Transitive Eggs

John Bamberg Tim Penttila

Abstract

We prove that a pseudo-oval or pseudo-ovoid (that is not an oval or ovoid) admitting an insoluble transitive group of collineations is elementary and arises over an extension field from a conic, an elliptic quadric, or a Suzuki-Tits ovoid.

MSC 2000: 51E20

1 Introduction

An egg of the projective space \(\text{PG}(2n + m - 1, q) \) is a set \(E \) of \(q^m + 1 \) subspaces of dimension \((n - 1)\) such that every three are independent (i.e., span a \((3n - 1)\)-dimensional subspace), and such that each element of \(E \) is contained in a common complement to the other elements of \(E \) (i.e., each element of \(E \) is contained in an \((n + m - 1)\)-dimensional subspace having no point in common with any other element of \(E \)). The theory of eggs is equivalent to the theory of translation generalised quadrangles (see [20, Chapter 8]). If \(q \) is even, then \(m = n \) or \(m = 2n \) (see [20, 8.7.2]), and for \(q \) odd, the only known examples of eggs have \(m = n \) or \(m = 2n \). Now an ovoid of \(\text{PG}(3, q) \) is an example of an egg where \(m = 2n = 1 \); hence an egg having \(m = 2n \) is called a pseudo-ovoid. Likewise, an oval of \(\text{PG}(2, q) \) is an egg where \(m = n = 2 \), and henceforth, a pseudo-oval is an egg with \(m = n \). If \(O \) is an oval of \(\text{PG}(2, q^n) \), then by field reduction from \(\text{GF}(q^n) \) to \(\text{GF}(q) \), one obtains a pseudo-oval of \(\text{PG}(3n - 1, q) \). Such pseudo-ovals are called elementary. Likewise, field reduction of an ovoid of \(\text{PG}(3, q^n) \) yields an elementary pseudo-ovoid of \(\text{PG}(4n - 1, q) \). All known pseudo-ovals are elementary, and in even characteristic, every known example of a pseudo-ovoid is elementary. There is some conflict over the definition of a classical pseudo-ovoid. In [6] and [24], a classical pseudo-ovoid is one which arises by field reduction from an elliptic quadric. However, some authors (e.g., Cossidente and King [9]) also include the Suzuki-Tits ovoids in their definition of a classical ovoid. Such confusion will be avoided in this paper by not using the term classical at all; so we will take the perhaps cumbersome approach of stating our results explicitly.

By Segre’s Theorem [22], every oval of \(\text{PG}(2, q) \), \(q \) odd, is a conic. Similarly, every ovoid of \(\text{PG}(3, q) \), for \(q \) odd, is an elliptic quadric, and this was proved independently by Barlotti [5] and Panella [19]. In the case where \(q \) is even, there also exist the Suzuki-Tits ovoids which are inequivalent to elliptic quadrics. The second author and O’Keefe, building on the work of Abatangelo and Larato, showed that the ovals of \(\text{PG}(2, q) \), \(q \) even, which admit a transitive subgroup of \(\text{PGL}_3(q) \) are conics (see [1] and [18]). Similarly, Bagchi and Sastry [2] showed that the ovoids of \(\text{PG}(3, q) \), \(q \) even, which admit a transitive subgroup of \(\text{PGL}_4(q) \) are elliptic quadrics or Suzuki-Tits ovoids. Brown and Lavrauw [6] have shown that an egg of \(\text{PG}(4n - 1, q) \), \(q \) even, contains a pseudo-conic if and only if it is elementary and arises from an elliptic quadric. Recently, J. A. Thas and K. Thas [24] have shown that every 2-transitive pseudo-oval in even characteristic is elementary and arises from a conic. In this paper, we prove the following result:
Main Theorem:
Suppose \mathcal{E} is a pseudo-oval or pseudo-ovoid (that is not an oval or ovoid) admitting an insoluble transitive group of collineations. Then \mathcal{E} is elementary and arises from a conic, an elliptic quadric, or a Suzuki-Tits ovoid.

2 The Approach

A divisor x of $q^d - 1$ (where $d \geq 3$) is primitive if x does not divide $q^i - 1$ for each positive integer $i < d$. By a result of Zsigmondy [25], such divisors exist if $(q,d) \neq (2,6)$. Therefore, if G acts transitively on a set of size $q^m + 1$ (and $(q,m) \neq (2,3)$), then a primitive prime divisor of $q^{2m} - 1$ divides the order of G. Such groups have an irreducible Sylow subgroup, and from this information, the structure of G can be described in great detail (see [12]). The authors have used this argument to classify m-systems of polar spaces which admit an insoluble transitive group (see [3]). From the definitions of a pseudo-oval and pseudo-oval, we can apply a similar argument here; which is dependent on the Classification of Finite Simple Groups.

Note: Suppose \mathcal{E} is a pseudo-oval (resp. pseudo-ovoid) of $\text{PG}(2n + m - 1, q)$ where $q = p^f$ for some prime p. Under field reduction from $\text{GF}(q)$ to $\text{GF}(p)$, there arises a pseudo-oval (resp. pseudo-ovoid) $\tilde{\mathcal{E}}$ of $\text{PG}((2n + m)f - 1, p)$. If \mathcal{E} admits an insoluble transitive subgroup of $\text{PGL}_{2n+m}(q)$, then $\tilde{\mathcal{E}}$ admits an insoluble transitive subgroup of $\text{PGL}_{(2n+m)f}(p) = \text{PGL}_{(2n+m)f}(p)$. We then apply the main result of this paper to $\tilde{\mathcal{E}}$ to establish that it is elementary, from which it follows that \mathcal{E} is elementary provided that it is not an oval or ovoid. Hence throughout this paper, we will assume without loss of generality that our given pseudo-oval or pseudo-ovoid admits an insoluble transitive subgroup of the homography group $\text{PGL}_{2n+m}(q)$.

3 The Pseudo-Oval Case

A pseudo-oval of $\text{PG}(d - 1, q)$ (where d is a multiple of 3) is a set of $q^{d/2} + 1$ subspaces of dimension $d/3 - 1$, where $c = \frac{2}{3}d$. This phrasing makes it clear how we apply the results of [4].

3.1 Even characteristic

If q is even, then the tangent spaces of a pseudo-oval \mathcal{E} all have a $(d/3 - 1)$-space in common; the nucleus of \mathcal{E} (see [20, pp. 182]). Since G must fix the nucleus, we have that G acts reducibly in this case. Let \mathcal{N} be the the nucleus of \mathcal{E} and consider the quotient map π from $\text{PG}(d - 1, q)$ to $\text{PG}(d - 1, q)/\mathcal{N}$, and note that the codomain can be identified with $\text{PG}(2d/3 - 1, q)$. The image of \mathcal{E} under π is a spread \mathcal{S} of $\text{PG}(2d/3 - 1, q)$ (see [20, pp. 182]). Moreover, we have that G acts transitively on this spread, and by the Andre/Bruck-Bose construction, we obtain a flag-transitive affine plane admitting an insoluble group. By [7], this affine plane is Desarguesian or a Lüneburg plane, so in particular, it follows that \mathcal{E} admits a 2-transitive group. So by [24, §8], we have that \mathcal{E} is an elementary pseudo-oval arising from a conic of $\text{PG}(2, q^{d/3})$.

3.2 Odd characteristic

Let \mathcal{E} be a pseudo-oval of $\text{PG}(d - 1, q)$, where q is odd. Then each element E of \mathcal{E} is contained in a unique 2d/3 - 1-subspace T_E of $\text{PG}(d - 1, q)$ which is called the tangent space at E. By [20, pp. 182], each point of $\text{PG}(d - 1, q)$ is contained in 0 or 2 tangent spaces of \mathcal{E}.
Theorem 3.1. Let $q = p^f$ where p is an odd prime, let d be an integer divisible by 3. If an insoluble subgroup G of $\text{PGL}_d(q)$ acts transitively on a pseudo-oval E of $\text{PG}(d-1,q)$, then E is elementary and is obtained by field reduction of a conic of $\text{PG}(2,q^{d/3})$.

Proof. Let E be a pseudo-oval of $\text{PG}(d-1,q)$ admitting a group $G \leq \text{PGL}_d(q)$ that is insoluble and acts transitively on E, and let H be the stabiliser in G of an element of E. Note that the number of elements of E is $q^{d/2} + 1$ where $e = 2d/3$. We may assume that $q^{4/3} > 16$ as it was shown by the second author in [21] that if $q^{4/3} \leq 16$, then E is elementary and is obtained by field reduction of a conic of $\text{PG}(2,q^{d/3})$. Let \hat{G} be a preimage of G in $\text{GL}_d(q)$. Then there exists a subgroup \hat{H} of \hat{G} of index $q^{e/2} + 1$ such that the image of \hat{H} in $\text{PGL}_d(q)$ is H. So we can apply [4, Theorem 3.1] to \hat{G}. There are six cases to consider from this theorem: the Classical, Imprimitive, Reducible, Extension Field (case (b)), Symplectic Type, and Nearly Simple examples. Straight away, we have that the Symplectic examples do not occur as d is a multiple of 3. By [4, Lemma 13], \hat{G} is not in the Classical examples case. So we are left with four families to consider: the Reducible, Imprimitive, Extension Field, and the Nearly Simple examples.

Let us first suppose we are in the Imprimitive examples case. So by [4, Theorem 3.1], we have that $d = 9$, $q \in \{3, 5\}$, and \hat{G} preserves a decomposition of $V_9(q)$ into 1-spaces. So in particular, $\hat{G} \leq \text{GL}_1(q) \wr S_9$. We treat both cases, $q = 3$ and $q = 5$, simultaneously. Let μ be the natural projection map from $\text{GL}_1(q) \wr S_9$ onto S_9. Now $\mu(\hat{G})$ is insoluble and primitive (of degree 9), and hence $\mu(\hat{G}) \in \{\text{PSL}_2(8), \text{PGL}_2(8), A_9, S_9\}$ (see [10, Appendix B]). Moreover, $\mu(\hat{G})$ is 3-transitive in its degree 9 action. Let B be the kernel of μ. So $|B| = (q-1)^9 \in \{2^9, 3^{18}\}$. Now $G \cap B$ is a nontrivial normal subgroup of G and hence $G \cap B$ contains the subgroup K of B consisting of diagonal matrices with entries ± 1. Since $|G : H| \in \{28, 126\}$, we see that a subgroup J of K with index at most 2, is contained in H. The only J-invariant subspaces of $V_9(q)$ are the spans of vectors from the canonical basis; coordinate subspaces. Let E be an element of the pseudo-oval. We may assume (up to conjugacy) that E is J-invariant and so it is a coordinate plane. Now the action of $\mu(\hat{G})$ is 3-transitive, and so the orbit of E under $\mu(\hat{G})$ is a coordinate plane. Therefore, we have that \hat{G} is not in the Nearly Simple examples case does not arise.

Let us now suppose we are in the Nearly simple case. So $S \leq G \leq \text{Aut}(S)$ where S is a finite nonabelian simple group, and \hat{G} is irreducible. By using the fact that $q^{4/3} \geq 16$, we have only two subcases to consider: the Alternating group case and the Natural-characteristic case. In the former, we have $S = A_{10}$, $d = 9$, $q = 3$, and the vector space $V_9(3)$ can be identified with the fully deleted permutation module for S_{10} over GF(3). It can be readily checked that G does not have a subgroup of index $3^3 + 1$, and so this case does not arise. In the Natural-characteristic case, we have that $d = 9$ and $S = \text{PSL}_3(q^2)$ (by [4, Theorem 2.1]). Now by [8], the minimum degree of a nontrivial representation of S is $(q^6 - 1)/(q^2 - 1)$. However

$$q^3 + 1 = (q^6 - 1)/(q^3 - 1) < (q^6 - 1)/(q^2 - 1)$$

so \hat{G} does not have a transitive action of degree $q^d + 1$. Therefore, we have that \hat{G} is not in the Nearly Simple examples case.

Now suppose we are in the Field Extension examples case. We have that \hat{G} is irreducible and there is a divisor b of $2d/3$ (where $b \neq 1$) such that \hat{G} preserves a field extension structure $V_{d/b}(q^h)$ on $V_d(q)$. Moreover, $G \cap \text{GL}_{d/b}(q^h)$ has a subgroup of index $(q^{e/2} + 1)/x$, for some x, and so if $d/b > 3$, then we can apply [4, Theorem 3.2] to $G \cap \text{GL}_{d/b}(q^h)$ with parameters q^h, d/b, and e/b playing the roles of q, d, and e respectively. So let us assume that $d/b > 3$. Since $d/b \neq e/b$, we do not have the Classical examples case. Note that if \hat{G} fixes a subspace over the field extension q^h, then it also fixes a subspace that is written over the field GF(q). Hence $\hat{G} \cap \text{GL}_{d/b}(q^h)$ is irreducible in its action on $\text{PG}(d/b - 1,q^h)$. We can also assume that $G \cap \text{GL}_{d/b}(q^h)$ does not preserve a field extension structure by choosing b to be maximal. Since q^h is not prime, we can eliminate the Imprimitive examples, Symplectic Type examples, and the Nearly Simple examples. Therefore $d/b = 3$ and $e/b = 2$. By some old work of Mitchell [17], the only absolutely irreducible insoluble maximal subgroups of $\text{PSL}_3(q^h)$ are

(i) $\text{PSL}_2(q^h)$;
(ii) $\text{PSU}_3(q^6)$ when q^6 is a square;

(iii) A_6 when $p \equiv 1, 2, 4, 7, 8, 13 \mod 15$ (and $GF(q^6)$ contains the squares of 5 and -3);

(iv) $\text{PSL}_2(7)$ when $p \equiv 1, 2, 4 \mod 7$.

In the case that $\text{PSU}_3(q^{d/3}) \leq G \cap \text{PGL}_3(q^{d/3}) \leq \text{PGL}_3(q^{d/3})$, we have $q^{d/3} + 1$ divides $q^{d/2}(q^{d/3} - 1)(q^{d/2} + 1)$. This is a contradiction as $q^{d/3} + 1$ is coprime to $q^{d/2}$ and $q^{d/3} - 1$ (note that q is odd). So this case does not arise. In the case that $A_6 \leq G \cap \text{PGL}_3(q^{d/3}) \leq S_6$, we have $q^{d/3} + 1$ divides 6! (note that $q^{d/3} + 1$ is coprime to $|G : G \cap \text{PGL}_3(q^{d/3})|$). However, $q^{d/3} + 1$ divides 6! only if $q = 3$ and $d = 6$ (so $b = 2$). So this case does not arise as A_6 does not act in characteristic 3. In the case that $\text{PSL}_2(7) \leq G \cap \text{PGL}_3(q^{d/3}) \leq \text{PGL}_2(7)$, we have $q^{d/3} + 1$ divides 336. However, $q^{d/3} + 1$ divides 336 only if $q = 3$ and $d = 9$ (so $b = 3$). So this case does not arise as $\text{PSL}_2(7)$ does not embed in $\text{PGL}_3(q^6)$ in characteristic 3. Hence $\text{PSL}_2(q^6) \leq G$.

Let $J = \text{PSL}_2(q^{d/3})$. It is a classical result, but can also be found in [8], that $\text{PSL}_2(q^{d/3})$ (where $d > 2$) has a unique conjugacy class of subgroups of index $q^{d/3} + 1$. It follows from [14, Proposition 4.3.17], that there is a unique characteristic class of subgroups of $\text{PGl}_d(q)$ isomorphic to J (it is not true in general that there is a unique conjugacy class of such subgroups). Let $\varphi : V_3(q^{d/3}) \rightarrow V_d(q)$ denote the natural vector space isomorphism here, and let C be a conic of $V_3(q^{d/3})$ admitting J. Let α and β be two distinct points of C. Then $\varphi(\alpha)$ and $\varphi(\beta)$ are $d/3$-dimensional vector subspaces of $V_d(q)$. Note that J has a unique conjugacy class of subgroups of index $q^{d/3} + 1$, and hence we can assume that the stabiliser of an element E of \mathcal{E} is identical to the stabiliser J_α. Now suppose we have a third vector v which is neither α nor β. Then

$$|v^J_\alpha| = |J_\alpha : J_\alpha \cap v^J_\alpha| = |J_\alpha : J_{\alpha,\beta}| |J_{\alpha,\beta} : J_{\alpha,\beta} \cap v^J_\alpha| = q^{d/3}|J_{\alpha,\beta} : J_{\alpha,\beta} \cap v^J_\alpha|.$$

Now J is a Zassenhaus group (i.e., a 2-transitive group such that the stabiliser of any three points is trivial) and so $J_{\alpha,\beta} \cap v^J_\alpha = 1$. Therefore

$$|v^J_\alpha| = q^{d/3} \frac{q^{d/3} - 1}{\text{gcd}(2, q^{d/3} - 1)}$$

which is not a prime power. Now any J_α-invariant $d/3$-subspace of $V_d(q)$ is a union of orbits of J_α. Therefore, it follows that the only J_α-invariant subspace of $V_d(q)$ is $\varphi(\alpha)$. Since W is J_α-invariant, we have that $W = \varphi(\alpha)$ and hence \mathcal{E} is the image of C under φ. Therefore, \mathcal{E} is elementary and is obtained by field reduction of a conic of $\text{PG}(2, q^{d/3})$.

Reducible examples:

We have that \hat{G} fixes a subspace/quotient space U of $V_d(q)$ and $\dim(U) = u \geq \frac{2}{3}d$. In fact, it follows that $u = 2/3d$ by noting that a primitive divisor of $q^{(2/3)d} - 1$ also divides $|\hat{G}|$. So $\hat{G} \leq q^{u(d-u)} \cdot (\text{GL}_u(q) \times \text{GL}_{d-u}(q))$. We may assume that U is a subspace, as for q odd, each point of U is in 0 or 2 tangent spaces of \mathcal{E}. Consider the set of intersections

$$\mathcal{M} = \{T_E \cap U : E \in \mathcal{E}\}.$$

Note that each element of \mathcal{M} has a common dimension as G acts transitively on \mathcal{M}, and thus $\dim(T_E \cap U) = d/3$ for all $E \in \mathcal{E}$. Therefore \hat{G}^U acts transitively on a set of $(q^{d/3} + 1)/\delta$ subspaces of dimension $d/3$ where $\delta = 1, 2$. This implies that \hat{G}^U has a subgroup of index $(q^{d/3} + 1)/\delta$, and so we can apply [4, Theorem 3.2] with q, $\frac{2}{3}d$, and $\frac{4}{3}d$ playing the roles of q, d, and e respectively. In the following subcases, we have that G has a normal insoluble subgroup S, which is given explicitly. Moreover, S must have a union of orbits on $(d/3)$-spaces of U of size $(q^{d/3} + 1)/\delta$ where $\delta = 1, 2$.

Reducible/Nearly simple examples:

In this case, $S \leq G^U \cap \text{PGL}_d(q) \leq \text{Aut}(S)$ where S is a finite nonabelian simple group. Here we have four subcases.
ALTERTING GROUP CASE:

Here $S = A_r$ and the vector space $V_u(q)$ can be identified with the fully deleted permutation module for S_r over $GF(q)$. We have that u is $r-1$ or $r-2$ (according to whether p does not or does divide n respectively), and $q^u = p^u = 3^6, 5^6$. Suppose $S = A_7$, $u = 6$, and $q = 3$. Then S stabilises M and hence S has a union of orbits on planes of PG$(5, 3)$ of size 14 or 28. Now A_7, in its unique irreducible representation in PG$(5, 3)$ has the following orbit lengths on planes (n.b., the exponents denote multiplicities):

\[[35^2, 105^4, 140^3, 210^4, 315^5, 420^{10}, 630^6, 840^4, 1260^{15}] \]

Therefore this case does not arise. Now suppose $q = 5$. It can be shown using GAP [11] that the S-invariant sets of planes of size 63 or 126 do not cover every point either 0 or 2 times. Therefore this case does not arise.

CROSS-CHARACTERISTIC CASE: The table below lists the possibilities for this case.

<table>
<thead>
<tr>
<th>S</th>
<th>d</th>
<th>q</th>
<th>u</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSL$_2(13)$</td>
<td>9</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>PSL$_4(13)$</td>
<td>9</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>PSU$_3(3^2)$</td>
<td>9</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Now PSL$_2(13)$ acts transitively on the points of PG$(5, 3)$, and so this case does not arise. Suppose $S = PSL_2(7)$, $u = 6$, and $q = 3$. Then S stabilises M and hence S has a union of orbits on planes of PG$(5, 3)$ of size 14 or 28. Now by using GAP [11] and the unique irreducible representation for S in PG$(5, 3)$, we have that S has the following orbit lengths on planes:

\[[7^4, 21^8, 28^{12}, 42^{18}, 56^{12}, 84^{100}, 168^{140}] \]

None of the thirteen S-invariant sets of planes of size 28 have each point of PG$(5, 3)$ contained in a constant number (0 or 2) of elements of the set. Likewise, of all the six S-invariant sets of size 14, none have each point of PG$(5, 3)$ contained in a constant number of elements of the set. Therefore, this case does not arise.

Now suppose $S = PSU_3(3^2)$, $u = 6$, and $q = 5$. Then S stabilises M and hence S stabilises a set of points of size $(q^u - 1)/(2(q - 1)) = 1953$. However, by using GAP [11] one can calculate that S has the following orbit lengths on points of PG$(5, 5)$:

\[[189^2, 1008^2, 1512] \]

Since 1953 cannot be partitioned into these numbers, this case does not arise.

So we are left now with just two more cases: the “Classical examples” and the “Extension field” examples, which can be unified naturally.

Reducible/Classical and Extension Field examples:

We have that \hat{G}^U preserves a (possibly trivial) field extension structure on U as a u/b-dimensional subspace over $GF(b)$ where b is a proper divisor of $u = (2/3)d$. So $\hat{G}^U \leq \Gamma L_{(2/3)d/6}(q^b)$ and we can apply [4, Theorem 3.2] to $\hat{G}^U \cap GL_{(2/3)d/6}(q^b)$ where q^b, u/b, and u/b play the roles of g, d, and e respectively. We simply have $d/b = 6$ and PSL$_2(q^{d/3}) \leq \hat{G}^U$. Let $S = PSL_2(q^{d/3})$ and note that the preimage of S acts transitively on the non-zero vectors of $V_2(q^{d/3})$. However, we have here that S stabilises a set of $q^{d/3} + 1$ subspaces, each of dimension $d/3 - 1$, which is impossible for $d/3 > 1$. So we conclude that G is irreducible. \Box
4 The Pseudo-Ovoid Case

A pseudo-ovoid of PG(d − 1, q) (where d is a multiple of 4) is a set of $q^{d/2} + 1$ subspaces of dimension $d/4 − 1$. Here we can also apply the results of [4], as we did in the pseudo-oval case.

Theorem 4.1. Let $q = p^e$ where p is a prime and let d be an integer divisible by 4. If an insoluble subgroup G of PGL$_d(q)$ acts transitively on a pseudo-ovoid E of PG(d − 1, q), then E is elementary and arises from an elliptic quadric or Suzuki-Tits ovoid.

Proof. Let H be the stabiliser of an element of E in G, and let \hat{G} be a preimage of G in GL$_d(q)$. Note that the number of elements of a pseudo-ovoid of PG(d − 1, q) is $q^{e/2} + 1$ where $e = d$. So there exists a subgroup \hat{H} of G of index $q^{d/2} + 1$ such that the image of \hat{H} in PGL$_d(q)$ is H. Therefore we can apply [4, Theorem 3.2] to \hat{G}. First note that we can rule out the Reducible examples, Imprimitive examples, and case (a) of the Extension field examples. Recall that by [18], we can assume that $d > 4$. Hence we have ruled out the Classical and Symplectic Type examples. Also note that in the Nearly simple case, we have the following: $q = 2$, $d = 12$, and either

(a) $A_{13} \leq G \leq S_{13}$, or
(b) $S = PSp_2(25) \leq G \leq PSp_3(25)$, and $S \cap H$ is isomorphic to S_5 (there are two such conjugacy classes of S).

However in the first case, it is clear that G does not have a subgroup of index 65. In the second case, we know by [13] that PSp$_2(25)$ has a unique 12-dimensional irreducible representation (up to quasi-equivalence) over GF(2) and it has the following orbit lengths on points:

$$[65, 325^2, 650, 780, 1950].$$

Let B be the set of points covered by the pseudo-ovoid E of PG(11, 2). Then B has size $(q^{d/4} − 1)(q^{d/2} + 1) = (2^3 − 1)(2^6 + 1) = 455$ and it must be a union of orbits of S as G acts transitively on E. However, 455 cannot be partitioned into the orbit lengths displayed above, and hence this case does not arise.

That leaves us with the Extension field examples. Here we have that $\hat{G} \leq \Gamma L_{d/2}(q^b)$ where b is a divisor of d (where $b \neq 1$). If $d/b > 2$, We can apply [4, Theorem 3.2] (for e/b odd) and [4, Theorem 3.1] (for e/b even) to $\hat{G} \cap GL_{d/2}(q^b)$ with parameters d/b, e/b, and q^b playing the roles of d, e, and q respectively. We have the following subcases:

(i) $d/b = 4$ and $\Omega^-_4(q^{d/4}) \leq \hat{G} \cap GL_{d/2}(q^b)$;
(ii) $d/b = 4$, q is even, and $Sz(q^{d/4}) \leq \hat{G} \cap GL_{d/2}(q^b)$;
(iii) $d/b = 3$, $q^{d/3}$ is a square, and $SU_3(q^{d/3}) \leq \hat{G} \cap GL_{d/2}(q^b)$.

(i) Let us suppose we have the first case above, where $d/b = 4$ and E admits $\Omega^-_4(q^{d/4})$. Let $J = P\Omega^-_4(q^{d/4})$. It is a classical result, but can also be found in [8], that PSL$_2(q^{d/2})$ (where $d > 2$) has a unique conjugacy class of subgroups of index $q^{d/2} + 1$. Note that $\Omega^-_4(q^{d/4})$ is isomorphic to PSL$_2(q^{d/2})$, and by [14, Proposition 4.3.6], there is a unique conjugacy class of subgroups of PGL$_d(q)$ isomorphic to PSL$_2(q^{d/2})$. Therefore, there is a unique conjugacy class of subgroups of PGL$_d(q)$ isomorphic to J.

Let $\varphi : V_d(q^{d/4}) \rightarrow V_d(q)$ denote the natural vector space isomorphism here, and let Q be an elliptic quadric of $V_d(q^{d/4})$ admitting J. Let α and β be two distinct points of Q. Then $\varphi(\alpha)$ and $\varphi(\beta)$ are $d/4$-dimensional subspaces of $V_d(q)$. Note that J has a unique conjugacy class of subgroups of index $q^4 + 1$ (see [8]), and hence we can assume that the stabiliser of an element E of E is identical to the stabiliser J_α. Now suppose we have a third vector v which is neither α nor β. Then

$$|v^{J_\alpha}| = |J_\alpha : J_{\alpha,v}| = |J_\alpha : J_{\alpha,\beta}||J_{\alpha,\beta} : J_{\alpha,\beta,v}| = q^{d/2}|J_{\alpha,\beta} : J_{\alpha,\beta,v}|.$$
Now J is a Zassenhaus group and so $J_{\alpha,\beta,v} = 1$. Therefore

$$|v^{J_{\alpha}}| = q^{d/2} \frac{q^{d/2} - 1}{\gcd(2, q^{d/2} - 1)}$$

which is not a prime power. Now any J_{α}-invariant $d/4$-subspace of $V_{d}(q)$ is a union of orbits of J_{α}. Therefore, it follows that the only J_{α}-invariant subspace of $V_{d}(q)$ is $\varphi(\alpha)$. Since W is J_{α}-invariant, we have that $W = \varphi(\alpha)$ and hence E is the image of Q under φ. Therefore, E is elementary and arises from an elliptic quadric.

(ii) By a similar argument to that above, it is not difficult to show that E is the image of a Suzuki-Tits ovoid under field reduction. The key steps to note are that $Sz(q^{d/4})$ is a Zassenhaus group, there is a unique conjugacy class of subgroups of $PGL_3(q)$ isomorphic to $Sz(q^{d/4})$, and $Sz(q^{d/4})$ has a unique conjugacy class of subgroups of index $q^2 + 1$. In the seminal paper of Suzuki [23, §15], it was shown that $Sz(q^{d/4})$ is a Zassenhaus group and has a unique conjugacy class of subgroups of index $q^{d/2} + 1$ and this is the minimum non-trivial degree of $Sz(q^{d/4})$. The uniqueness of its representation in $PGL_4(q)$ needs more work. By a result of Lüneburg (see [16, 27.3 Theorem] or [15]), there is a unique conjugacy class of subgroups of $PGL_4(q^{d/4})$ isomorphic to $Sz(q^{d/4})$. Now by [14, Proposition 4.3.6], there is a unique conjugacy class of subgroups of $PGL_4(q)$ isomorphic to $PGL_4(q^{d/4})$. Therefore, there is a unique conjugacy class of subgroups of $PGL_4(q)$ isomorphic to $Sz(q^{d/4})$. Therefore, E is elementary and arises from a Suzuki-Tits ovoid.

(iii) Now suppose we have the third case; $d/b = 3$, $q^{d/3}$ is a square, and E admits $PSU_3(q^{d/3})$. Now the smallest orbit of $PSU_3(q^{d/3})$ on nonzero vectors consists of the non-singular vectors and has size $(q^{d/3} - 1)(q^{d/2} + 1)$. Since E covers $(q^{d/4} - 1)(q^{d/2} + 1)$ vectors of $V_{d}(q)$, and this number is strictly smaller than the size of the smallest orbit of $PSU_3(q^{d/3})$, we see that this case does not arise.

Suppose now that $d/b = 2$. Since G is an insoluble subgroup of $GL_2(q^{d/2})$, it follows from [4, Lemma 5] that G contains $SL_2(q^{d/2})$. However, $SL_2(q^{d/2})$ is transitive on nonzero vectors and hence does not stabilise a set of $d/4$ vector subspaces of size $q^{d/2} + 1$. Hence this case does not arise.

Remark: If a (presently unknown) pseudo-oval or pseudo-ovoid over $GF(q)$ admitting a soluble transitive group G exists, then G is meta-cyclic; indeed G is a subgroup of $\Gamma L_1(q^b)$, for an appropriate positive integer b.

References

Transitive Eggs

John Bamberg
e-mail: bamberg@maths.uwa.edu.au

Tim Penttila
e-mail: penttila@maths.uwa.edu.au

School of Mathematics and Statistics, The University of Western Australia, 35 Stirling Highway, Crawley W.A. 6014, Australia