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Abstract. Let T be a subgroup of PSL(2, Q) generated by a pair of rational par-

abolic matrices P1, P2, and let J = J (P1, P2) be the Jørgensen number. We prove

that T has a non-trivial element of finite order if and only if J = 4
n2 or J = 9

n2 for

some non-zero integer n.

Recall that a matrix A ∈ SL(2, Q) is parabolic if Tr(A) = ±2 and A 6= ±I. In
1975, Allen Charnow proved that if m is rational, then the group Γm, generated
by the parabolic matrices

(
1 m

0 1

)
and

(
1 0

m 1

)
, has an element of finite order if and

only if m is the reciprocal of an integer [1]. The aim of this note is to observe that
Charnow’s proof can be slightly modified to give the following more general result.

Theorem. Let T be a subgroup of PSL(2, Q) generated by a pair of rational para-
bolic elements P1, P2, and let J = |Tr[P1, P2]− 2| be the Jørgensen number. Then
T has a non-trivial element of finite order if and only if J = 4

n2 or J = 9
n2 for

some natural number n.

Proof. Let µ : SL(2, Q) → PSL(2, Q) be the natural quotient map. Choose para-
bolic matrices P+

1 , P+
2 ∈ SL(2, Q) with positive trace such that µ(P+

1 ) = P1 and
µ(P+

2 ) = P2 and let T+ be the subgroup of SL(2, Q) generated by P+
1 and P+

2 .
First notice that T has a non-trivial element of finite order if and only if T+ has
an element of finite order not in the centre {±I} of SL(2, Q). Secondly, it is well
known and easy to prove (cf. [2]) that T+ is conjugate in SL(2, C) to the group Gx

generated by the matrices A =
(

1 2

0 1

)
and B =

(
1 0

x 1

)
, where x = 1

2Tr(P+
1 P+

2 )− 1.

Note that 4x2 = J . So it remains to show that Gx has an element of finite order
not in {±I} if and only if x = 1

n or x = 3
2n for some non-zero integer n.

Let n ∈ Z\{0} and C = A−1Bn. If x = 1
n , then C =

(
−1 −2

1 1

)
and C4 = I. If

x = 3
2n , then C =

(
−2 −2

3/2 1

)
and C3 = I. So in both cases, Gx has an element of

finite order not equal to ±I.
Conversely, assume Gx has a non-trivial element of finite order. So Gx has an

element C whose order is a prime, p say. Recall that SL(2, Q) only has elements of
prime order p for p = 2 and p = 3. Indeed, if C has order p, then the eigenvalues
λ, λ−1 of C are primitive pth roots of unity. In particular, the degree of λ over Q is
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p− 1. But as the characteristic polynomial of C is quadratic, λ has degree at most
2. Hence p ≤ 3.

It is not difficult to show that since C ∈ Gx, C can be written in the form

C =
(

1 + 2xf1(x) 2f2(x)
xf3(x) 1 + 2xf4(x)

)
,

where f1, . . . , f4 are polynomials with integer coefficients. Let x = m
n , where m ∈ N,

n ∈ Z\{0} and (m,n) = 1.
If p = 2, C = −I. In particular, 1 + 2xf1(x) = −1, and so xf1(x) + 1 = 0.

Applying the Rational Roots Test (see for example [3]), one obtains m = 1.
If p = 3, λ = − 1

2 ±
√

3
2 i and so Tr(C) = −1. This gives

2x(f1(x) + f4(x)) + 3 = 0. (*)

So by the Rational Roots Test, m = 1 or m = 3. Finally, if m = 3 then (∗)
gives 2(f1(x) + f4(x)) + 3n = 0, which implies that n is even. This completes the
proof. �

Remark. The theorem does not hold in SL(2, Q). For example, consider the par-
abolic matrices A = −

(
1 2

0 1

)
and B =

(
1 0

5/14 1

)
. Here J = 25

49 , which is evidently

not of the form 4
n2 or 9

n2 . However A7BA−1B−7A−1B = −I and hence 〈A,B〉 has
an element of order 2.
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