Imϕ)Z, and we have already seen that

Imϕ and Z centralise K, so CX(K) = (Imϕ)Z as required. �

7. Characterising Innately Transitive Groups

Let Γ : D → G be the function which maps each (K,ϕ,L) to the constructed element

(X/Z,KZ/Z, [X : HL]) arising from Construction 6.6. We prove that Γ and the map ∆ : G → D

defined before Lemma 6.3 preserve equivalence (see Theorems 7.2 and 7.3) and induce a bijection

between equivalence classes on D and G (Proposition 7.4). This enables us to prove Theorem 1.1.

Lemma 7.1. Let (K,ϕ,L) and (K,ϕ,L) be innate triples. If (K,ϕ,L) ≡D (K,ϕ,L), then

(K,ϕ,L)Γ ≡G (K,ϕ,L)Γ.

Proof. Suppose (K,ϕ,L) ≡D (K,ϕ,L) for two elements (K,ϕ,L) and (K,ϕ,L) of D. Let X, Z

and H be the groups arising from (K,ϕ,L) in Construction 6.6 and similarly let X, Z, and H be

the groups arising from (K,ϕ,L). First we will show that there is an isomorphism from X/Z onto

X/Z. We know by Definition 6.4 that there are isomorphisms θ : K → K and Θ : Imϕ → Imϕ.

So X = ((Imϕ)Θ× (K)θ) o θ−1Lθ. Let Φ : X → X be defined by (cyτ)Φ = (c)Θ(y)θ(θ−1τθ) for

all c ∈ Imϕ, y ∈ K, and τ ∈ L. It is clear that Φ is a well-defined bijection from X onto X. We

will show that Φ is a homomorphism. Let c1, c2 ∈ Imϕ, y1, y2 ∈ K, and τ1, τ2 ∈ L. Note that

(cτ
−1
1

2 )Θ(yτ
−1
1

2 )θ(θ−1τ1θ) = (cτ
−1
1

2 )Θ(θ−1τ1θ)((y
τ−1
1

2 )τ1)θ = (θ−1τ1θ)(c2)Θ(y2)θ using the properties
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of Definition 6.4. Thus

(c1y1τ1c2y2τ2)Φ = (c1y1τ1c2τ−1
1 τ1y2τ

−1
1 τ1τ2)Φ = (c1c

τ−1
1

2 y1y
τ−1
1

2 (τ1τ2))Φ

= (c1c
τ−1
1

2 )Θ (y1y
τ−1
1

2 )θ (θ−1τ1τ2θ)

= (c1)Θ (y1)θ (cτ
−1
1

2 )Θ (yτ
−1
1

2 )θ (θ−1τ1θ)(θ−1τ2θ)

= (c1)Θ (y1)θ (θ−1τ1θ)(c2)Θ (y2)θ (θ−1τ2θ)

= (c1y1τ1)Φ (c2y2τ2)Φ.

Therefore Φ is an isomorphism from X onto X. Now we will show that Φ maps Z onto Z. Let

(u)ϕuιu−1 ∈ Z. Then ((u)ϕuιu−1)Φ = ((u)ϕ)Θ (u)θ (θ−1ιu−1θ) = ((u)θ)ϕ (u)θ ι((u)θ)−1 . Therefore

Φ maps Z onto Z. So there is an induced isomorphism Φ′ from X/Z onto X/Z given by Zx 7→

Z(x)Φ for all x ∈ X.

Now the stabiliser of the trivial coset HL in the action of X/Z is simply HL/Z. Moreover

(HL/Z)Φ′ = (HL)Φ/Z = HL/Z which is the stabiliser of the trivial coset in the action of X/Z.

Finally (KZ/Z)Φ′ = (KZ)Φ/Z = KZ/Z, and hence (K,ϕ,L)Γ ≡G (K,ϕ,L)Γ. �

By the comments preceding Lemma 6.3, every finite innately transitive permutation group

gives rise to an innate triple under the map ∆ defined just before Lemma 6.3. Furthermore, by

Proposition 6.7, this innate triple gives rise to a finite innately transitive permutation group under

the map Γ defined above. The next theorem proves that this group is permutationally isomorphic

to the one we started with.

Theorem 7.2. Let (G,K,G0) ∈ G. Then (G,K,G0)∆ ◦ Γ ≡G (G,K,G0).

Proof. By Definition 5.6, G is innately transitive on Ω := [G : G0] acting by right multiplication.

Let α = G0 ∈ Ω and let γ : G→ Aut(K) be the natural map induced by G acting by conjugation on

K, let ϕ be the epimorphism arising from (G,K,G0) (as defined in Lemma 5.4), and let L = (G0)γ

so (K,ϕ,L) = (G,K,G0)∆. Let X be the group constructed in Construction 6.6 from (K,ϕ,L).

Let θ : X → G be defined by ((u)ϕy(g)γ)θ = (u)ϕyg where u ∈ Domϕ, y ∈ K, and g ∈ G0. It

is clear that θ is onto. Let (u1)ϕy1 (g1)γ, (u2)ϕy2 (g2)γ ∈ X, where u1, u2 ∈ K0, y1, y2 ∈ K, and

g1, g2 ∈ G0. Then,

(u1)ϕy1 (g1)γ (u2)ϕy2(g2)γ =
(
u1u

(g−1
1 )γ

2

)
ϕy1y

(g−1
1 )γ

2 (g1g2)γ

= (u1g1u2g
−1
1 )ϕy1g1y2g−1

1 (g1g2)γ

= (u1)ϕ(g1u2g
−1
1 )ϕy1g1y2g−1

1 (g1g2)γ.
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So,

[(u1)ϕy1(g1)γ (u2)ϕy2(g2)γ] θ = (u1)ϕ(g1u2g
−1
1 )ϕy1g1y2g2

= (u1)ϕy1g1(g−1
1 (g1u2g

−1
1 )ϕg1) y2g2

= (u1)ϕy1g1 (u2)ϕy2g2

= ((u1)ϕy1 (g1)γ) θ ((u2)ϕy2 (g2)γ) θ.

Therefore, θ is an epimorphism. Let H = Graph(ϕ) = {(x)ϕx : x ∈ Domϕ}. Now (u)ϕy(g)γ ∈

Ker θ if and only if (u)ϕy = g−1. But g−1 ∈ G0, (u)ϕy ∈ Im (ϕ)×K and (Im (ϕ)×K) ∩G0 = H

(by definition of ϕ), so Ker θ = {h(h−1)γ : h ∈ H} = Z. So there is an induced isomorphism

Φ : X/Z → G given by (Zx)Φ = (x)θ for all x ∈ X. Now HL/Z is a point stabiliser of the action

of X/Z on [X : HL] and (HL/Z)Φ = (HL)θ = HGα = G0, by definition of θ. Also (KZ/Z)Φ = K

and so (G,K, [G : G0]) ≡G (X/Z,KZ/Z,HL/Z). �

The next theorem is an analogous result for Γ ◦∆.

Theorem 7.3. Let (K,ϕ,L) ∈ D. Then (K,ϕ,L)Γ ◦∆ ≡D (K,ϕ,L).

Proof. Let (K,ϕ,L) be an innate triple and let (X/Z,KZ/Z,HL/Z) = (K,ϕ,L)Γ acting on Ω =

[X/Z : HL/Z] with X, H, Z as in Construction 6.6. Let (K,ϕ,L) = (K,ϕ,L)Γ◦∆. So K = KZ/Z

and L = LZ/Z. Let θ : K → K be the isomorphism arising from the Second Isomorphism

Theorem, that is, the map y 7→ Zy. Let τ ∈ L. We will show that θ−1τθ ∈ L, thus satisfying

the first condition of Definition 6.4. For all y ∈ K, we have (Zy)θ−1τθ = Z(yτ ) = Z(τ−1yτ) =

(Zτ)−1(Zy)(Zτ). Since τ ∈ HL, we have θ−1τθ ∈ L.

Note that Domϕ = (Domϕ)Z/Z and by Proposition 6.7, Imϕ = CX/Z(KZ/Z) = (Imϕ)Z/Z.

Let Θ : Imϕ → Imϕ be the isomorphism (u)ϕ 7→ Z(u)ϕ. This is the isomorphism required in

(2) of Definition 6.4. For all x ∈ Domϕ, (Zx)ϕZx = Z((x)ϕx) ∈ ZH. By the definition of Θ,

(x)(ϕ ◦ Θ) = Z((x)ϕ), and by the definition of θ and ϕ, (x)(θ ◦ ϕ) = (Zx)ϕ = Z((x)ϕ). Thus

ϕ◦Θ = θ◦ϕ on Domϕ, and so condition (3) of Definition 6.4 holds. So (K,ϕ,L) ≡D (K,ϕ,L). �

Now we prove Theorem 1.1.

Proof of Theorem 1.1. Let G be an innately transitive group on a set Ω with plinth K, and let

α ∈ Ω. Then (G,K,G0) ∈ G where G0 = Gα. By Theorem 7.2, (G,K,G0) ≡G (G,K,G0)∆ ◦ Γ.

So G on Ω is permutationally isomorphic to a permutation group constructed by Construction

6.6. By Proposition 6.7, every permutation group constructed by Construction 6.6 is innately

transitive. �
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The next result is a culmination of all the results we have derived so far in this section. Basically,

we can transfer our study of innately transitive permutation groups to the study of innate triples.

Proposition 7.4. The maps ∆ and Γ induce mutually inverse bijections between G/ ≡G and

D/ ≡D.

Proof. Let f : D/ ≡D→ G/ ≡G be the map defined by ([(K,ϕ,L)]D)f = [(K,ϕ,L)Γ]G for

all equivalence classes [(K,ϕ,L)]D ∈ D/ ≡D. By Lemma 7.1, f is well-defined. By Theo-

rem 7.2, it follows that f is surjective. Suppose ([(K,ϕ,L)]D)f = (
[
(K,ϕ,L)

]
D)f for some

(K,ϕ,L), (K,ϕ,L) ∈ D. Thus (K,ϕ,L)Γ ≡G (K,ϕ,L)Γ, and so by Proposition 6.3 and Defi-

nition 6.4, (K,ϕ,L)Γ ◦∆ ≡D (K,ϕ,L). Finally by Theorem 7.3, we have (K,ϕ,L) ≡D (K,ϕ,L).

Hence f is injective. �

The innately transitive types given in Section 3 can be characterised by structural properties of

permutation groups such as whether the plinth is abelian, regular, simple, or has trivial centraliser.

So in characterising finite innately transitive permutation groups as innate triples, it is useful to

translate the properties used to separate the types into properties of innate triples.

Lemma 7.5. Let (K,ϕ,L) be an innate triple and let (G,K,G0) = (K,ϕ,L)Γ and Ω = [G : G0].

Then

(1) K is regular on Ω if and only if Kerϕ = 1,

(2) CG(K) = 1 if and only if Imϕ = 1, and

(3) CG(K) is transitive on Ω if and only if Domϕ = K and Kerϕ = 1.

Proof. First recall that G = X/Z, K = KZ/Z, Ω = [X : HL], and G0 = HL/Z with X, Z, H

as given in Construction 6.6. We know already from Proposition 6.7 that CG(K) = ImϕZ/Z ∼=

Imϕ and it is simple to calculate that the stabiliser in K of the point α = HL is equal to

KerϕZ/Z ∼= Kerϕ. So (1) and (2) follow. For (3), observe that since CG(K) is semiregular, it

is transitive if and only if K is regular (see Lemma 4.2), that is |CG(K)| = |K|. However by

Lemma 5.4, |CG(K)| = |Domϕ|/|Kerϕ| and hence |CG(K)| = |K| if and only if Domϕ = K and

Kerϕ = 1. �

Recall that K is isomorphic to KZ/Z and so properties of the plinth such as being abelian or

simple are also known from the innate triple. Define an innate triple (K,ϕ,L) to be quasiprimitive

if (K,ϕ,L)Γ is quasiprimitive. We have the following corollary to Lemma 7.5.

Corollary 7.6. An innate triple (K,ϕ,L) is quasiprimitive if and only if either Domϕ = Kerϕ

or Domϕ = K and Kerϕ = 1.

Proof. Follows from Lemma 7.5 and Lemma 5.3. �
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Note that we could also give an analogue of primitivity for innate triples. Recall that a transitive

permutation group G is primitive, on a set of more than one element, if every point stabiliser of G

is a maximal subgroup of G. Let (K,ϕ,L) be an innate triple. By Construction 6.6, we see that

(K,ϕ,L)Γ is primitive if and only if Graph(ϕ) o L is a maximal subgroup of (Imϕ×K) o L.

8. Framework for a Proof of Theorem 1.2

In this section, we prove first that every permutation group G with a normal subgroup K

satisfying one of the types described in Section 3 is innately transitive with plinth K (see Lemma

8.1). We then give a framework for completing the proof of Theorem 1.2 namely we outline our

program to show that each innately transitive group satisfies the conditions of one of these types.

Lemma 8.1. Each group G with normal subgroup K of one of the types described in Section 3 is

innately transitive with plinth K.

Proof. Let G be a group belonging to one of the types listed in Section 3, and let K be the

corresponding normal subgroup of G. Clearly in the cases Abelian Plinth, Simple Plinth, and

Regular Plinth, K is a transitive minimal normal subgroup of G. Suppose G is of Diagonal Type.

Then K is a minimal normal subgroup of G since G acts transitively on the simple direct factors

of K (see Lemma 4.5). Now for some proper divisor l of k, T k/l acts transitively on a set ∆ and

Ω = ∆l. So by definition of product action, K acts transitively on Ω.

All that remains is to show that if G satisfies the conditions of Product Type, then G is innately

transitive. Now since Gα projects onto a transitive subgroup of Sk, it follows that G is transitive

on the simple direct factors of K. So by Lemma 4.5, K is a minimal normal subgroup of G. We

want to show now that K is transitive on Ω, that is, |K : Kα| = |Ω|. First note that |Kψ : Kα| is

equal to the size of a cell of Ψ, which is in turn equal to |Ω|/|Ψ|. So |K : Kα| = |K : Kψ||Kψ :

Kα| = |Ψ|(|Ω|/|Ψ|) = |Ω|. Therefore, K is transitive on Ω and so G is innately transitive. �

From now on, assume G is innately transitive on a set Ω with plinth K. If K is abelian,

then by Proposition 5.3, G is quasiprimitive and by Theorem 4.1, G is of Abelian Plinth Type as

described in Section 3. So assume K is non-abelian. Recall from Proposition 5.3, that if G is

not quasiprimitive, then CG(K) is nontrivial and intransitive. Suppose next that K is a simple

group. If G is quasiprimitive, then by Theorem 4.1, G is of Holomorph of a Simple Group Type

or Almost Simple Type as described in Section 3. On the other hand, if G is not quasiprimitive,

then G satisfies all the conditions of Almost Simple Quotient type given in Section 3. We can

also characterise Simple Plinth type by observing the following simplification of the conditions of

Definition 6.4 for (K,ϕ,L) to be an innate triple when K is a nonabelian simple group.
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Lemma 8.2. Let K be a finite non-abelian simple group, let ϕ be an epimorphism with domain

K0 ≤ K, and let L ≤ Aut(K). Then (K,ϕ,L) is an innate triple if and only if Kerϕ 6= K and

L ∩ Inn(K) = InnK0(K).

Proof. The second condition of Definition 6.1 is that ϕ is an epimorphism with domain a subgroup

K0 of K such that Kerϕ is corefree in K. Since the core of Kerϕ is a normal subgroup of K,

and K is simple, Kerϕ is corefree if and only if CoreK(Kerϕ) 6= K. Finally CoreK(Kerϕ) 6= K is

equivalent to Kerϕ 6= K.

The third condition of Definition 6.1 is that K is L-simple and L∩Inn(K) = InnK0(K). Since K

is simple, clearly K has no proper nontrivial L-invariant normal subgroups, and K is automatically

L-simple. �

So now let us assume that K is not simple. Let K = T k for some non-abelian simple group T

and integer k > 1. Since G = KGα and K is a minimal normal subgroup of G, then by Lemma

4.5, Gα is transitive on the simple direct factors of K and Gα normalises Kα. For i ∈ {1, . . . , k},

let πi : K → Ti be the natural projection map of K onto the ith simple direct factor Ti of K. Then

Gα permutes the (Kα)πi transitively and thus they are pairwise isomorphic.

By Proposition 5.5, if Kα is a subdirect subgroup of K then G is quasiprimitive, and by Theorem

4.1, G and K satisfy the conditions of the Diagonal Type as described in Section 3. Thus we may

assume that Kα is not a subdirect subgroup of K. We have two cases; Kα = 1 (i.e. K is regular)

or, Kα 6= 1 and (Kα)πi is a proper subgroup of Ti for all i. In the next section we examine these

cases in more detail and in particular, we prove that if Kα 6= 1 then (G,K,Ω) satisfy the conditions

of the Product Type in Section 3. In Section 10, we analyse the sub-case where Kα is trivial and

prove that G satisfies the conditions of Twisted Wreath type, Product Quotient type, Diagonal

Quotient type, or Holomorph of a Compound Group type. This will then complete the proof of

Theorem 1.2.

9. Innately Transitive Groups Preserving Product Decompositions

In this section, we characterise innately transitive groups (G,K,G0) where K is nonabelian,

nonsimple, and a point stabiliser Kα is not a subdirect subgroup of K (including the case when

Kα = 1). Let Gprod be the set of all such (G,K,G0). Note that Gprod is closed under the equivalence

relation ≡G . We shall, in particular, complete the proof of Theorem 1.2 in the case where Kα 6= 1

(see Lemma 9.4). In addition, we prove Theorem 1.3 (after Corollary 9.9).

We construct, from a given element of Gprod a new innately transitive group that preserves a

product decomposition of the underlying set. We use the notation introduced at the end of Section
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8. Since the (Kα)πi (1 ≤ i ≤ k) are permuted transitively by conjugation by Gα, we may identify

each Ti with T in such a way that (Kα)πi = U is independent of i.

Construction 9.1. Let (G,K,G0) ∈ Gprod where K = T k for some nonabelian simple group T

and k > 1, let Ω = [G : G0], α ∈ Ω, and let U = (Kα)πi for all i ∈ {1, . . . , k}. Let Ψ := [K : Uk]

and let KΨ be the permutation group of Ψ induced by K by right multiplication. Let Y = UkGα

and let GΨ be the permutation group of Ψ induced by the action given in Lemma 4.8 (noting that

K ∩G0 = Uk). The output of this construction is the triple (GΨ,KΨ,Ψ).

Proposition 9.2. Let (G,K,G0) ∈ Gprod, where K = T k for some nonabelian simple group T and

k > 1, and let (GΨ,KΨ, GΨ
0 ) be the triple constructed from (G,K,G0) via Construction 9.1. Then

(1) (GΨ,KΨ, GΨ
0 ) ∈ Gprod,

(2) CGΨ(KΨ) = CG(K)Ψ,

(3) Ψ can be identified with a cartesian product of k copies of a set Ψ0 and the component V

of GΨ in Sym(Ψ0) is innately transitive of Simple Plinth type with plinth T . Moreover GΨ

is conjugate in Sym(Ψ) to a subgroup of V wrSk ≤ Sym(Ψ0) wrSk and G projects onto a

transitive subgroup of Sk.

Proof.

(1) Let ψ = Uk ∈ Ψ so thatGψ = Y . Since Y containsGα, it follows that Ψ may be identified with a

G-invariant partition of Ω with cells of size |Y : Gα| = |Uk : Kα|. Since G = GαK = Y K, it follows

that KΨ is a transitive minimal normal subgroup of GΨ, so GΨ is innately transitive with plinth

KΨ. Thus (GΨ,KΨ, GΨ
0 ) ∈ G. NowKΨ is isomorphic toK (sinceK acts faithfully on Ψ) and hence

KΨ is nonabelian and nonsimple. Also Kψ = K ∩ Y = Uk and for each i, U = (Kψ)πi = (Kα)πi.

Hence Kψ is not a subdirect subgroup of K. Therefore, (GΨ,KΨ, GΨ
0 ) ∈ Gprod.

(2) The map g 7→ gΨ is a well-defined epimorphism from G onto GΨ, and its restriction to K is

an isomorphism from K onto KΨ (since K acts faithfully on Ψ). So by Lemma 4.3, CG(K)Ψ =

CGΨ(KΨ).

(3) Since Kψ = Uk, it follows from Lemma 4.8 that we can identify Ψ with the Cartesian product

of k-copies of Ψ0 := [T : U ] in such a way that GΨ ≤ Sym(Ψ0) wrSk in product action. Since the

action of G on the simple direct factors of K is transitive, G projects onto a transitive subgroup

of Sk. Let G1 be the stabiliser of 1 in this action and let ν : G1 → Sym(Ψ0) so that V = (G1)ν

is the component of G in Sym(Ψ0). Note that K ≤ G1, (K)ν = T acts transitively on Ψ0, and

T is a minimal normal subgroup of V . Thus V is innately transitive with simple plinth T and

K ⊆ G ∩
(
Sym(Ψ0)k

)
. Applying Lemma 4.7, we get that GΨ is conjugate in Sym(Ψ0) wrSk to a

subgroup of V wrSk. �
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In the case that K acts regularly on Ω, we can say even more.

Corollary 9.3. Let (G,K,G0) ∈ Gprod, let T , Ω, Ψ, Ψ0, V be as in Construction 9.1 and Propo-

sition 9.2, and suppose K acts regularly on Ω. Then Ω = Ψ, and we may identify Ψ0 with T so

that TR ≤ V ≤ Hol(T ). Moreover, one of the following holds:

(1) G is quasiprimitive of Twisted Wreath type or Holomorph of a Compound Group type, and

V is of Almost Simple type or Holomorph of a Simple Group type respectively,

(2) Kσ is a proper subdirect subgroup of K and V is of Holomorph of a Simple Group type, or

(3) Kσ is not a subdirect subgroup of K and V is of Almost Simple Quotient type.

Proof. Since Kα = 1 and Kα is a subdirect subgroup of Kψ, it follows that U = 1. Thus Kψ = 1

and hence |Ψ| = |K| = |Ω|, So in this case, Ω = Ψ = Ψk
0 and hence by Proposition 9.2, G is

conjugate in Sym(Ω) to a subgroup of V wrSk ≤ Sym(Ψ0) wrSk. Moreover, Ψ0 = [T : U ] in this

case may be identified with T and T is a regular normal subgroup of V , so we may identify T

with TR and hence TR ≤ V ≤ Hol(T ). Under this identification, KR = T kR ≤ G ≤ Hol(K) and

CG(K) = G ∩KL.

Suppose that CG(K) = 1 or CG(K) ∼= KL. Then by Proposition 5.3, G is quasiprimitive

and by Theorem 4.1, G is of Twisted Wreath type or Holomorph of a Compound Group type

respectively and (1) holds. Thus we may assume that CG(K) 6= 1 and |CG(K)| 6= |K|. Now

(CG(K)×KR)ν ∼= (CG(K))ν × TR. Since CG(K) is G-invariant and G is transitive on the simple

direct factors of K, it follows that the projections of CG(K) to the simple direct factors of KL

are pairwise isomorphic. In particular, (CG(K))ν 6= 1. If (CG(K))ν 6= TL, then CG(K) is not a

subdirect subgroup of KL and hence Kσ is not a subdirect subgroup of KR and (3) holds. On the

other hand if (CG(K))ν = TL, then CG(K) is a subdirect subgroup of KL and Kσ is a subdirect

subgroup of KR and (2) holds. �

Let Q : Gprod → Gprod be the map where for each (G,K,G0) ∈ Gprod, the image (G,K,G0)Q =

(GΨ,KΨ, GΨ
0 ) is the element of Gprod constructed from (G,K,G0) via Construction 9.1. Corollary

9.3 elaborates on the case where K is regular. Suppose now that K is not regular and recall that

Kα is not a subdirect subgroup of K.

Lemma 9.4. Let (G,K,G0) ∈ Gprod. Then G is of Product Type (as described in Section 3) if

and only if K is not regular. In this case, the group V in Proposition 9.2 is of Almost Simple type

or Almost Simple Quotient type.

Proof. Let (G,K,G0) ∈ Gprod and let (GΨ,KΨ,Ψ) = (G,K,G0)Q. As in Proposition 9.2, suppose

K = T k for some nonabelian simple group T and k ≥ 2, and let Ω : [G : G0], α = U , and Ψ = Ψk
0

for some set Ψ0. Let ψ ∈ Ψ such that α ∈ Ψ. The innately transitive Product Type occurs
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precisely in this situation where K is not regular. For suppose that K is not regular on Ω. Then

K is not regular on Ψ as Kα is a subdirect subgroup of Kψ. So the simple direct factor T is not

regular on Ψ0 and hence V has either Almost Simple or Almost Simple Quotient Type. Also by

Proposition 9.2, G projects onto a transitive subgroup of Sk. The description of Product Type in

Section 3 then follows. Conversely, if G is of Product Type, then by definition K is non-regular

and Kα is not subdirect in K. �

We will characterise the set Gprod in terms of its subset (Gprod)Q. It is more convenient to work

with innate triples than innately transitive permutation groups, so we first determine the innate

triples corresponding to the groups given by Construction 9.1. It follows from the definition that

an innate triple (K,ϕ,L) corresponds to an element of Gprod if and only if K is nonabelian and

nonsimple, and Kerϕ is not a subdirect subgroup of K. Let Dprod denote the set of such triples.

Lemma 9.5. Let (G,K,G0) ∈ Gprod, let (GΨ,KΨ, GΨ) = (G,K,G0)Q, and let (K,ϕ,L) and

(KΨ, ϕ̃, L̃) be the elements of Dprod corresponding to (G,K,G0) and (GΨ,KΨ, GΨ) respectively.

Then for some ψ ∈ Ψ, Ker ϕ̃ = Kψ, Dom ϕ̃ = (Domϕ)Kψ, and L̃ = L InnKψ (K).

Proof. First we consider M = G(Ψ). Now M is a normal subgroup of G and M ∩ K = 1, so

M ≤ CG(K). Recall that CG(K)Ψ = CGΨ(KΨ) by Proposition 9.2(2). Let N be the normal

subgroup of G containing M such that N/M = CGΨ(KΨ). Then 1 = (N/M)∩KΨ = (N∩KM)/M

so N ∩KM = M . Since N contains M , it follows that N ∩K = 1. Thus N ≤ CG(K). On the

other hand, |CG(K)/M | = |CGΨ(KΨ)|, so N = CG(K). As in the proof of Construction 9.1, we

identify Ψ with a partition of Ω in such a way that α lies in the cell ψ. Then the CG(K)Ψ-orbit

σ̂ containing ψ is the set of all cells of Ψ containing at least one point of σ := αCG(K). It follows

that Kσ̂ contains KσKψ.

Moreover, since CG(K)Ψ is regular on σ̂ with kernel M , σ is the union of the |σ̂| = |CG(K)/M |

cells of Ψ contained in σ, each of size |M |. Now |Kσ̂ : Kψ| = |σ̂| = |CG(K)/M | and |KσKψ :

Kψ| = |Kσ : Kσ ∩Kψ| = |σ̂| as Kσ ∩Kψ is the stabiliser in Kσ of ψ, one of the |σ̂| cells in σ. Thus

Kσ̂ = KσKψ, that is, Dom ϕ̃ = KσKψ = (Domϕ)Kψ. Hence by Lemma 5.4, Ker ϕ̃ = Kψ.

Finally, L̃ is the subgroup of Aut(K) induced by Gψ acting by conjugation on K. Since Gψ =

GαKψ, it follows that L̃ = LInnKψ (K). �

Let (Dprod)Q denote the subset of Dprod of elements corresponding to (Gprod)Q. Given an

element (GΨ,KΨ, GΨ) of (Gprod)Q, we now give a second construction that produces a subset of

elements of Gprod. The output of this construction is a subset of innate triples in Dprod which

corresponds to a family of innately transitive groups via Construction 6.6.

Construction 9.6. Given (K, ϕ̃, L̃) ∈ (Dprod)Q, let
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(1) K0 be a supplement of Ker ϕ̃ in Dom ϕ̃,

(2) L be a supplement of InnKer eϕ(K) in L̃ such that L ∩ Inn(K) = InnK0(K),

(3) M be an L-invariant normal subgroup of K0 contained in Ker ϕ̃,

(4) ϕ : K0 → K0/M be the natural quotient map.

Then (K,ϕ,L) ∈ Dprod.

Proof. By (4), Kerϕ is equal to M , and is L-invariant by (3). Since Ker ϕ̃ is corefree in K and

M ≤ Ker ϕ̃ by (3), it follows that M is corefree in K. By definition of D, we have that L̃ is

transitive on the simple direct factors of K, so by (2), L is also transitive on the simple direct

factors of K. Hence the only L-invariant normal subgroups of K are 1 and K. Therefore K is

L-simple. Now K is nonabelian and nonsimple and since Dom ϕ̃ is not a subdirect subgroup of K,

it follows from (1) that Domϕ = K0 is not subdirect in K. Thus (K,ϕ,L) ∈ Dprod. �

Remarks 9.7. Let (K, ϕ̃, L̃) ∈ (Dprod)Q.

(i) There is always at least one output of Construction 9.6. One can set K0, L, and M in (1)-(3)

of Construction 9.6 to be Dom ϕ̃, L̃, and Ker ϕ̃ respectively. We will see in Corollary 9.9 that the

element of Dprod obtained with these parameters is equivalent to (K, ϕ̃, L̃) under ≡D.

(ii) By definition of (Dprod)Q, Ker ϕ̃ = Uk for some U < T . Recall, that if (G,K,G0) ∈ Gprod
(where K = T k) and (GΨ,KΨ, GΨ) = (G,K,G0)Q, then for ψ ∈ Ψ, there exists α ∈ Ω such that

Kψ =
∏k
i=1(Kα)πi. By Lemma 5.4, Ker ϕ̃ = Kψ for some ψ, and since the (Kα)πi are pairwise

isomorphic, Ker ϕ̃ can be identified with Uk for some proper subgroup U of T .

(iii) For some triples in (Dprod)Q, it is possible to obtain an output different from the example in

(i). Suppose Ker ϕ̃ = Uk for some proper subgroup U of T . If U is abelian, it is possible to have

Dom ϕ̃ = Ker ϕ̃ = Uk 6= 1. So in Construction 9.6, we could chose K0 = 1, which means that

Kerϕ = 1 is not subdirect in Ker ϕ̃.

As explained in the remarks above, it is not always true that Kerϕ is a subdirect subgroup of

Ker ϕ̃. However, when Kerϕ is a subdirect subgroup of Ker ϕ̃, it turns out that the corresponding

output of Construction 9.6 is equivalent to (K, ϕ̃, L̃).

Proposition 9.8. Let (K,ϕ,L) ∈ Dprod be obtained from (K, ϕ̃, L̃) ∈ (Dprod)Q by Construction

9.6. Then (K,ϕ,L)Γ ∈ Gprod. Moreover (K,ϕ,L)Γ ◦Q corresponds to an innate triple equivalent

to (K, ϕ̃, L̃) if and only if Kerϕ is a subdirect subgroup of Ker ϕ̃.

Proof. Let (K, ϕ̃, L̃) ∈ (Dprod)Q and let (K,ϕ,L) be an element of Dprod obtained by Construction

9.6. Recall from Construction 6.6, that (K,ϕ,L)Γ = (G,K,G0) where G = X/Z, K = KZ/Z,
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and G0 = Graph(ϕ)L/Z acting on Ω = [X : Graph(ϕ)L], where X = (Imϕ × K) o L and

Z = {(x)ϕxιx−1 : x ∈ Domϕ}. Since (K,ϕ,L) ∈ Dprod, K is nonabelian and nonsimple, and

Kerϕ is not a subdirect subgroup of K. Therefore K is nonabelian and nonsimple. The point

stabiliser of the trivial coset Graph(ϕ)L in K, is equal to (Graph(ϕ)L/Z)∩K = (Kerϕ)Z/Z, and

is not a subdirect subgroup of K. Therefore (K,ϕ,L)Γ ∈ Gprod.

Suppose Kerϕ is a subdirect subgroup of Ker ϕ̃. Then Ker ϕ̃ =
∏k
i=1(Kerϕ)πi where πi is the

natural projection map of K onto its ith simple direct factor. Now we apply Construction 9.1 to

obtain (K,ϕ,L)Γ ◦Q. Let (K,ϕ,L) be the element of Dprod corresponding to (K,ϕ,L)Γ ◦Q. We

verify th three conditions of Definition 6.4 to show that (K,ϕ,L) ≡D (K,ϕ,L). As in the proof of

Lemma 9.5, the domain of ϕ̃ is (Domϕ)(Ker ϕ̃) and so ϕ̃ maps Domϕ onto Im ϕ̃.

Let θ : K → K be the isomorphism which maps each y ∈ K to Zy ∈ K. The domain

of ϕ is (Domϕ)θ(Kerϕ), and hence ϕ maps (Domϕ)θ onto Imϕ. Now the natural projection

map πi : K → (Ti)θ, is equal to θ−1 ◦ πi ◦ θ. Note that (Ker ϕ̃)θ =
(∏k

i=1(Kerϕ)πi
)
θ =∏k

i=1((Kerϕ)πi)θ =
∏k
i=1((Kerϕ)θ)πi = Kerϕ.

Let Θ : Im ϕ̃ → Imϕ be the map defined by ((x)ϕ̃)Θ = ((x)θ)ϕ for all x ∈ Domϕ. We check

first that Θ is well-defined. Let (x1)ϕ̃ = (x2)ϕ̃. Then x1x
−1
2 ∈ Ker ϕ̃. So (x1x

−1
2 )θ ∈ Kerϕ and

hence ((x1)θ)ϕ = ((x2)θ)ϕ. Therefore, Θ is well-defined. By reversing this argument we see that Θ

is injective. So Θ is a bijection, since it is clearly surjective. To see that Θ is a homomorphism, let

(x1)ϕ̃, (x2)ϕ̃ ∈ Im ϕ̃ where x1, x2 ∈ Domϕ. Then ((x1)ϕ̃(x2)ϕ̃)Θ = ((x1x2)ϕ̃)Θ = ((x1x2)θ)ϕ =

((x1)θ)ϕ ((x2)θ)ϕ = ((x1)ϕ̃)Θ ((x2)ϕ̃)Θ. Therefore, Θ is a homomorphism.

Now we show that θ ◦ ϕ = ϕ̃ ◦Θ. Let x ∈ Domϕ and y ∈ Ker ϕ̃. Then (xy)ϕ̃ ◦Θ = ((x)ϕ̃)Θ =

((x)θ)ϕ = (xy)θ ◦ ϕ. Therefore θ ◦ ϕ = ϕ̃ ◦ Θ. Finally, we show that L = θ−1L̃θ. We have,

θ−1L̃θ = (θ−1Lθ)[θ−1(InnKer eϕ(K))θ] = (θ−1Lθ)Inn(Ker eϕ)θ((K)θ) = (θ−1Lθ)InnKerϕ(K) = L.

Therefore, (K, ϕ̃, L̃) ≡D (K,ϕ,L).

Conversely, suppose (K,ϕ,L)Γ◦Q corresponds to a triple (K,ϕ,L) of D equivalent to (K, ϕ̃, L̃).

Then there exist isomorphisms θ : K → K and Θ : Im ϕ̃ → Imϕ such that θ ◦ ϕ = ϕ̃ ◦ Θ. So

Ker ϕ̃ = (Kerϕ)θ−1. Now by Construction 9.1 (and by the same argument used previously in this

proof), Kerϕ =
∏k
i=1((Kerϕ)θ)πi. So Ker ϕ̃ =

(∏k
i=1((Kerϕ)θ)πi

)
θ−1 =

∏k
i=1(Kerϕ)πi and

therefore Kerϕ is a subdirect subgroup of Ker ϕ̃. �

Let us review what we have found so far. It is our main objective in this section to characterise

the elements of Gprod by their quotient constructions (Gprod)Q. So far we have shown that we can

complete the circle – that is, given an element of (Gprod)Q we construct (possibly several) innate

triples which yield elements of Gprod, and the image under Q of at least one of these is equivalent
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to the element of (Gprod)Q we started with. It remains to show that all elements of Gprod arise by

this process using Construction 9.6.

Corollary 9.9. Let (K,ϕ,L) ∈ Dprod and let (KΨ, ϕ̃, L̃) be the element of (Dprod)Q corresponding

to the output of Construction 9.1 applied to (K,ϕ,L)Γ so that L̃ = LInnK1(K) by Lemma 9.5,

where K1 = Ker ϕ̃. If in Construction 9.6, the subgroups K0, L, and M chosen in parts (1), (2),

and (3) are Dom ϕ̃, L, and Kerϕ respectively, then the element of D constructed from (KΨ, ϕ̃, L̃)

is equivalent to (K,ϕ,L) under ≡D.

Proof. It is clear that M = Kerϕ, K0 = Domϕ, and L satisfy the conditions of Construction 9.6.

Let θ be the identity isomorphism of K onto itself (so clearly L = θ−1Lθ), and let ϕ̂ be the natural

quotient map of K0 onto C := K0/M . Let Θ : CG(K) → C be defined by ((x)ϕ)Θ = Mx. First we

show that Θ is well-defined. Let x1, x2 ∈ K0 and suppose (x1)ϕ = (x2)ϕ. Then x1x
−1
2 ∈ Kerϕ =

M and hence Mx1 = Mx2, and Θ is well-defined. It is clear that Θ is an isomorphism. Now for

all x ∈ Domϕ, (x)ϕ ◦ Θ = Mx = (x)ϕ̂ = (x)θ ◦ ϕ̂ and hence θ ◦ ϕ̂ = ϕ ◦ Θ on Domϕ. Therefore

(K, ϕ̂, L) ≡D (K,ϕ,L). �

Now we prove Theorem 1.3.

Proof of Theorem 1.3. Let G be an innately transitive group on a set Ω with plinth K. We may

assume that K is nonabelian and nonsimple, as otherwise K satisfies (1) or (2) of Theorem 1.3. Let

α ∈ Ω. We have two cases; Kα is or is not a subdirect subgroup of K. By Proposition 5.5 and the

description of Diagonal type in Section 3, if Kα is a subdirect subgroup of K, then G satisfies (3)

or (4) of Theorem 1.3. So suppose Kα is not a subdirect subgroup of K. Then (G,K,Gα) ∈ Gprod.

Let (GΨ,KΨ, GΨ
0 ) = (G,K,G0)Q as in Construction 9.1.

By Proposition 9.2, Ψ can be identified with k copies of a set Ψ0 and GΨ is conjugate to a

subgroup of V wrSk in product action, where V is the component of GΨ in Sym(Ψ0). It follows

from Corollary 9.9 that G is permutationally isomorphic to an innately transitive group produced

by Construction 9.6 using the innate triple corresponding to (GΨ,KΨ, GΨ
0 ) as input.

If K is regular, then by Corollary 9.3 it follows that V is innately transitive with a simple plinth

(in all cases). Also if K is not regular, then by Lemma 9.4, V is again innately transitive with a

simple plinth. Therefore G satisfies part (5) of Theorem 1.3. �

10. Innately Transitive Groups with a Regular Plinth

In this section, we analyse innately transitive groups whose plinths act regularly. Let G be

an innately transitive group on a set Ω, let α ∈ Ω, let K be the plinth of G, and suppose K is

nonabelian, nonsimple, and acts regularly on Ω, that is, Kα = 1. As discussed in Section 2, we
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may can identify Ω with K, identify K with KR, identify α with the identity element of K, identify

CSym(Ω)(K) with CSym(K)(KR) = KL, and identify NSym(Ω)(K) with Hol(K). Let K = T k where

T is a nonabelian simple group and k ≥ 2. There are four sub-cases according to the structure of

CG(K).

(1) CG(KR) = 1: Here G is quasiprimitive by Proposition 5.3, and by Theorem 4.1, G is of

Twisted Wreath type.

(2) CG(KR) 6= 1 and CG(KR) is not subdirect in KL: We shall show in Proposition 10.3(ii)

that G is of Product Quotient type.

(3) 1 < CG(KR) < KL and CG(KR) is subdirect in KL: It will turn out (see Proposition

10.3(iii)) that G is of Diagonal Quotient type.

(4) CG(KR) = KL: Here G is quasiprimitive by Proposition 5.3, and by Theorem 4.1, G is of

Holomorph of a Compound Group Type.

Let (KR, ϕ, L) be the innate triple associated to (G,KR, Gα). By Lemma 5.2, ϕ is an isomor-

phism from (KR)σ onto CG(KR) and (ρx)ϕ = λx for all ρx ∈ (KR)σ. The graph of ϕ is useful

for analysing this case. Recall that Graph(ϕ) is the subgroup of CG(KR) × (KR)σ) defined by

Graph(ϕ) = {(u)ϕu : u ∈ (KR)σ)}. It has the following properties.

Lemma 10.1. Let G ≤ Sym(K) be innately transitive with non-abelian plinth KR, let σ be the

orbit of the identity element α of K under CG(KR), and let ϕ be the isomorphism from (KR)σ

onto CG(KR) given in Lemma 5.4. Then:

(1) Graph(ϕ) is a full diagonal subgroup of CG(KR)× (KR)σ,

(2) Graph(ϕ) = (CG(KR)×KR)α, and

(3) Graph(ϕ) = CoreGα((Inn(TR)φ−1) where T is a simple direct factor of K and φ :

NGα(TR) → Aut(TR) is the map induced by the conjugation action of Gα on TR.

Proof. Part (1) Follows from the definition of Graph(ϕ).

(2) Since KL×KR = KRo Inn(K), KR is regular on K, and Inn(K) fixes α, it follows that (KL×

KR)α = Inn(K). Now Graph(ϕ) is a subgroup of CG(KR)×KR, so Graph(ϕ) ≤ (CG(KR)×KR)α.

On the other hand CG(KR)×KR is transitive on K and hence

|(CG(KR)×KR)α| = |CG(KR)×KR|/|KR| = |CG(KR)| = |Graph(ϕ)|.

Therefore Graph(ϕ) = (CG(KR)×KR)α.

(3) Let M = (Inn(TR))φ−1. First we will show that Graph(ϕ) ≤ CoreGα(M). Clearly, Graph(ϕ)

lies in the domain NGα(TR) of φ and (Graph(ϕ))φ ≤ Inn(TR) since Graph(ϕ) ≤ Inn(K). So



GROUPS WITH A TRANSITIVE MINIMAL NORMAL SUBGROUP 33

Graph(ϕ) ≤ M and since Graph(ϕ) E Gα, it follows that Graph(ϕ) ≤ g−1Mg for all g ∈ Gα.

Therefore Graph(ϕ) ≤ CoreGα(M).

Now we prove the reverse inclusion. For all i, let Ti be the i-th simple direct factor of K,

φi : NGα((Ti)R) → Aut((Ti)R) be the induced conjugation map, and Mi = (Inn((Ti)R))φ−1
i . Since

Gα is transitive on the simple direct factors of K, CoreGα(M) =
⋂k
i=1Mi. Let x ∈ CoreGα(M).

Then (x)φi ∈ Inn((Ti)R) for all i. So for all i, there exists ρti ∈ (Ti)R such that for all ρyi ∈

(Ti)R, x−1ρyix = ρ−1
ti yiρti . Hence for all ρy1 · · · ρyk ∈ (T1)R × · · · × (Tk)R = KR, we have

x−1(ρy1 · · · ρyk)x = ρ(t1···tk)−1(y1···yk)(t1···tk), and therefore x induces an inner automorphism of K.

The subgroup inducing inner automorphisms is KL×KR = KRo Inn(K) (see Section 2), and thus

x ∈ (KL ×KR) ∩Gα = Graph(ϕ) (by (2)). Therefore CoreGα(M) ≤ Graph(ϕ) as required. �

Remarks 10.2. We can translate the properties of CG(KR) in the case subdivision in Lemma

10.1 to equivalent properties for Graph(ϕ):

(1) CG(KR) = 1 if and only if Graph(ϕ) = 1,

(2) CG(KR) is subdirect in KL if and only if Graph(ϕ) is subdirect in Inn(K), and

(3) CG(KR) = KL if and only if Graph(ϕ) = Inn(K).

We now give a structure theorem for Regular Plinth type. Recall by Corollary 9.3, that we have

G ≤ V wrSk in product action on T k where V , the component of G, is innately transitive on T

with a regular plinth.

Proposition 10.3. Let K = T k where k ≥ 2 and T is a nonabelian simple group, let G ≤

Hol(K) ∼= Hol(T ) wrSk, and let V be the component of G in Hol(T ).

(i) If Graph(ϕ) = 1, then V is of Almost Simple type, K is the unique minimal normal

subgroup of G, and G is quasiprimitive of Twisted Wreath type.

(ii) If Graph(ϕ) is nontrivial and not subdirect in Inn(K), then V is of Almost Simple Quotient

type and G is of Product Quotient type.

(iii) If Graph(ϕ) is nontrivial and subdirect in Inn(K), then V is of Holomorph of a Sim-

ple Group Type, and CG(KR) is a direct product of m full diagonal subgroups of T k

where m is a proper divisor of k. Up to permutational isomorphism, we have that

G ≤ NHol(K)(CG(K)) = KR o [(A × Sk/m) wrSm] and Graph(ϕ) = Bm, where A and

B are full diagonal subgroups of Aut(T )k/m and Inn(T )k/m respectively. Thus G is of

Diagonal Quotient type.

(iv) If Graph(ϕ) = Inn(K), then V is of Holomorph of a Simple Group type, and G is primitive

of Holomorph of a Compound Group type.
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Proof. Parts (i) and (iv) follow from Corollary 9.3. For part (ii), it follows from Corollary 9.3 that

V is of Almost Simple Quotient type and hence G is of Product Quotient type as described in

Section 3. It remains to prove part (iii). Let σ be the orbit of the identity element of K under

CG(KR). By Remarks 10.2, CG(KR) is a subdirect subgroup of KL. Equivalently (see the proof

of Corollary 9.3), the setwise stabiliser (KR)σ is a subdirect subgroup of KR. So by Corollary 9.3,

V is of Holomorph of a Simple Group type.

By Lemma 4.4, there exists a positive integer m, such that CG(KR) is a direct product of m full

diagonal subgroups of subproducts of T k. Since Gα acts transitively on the simple direct factors

of K, it also acts transitively on the simple direct factors of CG(KR), and hence m is a divisor of

k. Now each full diagonal subgroup of a subproduct of T k is of the form {(tγ1 , . . . , tγk/m) : t ∈ T},

where each γi is an automorphism of T . So the image of G under some element γ of Aut(K) yields

a permutation group Ĝ = (G)γ on [Ĝ : (G0)γ] that is permutationally isomorphic to G on Ω such

that CĜ((KR)γ) is a direct product of straight diagonal groups of the form {(t, . . . , t) : t ∈ T}. We

will identify G with Ĝ.

Let Σ = {1, . . . ,m} where each i = {(i − 1)r + 1, . . . , ir} and r = k/m. Note that Σ forms a

partition of {1, . . . , k}. It is a simple fact (see [8, Exercise 2.6.2]), that (Sk)Σ ∼= Sr wrSm. We

relabel the simple direct factors of K such that (KR)σ = D1×· · ·×Dm where each Di is a straight

diagonal subgroup of T r.

Note that NHol(K)(CG(KR)) = NSym(K)(CG(KR))∩ (KRoAut(K)) = KRoNAut(K)(CG(KR)).

Now τ ∈ NAut(K)(CG(KR)) if and only if λ(x)τ = τ−1λxτ ∈ CG(KR) for all λx in CG(KR), or

equivalently, ρ(x)τ ∈ (KR)σ where ρx ∈ (KR)σ. So NAut(K)(CG(KR)) = Aut(K)(KR)σ in the

natural action of Aut(K) on KR. Let (a1, . . . , ak)π ∈ Aut(K) = Aut(T )wrSk. So (a1, . . . , ak)π

fixes (KR)σ setwise if and only if π ∈ (Sk)Σ and a(i−1)r+1 = · · · = air for each i ∈ {1, . . . , k}.

Therefore Aut(K)(KR)σ = A0× (Sk)Σ where A0 = A1×· · ·×Ak and each Ai is a straight diagonal

subgroup of Aut(T )r. Hence NHol(K)(CG(KR)) = KR o [(A × Sk/m) wrSm] where A is a full

diagonal subgroup of Aut(T )r. By Lemma 10.1, Graph(ϕ) = Inn(KR)σ (K) and so by a similar

argument, Graph(ϕ) = Bm where B is a full diagonal subgroup of Inn(T )r. Thus G is of Diagonal

Quotient type as described in Section 3. �

Finally in this section we complete the proof of Theorem 1.2.

Proof of Theorem 1.2. By the discussion in Section 8, we may assume that G is innately transitive

with nonabelian plinth K = T k where k ≥ 2, and Kα is not a subdirect subgroup of K. Thus

(G,K,Gα) ∈ Gprod. By Lemma 9.4, we may assume further that K is regular. In this last case the

various types of innately transitive groups are classified in Proposition 10.3. �



GROUPS WITH A TRANSITIVE MINIMAL NORMAL SUBGROUP 35

11. Concluding Remarks

We conclude this paper with some remarks.

(1) Construction 6.6 gives a general construction method for all finite innately transitive groups

up to permutational isomorphism. We designed this construction so that each innately transitive

group G determines a unique set of “input data” for this construction. In the case where G has an

abelian plinth K, we chose the subgroup K0 to be K and ϕ to be an automorphism of K. In this

case, Construction 6.6 produced a group X with an unfaithful innately transitive action having

kernel Z ∼= K0 such that the induced permutation group X/Z is permutationally isomorphic to G.

We could equally well have chosen K0 = 1, with ϕ the trivial map, for our input data and then

Construction 6.6 would have produced a different group X with a faithful action permutationally

isomorphic to G. We decided on the former choice since for it we have CX/Z(KZ/Z) = KZ/Z so

that Proposition 6.7 holds for all cases.

(2) We would like to draw attention to the key role played by Graph(ϕ) in the structure of

innately transitive groups with a regular plinth, and in particular, the result of Proposition

10.1(3). For the description of Twisted Wreath type of primitive groups given in [12], G = KP

where K = T1 × · · · × Tk = T k and P = Gα. The condition for these primitive groups that

P acts faithfully as a group of permutations of {T1, . . . , Tk}, is equivalent to the condition

CoreGα((Inn(TR))φ−1) = 1. In the Twisted Wreath type for quasiprimitive groups in [14], the

requirement that CoreGα((Inn(TR))φ−1) = 1 was explicitly stated in this form. In the more gen-

eral setting of innately transitive groups we can replace the condition “CoreGα((Inn(TR))φ−1) = 1”

with the natural and equivalent requirement that Graph(ϕ) be trivial. This form of the condition

is helpful in differentiating Twisted Wreath type from other types of innately transitive groups

which involve Graph(ϕ) in their descriptions.

(3) As mentioned in the introduction to this paper, there was until now, no general construction

method that produced all quasiprimitive groups of Product Action type. By specialising Con-

struction 9.6 to innate triples (K, ϕ̃, L̃) with Im ϕ̃ = 1 and choosing M = K0 (see part (3) of

Construction 9.6) so that the constructed groups are quasiprimitive, we obtain a general construc-

tion for these groups.

Proposition 11.1. Let G be a quasiprimitive group on a finite set Ω with plinth K, let α ∈ Ω, and

let (K,ϕ,L) be the innate triple associated to (G,K,Gα). Then G is of Product Type if and only

if there exists (K̃, ϕ̃, L̃) ∈ (Dprod)Q such that (K,ϕ,L) is obtained by Construction 9.6 applied to

(K̃, ϕ̃, L̃), with the parameters M and K0 in part (3) of Construction 9.6, equal and nontrivial.
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Proof. Let G, K, Ω, and α be as given in the statement. Suppose first that G is quasiprimitive

of Product Type. Then by Theorem 4.1 and the description of Product Type in Section 3, K

is nonabelian and nonsimple, Kerϕ = Kα is nontrivial and not a subdirect subgroup of K, and

Imϕ = CG(K) = 1. So (K,ϕ,L) ∈ Dprod and by Corollary 9.9, there exists (K̃, ϕ̃, L̃) such that

(K,ϕ,L) is equivalent to an innate triple obtained by Construction 9.6 applied to (K̃, ϕ̃, L̃). Now

the parameters M and K0 in part (3) of Construction 9.6 are precisely the kernel and domain of

ϕ. Since G is quasiprimitive, by Proposition 5.3, either M = K0, or M = 1 and K0 = K. The

latter is impossible as Imϕ = 1. Therefore M and K0 are equal, and since G is of Product Type,

M is nontrivial.

Conversely suppose there exists (K̃, ϕ̃, L̃) ∈ (Dprod)Q such that (K,ϕ,L) is obtained by Con-

struction 9.6 applied to (K̃, ϕ̃, L̃), with the parameters M and K0 in part (3) of Construction 9.6,

equal and nontrivial. By Corollary 7.6, (K,ϕ,L) is quasiprimitive and hence G is quasiprimitive

on Ω. Since (K,ϕ,L) ∈ Dprod and Kerϕ = M 6= 1, by definition we must have (G,K,Gα) ∈ Gprod
with Kα 6= 1. Therefore G is of Product Type. �

(4) In many investigations involving a transitive permutation group G, the normal quotient actions

ofG, play an important role (see for example [15]). These are the transitive actions ofG on the orbit

sets of intransitive normal subgroups. In the case where G is innately transitive and imprimitive

with nonabelian plinth K, the centraliser CG(K) is a maximal intransitive normal subgroup of G.

If Σ denotes the set of CG(K)-orbits then the corresponding normal quotient GΣ ∼= G/CG(K) has a

unique minimal normal subgroup, namely KΣ ∼= K, and hence GΣ is quasiprimitive. If CG(K) = 1

then G is quasiprimitive on Ω and of course is permutationally isomorphic to GΣ on Σ. Table 1

lists the types of innately transitive groups G that are not quasiprimitive (so 1 < |CG(K)| < |K|)

together with the types of the corresponding quasiprimitive normal quotient.

Type of G Type of GΣ

Almost Simple Quotient Almost Simple

Diagonal Quotient Diagonal

Product Quotient Product Action

Product Action Product Action

Table 1. The quasiprimitive type of the group GΣ corresponding to the innately

transitive type of G.
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