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Abstract

We prove that a pseudo-oval or pseudo-ovoid (that is not an oval or ovoid) admitting an insoluble
transitive group of collineations is elementary and arises over an extension field from a conic, an elliptic
quadric, or a Suzuki-Tits ovoid.

MSC 2000: 51E20

1 Introduction

An egg of the projective space PG(2n+m− 1, q) is a set E of qm + 1 subspaces of dimension (n− 1) such
that every three are independent (i.e., span a (3n−1)-dimensional subspace), and such that each element
of E is contained in a common complement to the other elements of E (i.e., each element of E is contained
in an (n +m − 1)-dimensional subspace having no point in common with any other element of E). The
theory of eggs is equivalent to the theory of translation generalised quadrangles (see [20, Chapter 8]). If
q is even, then m = n or m = 2n (see [20, 8.7.2]), and for q odd, the only known examples of eggs have
m = n or m = 2n. Now an ovoid of PG(3, q) is an example of an egg where m = 2n = 1; hence an egg
having m = 2n is called a pseudo-ovoid. Likewise, an oval of PG(2, q) is an egg where m = n = 2, and
henceforth, a pseudo-oval is an egg with m = n. If O is an oval of PG(2, qn), then by field reduction from
GF(qn) to GF(q), one obtains a pseudo-oval of PG(3n− 1, q). Such pseudo-ovals are called elementary.
Likewise, field reduction of an ovoid of PG(3, qn) yields an elementary pseudo-ovoid of PG(4n− 1, q). All
known pseudo-ovals are elementary, and in even characteristic, every known example of a pseudo-ovoid
is elementary. There is some conflict over the definition of a classical pseudo-ovoid. In [6] and [24],
a classical pseudo-ovoid is one which arises by field reduction from an elliptic quadric. However, some
authors (e.g., Cossidente and King [9]) also include the Suzuki-Tits ovoids in their definition of a classical
ovoid. Such confusion will be avoided in this paper by not using the term classical at all; so we will take
the perhaps cumbersome approach of stating our results explicitly.

By Segre’s Theorem [22], every oval of PG(2, q), q odd, is a conic. Similarly, every ovoid of PG(3, q),
for q odd, is an elliptic quadric, and this was proved independently by Barlotti [5] and Panella [19]. In
the case where q is even, there also exist the Suzuki-Tits ovoids which are inequivalent to elliptic quadrics.
The second author and O’Keefe, building on the work of Abatangelo and Larato, showed that the ovals of
PG(2, q), q even, which admit a transitive subgroup of PGL3(q) are conics (see [1] and [18]). Similarly,
Bagchi and Sastry [2] showed that the ovoids of PG(3, q), q even, which admit a transitive subgroup of
PGL4(q) are elliptic quadrics or Suzuki-Tits ovoids. Brown and Lavrauw [6] have shown that an egg of
PG(4n − 1, q), q even, contains a pseudo-conic if and only if it is elementary and arises from an elliptic
quadric. Recently, J. A. Thas and K. Thas [24] have shown that every 2-transitive pseudo-oval in even
characteristic is elementary and arises from a conic. In this paper, we prove the following result:
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Main Theorem:
Suppose E is a pseudo-oval or pseudo-ovoid (that is not an oval or ovoid) admitting an insolu-
ble transitive group of collineations. Then E is elementary and arises from a conic, an elliptic
quadric, or a Suzuki-Tits ovoid.

2 The Approach

A divisor x of qd − 1 (where d > 3) is primitive if x does not divide qi − 1 for each positive integer i < d.
By a result of Zsigmondy [25], such divisors exist if (q, d) 6= (2, 6). Therefore, if G acts transitively on a
set of size qm + 1 (and (q,m) 6= (2, 3)), then a primitive prime divisor of q2m − 1 divides the order of G.
Such groups have an irreducible Sylow subgroup, and from this information, the structure of G can be
described in great detail (see [12]). The authors have used this argument to classify m-systems of polar
spaces which admit an insoluble transitive group (see [3]). From the definitions of a pseudo-ovoid and
pseudo-oval, we can apply a similar argument here; which is dependent on the Classification of Finite
Simple Groups.

Note: Suppose E is a pseudo-oval (resp. pseudo-ovoid) of PG(2n +m − 1, q) where q = pf for some
prime p. Under field reduction from GF(q) to GF(p), there arises a pseudo-oval (resp. pseudo-ovoid)
Ẽ of PG((2n + m)f − 1, p). If E admits an insoluble transitive subgroup of PΓL2n+m(q), then Ẽ admits
an insoluble transitive subgroup of PΓL(2n+m)f (p) = PGL(2n+m)f (p). We then apply the main result of
this paper to Ẽ to establish that it is elementary, from which it follows that E is elementary provided that
it is not an oval or ovoid. Hence throughout this paper, we will assume without loss of generality that
our given pseudo-oval or pseudo-ovoid admits an insoluble transitive subgroup of the homography group
PGL2m+n(q).

3 The Pseudo-Oval Case

A pseudo-oval of PG(d − 1, q) (where d is a multiple of 3) is a set of qe/2 + 1 subspaces of dimension
d/3− 1, where e = 2

3d. This phrasing makes it clear how we apply the results of [4].

3.1 Even characteristic

If q is even, then the tangent spaces of a pseudo-oval E all have a (d/3− 1)-space in common; the nucleus
of E (see [20, pp. 182]). Since G must fix the nucleus, we have that G acts reducibly in this case. Let
N be the the nucleus of E and consider the quotient map π from PG(d − 1, q) to PG(d − 1, q)/N , and
note that the codomain can be identified with PG(2d/3− 1, q). The image of E under π is a spread S of
PG(2d/3 − 1, q) (see [20, pp. 182]). Moreover, we have that G acts transitively on this spread, and by
the Andre/Bruck-Bose construction, we obtain a flag-transitive affine plane admitting an insoluble group.
By [7], this affine plane is Desarguesian or a Lüneburg plane, so in particular, it follows that E admits a
2-transitive group. So by [24, §8], we have that E is an elementary pseudo-oval arising from a conic of
PG(2, qd/3).

3.2 Odd characteristic

Let E be a pseudo-oval of PG(d−1, q), where q is odd. Then each element E of E is contained in a unique
2d/3− 1-subspace TE of PG(d− 1, q) which is called the tangent space at E. By [20, pp. 182], each point
of PG(d− 1, q) is contained in 0 or 2 tangent spaces of E .
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Theorem 3.1. Let q = pf where p is an odd prime, let d be an integer divisible by 3. If an insoluble subgroup
G of PGLd(q) acts transitively on a pseudo-oval E of PG(d − 1, q), then E is elementary and is obtained by
field reduction of a conic of PG(2, qd/3).

Proof. Let E be a pseudo-oval of PG(d − 1, q) admitting a group G 6 PGLd(q) that is insoluble and acts
transitively on E , and let H be the stabiliser in G of an element of E . Note that the number of elements of
E is qe/2 +1 where e = 2/3d. We may assume that qd/3 > 16 as it was shown by the second author in [21]
that if qd/3 6 16, then E is elementary and is obtained by field reduction of a conic of PG(2, qd/3). Let Ĝ
be a preimage of G in GLd(q). Then there exists a subgroup Ĥ of Ĝ of index qe/2 + 1 such that the image
of Ĥ in PGLd(q) is H . So we can apply [4, Theorem 3.1] to Ĝ. There are six cases to consider from this
theorem: the Classical, Imprimitive, Reducible, Extension Field (case (b)), Symplectic Type, and Nearly
Simple examples. Straight away, we have that the Symplectic examples do not occur as d is a multiple
of 3. By [4, Lemma 13], Ĝ is not in the Classical examples case. So we are left with four families to
consider: the Reducible, Imprimitive, Extension Field, and the Nearly simple examples.

Let us first suppose we are in the Imprimitive examples case. So by [4, Theorem 3.1], we have that d =

9, q ∈ {3, 5}, and Ĝ preserves a decomposition of V9(q) into 1-spaces. So in particular, Ĝ 6 GL1(q) o S9.
We treat both cases, q = 3 and q = 5, simultaneously. Let µ be the natural projection map from GL1(q) oS9

onto S9. Now µ(Ĝ) is insoluble and primitive (of degree 9), and hence µ(Ĝ) ∈ {PSL2(8),PΓL2(8), A9, S9}
(see [10, Appendix B]). Moreover, µ(Ĝ) is 3-transitive in its degree 9 action. Let B be the kernel of µ. So
|B| = (q−1)9 ∈ {29, 218}. Now G∩B is a nontrivial normal subgroup of G and hence G∩B contains the
subgroup K of B consisting of diagonal matrices with entries ±1. Since |Ĝ : Ĥ | ∈ {28, 126}, we see that a
subgroup J of K with index at most 2, is contained in Ĥ . The only J -invariant subspaces of V9(q) are the
spans of vectors from the canonical basis; coordinate subspaces. Let E be an element of the pseudo-oval.
We may assume (up to conjugacy) that E is J -invariant and so it is a coordinate plane. Now the action
of µ(Ĝ) is 3-transitive, and so the orbit of E under Ĝ on planes is ( 9

3 ) = 84. So the Imprimitive examples
case does not arise.

Let us now suppose we are in the Nearly simple case. So S 6 G 6 Aut(S) where S is a finite
nonabelian simple group, and Ĝ is irreducible. By using the fact that qd/3 > 16, we have only two
subcases to consider: the Alternating group case and the Natural-characteristic case. In the former,
we have S = A10, d = 9, q = 3, and the vector space V9(3) can be identified with the fully deleted
permutation module for S10 over GF(3). It can be readily checked that G does not have a subgroup of
index 33 + 1, and so this case does not arise. In the Natural-characteristic case, we have that d = 9 and
S = PSL3(q2) (by [4, Theorem 2.1]). Now by [8], the minimum degree of a nontrivial representation of
S is (q6 − 1)/(q2 − 1). However

q3 + 1 = (q6 − 1)/(q3 − 1) < (q6 − 1)/(q2 − 1)

and so Ĝ does not have a transitive action of degree q3 +1. Therefore, we have that Ĝ is not in the Nearly
Simple examples case.

Now suppose we are in the Field Extension examples case. We have that Ĝ is irreducible and there
is a divisor b of 2d/3 (where b 6= 1) such that Ĝ preserves a field extension structure Vd/b(qb) on Vd(q).
Moreover, G∩GLd/b(q

b) has a subgroup of index (qe/2 + 1)/x, for some x, and so if d/b > 3, then we can
apply [4, Theorem 3.2] to G ∩GLd/b(q

b) with parameters qb, d/b, and e/b playing the roles of q, d, and e
respectively. So let us assume that d/b > 3. Since d/b 6= e/b, we do not have the Classical examples case.
Note that if Ĝ fixes a subspace over the field extension qb, then it also fixes a subspace that is written
over the field GF(q). Hence Ĝ ∩ GLd/b(q

b) is irreducible in its action on PG(d/b − 1, qb). We can also
assume that G ∩ GLd/b(q

b) does not preserve a field extension structure by choosing b to be maximal.
Since qb is not prime, we can eliminate the Imprimitive examples, Symplectic Type examples, and the
Nearly Simple examples. Therefore d/b = 3 and e/b = 2. By some old work of Mitchell [17], the only
absolutely irreducible insoluble maximal subgroups of PSL3(qb) are

(i) PSL2(qb);
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(ii) PSU3(qb) when qb is a square;

(iii) A6 when p ≡ 1, 2, 4, 7, 8, 13 mod 15 (and GF(qb) contains the squares of 5 and −3);

(iv) PSL2(7) when p ≡ 1, 2, 4 mod 7.

In the case that PSU3(qd/3) 6 G ∩ PGL3(qd/3) 6 PΓL3(qd/3), we have qd/3 + 1 divides qd/2(qd/3 −
1)(qd/2 + 1). This is a contradiction as qd/3 + 1 is coprime to qd/2 and qd/3 − 1 (note that q is odd). So
this case does not arise. In the case that A6 6 G ∩ PGL3(qd/3) 6 S6, we have qd/3 + 1 divides 6! (note
that qd/3 + 1 is coprime to |G : G ∩ PGL3(qd/3)|). However, qd/3 + 1 divides 6! only if q = 3 and d = 6

(so b = 2). So this case does not arise as A6 does not embed in PΓL3(qb) in characteristic 3. In the case
that PSL2(7) 6 G ∩PGL3(qd/3) 6 PGL2(7), we have qd/3 + 1 divides 336. However, qd/3 + 1 divides 336

only if q = 3 and d = 9 (so b = 3). So this case does not arise as PSL2(7) does not embed in PΓL3(qb) in
characteristic 3. Hence PSL2(qb) 6 G.

Let J = PSL2(qd/3). It is a classical result, but can also be found in [8], that PSL2(qd/3) (where d > 2)
has a unique conjugacy class of subgroups of index qd/3 +1. It follows from [14, Proposition 4.3.17], that
there is a unique characteristic class of subgroups of PGLd(q) isomorphic to J (it is not true in general
that there is a unique conjugacy class of such subgroups). Let ϕ : V3(qd/3) → Vd(q) denote the natural
vector space isomorphism here, and let C be a conic of V3(qd/3) admitting J . Let α and β be two distinct
points of C. Then ϕ(α) and ϕ(β) are d/3-dimensional vector subspaces of Vd(q). Note that J has a unique
conjugacy class of subgroups of index qd/3 +1, and hence we can assume that the stabiliser of an element
E of E is identical to the stabiliser Jα. Now suppose we have a third vector v which is neither α nor β.
Then

|vJα | = |Jα : Jα,v| = |Jα : Jα,β ||Jα,β : Jα,β,v| = qd/3|Jα,β : Jα,β,v|.
Now J is a Zassenhaus group (i.e., a 2-transitive group such that the stabiliser of any three points is
trivial) and so Jα,β,v = 1. Therefore

|vJα | = qd/3
qd/3 − 1

gcd(2, qd/3 − 1)

which is not a prime power. Now any Jα-invariant d/3-subspace of Vd(q) is a union of orbits of Jα.
Therefore, it follows that the only Jα-invariant subspace of Vd(q) is ϕ(α). Since W is Jα-invariant, we
have that W = ϕ(α) and hence E is the image of C under ϕ. Therefore, E is elementary and is obtained
by field reduction of a conic of PG(2, qd/3).

Reducible examples:

We have that Ĝ fixes a subspace/quotient space U of Vd(q) and dim(U) = u > 2
3d. In fact, it follows

that u = 2/3d by noting that a primitive divisor of q(2/3)d− 1 also divides |Ĝ|. So Ĝ 6 qu(d−u) · (GLu(q)×
GLd−u(q)). We may assume that U is a subspace, as for q odd, each point of U is in 0 or 2 tangent spaces
of E . Consider the set of intersections

M = {TE ∩ U : E ∈ E}.

Note that each element ofM has a common dimension as G acts transitively onM, and thus dim(TE ∩
U) = d/3 for all E ∈ E . Therefore ĜU acts transitively on a set of (qd/3 + 1)/δ subspaces of dimension
d/3 where δ = 1, 2. This implies that ĜU has a subgroup of index (qd/3 + 1)/δ, and so we can apply [4,
Theorem 3.2] with q, 2

3d, and 2
3d playing the roles of q, d, and e respectively. In the following subcases,

we have that G has a normal insoluble subgroup S, which is given explicitly. Moreover, S must have a
union of orbits on (d/3)-spaces of U of size (qd/3 + 1)/δ where δ = 1, 2.

Reducible/Nearly simple examples:

In this case, S 6 GU ∩ PGLd(q) 6 Aut(S) where S is a finite nonabelian simple group. Here we have
four subcases.
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ALTERNATING GROUP CASE:

Here S = Ar and the vector space Vu(q) can be identified with the fully deleted permutation module
for Sr over GF(q). We have that u is r−1 or r−2 (according to whether p does not or does divide n respec-
tively), and qu = pu = 36, 56. Suppose S = A7, u = 6, and q = 3. Then S stabilisesM and hence S has a
union of orbits on planes of PG(5, 3) of size 14 or 28. Now A7, in its unique irreducible representation in
PG(5, 3) has the following orbit lengths on planes (n.b., the exponents denote multiplicities):

[352, 1054, 1403, 2104, 3156, 42010, 6306, 8404, 126015].

Therefore this case does not arise. Now suppose q = 5. It can be shown using GAP [11] that the S-
invariant sets of planes of size 63 or 126 do not cover every point either 0 or 2 times. Therefore this case
does not arise.

CROSS-CHARACTERISTIC CASE: The table below lists the possibilities for this case.

S d q u

PSL2(7) 9 3 6
PSL2(13) 9 3 6
PSU3(32) 9 5 6

Now PSL2(13) acts transitively on the points of PG(5, 3), and so this case does not arise. Suppose
S = PSL2(7), u = 6, and q = 3. Then S stabilises M and hence S has a union of orbits on planes of
PG(5, 3) of size 14 or 28. Now by using GAP [11] and the unique irreducible representation for S in
PG(5, 3), we have that S has the following orbit lengths on planes:

[74, 218, 2812, 4218, 5612, 84100, 168140].

None of the thirteen S-invariant sets of planes of size 28 have each point of PG(5, 3) contained in a
constant number (0 or 2) of elements of the set. Likewise, of all the six S-invariant sets of size 14, none
have each point of PG(5, 3) contained in a constant number of elements of the set. Therefore, this case
does not arise.

Now suppose S = PSU3(32), u = 6, and q = 5. Then S stabilises M and hence S stabilises a set of
points of size (qu − 1)/(2(q − 1)) = 1953. However, by using GAP [11] one can calculate that S has the
following orbit lengths on points of PG(5, 5):

[1892, 10082, 1512].

Since 1953 cannot be partitioned into these numbers, this case does not arise.

So we are left now with just two more cases: the “Classical examples” and the “Extension field”
examples, which can be unified naturally.

Reducible/Classical and Extension Field examples:

We have that ĜU preserves a (possibly trivial) field extension structure on U as a u/b-dimensional
subspace over GF(b) where b is a proper divisor of u = (2/3)d. So ĜU 6 ΓL(2/3)d/b(q

b) and we can apply
[4, Theorem 3.2] to ĜU ∩GL(2/3)d/b(q

b) where qb, u/b, and u/b play the roles of q, d, and e respectively.
We simply have d/b = 6 and PSL2(qd/3) 6 ĜU . Let S = PSL2(qd/3) and note that the preimage of S
acts transitively on the non-zero vectors of V2(qd/3). However, we have here that S stabilises a set of
qd/3 + 1 subspaces, each of dimension d/3− 1, which is impossible for d/3 > 1. So we conclude that G is
irreducible.
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4 The Pseudo-Ovoid Case

A pseudo-ovoid of PG(d − 1, q) (where d is a multiple of 4) is a set of qd/2 + 1 subspaces of dimension
d/4− 1. Here we can also apply the results of [4], as we did in the pseudo-oval case.

Theorem 4.1. Let q = pf where p is a prime and let d be an integer divisible by 4. If an insoluble subgroup
G of PGLd(q) acts transitively on a pseudo-ovoid E of PG(d− 1, q), then E is elementary and arises from an
elliptic quadric or Suzuki-Tits ovoid.

Proof. Let H be the stabiliser of an element of E in G, and let Ĝ be a preimage of G in GLd(q). Note
that the number of elements of a pseudo-ovoid of PG(d − 1, q) is qe/2 + 1 where e = d. So there exists a
subgroup Ĥ of Ĝ of index qd/2 + 1 such that the image of Ĥ in PGLd(q) is H . Therefore we can apply [4,
Theorem 3.2] to Ĝ. First note that we can rule out the Reducible examples, Imprimitive examples, and
case (a) of the Extension field examples. Recall that by [18], we can assume that d > 4. Hence we have
ruled out the Classical and Symplectic Type examples. Also note that d is a multiple of 4, and so in the
Nearly simple case, we have the following: q = 2, d = 12, and either

(a) A13 6 G 6 S13, or

(b) S = PSL2(25) 6 G 6 PΓL2(25), and S ∩ H is isomorphic to S5 (there are two such conjugacy
classes of S).

However in the first case, it is clear that G does not have a subgroup of index 65. In the second
case, we know by [13] that PSL2(25) has a unique 12-dimensional irreducible representation (up to
quasi-equivalence) over GF(2) and it has the following orbit lengths on points:

[65, 3252, 650, 780, 1950].

Let B be the set of points covered by the pseudo-ovoid E of PG(11, 2). Then B has size (qd/4−1)(qd/2+1) =

(23 − 1)(26 + 1) = 455 and it must be a union of orbits of S as G acts transitively on E . However, 455

cannot be partitioned into the orbit lengths displayed above, and hence this case does not arise.

That leaves us with the Extension field examples. Here we have that Ĝ 6 ΓLd/b(q
b) where b is a divisor

of d (where b 6= 1). If d/b > 2, We can apply [4, Theorem 3.2] (for e/b even) and [4, Theorem 3.1] (for
e/b odd) to Ĝ ∩ GLd/b(q

b) with parameters d/b, e/b, and qb playing the roles of d, e, and q respectively.
We have the following subcases:

(i) d/b = 4 and Ω−4 (qd/4) P Ĝ ∩GLd/b(q
b);

(ii) d/b = 4, q is even, and Sz(qd/4) P Ĝ ∩GLd/b(q
b);

(iii) d/b = 3, qd/3 is a square, and SU3(qd/3) P Ĝ ∩GLd/b(q
b).

(i) Let us suppose we have the first case above, where d/b = 4 and E admits PΩ−4 (qd/4). Let J =

PΩ−4 (qd/4). It is a classical result, but can also be found in [8], that PSL2(qd/2) (where d > 2) has a
unique conjugacy class of subgroups of index qd/2 + 1. Note that PΩ−4 (qd/4) is isomorphic to PSL2(qd/2),
and by [14, Proposition 4.3.6], there is a unique conjugacy class of subgroups of PGLd(q) isomorphic to
PSL2(qd/2). Therefore, there is a unique conjugacy class of subgroups of PGLd(q) isomorphic to J .

Let ϕ : V4(qd/4) → Vd(q) denote the natural vector space isomorphism here, and let Q be an elliptic
quadric of V4(qd/4) admitting J . Let α and β be two distinct points of Q. Then ϕ(α) and ϕ(β) are d/4-
dimensional subspaces of Vd(q). Note that J has a unique conjugacy class of subgroups of index q2 + 1

(see [8]), and hence we can assume that the stabiliser of an element E of E is identical to the stabiliser
Jα. Now suppose we have a third vector v which is neither α nor β. Then

|vJα | = |Jα : Jα,v| = |Jα : Jα,β ||Jα,β : Jα,β,v| = qd/2|Jα,β : Jα,β,v|.
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Now J is a Zassenhaus group and so Jα,β,v = 1. Therefore

|vJα | = qd/2
qd/2 − 1

gcd(2, qd/2 − 1)

which is not a prime power. Now any Jα-invariant d/4-subspace of Vd(q) is a union of orbits of Jα.
Therefore, it follows that the only Jα-invariant subspace of Vd(q) is ϕ(α). Since W is Jα-invariant, we
have that W = ϕ(α) and hence E is the image of Q under ϕ. Therefore, E is elementary and arises from
an elliptic quadric.

(ii) By a similar argument to that above, it is not difficult to show that E is the image of a Suzuki-
Tits ovoid under field reduction. The key steps to note are that Sz(qd/4) is a Zassenhaus group, there
is a unique conjugacy class of subgroups of PGLd(q) isomorphic to Sz(qd/4), and Sz(qd/4) has a unique
conjugacy class of subgroups of index q2 + 1. In the seminal paper of Suzuki [23, §15], it was shown
that Sz(qd/4) is a Zassenhaus group and has a unique conjugacy class of subgroups of index qd/2 + 1

and this is the minimum non-trivial degree of Sz(qd/4). The uniqueness of its representation in PGLd(q)

needs more work. By a result of Lüneburg (see [16, 27.3 Theorem] or [15]), there is a unique conjugacy
class of subgroups of PGL4(qd/4) isomorphic to Sz(qd/4). Now by [14, Proposition 4.3.6], there is a
unique conjugacy class of subgroups of PGLd(q) isomorphic to PGL4(qd/4). Therefore, there is a unique
conjugacy class of subgroups of PGLd(q) isomorphic to Sz(qd/4). Therefore, E is elementary and arises
from a Suzuki-Tits ovoid.

(iii) Now suppose we have the third case; d/b = 3, qd/3 is a square, and E admits PSU3(qd/3). Now
the smallest orbit of PSU3(qd/3) on nonzero vectors consists of the non-singular vectors and has size
(qd/3−1)(qd/2 +1). Since E covers (qd/4−1)(qd/2 +1) vectors of Vd(q), and this number is strictly smaller
than the size of the smallest orbit of PSU3(qd/3), we see that this case does not arise.

Suppose now that d/b = 2. Since Ĝ is an insoluble subgroup of ΓL2(qd/2), it follows from [4, Lemma
5] that Ĝ contains SL2(qd/2). However, SL2(qd/2) is transitive on nonzero vectors and hence does not
stabilise a set of d/4 vector subspaces of size qd/2 + 1. Hence this case does not arise.

Remark: If a (presently unknown) pseudo-oval or pseudo-ovoid over GF(q) admitting a soluble transitive
group G exists, then G is meta-cyclic; indeed G is a subgroup of ΓL1(qb), for an appropriate positive
integer b.
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