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Abstract

We construct an infinite family of symplectic spreads in spaces of
odd rank and characteristic.

1 Introduction

This paper uses a technique commonly known as “net replacement” to construct
new spreads in the finite symplectic polar space of odd rank and characteristic.
First we give an overview of some definitions and theory of finite geometry, together
with some results of the past which provide the context and background for our
construction.

The definitions of a projective plane and an affine plane can be found in most
standard texts on geometry such as [7]. In a projective or affine plane, a point
P is a centre for a collineation ϕ if ϕ fixes every line incident with P . A line l
is an axis of ϕ if ϕ fixes every point on l. It is standard knowledge that every
non-identity collineation has at most one axis and at most one centre, and it has an
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axis if and only if it has a centre (see [7, Section 3.1.4]). A collineation which has a
centre and axis which are incident with one another, is called an elation. A group
of collineations H is called (P, l)-transitive if the subgroup of H consisting of those
elements which have centre P and axis l, acts transitively on the non-fixed points
of any line through P which is not equal to l. For two lines m and l, we say that
H is (m, l)-transitive if H is (P, l)-transitive for all P on m. Dually, if P and Q are
points, then we say that H is (P,Q)-transitive if H is (P, l)-transitive for every line
l incident with Q. Let Γ be a projective plane and suppose that ∆ is an affine plane
obtained by removing the line l∞ from Γ. Then ∆ is a translation plane if there
exists an (l∞, l∞)-transitive group of elations of ∆. We call l∞ the translation line
of ∆. The dual of a translation plane is a shears plane, the corresponding point
being a shears point.

We shall identify Desarguesian projective spaces and the system of subspaces
of the underlying vector space. A t-spread of a projective space is a collection of
t-dimensional subspaces such that every point is contained in exactly one subspace.
So a spread provides a partition of the points of the projective space. A partial
t-spread is a collection of pairwise disjoint t-dimensional subspaces. Given a spread
S, there is an associated translation plane π(S) derived from the Andre/Bruck-Bose
construction (see [6] and [2]). We call a collection C of (t + 1) × (t + 1) matrices
over GF(q) a t-spread set if it satisfies the following conditions: (1) |C| = qt+1; (2)
C contains the zero matrix; (3) if A and B are distinct matrices in C, then A−B is
invertible. Every t-spread of PG(2t+1, q) can be represented by a t-spread set (see
[6]), as S(C) = {{(X, XA) ∈ GF(qt+1) ⊕ GF(qt+1)|X ∈ GF(qt+1)} : A ∈ C} ∪ Y
(where Y = {(0, y) : y ∈ GF(qt+1)}) is a spread if and only if C is a spread set.

Let C be a spread set and let π = π(S(C)). Then π is a dual translation plane
with shears point Y , if and only if C is closed under addition. In the finite case, the
following are equivalent (see [7, Section 3.1]): (1) π has at least two translation lines;
(2) every line of π is a translation line; (3) π is Desarguesian; (4) π is isomorphic
to PG(2, qt+1) for some q; (5) C is closed under addition and multiplication.

As defined in [7, Section 5.3], a semifield is a finite set S, together with addition
and multiplication such that S is a group with respect to addition, multiplication
distributes over addition, there are no zero divisors in S, and there exists a multi-
plicative identity element in S.

R. H. Bruck in 1951 [4] introduced finite nets. A net is a system of points and
lines satisfying: (N1) every two points lie on at most one line; (N2) every point lies
on at least two distinct lines; (N3) Playfair’s Axiom (for any non-incident point-line
pair p, L, there exists a unique line through p which has no point in common with
L;). Note that the definition of a net is the natural weakening of the axioms of
an affine plane. Parallelism is an equivalence relation, and in the finite case, the
number of parallel classes k is called the degree of the net, and the common number
n of points on each line is called the order of the net. A net is thus equivalent to
k − 2 mutually orthogonal n × n Latin squares, as shown by Bruck in 1951. See
also Bruck’s 1963 paper [5] for more on nets. There is an analogue here with the
Andre/Bruck-Bose construction – given a partial spread S, one can construct a net
ν(S), but this time the converse fails.

T. G. Ostrom [12] described a general method called net replacement for con-
structing new affine planes from old ones. A net is replaceable if there is another
net with the same collinearity graph. Similarly, we say that a partial spread S
is replaceable if ν(S) is a replaceable net. Given an affine plane containing a re-
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placeable net, replacing the net gives another affine plane. Given a translation
plane π(S), net replacement amounts to replacing some subset U of the spread S
by another partial spread V covering the same points as U . The resulting spread
S′ = (S\U) ∪ V then determines a new translation plane π(S′).

The symplectic polar space Sp(2n, q) of rank n is the space of totally isotropic
subspaces of PG(2n − 1, q) with respect to a null polarity, and has automorphism
group PΓSp(2n, q), for n > 1. Ovoids and spreads of polar spaces were introduced in
full generality in Thas’s seminal work [15]. An ovoid is a set of points meeting each
maximal singular subspace in a point, and a spread is a set of maximal singular
subspaces partitioning the points of the polar space. A spread of Sp(2n, q) is a
spread of PG(2n − 1, q), but not conversely. Surveys corresponding to this topic
appear in [15, 16, 17, 10].

T′ep [14] in 1991, observed that the plane of Hering (1969, [9]) arises from a
spread of Sp(6, 3). Bader, Kantor, and Lunardon (1994, [3]) give a construction for
odd rank from some of Albert’s twisted fields (see Albert’s paper 1958/1959 [1]).
Kantor [10] generalises this construction to all commutative semifields. However,
in odd rank and characteristic, all previously known symplectic spreads arise from
semifields, apart from Hering’s spread in Sp(6, 3) (see [10, §6, Remark 3]).

Dempwolff [8] in 1994 classified translation planes of order 27, and so spreads
of PG(5, 3), from which it can be deduced that every spread of Sp(6, 3) is regular.
Hence any non-semifield spread of Sp(6, 3) is Hering’s spread. Here we construct
non-semifield spreads of symplectic spaces for odd rank and characteristic, by re-
placing a net in the Bader-Kantor-Lunardon-Albert spreads. For rank 3 and the
field of order 3, we obtain Hering’s spread, thus generalising Hering’s plane of order
27, long thought to be sporadic, to an infinite family of translation planes. Here
work of Suetake [13] is relevant. It appears that, the planes we obtain for rank 3
are isomorphic to those of Suetake.

Kantor [11] defined a construction of a strongly regular graph from a spread of
a polar space. Given a spread Σ, the vertices of the graph G(Σ) are the hyperplanes
of the elements of the spread, and two such hyperplanes X and Y are adjacent if
and only if X has a nontrivial intersection with the polar space of Y . Although
non-isomorphic spreads may produce isomorphic strongly regular graphs, we do not
know whether or not our family yields any new strongly regular graphs.

2 Construction

Let q be a power of an odd prime p, let t be a non-negative integer, and consider
V = GF(qt+1)2 as a vector space over GF(q). Let T : GF(qt+1) → GF(q) denote
the relative trace map x 7→ x + xq + · · · + xqt

and consider the nondegenerate
GF(q)-alternating form on V defined by

〈v, w〉 = T (v1w2 − v2w1)

for all v = (v1, v2), w = (w1, w2) ∈ V .
The regular spread in this model consists of the following subspaces of V :

X = {(x, 0) : x ∈ GF(qt+1)}

Y = {(0, y) : y ∈ GF(qt+1)}

{(x, mx) : x ∈ GF(qt+1)}, (m ∈ GF(qt+1)∗).
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Let ρ be a nontrivial automorphism of GF(qt+1) such that −1 /∈ GF(qt+1)ρ−1

(so necessarily, t is even). Then the spread B of Bader-Kantor-Lunardon-Albert
(BKLA) consists of the following subspaces of V :

Y

{(x, mxρ−1
+ mρxρ) : x ∈ GF(qt+1)}, (m ∈ GF(qt+1)).

Now B is symplectic with respect to the aforementioned alternating form. For all
s ∈ GF(qt+1), the map φs : V → V defined by φs(v, w) = (sv, s−1w) is an isometry
of V with respect to 〈, 〉. Denote the group of all φs by G. The involution τ of
V , which switches coordinates (v, w) 7→ (w, v), is an isometry of V and τφsτ

−1 =
φs−1 = φ−1

s for all s. So B is G-invariant. Consider the G-orbit

N = {φs(W ) : s ∈ GF(qt+1)∗}

where W = {(x, xρ + xρ−1
) : x ∈ GF(qt+1)∗}. Note that N and τ(N ) are G-

invariant. We have the following important lemma which allows us to create a new
symplectic spread from the BKLA spread.

Lemma 2.1 The collection N is a replaceable partial spread of the BKLA canonical
spread B with replacement N ′ = τ(N ).

Proof. We need to show that N ′ covers the same points as N . Let D = {x(xρ−1
+

xρ) : x ∈ GF(qt+1)∗} and let U = {(x, y) ∈ V : xy ∈ D}. Note that ∪N ⊆ U

and ∪N ′ ⊆ U . Now |D| is at most (qt+1 − 1)/2 (as x 7→ x(xρ−1
+ xρ) is at least a

two-to-one map) and |∪N | = (qt+1−1)2/2 = |∪N ′|. By definition of U , and since
|D| ≤ (qt+1 − 1)/2, we have that |U | ≤ (qt+1 − 1)2/2. Hence N = U = N ′. �

Theorem 2.2 The collection S = (B ∪ N ′)\N is a symplectic spread with respect
to the form 〈, 〉 and π(S) is not the dual of a translation plane. Hence S is new for
t > 2, and π(S) is Hering’s plane for (t, q) = (2, 3).

Proof. Note that N is a replaceable partial spread for the BKLA spread, with
ν(N ) contained in τ(B), and so it follows from our discussion in the introduction
that S is a spread. Moreover, it is symplectic as τ is an isometry.

Let M = B\({X, Y } ∪ N ). First observe that S = (τ(B)\τ(M)) ∪ M, so
that S may be constructed from τ(B) by net replacement. Thus there are two
spreads, giving rise to shears planes, with substantial intersection with S and the
intersection includes the shears point in both cases. This is sufficient to show that
neither X nor Y is a shears point of π(S) as follows:

Suppose S1 and S2 are spreads containing X and Y such that Y is a
shears point of both π(S1) and π(S2). Then |S1∩S2| = pe +1 for some
non-negative integer e, since the corresponding spread sets are closed
under addition and so form subspaces over GF(p).

On the other hand, |S ∩ B| = |S ∩ τ(B)| = qt+1+3
2 , showing that neither X nor Y

is a shears point of π(S). Hence π(S) is not a shears plane, for if Z ∈ S\{X, Y }
is a shears point of π(S), then so is φs(Z) for all s, so π(S) is Desarguesian, which
contradicts X not being a shears point of π(S). Thus if t > 2, then S is new, while
if (t, q) = (2, 3) it follows from Dempwolff’s classification of the translation planes
of order 27 that π(S) is Hering’s plane. �
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