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Abstract. A point λ in the complex plane is said to be free if the group generated
by the matrices ( 1 2

0 1 ) and ( 1 0
λ 1 ) is free. In this paper we give an infinite family of

polynomials whose roots are the non-free points. The main idea in this paper is
to employ a symmetry relation.

Introduction

A point λ in the complex plane is said to be free if the group generated by the
matrices ( 1 2

0 1 ) and ( 1 0
λ 1 ) is free. Many papers have been written on this topic (see

‘References’ and references therein). It is a classical result that λ is free if |λ| ≥ 2
([19, 3]). In fact, λ is free in each of the following cases:

(1) λ ∈ C lies outside the unit discs centered at −1, 0 and 1 ([5]).
(2) λ ∈ C lies outside the open discs of radii 1

2
centered at i/2 and −i/2, and

outside the unit open discs centred at −1 and 1 ([16]).
(3) λ ∈ C lies outside the convex hull containing the unit circle at the origin and

the points ±2 ([16]).
(4) λ ∈ C satisfies |λ− 1| > 1

2
and 1 ≤ |Re(λ)| < 5

4
([8]).

(5) λ lies outside the unit circle and |Im λ| ≥ 1
2

([9]).

Figure 1. Known free points in the complex plane (unshaded)
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Figure 1 summarizes these results. It is well known that if z is free then z̄ and −z
are free. It is also known that if ρ is a point in the “Riley Slice of Schottky Space”
then 1

2
ρ is free ([13]). A computer generated picture of the ‘Riley Slice’ is given

in [13]. It is somewhat similar to figure 1 except larger with a fractal boundary.
Inside the ‘eye’, it is also known that free points are abundant. For example, the
transcendental points are all free ([7]), algebraic free points are dense in the complex
plane ([5]), and points with a free algebraic conjugate are free ([16]). Also, if λ is
not free, then neither is λ/n for all n ∈ Z\{0} ([16]).

In the study of non-free points, there have also been numerous results. Many
of these results give domains for which non-free points are densely distributed; for
example, Rimhak Ree showed (see [18]) that the segments (−2, 2) and (−i, i) on the
real and imaginary axes respectively, reside in open sets in which non-free points are
densely distributed. Evans proved ([6]) Newman’s conjecture ([17]) (which was also
independently proved in [15]) that if µ is a root of unity, then 1

2
µ is a non-free point.

According to [15], the closure of the set of non-free points is connected. The introduc-
tion of Alan Beardon’s paper ([2]) has a brief summary of the literature on real non-
free points. It seems that the set of all known explicit non-free points is very small. In
particular, there are few known rational non-free points greater than 1. In Ignatov’s
papers [10, 11], it is stated that the rationals 1

2
(1/n)2, 1

2
(2/n)2, 1

2
(3/n)2, . . . , 1

2
(8/n)2

are non-free for all non-zero integers n, and that numbers of the form (m+n)2

2m2n2 are
non-free points.

Let A = ( 1 2
0 1 ) and B = ( 1 0

λ 1 ). Generally, when studying non-free points, one
considers the word W = Ah1Bh2Ah3 . . . Ah2k−1Bh2k . From a computational point of
view, the difficulty in obtaining non-free points, is that the relation W = I is a
system of four simultaneous polynomials in λ of degree k. Moreover if W = I, then
necessarily k ≥ 3 ([4]). In this present note, we consider words of the form W =
Ah1Bh2 . . . Bh2nAh2n+1 with symmetry relation CWC−1 = W−1, where C = ( 0 2

λ 0 )
(in dynamics, this is commonly known as “time-reversal” symmetry, see [14, 1]).
The matrix C has the property that it simultaneously conjugates A to B and B to
A. So the relation CWC−1 = W−1 is indeed a relation between the matrices A and
B. This is surprisingly well adapted to computations.

Results

Below, we now define the polynomials Bn(λ) central to the statement of the main
theorem.

Definition 1. Let h1, . . . , h2n+1 ∈ Z\{0}. Define the following recurrence relation
for all n ∈ N:

an = an−1 + λh2nbn−1

bn = 2h2n+1an−1 + (1 + 2λh2nh2n+1)bn−1

cn = cn−1 + λh2ndn−1

dn = 2h2n+1cn−1 + (1 + 2λh2nh2n+1)dn−1

where
(

a0 b0
c0 d0

)
=

(
1 2h1
0 1

)
. Then Bn is the nth degree polynomial defined by:

Bn(λ) = 1
2
bn + 1

λ
cn for all λ ∈ C.

Here are the first two polynomials, B1 and B2:
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• B1(λ) = 2h1h2h3λ + h1 + h2 + h3

• B2(λ) = 4h1h2h3h4h5λ
2 +2(h1h2h3 +h2h3h4 +h3h4h5 +h4h5h1 +h5h1h2)λ+

h1 + h2 + h3 + h4 + h5

The polynomials Bn(λ) are essentially the continuant polynomials of Euler that
arise naturally in the context of matrix products such as the above (see for example
[12, Section 6.4]). It turns out that the polynomials Bn(λ) have a high level of
symmetry.

Definition 2. Let Pc(k) denote the set of all strings with k − 2c variables obtained

by taking out c distinct pairs of adjacent variables from the string
∏k

i=1 hi.

Here “adjacent” is understood in the cyclic sense. For example, P1(5) =
{h1h2h3, h2h3h4, h3h4h5, h4h5h1, h5h1h2}. It is easy to prove the following result
by induction. We will not require it in what follows.

Proposition 1. For all n ∈ N and h1, . . . , h2n+1 ∈ Z\{0},

Bn(λ) =
n∑

r=0

[
(2λ)r

∑
Pn−r(2n + 1)

]
The main result of this paper is

Theorem 1. If λ 6= 0 is a root of Bn for some n ∈ N and h1, . . . , h2n+1 ∈ Z\{0},
then λ is non-free. Conversely, every non-free point is a root of some Bn.

Proof. Suppose Bn(λ) = 0. Let Wn = Ah1Bh2 . . . Bh2nAh2n+1 . The recurrence rela-

tion has been chosen such that Wn =

(
an bn

cn dn

)
. One finds by direct calculation

that

CWnC
−1 =

(
dn

2
λ
cn

λ
2
bn an

)
and W−1

n =

(
dn −bn

−cn an

)
.

By hypothesis it follows that CWnC
−1 = W−1

n . Conversely, if λ is non-free, then
W = I for some word W = Ah1Bh2Ah3 . . . Ah2n+1 . So CWC−1 = W−1 and it follows
that λ is a root of the corresponding Bn. �

The above result is similar to that of Lyndon and Ullman ([16, Proposition 1])
and Ignatov ([9, Theorem 4]) except that it is better adapted to computations.

The following corollaries to Theorem 1 use B1(λ).

Corollary 1. If λ = 1
2

+ 1
h

or λ = 1
2
− 1

h
for some h ∈ Z\{0}, then λ is non-free.

Proof. Use B1(λ) by assigning h1 = h, h2 = ±1, and h3 = ±1, and note that λ is
non-free if −λ is non-free. �

To the author’s knowledge, the above corollary was not previously known.

Corollary 2. The points λ = 1
2h

for all h ∈ Z\{0} are limit points of the set of
non-free points.

Proof. Using B1(λ) with h3 = 1, we have that for all h1, h2 ∈ Z\{0}, −λ = 1
2h2

+
1

2h1
+ 1

2h1h2
is a non-free point and hence 1

2h2
+ 1

2h1
+ 1

2h1h2
is also a non-free point.

The result follows by letting h1 tend to infinity. �
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From a result of Ignatov (see [10, 11]), one can deduce that numbers of the form
1

2n2 are accumulation points of non-free points, and from a result of Beardon ([2]),

that λ = 1
2N

, where
√

N is irrational, is also an accumulation point of non-free
points.

Corollary 3. 1
2
, 1, and 3

2
are non-free.

Proof. One chooses (h1, h2, h3) to be (1, 2, 3), (1, 2, 1), and (1, 1, 1) respectively. �

It is well known that 1 and 1
2

are non-free (see [16, Proposition 2], µ =
√

2 and

µ = 1), but it is well known (see [2, Section 2]) that for λ equal to 1
2
, 1, or 3

2
, that

the element AB−1 has order 6, 4, or 3 respectively.
The following corollaries to Theorem 1 use B2(λ).

Corollary 4. 1
2
eπi/3, 1+

√
13

4
, 5+

√
5

4
, i

2
, and 1√

2
are non-free.

Proof. Choose (h1, h2, h3, h4, h5) to be (−1,−1,−1, 1, 1), (−1, 1, 1, 1, 1), (1, 1, 1, 1, 1),
(1, 2, 1,−1,−1), and (1,−1, 1, 1, 2) respectively. �

The fact that λ = eπi/3/2 and λ = i/2 are non-free points follows from the main
result in Evans (see [6], both points correspond to µ being a root of unity). The point
1/
√

2 was also previously known to be non-free (see [16, Proposition 2], µ = 4
√

2).

As far as we are aware, 1+
√

13
4

and 5+
√

5
4

were not previously known to be non-free
points.

In addition, B2(λ) enables one to recover the results of Beardon [2, section 6].

Corollary 5. 9
50

, 8
25

, 25
72

, 9
98

, 8
81

, 25
162

, and 25
98

are non-free.

Proof. Choose (h1, h2, h3, h4, h5) to be (−1, 5, 5, 4, 5), (1,−1,−3,−47, 50),
(1,−3, 1,−8, 9), (−2,−1, 7, 7, 7), (−2, 5,−3,−9, 9), (−4,−2,−3,−9, 18), and
(−2,−1,−49, 3, 49) respectively. �

Similarly, one can recover Lyndon and Ullman’s simple result (see [16, Proposition
6]) using various Bn.

Corollary 6. 9
8
, 8

9
, 25

32
, and 25

18
are non-free.

Proof. Choose (h1, h2, . . . , h5) = (1,−1, 1,−2, 10) for B2, (h1, h2, . . . , h7) =
(−1, 3,−1, 1,−2,−3, 3) for B3, (h1, h2, . . . , h5) = (−1, 1,−2,−6, 8) for B2, and
(h1, h2, . . . , h11) = (−1, 1,−1, 1,−3,−1, 1,−3, 3,−1, 4) for B5 respectively. �

Similarly, one can obtain points on the arc considered by Shkurat-skii [20] in the
same way. For example using B4 with (h1, h2, . . . , h9) = (1,−1, 1, 1,−1, 1, 1,−1, 1).
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Figure 2. Non-free points: roots of B2(λ).

Figure 2 is a diagram of some of the roots of B2(λ) with h1, h2, . . . , h5 ∈
[−60, 60] ∩ Z\{0}. These diagrams were generated by a computer program writ-
ten by the author in ‘C++’. Figure 3 is a diagram of some of the roots of B3(λ)
with h1, h2, . . . , h7 ∈ [−10, 10] ∩ Z\{0}. Figure 4 is a diagram of some of the roots
of B4(λ) with h1, h2, . . . , h9 ∈ [−5, 5] ∩ Z\{0}.

Figure 3. Non-free points: roots of B3(λ).
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Figure 4. Non-free points: roots of B4(λ).
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