
THE UNIVERSITY OF CALGARY

Physically Based Simulation of

Growing Surfaces

by

Mark Jeffrey Matthews

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

December, 2002

c© Mark Jeffrey Matthews 2002

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled “Physically Based Simulation of

Growing Surfaces” submitted by Mark Jeffrey Matthews in partial fulfillment of the

requirements for the degree of Master of Science.

Supervisor, Dr. P. Prusinkiewicz
Department of Computer Science

Dr. Sheelagh Carpendale
Department of Computer Science

Dr. Mario Costa Sousa
Department of Computer Science

Dr. Marcelo Epstein
Department of Engineering

Date

ii

Abstract

Understanding the link between differential growth and form is necessary for under-

standing the morphogenesis of living organisms. This thesis describes two tools for

simulating the growth of surfaces in three dimensions. These tools make it possible

to explore the link between differential growth and form, and link growth to pattern

formation traditionally considered outside of growth. Surface growth is controlled

by diffusible morphogens which can be interactively placed, or predefined. The mor-

phogens can diffuse, decay and interact. Two different techniques, a mass-spring

system and finite element analysis, are used to simulate the physics of the surface.

A number of test cases are presented. The first example is a model of sea urchin

development. Secondly the dorsal petal lobes and leaves of the Antirrhinum majus

(snapdragon) are examined. Finally, an oscillating genetic network is used to control

the growth of a surface, creating some novel forms.

iii

Acknowledgements

I’d first like to thank my supervisor, Dr. Przemyslaw Prusinkiewicz. It’s been

enjoyable to work with an experienced researcher who seems to have limitless insight,

and always kept my research on track. I’d also like to thank our collaborators

Dr. Enrico Coen and Anne-Gaelle Rolland for a fruitful collaboration and many

penetrating discussions. Special thanks to my examination committee who provided

valuable feedback and made the defense experience enjoyable.

This thesis was proofread by a number of people including Dr. P, Richard Lobb,

Christine Dooley and the Jungle lab. Thanks guys! Thanks also goes to Tyson Rock

and Norm Faulkner of the Alberta College of Art and Design for their glass blowing

demonstrations.

I certainly could not have completed this work as quickly as I did without all

the programming tips, advice and moral support I received from everyone in the

lab. I’d especially like to thank Carla Davidson, Pavol Federl, Mark Fox, Callum

Galbraith, Radek Karwowski, Brendan Lane, Robson Lemos, Peter MacMurchy,

Lars Mündermann and Jing Yu. You all have made the Jungle lab the best research

environment I have ever worked in.

Finally, and most importantly, I’d like to thank my parents who nurtured me

to have an inquisitive mind, and have always supported me in whatever I’ve done.

Thank you.

iv

This work dedicated to the glory of God.

v

Table of Contents

Approval Page ii

Abstract iii

Acknowledgements iv

Table of Contents vi

1 Introduction 1
1.1 Statement of Problem . 1
1.2 Thesis Organization . 3

2 Mathematical Models of Growth 4
2.1 Biological Spatial Simulation Models 4
2.2 Elasticity Theory . 6

2.2.1 Deformable Surfaces of Terzopoulos et al. 6
2.2.2 Strain Tensor . 8
2.2.3 Stress Tensor . 9
2.2.4 Generalized Hooke’s Law . 10

2.3 Growth Theory . 11
2.3.1 Growth Tensor . 13
2.3.2 RERG . 14

2.4 Linking Growth to Elasticity Theory 15

3 Mathematical Models of Pattern Formation 17
3.1 Diffusible Morphogens . 19
3.2 Reaction-Diffusion . 20
3.3 Gene Expression . 21
3.4 Connectionist Model . 23

4 Numerical Methods 26
4.1 Mass-Spring System . 26

4.1.1 General Formulation . 29
4.1.2 Spring Formulation . 30
4.1.3 Morphogen Distribution Model 32
4.1.4 Growth Formulation . 33

4.2 Finite Element Elasticity . 35
4.2.1 Discretization . 36

vi

4.2.2 Interpolation . 38
4.2.3 Elemental Formulation . 41
4.2.4 Assembly . 43
4.2.5 Constraints . 44
4.2.6 Solving . 45
4.2.7 Dynamic Subdivision . 46

4.3 Finite Element Diffusion . 49
4.3.1 Basic Formulation . 50
4.3.2 Thermal Convection . 51
4.3.3 Transient Formulation . 53
4.3.4 Connectionist Method . 54

4.4 Growth . 55
4.4.1 System Overview . 60
4.4.2 Growth Tensor Computation 61
4.4.3 FEM Growth Implementation 65

5 Visualization Methods 67
5.1 Internal Strain . 67

5.1.1 Algorithm . 69
5.1.2 Drawing Method . 70
5.1.3 Examples . 72

5.2 Gaussian Curvature . 72
5.2.1 Algorithm . 73
5.2.2 Drawing Method . 74
5.2.3 Examples . 76

5.3 Growth . 76
5.3.1 Algorithm . 77
5.3.2 Drawing Method . 77
5.3.3 Examples . 79

6 CanvasLite 81
6.1 General Description . 81
6.2 User Interface . 81
6.3 Program Structure . 84
6.4 Examples . 85

7 Finite Element Canvas 90
7.1 General Description . 90
7.2 User Interface . 90
7.3 Program Structure . 92

vii

7.4 Examples . 94

8 Examples 98
8.1 Sea Urchin . 98
8.2 Antirrhinum majus . 101

8.2.1 Lobe Tube Mechanistic Model 103
8.2.2 Rippling Leaf . 106

8.3 Repressilator . 108

9 Conclusions 112
9.1 Summary of Contributions . 112
9.2 Future Work . 113

9.2.1 Large Deformations . 113
9.2.2 Hybrid Surface Models . 113
9.2.3 Programmability . 114
9.2.4 Other Uses . 114

Bibliography 115

A 127
A.1 Elasticity Stiffness Matrix Derivation 127
A.2 Integration Points for Wedge Elements 129
A.3 CanvasLite Input File . 130
A.4 Sample CanvasLite Input File . 132
A.5 Canvas Input File . 134

A.5.1 Layout . 134
A.5.2 Material Data . 135
A.5.3 Color Data . 136
A.5.4 Geometry Data . 136
A.5.5 Constraint Data . 137
A.5.6 Force Data . 137
A.5.7 Simulation Data . 137
A.5.8 Draw Data . 138

A.6 Canvas Sample Input File . 139

viii

List of Figures

2.1 A deformed and undeformed body . 7
2.2 Stress forces acting on an infinitesimal body. 10
2.3 Growth ovals . 12
2.4 Why growth is not a vector. 13
2.5 RERG definition. 15

3.1 Feedback in morphogenetic processes. 18
3.2 Schematic of an activator-inhibitor system. 21
3.3 Reaction-diffusion patterns . 21
3.4 Genetic transcription and translation 22
3.5 Example genetic network . 24

4.1 Modes of deformation of a 2D surface in 3D. 27
4.2 Canvas discretization. 28
4.3 Springs used to approximate the resistance of a continuous surface. . 29
4.4 Linear Spring . 30
4.5 Bending Spring . 31
4.6 Basic finite element shapes . 37
4.7 A surface discretized with wedge elements. 37
4.8 A non-conforming mesh . 46
4.9 A subdivision sequence for a mesh . 48
4.10 Thresholding function gi . 55
4.11 A force element in parallel with a spring element. 56
4.12 Expanding bar example . 57
4.13 Maxwell viscoelastic element . 58
4.14 How a viscoelastic object deforms over time. 58
4.15 Viscoelastic growth element . 59
4.16 Process for simulating a single time step of growth. 60
4.17 Diagram of the growth tensor indicatrix. 62

5.1 Wireframe spring drawing . 68
5.2 Glass stress rings . 69
5.3 Internal strain visualization . 71
5.4 Gauss-Bonet Theorem . 73
5.5 Eight points surrounding p . 74
5.6 Gaussian curvature visualization . 76
5.7 Examples of indicatrices . 77
5.8 Indicatrix comparison . 78

ix

5.9 Growth tensor visualization examples 80

6.1 CanvasLite user interface . 82
6.2 Positive curvature example . 85
6.3 Negative curvature example . 86
6.4 Curvature change example . 87
6.5 Tensorial growth example . 88
6.6 Morphogen painting and response . 89

7.1 Canvas user interface. 91
7.2 Canvas visualization context menu. 92
7.3 Canvas positive curvature example 95
7.4 Canvas negative curvature example 96
7.5 Discretization comparison . 97

8.1 Photograph of a sea urchin test. 98
8.2 Urchin growth rate . 99
8.3 Sea urchin simulation model . 100
8.4 Sea urchin simulation results . 101
8.5 Flowers of Antirrhinum majus . 102
8.6 Antirrhinum majus anatomy . 102
8.7 Normal lobe-tube development . 103
8.8 Lobe-tube “imprinted” growth . 104
8.9 Lobe-tube simulation model . 104
8.10 Lobe-tube simulation results . 105
8.11 Photograph of an A. majus cincinnata mutant leaf. 106
8.12 cincinnata leaf simulation model . 107
8.13 cincinnata leaf simulation results . 107
8.14 Limit cycle oscillator . 108
8.15 Repressilator oscillation . 109
8.16 Repressilator oscillation linked to isotropic growth 110

A.1 Integration points for a 2D triangle. 129

x

Chapter 1

Introduction

1.1 Statement of Problem

Since 1968, L-systems [51] have been used to model plants, bacteria and various other

organisms. However, L-systems are not an ideal paradigm for modeling isolated plant

organs (flowers, leaves, apices, etc.) This is because L-systems are best at modeling

branching structures. Although this method is powerful, it has limitations, especially

in the study of the morphogenesis of plant organs.

Properly modeling plant organs often involves considering them as a two-dimensional

surface deforming in three dimensions. Leaves and flower petals fit this description

well. A growth field can be defined on this surface, and the resulting deformation

seen as a mechanical problem and simulated as such. Ultimately, morphogenetic

models should have self generating growth fields, though models for doing so are

relatively unexplored.

In his book “The Art of Genes” [14], Enrico Coen proposed a metaphor for

morphogenesis that is particularly well suited for two dimensions: an expanding

canvas. This canvas allows diffusible morphogens to interact and control the growth

of the canvas. This abstraction is the essence of development and the construction

of simulation models should be based on the expanding canvas metaphor.

The understanding of the link between differential growth and form is necessary

for developmental models. However, in our day to day encounters, we rarely en-

1

2

counter expanding objects1, making this a particularly non-intuitive problem. To

explore the problem of growth and form, I developed a program called Canvas that

makes it possible to:

1. interactively explore the link between differential growth and form

2. link growth to pattern formation traditionally considered outside of growth

The user can define a morphogen field over the surface interactively or using an

input file. The morphogens can diffuse, decay and interact. A growth field over the

surface is derived from the morphogen concentration. Finding a surface that satisfies

this growth field can be considered as a purely geometric problem, but here physical

simulation is used as a general and robust solution method.

Two different techniques are used to simulate the physics of the surface. The

first, a mass-spring system, is a simple method that allows for interactive frame

rates. A drawback is that the surface must be discretized in a regular manner,

disallowing adaptive subdivision, and limiting the amount of growth possible. The

surface shape must also be rectangular, prohibiting curved leaf and petal outlines.

The second technique, finite element analysis, is a more general method, based on

continuum mechanics, allowing for arbitrary subdivision and hence infinite growth.

The benefits of finite element analysis come at the cost of greater complexity and

slower simulation.

A number of models are presented. The first is a model of sea urchin develop-

ment. Sea urchins have been a popular subject of morphologists because of their

1Actually, we often encounter expanding objects in almost anything organic. However, this
expansion is usually so slow that it is imperceptible.

3

simple form. Secondly, the dorsal petal lobes and leaves of the Antirrhinum majus

(snapdragon) are examined. A. majus is a good subject for geneticists because of

its high mutability and ease of cultivation [14]. This example involved collaboration

with A. majus researchers, making growth data available to us.

Finally, a more theoretical model is presented. An oscillating genetic network is

used to control growth, creating some novel forms.

1.2 Thesis Organization

This thesis has been divided into nine chapters. This first chapter is an introduction

to the problem studied. It is followed by the mathematical basis of mechanics and

growth (Chapter 2) and pattern formation models (Chapter 3). The numerical meth-

ods required to model the theory of Chapters 2 and 3 are presented in Chapter 4. I

focus on mass-spring systems and the finite element method. Visualization methods

are given in Chapter 5. The operation of the two programs developed for this thesis:

Canvas and CanvasLite, are discussed in Chapters 6 and 7. In Chapter 8 I present

a number of biological models using Canvas. And finally, in Chapter 9, I summarize

contributions, draw conclusions and discuss future work.

Chapter 2

Mathematical Models of Growth

In exploring the link between differential growth and form it is essential to understand

the mechanics of how two-dimensional surfaces deform in three dimensions, and how

this relates to growth.

I first review previous biological spatial simulation models in Section 2.1. Section

2.2 presents the theory of elasticity, as it relates to surfaces. Sections 2.2.2, 2.2.3 and

2.2.4 define basic continuum mechanics quantities. Section 2.3 presents the concept

of the growth tensor and Section 2.4 links growth and continuum mechanics.

2.1 Biological Spatial Simulation Models

Initial work in simulating the spatial structure of biological organisms used a square

lattice to represent shape. A state was associated with each square, indicating if the

organism occupied that space. Eden [30] simulated accretive growth of a cell in this

manner, and Ulam [93] presented a method for generating branching patterns using

cellular automata [90].

Branching patterns were considered by Cohen [16], who generated structures

influenced by an external density field. A more general framework for generating

branching structures, are L-systems, which were pioneered by Lindenmayer [51]. L-

systems have been used to model numerous aspects of plant growth and architecture,

including mechanical interactions [48]. Although L-systems have been used to model

4

5

the surface shape of a growing leaf [70], these models did not consider surface me-

chanics. Map L-systems [52] are an extension of L-systems that are not restricted

to branching topology. They have been used to model two-dimensional surfaces

incorporating mechanical interactions such as the thallus of the fern Microsorium

linguaforme [36].

Stevens [82] makes an interesting observation about growth and surfaces. He

states that if we consider a hexagon constructed of six triangular segments and one

segment is removed, the surface must assume a conic shape. Similarly, if a seventh

section is added, it will assume a “potato chip” shape. Adding and removing these

sections is analogous to growth, and organisms that grow in this manner “know”

nothing about how to construct these shapes. They are simply assuming the form

that the surface must take, as dictated by mechanical interactions. This is why un-

derstanding mechanics is important in understanding spatial developmental models.

Green [38] considers mechanical buckling as a morphogenetic phenomenon. In

particular, Green considers the phyllotactic patterns of plant primordia. In contrast

to the morphogen theory [26] where chemical substances influence placement of new

primordia, Green hypothesizes that primordia are placed in the lowest buckling en-

ergy configuration. His work is significant because it considers mechanical stress as

a means of local communication for morphogenesis.

Jacobson and Gordon [47] conducted rigorous simulations of the development of

newt embryos. In particular they simulated formation of the neural plate, one of the

first forms of symmetry breaking in an embryo. Their work used a hybrid model

called “morphodynamics” to compute the shape change of a form, given a specified

growth field.

6

2.2 Elasticity Theory

Elasticity theory describes how solid objects deform in the presence of external forces.

Objects are conceptualized as a continuous medium — not discrete in any way —

modeled by differential equations.

Within computer graphics, elasticity theory was first applied to physically based

modeling by Terzopoulos et al [87]. Their work considered deformable solids, surfaces

and curves, of which we consider only surfaces. It is important to note that the theory

reproduced here is only loosely applied to the mass spring models discussed later.

The concepts are however relevant and are thus presented.

2.2.1 Deformable Surfaces of Terzopoulos et al.

A point on a surface can be parameterized by two material coordinates: a = [a1, a2].

The vector position of a point within the body is then given by a time varying

function r(a, t) (Figure 2.1). The undeformed natural rest configuration of the body

is similarly defined as r0(a).

The motion of a point r within the surface can be described by an equation given

in Lagrange’s [37] form:

∂

∂t

(
µ

∂r

∂t

)
+ γ

∂r

∂t
+

δE(r)

δr
= f(r, t) (2.1)

where µ(a) is the mass density of a particle at point a, γ is a damping coefficient

and f(r, t) the net external force at time t. In the third term E(r) is an energy func-

tional that measures the net potential elastic energy of the deformed configuration.

Essentially, it describes the behavior of a body. The form of this functional for a

7

x

y

z

r

ro

a1

a2

a1

a2

undeformed body

deformed body

Figure 2.1: Location of a point r on a deformed and undeformed configuration of a
body. (after [87])

surface is1:

E(r) =
∫
Ω
‖G−G0‖2 + ‖B−B0‖2da1da2 (2.2)

G and B are the first and second fundamental forms of the surface, given by:

Gij(r(a)) =
∂r

∂ai

· ∂r

∂aj

(2.3)

Bij(r(a)) = n · ∂2r

∂ai∂aj

(2.4)

where n is the unit normal of the surface at point a. Ω indicates that we are

integrating over the whole surface. For a surface, G and B are 2× 2 tensors.

At a more intuitive level, G measures stretching and shearing within the surface,

while B measures out of plane curvature and twisting deformations. G0 and B0

1It should be noted that in the original work of Terzopoulos et al, a weighted norm was used
which is omitted here for simplicity.

8

are the fundamental form of r0 (ie. the natural state to which the surface tends).

Equations 2.1 to 2.4 completely describe the behavior of the surface in response

to a time varying external force. It should be noted that they have the effect of

minimizing E(r) over time.

This formulation of elasticity is favorable because of its simplicity and its concep-

tual similarities with mass spring systems. Note that if we consider the mass to exist

at discrete points in equation 2.1, then we would then have f in N and µ would be

the weight of each particle in kg. This is the basic formulation of a particle system.

2.2.2 Strain Tensor

One can further refine our understanding of the deformed state of a body by defining

a strain tensor. We assume that when a body is in a state of stress, it deforms

slightly(r), and when the stress is removed, it returns to its original rest state(r0).

This defines a displacement field δ = [u, v, w] which is the displacement experi-

enced by a point in the deformed body from its rest configuration. If r and r0 are

defined on a Cartesian coordinate system, then u, v, w are defined as:

u = rx(a)− r0
x(a)

v = ry(a)− r0
y(a)

w = rz(a)− r0
z(a)

(2.5)

We then define the displacement gradient tensor as:

9

A = ∇δ =


∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

 (2.6)

From this tensor we can derive the strain vector, which also defines the shear strains

γxy, γyz, γzx:

{ε} =



εx

εy

εz

γxy

γxz

γyz



=



∂u
∂x

∂v
∂y

∂w
∂z

∂u
∂y

+ ∂v
∂x

∂u
∂z

+ ∂w
∂x

∂v
∂z

+ ∂w
∂y



(2.7)

2.2.3 Stress Tensor

Similar to the strain tensor, one can also define a stress tensor. If a body is subject

to external forces, that body is under stress. The stress at a point within that body

can be described by a tensor given as follows:

σ =


σx τxy τxz

τyx σy τyz

τzx τzy σz

 (2.8)

Each element within the tensor corresponds to a force shown in Figure 2.2. The

normal stresses σx, σy, σz correspond to forces normal to the faces of the cube. The

shear forces are τxy, τyz, τzx. The first double subscript indicates the plane of ac-

10

x

y

z

σy

τyx

τyz

σx

τxy

τxz

σz

τzx

τzy

Figure 2.2: Stress forces acting on an infinitesimal body.

tion, and the second subscript indicates the direction of the force. There are only

three components of shear stress because it can be shown that in the limit as the

volume tends towards zero, τxy = τyx, τyz = τzy, τxz = τzy [45]. Thus, there are six

components of stress. These are most commonly represented as a vector:

{σ} =



σx

σy

σz

τxy

τyz

τzx



(2.9)

2.2.4 Generalized Hooke’s Law

The behavior of an isotropic homogeneous linear elastic medium can be completely

defined by two constants: Young’s modulus E and Poisson’s ratio ν. Young’s mod-

11

ulus is a measure of the stiffness of the material, while Poisson’s ratio is a measure

of shrinkage perpendicular to strain.

The relationship between the stress σ and the strain ε in an object is then given

by generalized Hooke’s Law [45]:

{σ} = [C]{ε} (2.10)

where C is given by,

C =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2ν
2

0 0

0 0 0 0 1−2ν
2

0

0 0 0 0 0 1−2ν
2



(2.11)

2.3 Growth Theory

In order to properly model growth, it is necessary to first describe growth. It may

be mistakenly assumed that growth is simply a scalar quantity, defined over some

object. Growth is not a scalar quantity, and we begin with an intuitive explanation

why this is so.

Growth was first rigorously defined as a tensorial quantity by Hejnowicz and

Romberger [43]. To understand why growth is a tensor, and not a vector or scalar,

consider the 2D example shown in Figure 2.3.

12

(a)

(b)

(c)

(d)x

y

Figure 2.3: Possible resulting shapes from a circle with the same growth at all points.

Suppose that each point on the circle grows in exactly the same way. The simplest

type of growth is shown in (a). This is isotropic growth where only a scalar value is

needed to describe the growth.

But, the circle could also deform in the ways shown in (b) and (c). In these cases

more than one value would be needed to describe growth. Perhaps horizontal growth

and vertical growth could be used. One might suggest then that growth is a vector

quantity. However, if growth was a vector quantity, then adding growths (b) and (c)

together would result in case (d). This is incorrect (Figure 2.4). In actuality, case

(a) would result. A simple examination reveals that at least three values are needed

to describe planar growth2. This rules out the use of scalars and vectors to describe

growth.

There are two ways to approach the definition of growth, which will be shown

to be related to each other in the end. In each case the velocity field for all points

2For example, these values could be the rotation angle for the major axis of growth, the expansion
along the major axis of growth, and expansion along the minor (perpendicular) axis of growth

13

+ =

≠+

Figure 2.4: Why growth is not a vector.

within the organism needs to be known to define the growth field for the organism.

2.3.1 Growth Tensor

The more general definition of growth is that of the growth tensor. If we consider

that an object is growing or changing shape, then the points within the object are

moving, each with an associated velocity. We therefore have a velocity field V. The

growth tensor is then defined as the gradient of this field:

G = ∇V (2.12)

To understand why this is the case, consider a one-dimensional example. Imagine

that you are in the caboose of a magical train. Your friend is the conductor. The

cars in between you have had a magical spell cast on them, and multiply while you

are moving, so that if perhaps you began with five cars, very soon you have 20

cars. During this process you and your friend have been moving apart, either by

the caboose slowing down, or the engine moving faster. The difference between the

caboose and engine speed, is a measure of the rate at which the train was growing.

The growth tensor does the same thing in three dimensions. It measures the rate of

14

change in velocity over a distance.

If we refer back to our 2D example shown in Figure 2.3, we would have the

following as elements of our growth tensor:

G =

 ∂Vx

∂x
∂Vx

∂y

∂Vy

∂x
∂Vy

∂y

 (2.13)

It should be noted from equation 2.13 that there are four degrees of freedom

within the growth tensor. Earlier we stated that only three degrees of freedom are

needed to describe growth in 2D. The truth is that Gij also contains a rotational com-

ponent that does not contribute to growth. As shown by Hejnowicz and Romberger

[43], this can be eliminated by taking only the symmetric portion, 1
2
(G + GT). The

same holds for the 3D case where the tensor would have nine quantities, of which

only six are relevant.

2.3.2 RERG

Another way to define growth is the Relative Elemental Rate of Growth (RERG),

first defined by Richards & Kavanagh [75] in 1943. The essential idea is that it

measures the growth at a point p along a segment s (Figure 2.5). If we let s deform

with the body as it grows, and define s be the length of s (ie. s = |s|), then we can

formally state the RERG as:

RERGs = lim
s→0,∆t→0

∆s

s∆t
=

dvs

ds
(2.14)

where ∆s is the change of length s during time interval ∆t, and vs is the elongation

velocity of the segment. The RERG can be calculated from the growth tensor. Given

15

s

p

Figure 2.5: RERG definition.

a unit vector e in the direction of s and a growth tensor G, we can compute the

RERG as follows:

RERGs = eTGe (2.15)

2.4 Linking Growth to Elasticity Theory

A difficult question now arises. How does one integrate growth into elasticity theory?

Some theory has been developed on this subject, such as the work of Epstein [33],

and Taber [83] who presents a survey of mechanical theories of growth. However,

there is no clear single way to approach the subject.

Here I choose a simple method, making the following observation. We previously

discussed how mechanics relies on a displacement field and how growth relies on a

velocity field. We relate growth and strain by defining an interval ∆t. That is:

16

G∆t =


∂(Vx∆t)

∂x
∂(Vx∆t)

∂y

∂(Vy∆t)
∂x

∂(Vy∆t)
∂y

 =

 ∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

 = A (2.16)

The growth tensor can become a displacement gradient tensor, if we define an

interval ∆t over which the growth occurs. Realizing that we can construct ε from A

this will later allow us to easily integrate growth into the finite element method in

Chapter 4.

Chapter 3

Mathematical Models of Pattern Formation

In the previous chapter I laid down the groundwork for how an object changes form

in response to growth. This alone does not explain morphogenesis. A complete

description of morphogenesis needs to explain the mechanisms that drive growth.

Many models have been proposed that can explain aspects of these mechanisms,

though a complete model is far from being known. These models are commonly

known as pattern formation models, and are the subject of this chapter.

Since our work is primarily concerned with deforming surfaces, I focus on models

that work for 2D surfaces. I first present the concept of diffusible morphogens. Dif-

fusible morphogens are a common way to implement local communication in pattern

formation models. Reaction-diffusion systems, and genetic simulation models incor-

porate diffusible morphogens into autonomous models, that attempt to conform to

biological constraints. One of these constraints is the idea of local action. No one

cell within the organism has a complete picture of the whole organism. It can only

act on its current state and what exists in the local neighborhood.

Coen [14] outlined a metaphor for development. He likens development to an

expanding canvas. The organism is the canvas, and colors on the canvas reflect gene

expression patterns. As the organism/canvas grows, there is more and more room

for detail, but the details are constrained by what was already placed on the canvas.

This metaphor is based on modern biochemistry and is much of the inspiration for

the work in this thesis.

17

18

surface shape pattern
formation

GROWTH

DIFFUSION PROCESSES

Figure 3.1: Feedback in morphogenetic processes.

In a true biological system feedback is also present (Figure 3.1). If we assume that

many of the genetic processes involved in pattern formation use diffusion as a means

of communication, then changes in the shape will influence pattern formation. If we

also assume that the pattern formation influences the growth of the shape, then we

have a complete feedback system. It is this feedback that can make morphogenesis

such a complex process.

The above mentioned pattern formation methods have traditionally been applied

to static surfaces [91], though some exceptions exist. Meinhardt [55] considered

reaction-diffusion patterns on a one-dimensional expanding curve for generating sea

shell pigmentation patterns. Crampin et al [20, 21] have also specifically consid-

ered reaction-diffusion pattern evolution on growing domains. Walter et al [95]

presented a method for procedural texture generation on expanding surfaces. What

is novel about this research is the feedback mechanism between pattern formation

and growth.

19

3.1 Diffusible Morphogens

Diffusible morphogens are a commonly postulated explanation for local communi-

cation within organisms. They propose the existence of a chemical that is created

by the organism as a means of signaling, can diffuse through the organism, and is

received by a more distant portion of the organism.

Within computer graphics diffusible morphogens were first used by Turk [92]

and Witkin and Kass [97]. Both their work employed reaction diffusion systems for

texture generation, with Turk’s working over arbitrary topologies.

Diffusion is a relatively simple process to describe mathematically. If a is the

scalar concentration of a chemical over one dimension, x, then the rate of change is

given by [29]:

∂a

∂t
= Da

∂2a

∂x2
(3.1)

The rate of change is proportional to the second derivative of the concentration,

and a diffusion coefficient, Da. This can be generalized to multiple dimensions using

52, the Laplacian operator [49]:

∂a

∂t
= Da52 a (3.2)

However, it is important to note that it is unlikely that such a simple model can

account for all types of biological diffusion. It is likely that in many cases active

transport is used, which causes preferential flow in one direction. For matters of

simplicity, I do not consider this mode of transport in this thesis.

20

3.2 Reaction-Diffusion

Reaction-diffusion systems are one of the more elegant models of pattern formation,

first proposed by Turing [91] in 1952. Reaction diffusion systems postulate inter-

acting morphogens that generate spatial patterns. They are successful at recreating

a wide variety of pigmentation patterns observed in nature, such as those seen on

sea-shells [55], zebras and giraffes [92].

Reaction-diffusion systems typically stipulate the presence of two interacting mor-

phogens. In an activator-inhibitor [56, 57] system, one morphogen, a, is a short range

activator, while the other, b, is a long range inhibitor. The mathematical formulation

of this is as follows [55]:

∂a
∂t

= s
(

a2

a2+h
+ ba

)
− raa + Da

∂2a
∂x2

∂h
∂t

= sa2 − rhh + Dh
∂2h
∂x2 + bh

(3.3)

Examining the first equation of 3.3, we see that the production rate a is propor-

tional to a2, making this an autocatalytic reaction. It is also inversely proportional

to h, making h an inhibitor to a. We also note that it has a decay term, raa, and a

diffusion term, Da
∂2a
∂x2 . Since we stated that a is a short range activator, Da � Dh.

The second equation is similarly constructed except that we note that the production

of h is proportional to a2. Finally we note that ba and bh are the basic production

rate, and cause production when no other factors would. These are responsible for

beginning the pattern formation.

The nature of the reaction can be summarized in Figure 3.2. The activator a

promotes the production of itself, but also promotes production of the inhibitor h,

which then inhibits a. Figure 3.3 shows some examples of the types of patterns

21

a
promotion
inhibition

h

Figure 3.2: Schematic of an activator-inhibitor system.

Figure 3.3: Examples of reaction-diffusion patterns. (Used with permission from
[69].)

possible from reaction-diffusion systems. There are also other forms of reaction-

diffusion systems such as activator depleted substrate systems and multi-chemical

systems [55].

3.3 Gene Expression

All organic life is composed of cells. Cells contain DNA which ultimately character-

izes its behavior. Some chemical pathways involving DNA can be abstracted into

genetic regulatory networks [54, 53, 42]. Regulatory networks have been described

for many processes such as the frog and yeast cell cycle [7, 12], Phage λ [71] (a bac-

terial virus), and bacterial chemotaxis [4, 73]. It is likely that these networks play a

large role in morphogenesis and thus a brief introduction is presented here.

22

Figure 3.4: Genetic transcription and translation in eukaryotes. (Used with permis-
sion from [35].)

Genes are sections of DNA that code for proteins. The process of turning a gene

into a protein is a two step process [2, 80] (Figure 3.4). First, a copy of the DNA

is made with RNA by RNA polymerase. This is known as transcription. Then, this

messenger RNA (mRNA) can be interpreted by a ribosome to create a polypeptide

chain. Polypeptides then fold into a functional protein. This process is known as

translation. Proteins are used by the cell for many purposes. When a gene is actively

being transcribed and translated, it is said to be expressed.

DNA contains sequences called operators, to which some regulatory proteins can

directly bind. When regulatory proteins bind to these sequences they influence the

23

rate at which genes are being expressed. The expression of these genes could in turn,

influence the expression of other genes, forming networks. Networks that serve to

regulate behavior of the cell are know as genetic regulatory networks.

Modeling these regulatory networks has been the subject of recent research [73].

A number of continuous models have been proposed, but betray the complexity of

gene expression [35]. The problem is that gene expression is quite a “messy” process

[2]. mRNA decays quite rapidly and there may be several copies of mRNA coming

off of one piece of DNA at a time. The mRNA may code for several proteins at

once (polycistronic mRNA). Also, since cells are so small, there may only be a small

number of proteins present to promote or inhibit genes. This makes the process

highly stochastic, and difficult to model with traditional continuous reaction rate

chemistry.

There are, however, many successes. A system that is well understood is Phage λ

[71], a virus that attacks bacteria. The regulatory network that controls if the virus

remains dormant or not has been successfully modelled [35]. Another success in

the understanding of gene expression is the construction of synthetic gene networks.

Elowitz [32] was successful in incorporating a synthetic gene network, called the “re-

pressilator” into Escheria coli to produce oscillating production of green fluorescent

protein (GFP).

3.4 Connectionist Model

Mjolsness et al. [60] outlined a mathematical framework for the simulation of genetic

activity within cells. They use a differential formulation of gene expression based on

24

1

3

2

4

5

promotion
inhibition

Figure 3.5: An example genetic network. Nodes represent the concentrations of gene
products T1 to T5. Arrows represent a negative or positive influence of one gene
product on the production of another.

a connection matrix. An element Wij of the matrix is the amount by which which

gene product Tj promotes or inhibits gene i.

Consider the following gene interaction diagram shown in Figure 3.5. The genetic

interactions in the diagram be represented with the following connection matrix:

W =



0 0 0 0 0

1 0 0 0 −1

−1 0 0 0 0

0 1 −1 0 0

0 0 0 1 0


(3.4)

Given a suitable gene expression thresholding function gi, the time development

of cellular activity can be formulated as follows:

dTi

dt
= Rigi

 N∑
j=1

WijTj + hi

+ Di∇2Ti − γiTi (3.5)

where Ri is the production constant of gene i, hi is the threshold value for gene

25

i. and Di is a diffusion coefficient. The diffusion term has been modified from its

original form in [60] to accommodate multidimensional diffusion. The function gi

is typically sigmoidal because gene expression levels reach a maximum value in real

systems. Finally, γi is a decay rate for gene product Ti.

Chapter 4

Numerical Methods

While describing the mathematical models in the previous two chapters we have

assumed continuous media. However, simulating these models with a computer re-

quires us to consider our media in discrete units and the use of numerical techniques

for finding solutions. This is the subject of this chapter.

In this chapter, I present two different approaches to simulating 2D surfaces

deforming in 3D. The first method, a mass-spring system, has the advantages of

speed and simplicity at the expense of a fixed discretization, limited growth and non-

physical behavior. The second method, the finite element method (FEM) is a more

general, more physically accurate technique, which allows for arbitrary discretization,

but at the expense of complexity and speed.

4.1 Mass-Spring System

A mass-spring system is a system of idealized point masses (particles) interconnected

by force producing Hookean springs, for the purpose of simulating physical behavior.

Within plant modeling, mass-spring systems were first used by Fracchia et al. [36]

for examining the growth of cellular structures. Mass-spring systems have been used

extensively in computer graphics to model cloth [8]. This thesis draws strongly on

this body of work1. This thesis is also based on the work of Dimian [24] who modeled

1Consider the fact that silk is often used for fake flower petals.

26

27

(a) stretching (b) shear (c) out of plane bend-
ing

Figure 4.1: Modes of deformation of a 2D surface in 3D.

deforming surfaces.

If a typical surface is considered, three resistive forces are observed (Figure 4.1).

These deformations can be quantified by the first and second fundamental forms

G and B presented in Section 2.2.1. Stretching deformations (a) are given by the

diagonal diagonal elements of G, while shear deformations (b) are given by the off

diagonal elements. Bending deformations (c), are given by the elements of B. We

wish to develop forces that will resist these types of deformations. The method used

by Terzopolous et al. was to define a scalar deformation energy based on G and B

(equation 2.2), and use variational derivatives to find a force (equation 2.1).

Mass-spring systems don’t use such an elaborate system. The primary appeal

of mass-spring systems are their speed (explicit integration schemes can often be

used) and simplicity. Within computer graphics, where visual appeal is valued over

physical exactness, they have been used to model a variety of physical phenomena

simply and rapidly.

Mass-spring systems use a network of Hookean springs to provide similar re-

28

u

v

Figure 4.2: Canvas discretization.

sistance to deformation types (a),(b) and (c). It is assumed that the mass of a

continuous media can be concentrated at discrete mass points (Figure 4.2) on which

these springs act.

Resistance to stretching is accomplished by linking springs across every mass in

the u and v direction (Figure 4.3(a)). Resistance to shearing is accomplished by

cross-linking springs. Resistance to bending is added by special bending springs

(Figure 4.3(b)). These bending springs are not 1D springs, but instead respond to

out of plane bending. They are described in Section 4.1.2.

By varying the spring constants for stretch, shearing and bending deformations,

the characteristics of the surface are changed. Objects like leaves and paper resist

stretch and shearing, while easily allowing bending. Other thicker materials like

plywood, resist bending more strongly.

Mass-spring models should not be thought of as a rigorous discretization of con-

tinuous surfaces, but as a discrete model unto itself that only approximates the

29

u u+1

v

v+1

(a) Linear springs.

u u+1

v

v+1

spring
mass
bending
spring

linear

(b) Bending springs.

Figure 4.3: Springs used to approximate the resistance of a continuous surface.

behaviour of continuous surfaces. This however has done nothing to inhibit their use

within computer graphics, where their simple formulation and speed has made them

popular.

4.1.1 General Formulation

We enumerate all particles in the system using the index i = 1..Nm, where Nm is the

number of particles in the system. Each particle has an associated state, described by

a position xi and velocity vi. Particles within a mass-spring system obey Newton’s

second law: f = ma [64]. If we defer the formulation of spring forces for a moment,

we can state the acceleration ai of particle i as follows:

ai =
1

m

(∑
k

fk − kdvi

)
(4.1)

where m is the mass of all particles, and kd a damping coefficient. fk is the kth force

30

s fafb

b a

Figure 4.4: Linear Spring

exerted on particle i by a spring. We sum over all forces acting on particle i (the

number of forces can vary for each particle). The damping force kdvi has been added

so that the system will reach a rest state.

To determine the position xt
i and velocity vt

i of particle i at timestep t, we use

Euler’s method of numerical integration:

vt
i = vt−1

i + at−1
i ∆t

xt
i = xt−1

i + vt−1
i ∆t

(4.2)

where ∆t is the length of time between each time step.

4.1.2 Spring Formulation

Two force-producing springs are constructed as follows. The first is a linear spring

that obeys Hooke’s law. We define a spring as existing between two particles a and

b (Figure 4.4). Each spring has an associated rest length s0. We define a vector

s = xa−xb between particles a and b. The magnitude of force exerted by a spring is

ks(so − |s|), which is positive for compression. This force will be directed along the

direction of the spring s
|s| . Combining these we obtain fa, the force on particle a as:

fa = ks(so − |s|)
s

|s|
(4.3)

Newton’s third law states that for every action, there must be an equal and

31

a
b

θabf

fb

a

a×b
fr

Figure 4.5: Bending Spring

opposite reaction [64], so the force fb on particle b must be equal and opposite to fa:

fb = −fa = −ks(so − |s|)
s

|s|
(4.4)

The other type of spring used is a bending spring. It is similar to the linear

spring except that instead of responding to changes in length, it responds to changes

in angle θab. It exerts a moment proportional to displacements from a rest angle θ0:

|fa| =
ks(θo − θab)

|a|
(4.5)

The bending spring requires three points to define it (Figure 4.5). Vectors a and b

are defined as going from the central mass to the outer masses. The restoring force

must exert a moment, so fa acts perpendicular to a in the plane of a and b. This

direction can be caluculated by:

fa
|fa|

=
a× (a× b)

|a× (a× b)|
(4.6)

The case for fb can be determined similarly. From the dot product definition we can

determine θab:

32

θab = cos−1

(
a · b
|a||b|

)
(4.7)

Combining 4.5, 4.6, and 4.7, we obtain:

fa = ks

[
θo − cos−1

(
a · b
|a||b|

)]
a× (a× b)

|a||a× (a× b)|
(4.8)

and,

fb = ks

[
θo − cos−1

(
a · b
|a||b|

)]
(a× b)× b

|b||(a× b)× b|
(4.9)

Since the forces must all be balanced, the reaction force on the central particle

is:

fr = −(fa + fb) (4.10)

This constitutes all the theory required for the physical simulation of a surface

using a mass-spring system.

4.1.3 Morphogen Distribution Model

Diffusible morphogens are included in this mass-spring model, as described in Section

3.1. The initial morphogen distribution is user defined (implementation details are

discussed in Chapter 6), and the effect of morphogens on the surface is described in

the next section.

Associated with each particle i is a morphogen concentration pi. Each particle

can also be referenced by a set of uv coordinates (Figure 4.2), which I denote puv.

33

Each particle i has one set of unique uv coordinates. We begin by reformulating the

pure diffusion formulation of equation 3.2 to include a decay term −kdecayp:

dp

dt
= kdiff 52 p− kdecayp (4.11)

where the morphogen diffusion and decay rates are specified by kdiff and kdecay.

Without the decay term morphogen concentrations would not return to zero when

sources are removed. To apply this to our discretized system, we use a finite-

differencing explicit integration approach [68]:

puv
new = puv + kdiff

(
pu+1 v + pu−1 v + pu v+1 + pu v−1 − 4puv

)
∆t− kdecayp

uv∆t (4.12)

Note that this assumes that the distances between particles is constant.

This is generalized to multiple morphogens by using a different symbol for other

morphogens, such as qi, ri, si. In this model, no interactions exist between mor-

phogens, such as those described for reaction-diffusion or the connectionist model.

4.1.4 Growth Formulation

An advantage to mass-spring systems is the way that growth is easily integrated. To

grow the surface, we simply extend the rest length so of the spring. Isotropic growth

is implemented by letting morphogens influence spring rest length as follows:

dso

dt
= ksenspso (4.13)

Since morphogen concentrations are only defined at particles, the average of

the two connected particles is used to determine its influence on a given spring.

34

Morphogen concentrations can also be used to modify curvature by changing the

rest angle of bending springs:

dθo

dt
= kcurlp (4.14)

where bending springs are influenced by the morphogen concentration of their central

particle.

Finally, we can also implement anisotropic growth by modifying equation 4.13 to

include a growth tensor:

dso

dt
= ktsense

TGepso (4.15)

where G is a 2D growth tensor, and e is a unit vector of the spring direction in uv

space. This is the same RERG calculation presented in Section 2.3.2. There is no

“obvious” way to determine how a tensor should diffuse over a surface, but in this

work, each element Gij of the growth tensor is treated as a separate morphogen. For

example, if we simulate four morphogens p, q, r, s over the surface, then we could

give G by:

G =

 p q

r s

 (4.16)

This is our morphogenetic model for our mass-spring model in its entirety. The

look and feel of this model is described in Chapter 6.

35

4.2 Finite Element Elasticity

The Finite Element Method (FEM) is a commonly used technique for solving dif-

ferential equations over arbitrarily discretized domains. Its origins date back to the

development of the digital computer in the 1940’s. Courant [19] first used triangles

for discretizing solution spaces in 1943. However, the term finite element method did

not appear later until its first use by Clough [13] in 1960. The technique was later

popularized by Zienkiewicz [98]. A more complete account of the history of the finite

element method is given by Huebner et al [45].

FEM is commonly used by engineers for elasticity problems, such as calculating

stresses and strains within structures. FEM is however applicable to a wide range of

problems, including plastic deformation [65], heat distribution, and fluid dynamics

[45].

Within computer graphics FEM has been used to model deformable objects [58],

brittle objects [66], cloth, and inflating balloons [39]. This thesis is also based on the

work of Federl [34], who used FEM to model crack formation on expanding surfaces.

A primary advantage of the finite element method is that it treats the solution

space as continuous. In principle this allows for arbitrary discretization, not the

regular discretization needed for finite differencing methods.

The process of Finite Element Analysis can be broken down into six basic steps

[45]:

• Discretization

• Interpolation

• Elemental formulation

36

• Assembly

• Constraints

• Solution

Each step is discussed in the following sections.

4.2.1 Discretization

For every type of problem considered with FEM, a state variable is considered over

a domain. For thermal analysis, the variable would be temperature; for elasticity,

this would be object deformation vectors (u, v, w as defined in Section 2.2.2). FEM

allows for arbitrary discretization of this domain, so long as the unit of discretization,

or element, can be defined with some type of interpolating function. Two example

elements are the wedge or pentahedral element (Figure 4.6(a)), and the brick or

hexahedral element (Figure 4.6(b)).

It is important to note that these elements describe a volume, and not a flat

surface as this thesis proposes. FE methods exist to describe a surface using flat ele-

ments, known as plate models [27]. However, they are mathematically more complex

than modeling a volume. I have chosen therefore to model the surface as a volume,

with thickness, so that simpler methods could be used. Surfaces are discretized using

wedge elements (Figure 4.7). It can be seen that the surface has a length and width,

but also thickness.

We can define a matrix [X](e) that specifies the coordinates of each node in global

space. For a wedge element, this is a 6× 3 matrix:

37

+1

ξ

η

ζ

-1

+1

+1

1

3

2

4

6

5

(0,0,0)

(a) A 6-node wedge (pentahedral) element

ξ

η

ζ

(0,0,0)

+1

+1

+1 2
1

3

5

4

6

78

(b) An 8-node brick (hexahedral) element

Figure 4.6: Two different types of elements. Bold numbers indicate local node
numbering. Small numbers indicate auxiliary (ξ, η, ζ) coordinates.

Figure 4.7: A surface discretized with wedge elements.

38

[X](e) =



x1 y1 z1

x2 y2 z2

x3 y3 z3

x4 y4 z4

x5 y5 z5

x6 y6 z6



(4.17)

The subscripts indicate the local node numbers and x, y, z are the coordinates of the

node in a global Cartesian coordinate system. We use the superscript (e) to indicate

local elemental matrices that use local node enumeration as opposed to a global

enumeration method, introduced in the following sections.

It can be shown for elasticity problems that as the number of elements used to

discretize a domain tends towards infinity, the finite element solution will converge

on the continuous solution [98].

4.2.2 Interpolation

FEM defines state variables that are associated with each node. These state variable

can be interpolated between nodes through the use of interpolation or shape func-

tions. A variable V can be interpolated at a point p within an element as the sum

of a number of shape functions Ni belonging to that element:

V =
r∑

i=1

Ni(p)Vi (4.18)

where Vi are the nodal values and r is the number of nodes in the element. The brick

and wedge elements in Figures 4.6(a) and 4.6(b) use auxiliary or local coordinates

39

ξ, η, ζ, which are used to specify the point p. Elements that use auxiliary coordinates

are known as isoparametric elements [18, p.202].

The set of six linear shape functions for the wedge element are as follows [45]:

N1(ξ, η, ζ) = 1
2
ξ(1 + ζ)

N2(ξ, η, ζ) = 1
2
η(1 + ζ)

N3(ξ, η, ζ) = 1
2
(1− ξ − η)(1 + ζ)

N4(ξ, η, ζ) = 1
2
ξ(1− ζ)

N5(ξ, η, ζ) = 1
2
η(1− ζ)

N6(ξ, η, ζ) = 1
2
(1− ξ − η)(1− ζ)

(4.19)

The above shape functions have the property of evaluating to Ni = 1 at node i,

and 0 for all other nodes.

The nodal values for FEM elasticity are vectors defining a displacement field of

the deformed state from the rest state (as defined in Section 2.2.2). The displacement

δ̃ at a point (ξ, η, ζ) within the element can be determined, if the displacements of

all the nodes δi are known:

δ̃(ξ, η, ζ) =
N∑

i=1

Ni(ξ, η, ζ)δi (4.20)

This can also be written in matrix notation:

{δ̃}(e) = [N]{δ}(e) (4.21)

if we define:

40

{δ}(e) =



u1

v1

w1

u2

v2

w2

...

ur

vr

wr



(4.22)

where ui, vi, wi are the deformation of node i as defined in Section 2.2.2, and r is the

number of nodes in the element (r = 6 for wedge elements). I also introduce [N] the

interpolation function matrix, defined as:

[N] =


N1 0 0 N2 0 0 ... Nr 0 0

0 N1 0 0 N2 0 ... 0 Nr 0

0 0 N1 0 0 N2 ... 0 0 Nr

 (4.23)

Note that since the shape functions Ni are a function of ξηζ, the matrix [N] is

also a function of ξηζ, and should correctly be written [N(ξ, η, ζ)]. However this

notation is cumbersome and (ξ, η, ζ) is here omitted for [N] and all other matrices

that contain shape functions Ni.

I also introduce here [J], the Jacobian matrix, defined as:

41

[J] =


∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

 (4.24)

where x, y, z are the global coordinates. The Jacobian can be thought of as a scaling

matrix, that relates physical lengths x, y, z to reference lengths ξ, η, ζ. Note that [J]

is not constant throughout wedge elements, and can be calculated as follows for any

six-node element as:

[J] =


∂N1

∂ξ
∂N2

∂ξ
∂N3

∂ξ
∂N4

∂ξ
∂N5

∂ξ
∂N6

∂ξ

∂N1

∂η
∂N2

∂η
∂N3

∂η
∂N4

∂η
∂N5

∂η
∂N6

∂η

∂N1

∂ζ
∂N2

∂ζ
∂N3

∂ζ
∂N4

∂ζ
∂N5

∂ζ
∂N6

∂ζ

 [X(e)] (4.25)

4.2.3 Elemental Formulation

Until now I have discussed a framework for representing state variables, giving both

a way to discretize the solution space, and a method to interpolate state variables.

The next step is to define the behaviour of an element.

I begin by defining the elemental stiffness matrix and give an explanation of what

it represents. The general idea is that we wish to determine the deformation of an

object given the forces acting on it, or the forces given the deformation. We therefore

have two sets of nodal variables: deformations and forces. I have already introduced

{δ}(e) as the vector of nodal deformations. We can similarly define {F}(e), a vector

of nodal forces. This can conceptually be thought of as the forces acting at the

nodes. Finite Element elasticity relates these nodal deformations and forces through

a stiffness matrix [K](e):

42

[K](e){δ}(e) = {F}(e) (4.26)

An intuitive explanation of the stiffness matrix for elasticity is as follows. For

the six node wedge element, we have a total of 18 degrees of freedom (ie. XYZ for

each node), making [K](e) an 18× 18 matrix. An element Kij is the force exerted on

the ith degree of freedom, when all the deformations are fixed at zero, except for the

jth degree, which is “pulled” to one unit of deformation.

The stiffness matrix can be derived from the generalized Hooke’s law (Section

2.2.4). A complete derivation is given in appendix A.1. The elemental stiffness

matrix for elasticity can be calculated as follows [45]:

[K](e) =
∫
Ω(e)

[B]T [C][B]dΩ (4.27)

where Ω(e) is the volume of the element integrated, and [C] is as defined in Section

2.2.4. In equation 4.27 I am introducing [B], the strain interpolation matrix [45]

given by:

[B] =



∂N1

∂x
0 0 ... ∂Nr

∂x
0 0

0 ∂N1

∂y
0 ... 0 ∂Nr

∂y
0

0 0 ∂N1

∂z
... 0 0 ∂Nr

∂z

∂N1

∂y
∂N1

∂x
0 ... ∂Nr

∂y
∂Nr

∂x
0

∂N1

∂z
0 ∂N1

∂x
... ∂Nr

∂z
0 ∂Nr

∂x

0 ∂N1

∂z
∂N1

∂y
... 0 ∂Nr

∂z
∂Nr

∂y



(4.28)

where r is the number of nodes in the element. [B] allows us to calculate the strain

vector (Section 2.2.2) at any point in the element: {ε} = [B]{δ}(e).

43

In practice integrating equation 4.27 analytically is impractical, if not impossible.

It is much easier to use Gaussian quadrature [68, 18].

Ke =
∑

gauss

[B(ξ, η, ζ)]T [C][B(ξ, η, ζ)]|[J(ξ, η, ζ)]|wgauss (4.29)

This is simply a re-written form of equation 4.27 to reflect the numerical integra-

tion method. The terms [B]T [C][B] are the same as equation 4.27 except that their

dependence on (ξ, η, ζ) is explicitly stated. The Gauss points are dependent on the

shape integrated, and the amount of accuracy required. The set of points (ξ, η, ζ)

and weights wgauss used are listed in appendix A.2. In equation 4.27, the integration

occurs in global coordinate space, while here the integration uses auxiliary coordi-

nates. The determinant of the Jacobian matrix |[J(ξ, η, ζ)]| is needed to correct for

this [18]. It will be assumed that all integrals over the space of the element Ω(e) can

be integrated using this method and will only be given in their continuous form.

4.2.4 Assembly

Until now, I have only focused on the behaviour of an individual element. We now

wish to describe the behaviour of a set of connected of elements. This is a simple

matter of assembling elemental stiffness matrices and vectors into a global form:

[K]{δ} = {F} (4.30)

The global stiffness matrix is constructed by first defining a global numbering

scheme for all nodes in the object. Then, there exists a mapping between the local

node numbering (Figure 4.6(a)) and the global node numbering. The individual

44

stiffness matrices are recast using this global numbering and summed together to

form the global stiffness matrix :

[K] =
N∑

i=1

[Ki]
(e) (4.31)

where N is the total number of elements. Translating the indices of these elemental

matrices and summing the matrices is known as assembly.

4.2.5 Constraints

We now have described enough to determine the force-displacement relationship of

a set of elements. However, for many practical problems constraints also need to be

specified. I present a method, described by Huebner et al [45], for modifying the

form of equation 4.30 to constrain displacements to a fixed value.

To fix a displacement δi at value βi, all elements of row i and column i in [K]

are set to 0, except for element Kii which is set to 1. Then element Fi is set to βi

and every remaining element j of {F} has Kjiβi subtracted from it, where Kij is

the original unmodified element of [K]. This has the effect or re-arranging the linear

system, such that the condition δi = βi is always met [45].

For example, we could take the following system:



K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44





δ1

δ2

δ3

δ4


=



F1

F2

F3

F4


(4.32)

and constrain δ1 = β1 using the above stated method to obtain:

45



1 0 0 0

0 K22 K23 K24

0 K32 K33 K34

0 K42 K43 K44





δ1

δ2

δ3

δ4


=



β1

F2 −K21β1

F3 −K31β1

F4 −K41β1


(4.33)

This method could be used to “anchor” the points of an object, by setting the

displacement to 0. It is important to note that it is usually necessary to specify

constraints, otherwise [K] is likely to be singular. That is, if some displacements are

not constrained, then rigid body motion would satisfy all conditions, allowing for an

infinite number of solutions [45].

4.2.6 Solving

Equation 4.30 is typically solved using linear algebra methods. Gaussian elimination

is not practical for many of these matrices since their dimensions may approach

6000 × 6000, as they did for some of the examples in Chapter 8. [K] is sparse for

elasticity problems [45], and therefore well suited to sparse matrix data structures

and Conjugate-Gradient (CG) [68] solvers.

A CG solver was used to solve equation 4.30. The sparse matrix was stored as a

1D array of C++ Standard Template Library (STL) maps [81, 61]. The CG solver

requires only two vector dot products and one matrix-vector product per iteration,

which are efficiently calculated with this data structure[79].

46

Figure 4.8: A non-conforming mesh with a “T-junction” (circled).

4.2.7 Dynamic Subdivision

A primary reason for using FEM is that it is possible to discretize a surface arbitrarily,

unlike like mass-spring systems, which require a regular discretization. FEM also

allows for dynamic subdivision, whereby the mesh can be further refined between

time steps. This is useful for elements that have become too large as a result of

growth that can be subdivided into a number of smaller elements, allowing more

detail to be added.

In selecting an appropriate subdivision algorithm, the following requirements

must be met. The ideal algorithm should:

• turn triangles into triangles,

• maintain original points,

• maintain a conforming mesh.

47

A conforming mesh is a mesh without any “T-junctions” (Figure 4.8). T-junctions

are non-conforming points which can formally be defined as “an interior point of the

side of one triangle and common vertex of two other triangles” [76]. FEM meshes

with non-conforming points will not generate correct result [45].

An algorithm proposed by Rivara [76], and used in FEM work by Federl [34]

satisfies these requirements. The algorithm refines a mesh by bisecting only the

longest edge of a triangle. To maintain a conforming mesh, the triangle opposite

to the edge must also be bisected. If the shared edge is not the longest edge of

the opposite triangle, then the opposite triangle is bisected, using this algorithm,

until both triangles share the longest edge. Because this algorithm only divides the

longest edge, it has the added advantage of generally avoiding degenerate triangles.

The method is listed in Algorithm 1. The first argument to SubDivideTri is

Ttarget, the target triangle to be divided. The second argument Etarget is the target

edge to be divided. The function will not return until that edge is divided. If no

edge is specified (Etarget = φ, the empty set) then the longest edge is divided.

An example execution is illustrated in Figure 4.9. The shaded triangle in Figure

4.9(a) is Ttarget and the function is called called with no edge specified (SubDivideTri(

Ttarget, φ)). Figure 4.9(b) identifies Ttarget, Topp and Elong at the top level of recur-

sion. The algorithm will divide the opposite triangle first, before dividing Ttarget.The

algorithm recuses, calling SubDivideTri(Topp, Elong) to do so. Because Ttarget and

Topp do not share the longest edge, the algorithm recuses twice (Figures 4.9(c) and

4.9(d)). Recursion is terminated when they share the longest edge. Triangle Ttarget

is divided, and execution proceeds back up the recursion chain. The final mesh is

shown in Figure 4.9(f).

48

(a) The greyed triangle is
to be subdivided

Ttarget

Elong

Topp

(b) top level of recursion

Ttarget
Elong

Topp

Etarget

(c) 1st level of recursion

Ttarget
=Tinside

E tar
ge

t=
E lon

g

(d) after 2nd level of recur-
sion

Ttarget

Tinside

Etarget=Elong

(e) Triangle Ttarget is sub-
divided until Etarget =
Elong.

(f) final mesh

Figure 4.9: A subdivision sequence for a mesh. See text. (The shaded triangle is
always Ttarget.)

49

Algorithm 1 Subdivision algorithm (φ is the empty set).

1: SubDivideTri(Ttarget, Etarget)
2: Elong ← longest edge of Ttarget

3: if Etarget = φ then {divide longest edge}
4: Topp ← triangle opposite edge Elong

5: if Topp 6= φ then {we have not reached the edge of the mesh}
6: SubDivideTri(Topp, Elong)
7: else
8: bisect Elong

9: end if
10: divide triangle Ttarget

11: else {Etarget must get bisected}
12: while edge Etarget not divided do
13: Tinside ← triangle inside Ttarget and containing Elong

14: SubDivideTri(Tinside, φ)
15: end while
16: end if

Elements are subdivided when the area of their top triangular face exceeds a user

defined value. This stops individual elements from getting too large, and allows more

detail to be added as the surface gets larger.

4.3 Finite Element Diffusion

The second part of our problem statement specifies that we should be able to simulate

diffusible morphogens over the surface. The theory for morphogen diffusion (Section

3.1) is the same as that for heat transfer [49], and is quite easily simulated using FEM.

In the context of thermal analysis, morphogen concentrations become temperatures,

and morphogen sources become thermal loads.

Many of the FEM elasticity techniques discussed in Section 4.2 are directly ap-

plicable to heat transfer. We have the advantage of using the same discretization,

50

interpolation, assembly, solving and subdivision methods as those used for the elas-

ticity formulation. The differences needed for simulating heat transfer are discussed

in this section.

4.3.1 Basic Formulation

FEM heat transfer is mathematically very similar to the FEM elasticity formulation.

Instead of deformations, we have temperatures {T} and instead of forces, thermal

loads {R}.

The constitutive equations of heat transfer are based on Fourier’s law. Fourier’s

law states [45, p.319] that:



qx

qy

qz


= −


k11 k12 k13

k21 k22 k23

k31 k32 k33





∂T
∂x

∂T
∂y

∂T
∂z


(4.34)

where qx, qy and qz are the heat flow in the x, y, z directions respectively. In the

context of thermal analysis these are energy fluxes. In the context of diffusion, these

are analogous to morphogen fluxes. Note that this is a vector quantity, and not a

tensor quantity. In thermal analysis {T} is the temperature, while for diffusion {T}

can be regarded as the morphogen concentration. We herein use the terminology

as it applies to thermal analysis. Finally, [k] is the symmetric conductivity tensor.

For isotropic media this is an identity matrix times a constant [k] = k[I]. I do not

consider anisotropic media in this thesis.

From [k] we can define an element conductance matrix, which is analogous to the

elasticity stiffness matrix [45]:

51

[Kc]
(e) =

∫
Ω(e)

[Bc]
T [k][Bc]dΩ (4.35)

where instead [Bc] is the temperature-gradient interpolation matrix, defined as:

[Bc] =


∂N1

∂x
∂N2

∂x
... ∂Nr

∂x

∂N1

∂y
∂N2

∂y
... ∂Nr

∂y

∂N1

∂z
∂N2

∂z
... ∂Nr

∂z

 (4.36)

which can be used to compute the gradient of the temperature field [Bc]{T}(e).

Similar to elasticity global formulation (equation 4.30), we can formulate the

global thermal system as follows:

[Kc]{T} = {RQ} (4.37)

where [Kc] is the global conductance matrix, {T} the temperature vector, and {RQ}

is the thermal load vector. An element Kij of [Kc] is the amount of thermal energy

flux required at node j, to bring node i to one unit of temperature. Interpreting this

in the context of diffusion, an element Kij is the morphogen flux required at node j

to bring node i to a concentration of one unit.

Similar to FEM elasticity, equation 4.37 can be solved with a CG solver to obtain

the steady state temperature vector {T}.

4.3.2 Thermal Convection

Thermal convection is the process by which a body is cooled by an external fluid

(typically air). The rate of energy lost to the fluid is proportional to the tempera-

ture difference between the body and the fluid. It is possible to include a thermal

52

convection component in FEM that obeys qh = h(Ts − Te), where h is a convection

coefficient, Ts and Te are the body and fluid temperature respectively, and qh is the

heat loss from the body.

Within the context of chemical diffusion, this process has the same effect as

morphogen decay. That is, if Te is set to zero (ie. the ambient fluid temperature is

zero) we are left with qh = hTs, the equivalent of morphogen decay (qh is a rate of

energy loss that is proportional to the temperature). We also then have the option of

setting Te to non-zero values, such that the temperature will “decay to” a non-zero

value.

To implement thermal convection, two convection terms, [Kh] and {Rh},are de-

fined as done by Huebner et al [45, p.320]:

[Kh]
(e) =

∫
Ω(e)

h{N}bNcdΩ (4.38)

{Rh}(e) =
∫
Ω(e)

hTe{N}dΩ (4.39)

where bNc is the row vector of shape functions:

bNc = {N}T =
{

N1 N2 ... Nr

}
(4.40)

The assembled global convection terms [Kh] and {Rh} are integrated into equa-

tion 4.37, obtaining:

([Kc] + [Kh]) {T} = {RQ}+ {Rh} (4.41)

Note that this equation still only represents a steady-state solution.

53

4.3.3 Transient Formulation

Since we are also interested in the time evolution of heat transfer we must reformulate

equation 4.41 for transient analysis. Equation 4.41 can be modified to include a time

dependence [45, p.321]:

[C]{Ṫ(t)}+ ([Kc] + [Kh]) {T(t)} = {RQ(t)}+ {Rh(t)} (4.42)

where we are rewriting the vectors of equation 4.41 to reflect a time dependence, and

introducing Ṫ(t), the first derivative of temperature with respect to time, and [C],

the capacitance matrix. The term [C]{Ṫ(t)} essentially represents the energy flux

needed to increase the temperature at a given rate. The matrix [C] is given by [45]:

[C] =
∫
Ω(e)

ρc{N}bNcdΩ (4.43)

where ρ is the mass density of the material, and c is the thermal capacitance of the

material. Taken together ρc is a measure of the amount of energy required per unit

volume to raise the temperature one unit. In the context of diffusion, these can be

taken to be one parameter and considered to be the amount of morphogen required

per unit volume to raise the concentration by one unit.

Solving 4.43 for a problem also requires a time integration method. We use the

following implicit method from [45]:

[K̄]{T}t = {R̄}t (4.44)

[K̄] = θ [[Kc] + [Kh]] +
1

∆t
[C] (4.45)

54

{R̄}t =
1

∆t
[C]{T}t−1 + ({RQ(t)}+ {Rh(t)})t (4.46)

where ∆t is the time step. A complete derivation of this set of equations is given

by Huebner et al [45, p.332] for example. Using this method guarantees that the

solution is unconditionally stable [45].

4.3.4 Connectionist Method

The previous section described a method to simulate morphogens that diffuse over

a surface and decay. I also wish to incorporate interactions between morphogens

based on the connectionist model presented in Section 3.4. This would enable mor-

phogens to promote or inhibit other morphogens, allowing more complex models to

be constructed.

We begin by re-examining the connectionist formulation summarized in equation

3.5. Note that the terms Di∇2Ti−γiTi are present for diffusion and decay. Since the

FEM diffusion model handles morphogen diffusion and decay, we can neglect these

terms. We multiply the remaining term by ∆t to obtain the interaction contribution

Vi, for one time step:

Vi = Rigi

 N∑
j=1

WijTj + hi

∆t (4.47)

where W is the connection matrix, Ri a user definable rate constant, and hi are

elements of the offset vector {h}, also user defined. The thresholding function used

was:

55

ya=0.3

x0 10-10

1.0

0.5

ya=1.0

ya=5.0

ga(x)

Figure 4.10: Thresholding function gi (equation 4.48) for various yi.

gi(x) = 1− 1

1 + eyix
(4.48)

where yi is an exponent multiplier that is set by the user. Setting yi higher results

in a much sharper threshold (Figure 4.10).

We collect each of these contributions into an interaction component vector {V},

and rewrite equation 4.44 to include this interaction component:

{T}t = [K̄]−1{R̄}t + {V}t (4.49)

This has the effect of adjusting the temperature vector after each simulation time

step.

4.4 Growth

A key contribution of this thesis is the integration of the growth discussed in Chapter

2 into FEM. With mass-spring systems, we were able to simply extend the rest length

of the spring. To begin with, we note that this is mathematically equivalent to placing

56

f
fextension

fspring

Figure 4.11: A force element in parallel with a spring element.

a constant force on the spring.

f = ks((s0 + ds0)− s)

f = ksds0 + ks(s0 − s)

f = fextension + fspring

(4.50)

We can construct an equivalent spring-force model as shown in Figure 4.11. In

this model the spring rest length remains constant but the force element is responsible

for extending the length of the spring. FEM elasticity is based on generalized Hooke’s

law, a 3D extension of the 1D Hooke’s law used in the previous spring example. FEM

handles element expansion in the same way, by exerting internal forces to expand

the element.

The problem of trying to use this method for growth within linear FEM, is that

it gives incorrect results for large expansions (typically greater that 10%). This

is because the linear formulation assumes that the base shape stays in relatively

the same configuration. In reality [K], and often {F}, are a function of {δ} which

becomes a factor in large deformations [18, p.595]:

[K(δ)]{δ} = {F(δ)} (4.51)

This is a much more advanced type of analysis known as non-linear FEM, which we

57

(a) before (b) after

Figure 4.12: A bar fixed between two immovable obstacles is set to expand 50%
longitudinally (see text).

wish to avoid because of its greater complexity.

To further elaborate, an example is shown in Figure 4.12. In it, we have a beam

between two fixed walls. We set each element to expand lengthwise by 50%. In

the linear analysis, the bar will remain exactly as shown in Figure 4.12(a). A non-

linear analysis will give the correct result, shown in Figure 4.12(b). This is because

elements of the beam rotate significantly, changing their elemental stiffness matrices.

To implement growth within FEM and avoid non-linear analysis, we build upon

the viscoelastic model, first used within computer graphics by Terzopolous et al

[86, 85]. A canonical Maxwell viscoelastic element is shown in Figure 4.13, which is

a spring in series with a damper element. The damper displacement x changes at

a rate proportional to the force f applied: dx
dt

= kdf . If the system is initially in

equilibrium and point b is moved one unit to the right at time t = 0, the viscoelastic

unit will give the response shown in Figure 4.14. The time constant τplasticity is the

amount of time required for the base shape to take on e−1 of the deformation.

To implement this viscoelastic behaviour within FEM I first restate some obser-

58

f
x

b

Figure 4.13: A Maxwell viscoelastic element. A spring is in series with a damper.

t

e-1

1

displacement

spring

damper

x

b

τplasticity

Figure 4.14: How a viscoelastic object deforms over time.

vations of Terzopoulos et al. The extension of the damper element x can be taken to

be the base shape of the object, and the spring deformation δ as the elastic deforma-

tion from this base shape. Incorporating the behaviour of the Maxwell element into

FEM elasticity is then a matter of setting dx
dt

= ηδ, where η is an arbitrary viscosity

coefficient. In discrete terms this means xt+1 = xt + αδ, which can be generalized to

three dimensions. Using the notation defined for FEM elasticity we have:

{X}t = {X}t−1 + α{δ} (4.52)

where {X} is the global analogue of [X](e), but organized into a column vector:

{X}T = b x1 y1 z1 x2 y2 z2 ... xr yr zr c (4.53)

Here, r is the total number of nodes in the system, x, y, z are the coordinates of

59

f

x

Figure 4.15: Viscoelastic growth element. A force element is in parallel with a
Maxwell viscoelastic element.

a node in a global Cartesian coordinate system, and subscripts indicate the global

node number. This equation is used after each simulation time step to update the

base shape of the object. This method emulates the behaviour shown in Figure 4.14.

Growth is incorporated by combining the spring-force model (Figure 4.11) with

the Maxwell element (Figure 4.13). I dub this viscoelastic growth. The conceptual

model is shown in Figure 4.15. Growth occurs by the element exerting an internal

force that expands the element. The change is made permanent when the damper

of the viscoelastic element extends to accommodate the expansion. The generation

of this force is discussed in the following sections.

It is important to note the difference between elastic and inelastic deformation

(such as viscoelasticity). An elastic object will always returns to its original shape

when all outside forces are removed [86, 85]. An inelastic object will not return to its

original shape; its deformation is history dependent. The viscoelastic growth model

is subject to this history dependence.

The primary advantage of using viscoelastic growth is that a number of small

incremental linear steps can be used to achieve large deformations over time, allowing

us to use linear FEM.

The nice analogy for the viscoelastic growth model is that it corresponds well

with biological processes [44, p.303]: cells have an internal turgotic pressure. This

60

base
shape

[G]

{ε0}

{F0}{δ}
elasticity

state

diffusion
state

growth tensor
computation

simulation
step

viscoelastic
step

FEM growth
implementation

constitutive
equations

{Τ}

{X}

SECTION 4.4.2

EQUATION 4.64

EQ
UA

TI
ON

 4
.6

5

EQUATION 4.30

EQ
UATIO

N 4.52

diffusion
processes

Figure 4.16: Process for simulating a single time step of growth.

pressure could be assumed to be the driving force of growth, extending the size of

the cell (or the spring by analogy). If this shape is held long enough, the cell can

add more material to the cell walls, making the shape permanent, much like our

viscoelastic growth model.

4.4.1 System Overview

An overview of the system used to compute a single time step of growth is shown in

Figure 4.16. We begin at the base shape, or current surface geometry. This shape

is used as the basis for the diffusion of morphogens, as described using the theory

presented in Section 4.3. No direct information transfer occurs, but the shape affects

how morphogens diffuse, so the arrow is drawn with a dotted line.

After the diffusion time step has been simulated and connectionist contributions

61

have been added (equation 4.49), the state of morphogen distribution {T} is used

to derive a growth tensor [G] for each element. Section 4.4.2 describes how this is

done.

I stated above that the viscoelastic growth element uses forces to achieve growth.

The next step is to determine these forces, given the growth tensor. We do this by

first computing a strain vector {ε0} from the growth tensor as described in Section

2.4. Applying this strain vector to FEM elasticity results in a force {F0}.

The final step is to determine the deformation of the surface, given the forces

acting on the elements. This is done using the standard FEM elasticity solution step

(Section 4.2.6). Solving the system results in a deformation {δ}, of which a portion

is added to the base shape (equation 4.52) to achieve viscoelastic behavior.

The following sections describe the process in more detail.

4.4.2 Growth Tensor Computation

In this section I discuss how to define a mapping between morphogen concentrations

{T} and a growth for each element.

The simplest case of isotropic growth is easy to define, but the anisotropic cases

require more consideration. More specifically, if growth is anisotropic, it requires a

preferential direction of growth. The most obvious way to define this was to set this

direction to be the gradient of a morphogen concentration.

To quantify this mathematically, it is first necessary to define a growth coordinate

system {~vmax, ~vmin, ~vup} for each element. We then construct a growth tensor [G]

(Figure 4.17) in this coordinate system, and then transform it to the global coordinate

system.

62

vmax

vup

vmin gmax

gmin

x

y

z

Figure 4.17: Diagram of the growth tensor indicatrix.

Since we are operating on a surface, we first define an “up” vector vup that is the

surface normal. One might suggest that ζ of the auxiliary coordinate system is the

most logical choice for this vector. However, it is possible for elements to become

sheared, shifting ζ significantly from the normal. To avoid this we take the cross

product of ξ and η. We define our normalized up vector as follows:

~ξg = [J]T



1

0

0


(4.54)

~ηg = [J]T



0

1

0


(4.55)

~vup =
~ξg × ~ηg

|~ξg × ~ηg|
(4.56)

63

where [J] is computed at the centroid of the element (for a wedge element (ξ, η, ζ) =

(1
3
, 1

3
, 0)).

The temperature-gradient interpolation matrix allows us to conveniently compute

the gradient of a morphogen:

~vgrad = [Bc]{T}(e) (4.57)

If ~vgrad is to be used as the direction of maximal growth ~vmax, it must be restricted

to the plane perpendicular to ~vup to ensure that the growth coordinate system is

orthogonal. This can be achieved with the following formula:

~vmax = ~vgrad − ~vup (~vgrad · ~vup) (4.58)

~vmax is then normalized, and becomes another axis of the coordinate system. If

isotropic growth is needed, or the gradient is undetectable, then ~vmax is arbitrary

and we substitute ~ξg for ~vgrad in the above equation.

The last axis ~vmin is the cross product of these two:

~vmin = ~vup × ~vmax (4.59)

We then specify the growth coordinate system as a 3× 3 matrix:

[H] = [{~vmax} {~vmin} {~vup}] (4.60)

We can then define the growth tensor in this coordinate system as follows:

64

[G]′ =


gmax 0 0

0 gmin 0

0 0 gup

 (4.61)

where gmax, gmin and gup are typically derived from morphogen concentration, but

dependent on the model being simulated. The simplest case is the following:

gmax = kgrowthTi

gmin = kanisotropygmax

gup = 0

(4.62)

We set the amount of growth proportional to the concentration of a morphogen i

times a constant kgrowth. The growth in the minor direction is then proportional to

this times an anisotropy constant kanisotropy. Setting kanisotropy to 1 results in isotropic

growth; setting it to 0 results in growth only in the major direction of growth. gup

is set to zero because we do not want the surface to get any thicker.

The final step is to transform [G]′, a tensor specified in the local coordinate

system, into [G], the same growth tensor specified in the global coordinate system.

This is accomplished by the transformation [6, 9]:

[G] = [H][G]′[H]T (4.63)

The growth tensor [G] can now be applied in the FEM growth implementation,

discussed in the next section.

65

4.4.3 FEM Growth Implementation

Standard FEM methods allow for a pre-strain component {ε0}. In engineering ap-

plications, this is commonly used to incorporate thermal expansion and contraction.

However, in this model, this can be used as the driving force of growth. This results

in a force that stretches the element, as previously discussed in Section 4.4.

To determine this force, we must first calculate the pre-strain vector from the

growth tensor [G]. Recalling the observations made in Section 2.4, and the definition

of the strain vector in equation 2.7, we can compute the pre-strain vector as follows:

{ε0} =



G11

G22

G33

G32 + G23

G13 + G31

G21 + G12



∆t (4.64)

The incorporation of pre-strain into FEM results in a force that can be calculated

as follows [45, p.197] (Appendix A.1):

{F0}(e) =
∫
Ω(e)

[B]T [C]{ε0}dΩ (4.65)

The elemental pre-strain force vectors {F0}(e) are then assembled into the global

force vector. The system can then be solved for the resulting global deformation.

If an individual element was separated from the whole, it would grow exactly the

specified amount. But in the assembled system, it is restricted by its neighbors, and

may not grow as much as desired.

66

The viscoelastic growth step is to add a portion of the deformation back into the

base shape (equation 4.52):

{X}t = {X}t−1 + α{δ} (4.66)

To calculate α we refer back to Figure 4.14, noting that it is an exponential curve.

α can be calculated given the user defined τplasticty of the deformation, and the time

step ∆t:

α = 1− e
∆t

τplasticity (4.67)

Chapter 5

Visualization Methods

The intent of this thesis was to develop a tool to aid in the understanding of the link

between differential growth and form. Most growth in organisms occurs at a time

scale not perceivable to our senses, making this a relatively non-intuitive phenomena.

This is the impetus for developing visual aids that could benefit the user, making

this understanding more intuitive.

The surface is simulated as a physical system and has additional properties that

might not be normally manifest in its spatial representation. For example, the surface

contains internal stresses which can be visualized. Other properties such as curvature

and growth can also be visualized.

Three visualization methods were developed for the mass-spring canvas. Sec-

tion 5.1 describes an internal strain visualization, Section 5.2 a Gaussian curvature

visualization and Section 5.3 a growth visualization.

5.1 Internal Strain

The internal strain of a body is a measure of how much it is being compressed or

extended at a point inside the body. A first approach to visualizing the internal

strain of the mass-spring system was to draw each spring as a line (Figure 5.1), and

color it according to the state of strain. The resulting problem is that the colors of

the springs were difficult to see, and that simply plotting all the springs at once, did

67

68

Figure 5.1: Wireframe spring drawing method (red is extension, blue is compression).

little to organize the information.

In reality, the datum (strain) at each point is a tensorial quantity, with strain

information in all directions. The visualization of tensor fields is a large area of

research, with many techniques already developed [5, 22, 23, 50, 62]. I propose yet

another visualization technique, drawing an inspiration from glass sculptors.

When a glass sculptor has completed a work and cooled it, internal stresses still

exist within the object. These stresses can be revealed by using polarized filters

which show the stresses as colored rings within the object. The polarized filter can

be rotated, which changes the ring pattern. I suggest that these patterns are a

natural way to visualize stress.

Figure 5.2 shows actual stress rings observed in glass. Two important observa-

tions can be made:

• Where no stress exists, the glass is clear

• As the stress increases, the glass appears colored, with the hue somehow related

69

Figure 5.2: Stress rings in glass revealed using polarizing filters.

to stress magnitude.

Although very difficult to properly simulate the physical processes creating these

rings, a much simpler method can be devised based on these two observations. In-

ternal strains (directly proportional to stress) can be drawn in a semi-transparent

fashion for a selected uv direction on the surface. The user is allowed to change the

direction and examine the results. The effect was found to be similar to the real

effect.

5.1.1 Algorithm

The visualization algorithm requires one input, a 2D vector d in uv space which

specifies the direction of strain visualization. The strain ε for a spring is computed

70

as:

ε =
|s| − s0

s0

(5.1)

where |s| is the current length of a spring, and so is the restlength of the spring.

Since we wish to draw a surface, the strain of the springs must be mapped to the

nodes. Algorithm 2 was used to do so.

Algorithm 2 Strain computation algorithm.

1: for all nodes do
2: tensionvis ← 0.0
3: end for
4: for all springs do
5: ε← (|s| − s0)/so

6: t← direction of spring in uv space
7: tensionvis (at spring nodes) ← ε(d · t)
8: end for

The strain visualization direction vector d could be could be interactively specified

during viewing, similar to rotating a polarizing filter used for viewing real stress rings.

5.1.2 Drawing Method

An effort was made to preserve this visual appearance of glass stress rings. To do

so, the surface is drawn with alpha blending, recreating the transparency of glass.

Points having no stress are drawn with an alpha of zero for full transparency. As the

absolute strain increases, the alpha of that point also increases, to a maximum of 1.0.

Some consideration was given to rotating the color hue proportionally to the strain.

However, I found that the rainbow hue was difficult to read, and really unnecessary.

Instead, positive strains are drawn red and negative strains drawn blue.

71

(a) default direction. (b) perpendicular direction.

Figure 5.3: Internal strain visualization examples. Blue indicates compression; red
indicates tension.

It was also necessary to indicate the direction being examined by plotting a

direction field. Short semi-transparent lines in the direction of strain visualization d

are drawn at each particle. These lines also serve to reveal the shape of the surface.

The drawing method is listed in Algorithm 3.

Algorithm 3 Strain visualization drawing method.

1: for all nodes do
2: if tensionvis > 0.0 then
3: color ← red
4: else
5: color ← blue
6: end if
7: alpha ← abs(tensionvis)
8: draw alpha blended surface
9: draw direction vector centered at vertex

10: end for

72

5.1.3 Examples

The results of the visualization can be seen in Figure 5.3. Each of the two figures

show one of two perpendicular visualization directions. Using only two colors was a

good choice because the most useful information is whether a location is in tension

or compression, and the relative amount is of secondary importance.

Despite the acute simplifications compared to real glass, the method is quite

effective and I have observed that it can be quickly understood by an untrained user.

In particular, the strain can quickly show whether the system has reached a steady

state, or has more energy available to deform the system. The method also has an

interesting visual appeal, very similar to real glass.

5.2 Gaussian Curvature

The visualization of surface curvature is a large field with many techniques already

developed for viewing surfaces, for example see [25, 46, 78, 89]. Surface metrics such

as mean curvature can be visualized to gain a greater ”feel” of a surface [10]. Here

I have chosen to visualize the Gaussian curvature of the surface for its relevance to

the positive and negative curvature observed in Figures 6.2 and 6.3.

The Gaussian curvature of a surface is defined as the product of its two principal

curvatures. A sphere has a constant positive curvature, while cylindrical surfaces

have a Gaussian curvature of zero, because they are curved only in one direction.

Gaussian curvature is a basic property of a surface that could give insight into its

deformation. One such interesting property is that a closed surface will have the

same total curvature regardless of the deformation. A full discussion of Gaussian

73

A

B

C
p

Figure 5.4: Gauss-Bonet Theorem

curvature is presented by Willmore [96] for example.

5.2.1 Algorithm

Instead of computing the two principal curvatures, then multiplying, a convenient

method exists to directly calculate the Gaussian curvature of a surface. The method

comes from the classical definition of the Gauss-Bonet theorem. For a given triangle

of geodesics on a surface (Figure 5.4) that contains p, the Gaussian curvature at a

point p is given by:

K = lim
A,B,C→p

A + B + C − π

∆
(5.2)

Where ∆ is the area of the triangle. This can be extended for quadrilaterals as

well [96]:

K = lim
A,B,C,D→p

A + B + C + D − 2π

∆
(5.3)

74

p0

p1

p2

p3

p4

p5

p6
p7

p8u

v A

B
C

D

Figure 5.5: Eight points surrounding p

The advantage of using a quadrilateral is that it is much easier to measure the

interior angles A, B, C and D for a rectangular mesh. The local u and v parame-

terization curves of the surface (the spring mesh) can be considered to be geodesics.

This is generally true, so long as the mesh is relatively smooth, a property generally

enforced by the mass spring system.

The Gaussian curvature of a given point on the mesh can then be computed as

follows (Algorithm 4). We consider the eight points surrounding a given point p0

(Figure 5.5). The four rectangular corners are considered to be A, B, C, D. We then

compute the ratio as defined in Equation 5.3 from the sum of these angles and the

total contained area.

5.2.2 Drawing Method

Very similar to the internal strain drawing method, one of two colors was used to

draw positive or negative curvature. The only deviation from the internal strain

75

Algorithm 4 Gaussian curvature computation algorithm.

1: for all nodes do
2: area ← 0.0
3: angle ← 0.0
4: for all neighboring nodes i do
5: a← pi − p0

6: b← pi+1 − p0

7: area ← area +1
2
|a× b|

8: end for
9: for each corner i do

10: a← pi+1 − pi

11: b← pi−1 − pi

12: angle ← angle+cos−1(a·b
|a||b|)

13: end for
14: angle ← angle−2π
15: curvature ← angle / area
16: end for

drawing method is that the surface is drawn completely opaque, so as not to make

it look like glass. For areas of zero curvature, a neutral grey color was used, and

blended with either blue or red, depending on the sign of the curvature. The drawing

method is listed in Algorithm 5

Algorithm 5 Gaussian curvature drawing method.

1: for all nodes do
2: if curvature > 0.0 then
3: hue ← red
4: else
5: hue ← blue
6: end if
7: α← abs(tensionvis)
8: color ← αhue+(1− α) grey
9: end for

76

Figure 5.6: Gaussian curvature visualization example (red is positive, blue is nega-
tive).

5.2.3 Examples

An example of the visualization method is shown in Figure 5.6. The figure clearly

indicates areas of positive and negative curvature, as well as their relative magnitude

quite easily. It should be noted that other methods exist for computing the curvature

of a surface [59, 72, 10]. However, this method is a simple efficient algorithm that

works well with mass-spring meshes.

5.3 Growth

A useful way to visualize growth tensors is with an indicatrix. An indicatrix is an

isosurface where the radius in any direction is proportional to the RERG (Section

2.3.2) of that direction (Figure 5.3). Indicatrices have been used by Nakielski and

Rumpf [62] for visualizing growth tensors. A 3× 3 tensor describes growth for a 3D

body, and is rendered with an isosurface like that shown in Figure 5.7(b). For 2D

surfaces in 3D, we use a 2× 2 tensor that only considers in-plane movements of the

77

(a) A 2D indicatrix (b) A 3D indicatrix

Figure 5.7: Examples of indicatrices.

points. The indicatrix for this tensor is a filled isocurve in 2D (Figure 5.7(a)).

5.3.1 Algorithm

Normally, RERG data is computed from a tensor, then an indicatrix is drawn from

this data. In this case, a growth tensor is not available, so we must compute the

RERG data directly from particle motion. Interior particles on the surface are sur-

rounded by eight neighboring particles (Figure 5.5), connected by springs. This

allows us to compute the RERG in eight directions and plot this data as an isocurve.

The RERG data was calculated using Algorithm 6.

5.3.2 Drawing Method

A problem not considered in Nakielski and Rumpf’s [62] work is that of negative

growth. In the mass-spring model the RERG is often negative (ie. the surface is

78

Algorithm 6 RERG data computation algorithm.

1: for all nodes p0 do
2: for all neighboring nodes pi do
3: d← pi−p0

|pi−p0|
4: a← vi · d
5: b← v0 · d
6: RERGi ← (a− b)
7: end for
8: end for

RERG(θ)

θ

(a) standard indica-
trix.

RERG(θ)

θ

RERG(θ)=0
{

(b) implemented indi-
catrix

RERG(θ)=0

+

-

(c) implemented indi-
catrix (showing nega-
tive growth)

Figure 5.8: Indicatrix comparison. Figures 5.8(a) and 5.8(b) show the same tensor
drawn using two different methods. The indicatrix of Figure 5.8(a) is drawn using
the method of Nakielski and Rumpf [62], but indicates only positive growth. The
radius of the indicatrix drawn in Figure 5.8(b) has an offset added so that negative
growth can be shown. Figure 5.8(c) shows how a tensor with negative growth is
drawn using this method.

79

contracting). A standard indicatrix (Figure 5.7(a)) only draws positive growth. I

solve this problem by setting the radius to the computed RERGi plus an offset

(Figure 5.8). Non-growing (zero) tensors are drawn as a disc. Positive growth is

drawn with a radius larger than the offset, and negative growth with a lesser radius.

A black circle equal to the offset is superimposed on the tensor as a zero reference.

The drawing method is listed in Algorithm 7.

Algorithm 7 Indicatrix drawing method.

1: for all nodes do
2: for all neighboring nodes i do
3: draw polygon of radius (RERGi + offset)
4: draw circle of radius (offset) in black
5: end for
6: end for

An ideal implementation of this drawing algorithm would embed tensors into the

surface. My implementation draws the tensors slightly above the surface, eliminating

the need to re-mesh the surface to include tensors. Although primitive, it has worked

well as a drawing method.

5.3.3 Examples

Some examples of the visualization method are shown in Figure 5.9. Figure 5.9(b)

shows a surface that is growing. The indicatrices clearly extend beyond the reference

circles, indicating positive growth. Also note that the areas of the surface adjacent to

the growing portions are contracting due to the expansion of the growing area. This

in shown by inidcatraces that do not fill the circle. Figure 5.9(a) shows a surface

at rest. Here the indicatraces can be seen to perfectly occupy the reference circle,

indicating zero growth.

80

(a) Surface is at rest.

(b) Surface is growing.

Figure 5.9: Growth tensor visualization examples. (The blue parts of the surface
indicate the presence of growth morphogen.)

Chapter 6

CanvasLite

Using the mass-spring, diffusion and growth models discussed in Section 4.1, an

interactive program “CanvasLite” was developed to explore growing surfaces with

diffusible morphogens. The program is described in this chapter.

6.1 General Description

CanvasLite simulates a 2D mass-spring system deforming in 3D, with four diffusible

morphogens. The morphogen distribution may be interactively painted by the user,

or specific morphogen release modes can be activated from a file. The surface re-

sponds to the morphogens in three different ways: isotropic growth, tensorial growth,

and curvature modification. Four diffusible morphogens were chosen so that in ten-

sorial mode the four morphogens could be the four elements of a 2D growth tensor.

The program responds fast enough for real time experimentation. That is, the

surface reaches equilibrium in a matter of seconds, after painting on new morphogens.

6.2 User Interface

The program is invoked from the command line with an argument specifying an

input file. The input file defines a number of parameters needed for the simulation.

The surface dimensions, spring constants and particle masses are specified in this

file, as well as the simulation time step and damping coefficient. The input file also

81

82

Figure 6.1: The CanvasLite user interface.

contains information about morphogen painting, predefined distributions and growth

response to morphogens. Appendix A.3 gives a full description of this file.

The program displays the surface in a single 3D viewer window (Figure 6.1).

Dragging in the window with the left mouse button rotates the surface. Left-right

motions are mapped to azimuth, and up-down motions rotate the surface from a

horizontal to vertical orientation. Pressing the “up” and “down” keys zoom in and

out from the surface. Viewing and runtime options are selected using the keys listed

in table 6.1.

The surface can be visualized in several ways, which are listed in Table 6.1.

Mode 1 draws the surface with green Phong shaded triangles. Mode 2 draws linear

springs as line segments. Mode 3 draws particles as points. Modes 4, 5 & 6 are the

corresponding visualization methods discussed in Chapter 5.

The user can paint on the surface interactively. 3D painting was introduced by

Hanrahan and Haeberli [40]. With CanvasLite, painting on the surface is accom-

83

Key Function

↑ ↓ zoom in/out from surface
p toggle pause/run
n add noise to particle locations
r reset surface
1 toggle shaded drawing
2 toggle spring drawing
3 toggle particle drawing
4 toggle internal strain visualization
← → rotate internal strain visualization angle d

5 toggle curvature visualization
6 toggle growth visualization

Table 6.1: Keyboard commands for CanvasLite.

plished by right or middle clicking on the portion of surface to be painted. The

middle and right buttons each map to a user defined combination of morphogens,

specified in the input file (Appendix A.3).

The program can operate in standard mode or tensorial mode. In standard mode,

the morphogens can be programmed to induce isotropic growth (positive or negative)

and curvature change in the u and v directions. The four morphogens are named

morphogen0 to morphogen3. In standard mode morphogen0 is drawn as blue, and

morphogen1 is drawn as red. In tensorial mode each of the four morphogens represent

an element of the 2D uv growth tensor:

G =

 p q

r s

 (6.1)

where p, q, r, s are the concentration of morphogens0 to morphogen3 respectively.

In this mode the tensors are drawn as 2D indicatricies (Section 5.3) which cause

anisotropic growth as described in Section 4.1.4.

84

In the case where the surface is perfectly flat (a natural starting situation), it

will not naturally deform into the third dimension. A form of symmetry breaking

was needed to “push” the surface slightly out of plane. A noise function was added

so that the locations of each particle was perturbed by a minute random amount

whenever the ’n’ key was pressed.

6.3 Program Structure

The system was coded as a Windows application using OpenGL and the glaux [63]

library, and runs on the MicrosoftTMWindows 2000 operating system. The main

algorithm is as follows:

1: initialize program & graphics

2: read input file

3: while forever do

4: if running = true then

5: sum forces acting on particles (equation 4.1)

6: advance the simulation one time step (equation 4.2)

7: enforce morphogen constraints

8: enforce geometry constraints

9: diffuse & decay morphogens

10: grow springs

11: draw surface

12: end if

13: end while

85

Figure 6.2: Growth morphogen (blue) is released from the center of the surface. A
bulge showing positive curvature results.

Using a 400Mhz SGI Visual Workstation 320 interactive frame rates were ob-

tained for surfaces with up to a thousand particles. The surface response to mor-

phogens could be observed within a few seconds.

6.4 Examples

A number of examples are presented to illustrate the basic modes of growth avail-

able with CanvasLite. The first example (Figure 6.2) is a surface resulting from

morphogen release in the center of the surface. The surface bulges in the center

producing a positive curvature. Figure 6.3(a) shows the canvas response for mor-

phogen released at the edges. A negative curvature surface is observed. The effect

can be varied by reducing the bending spring constant, leading to a “lettuce” effect

(Figure 6.3(b)). Both of these morphogen release modes (“Edges” and “center”) are

predefined and can be activated in the input file.

The effects of curvature growth are shown in Figure 6.4. The blue and red

morphogens are set to influence bending springs in either the u or v directions. Note

that this does not mean that any direction of curvature could be chosen by combining

these two together. We are limited to the directions of discretization chosen for the

86

(a) A high bending resistance produces a
saddle shape.

(b) A low bending resistance produces rip-
pled edges.

Figure 6.3: Growth morphogen (blue) is released from the edges of the surface. Two
examples are shown with different resistances to out of plane bending. Both surfaces
exhibit a negative curvature.

mesh.

A sequence of tensorial growth is shown in Figure 6.5. In it we see a sequence

where a line of morphogens has been painted on the surface. Here, painting has

applied a combination of the four morphogens. The four morphogen concentrations

are interpreted as the four components of a growth tensor, and the indicatrix of

this growth tensor is drawn on the surface. The indicatrices indicate how they

will deform the surface. In Figures 6.5(b) and 6.5(c) we see the surface deform in

a clearly anisotropic manner. The surface is shifted to the right, growing in the

direction indicated by the tensors.

Finally, Figure 6.6 shows a sequence obtained by painting a diagonal line of

morphogens on the surface, illustrating a particularly non-intuitive example. In this

87

(a) Blue and red morphogens are
placed at opposite ends of a strip.

(b) The ends begin to curl.

(c) The final surface at rest. (d) The final surface viewed from a
different angle

Figure 6.4: Curvature change. Morphogen influences the rest angle of the bending
springs. Blue and red morphogens cause curling in orthogonal directions.

88

(a) The surface is at
rest. A strip of ten-
sorial morphogens have
been painted near the top.

(b) The surface begins to
deform.

(c) The surface is at
rest. Note the anisotropic
growth.

Figure 6.5: Tensorial growth (spring mesh drawn for clarity.)

example the blue morphogen causes isotropic growth. It is difficult to predict the

final outcome (Figure 6.6(d)) given only the initial morphogen distribution (Figure

6.6(b)).

89

(a) The surface is at rest and no
morphogens are present. (t=0 sec.)

(b) A line of morphogen has been
laid down. (t=0 sec.)

(c) The morphogens diffuse and the
surface begins to deform. (t=1 sec.)

(d) All the morphogens have de-
cayed and the surface is at rest.
(t=6 sec.)

Figure 6.6: Morphogen painting and surface response (Blue morphogen causes
isotropic growth.)

Chapter 7

Finite Element Canvas

The primary limitation of mass-spring systems are their fixed discretization. This

ultimately limits the amount of growth possible because springs cannot be subdivided

in a physically consistent manner. To overcome this problem a second program

“Canvas” was developed using the finite element and growth theory outlined in

Sections 4.2, 4.3 and 4.4. This chapter describes that program.

7.1 General Description

The general operation of Canvas is similar to that of CanvasLite, but with some

added features. Canvas allows for dynamic subdivision, unlimited morphogens, con-

nectionist interactions, arbitrary shape input, and more advanced parameter control.

The major disadvantage of Canvas is its slow speed. FEM calculations are in-

herently much slower than those of mass-spring systems. Computing a single time

step for 100 elements on a 1.4 Ghz Intel P4, took approximately 1 second, making

the simulation impractical for interactive exploration.

7.2 User Interface

The user interface is a standard Windows interface with a menu, view pane, con-

trol bar and context menus (figure 7.1). Rotation controls are similar to those of

CanvasLite, done by dragging the left mouse button. Zooming is achieved by shift-

90

91

Figure 7.1: Canvas user interface.

dragging the left mouse button. The control bar has an elapsed time indicator as

well as three buttons that start, stop or step through the simulation.

An input file is used to specify a number of parameters necessary for the simula-

tion. The input file contains sections to describe the material properties, morphogen

diffusion and decay characteristics, surface geometry, constraints, simulation param-

eters and drawing methods. Appendix A.5 gives a detailed description of the file

format.

The view pane has a context menu (Figure 7.2) that activates different visualiza-

tion modes. The “Base” mode draws the surface geometry according to the global

node coordinate vector {X}, as a black wire frame. “Deformed” mode draws the

geometry of the base shape plus deformation {X}+{δ}, as a red wire frame. “Color”

mode draws the surface using triangles colored according to the morphogen concen-

92

Figure 7.2: Canvas visualization context menu.

tration. The mapping between morphogen concentration and color is defined in the

input file. Selecting the “Growth Frame” option will draw ~vmax, ~vmin and ~vup as a set

of red, green and blue line segments for each element. The “Growth Tensor” option

draws G for each element as an indicatrix. “Auto Rotate” will automatically rotate

the surface. “Label Nodes” will display the global node number beside each node.

The option “Record Output” will write each frame to an avi file. Un-selecting the

option will stop writing frames and close the file. The filename is specified in the

input file.

The user can paint morphogens on the surface by dragging with the middle mouse

button. The amount of morphogen placed during painting is specified in the input

file. Because of the slow speed of simulation, it is often advantageous to use the

input file to specify morphogen release locations.

7.3 Program Structure

The system was coded as a Win32 OpenGL application and run under Windows 2000.

The program is written using object oriented programming as a way to manage the

complexity of the code and to aid future development.

93

The main algorithm is as follows:

1: read input file

2: initialize graphics and user interface

3: while forever do

4: if running = true then

5: impose morphogen constraints.

6: resize and zero global elasticity vectors ({F} and {R̄})

7: resize and zero global stiffness matrices ([K] and [Kc])

8: for all elements do

9: compute and assemble stiffness matrices and thermal load vectors ([K](e),

[K̄c]
(e), {R̄}(e))

10: compute growth frame [H]

11: compute growth tensor [G]

12: compute strain vector {ε0}

13: compute and assemble force vector {F0}(e)

14: end for

15: impose displacement constraints

16: solve for displacements {δ} and concentrations {T} using conjugate gradient

method.

17: update base configuration {X}

18: subdivide elements that are too large

19: add connectionist contributions to {T}

20: end if

21: end while

94

Displacement constraints were implemented as described in Section 4.2.5. This

method is not applicable to the morphogen constraints, because of the time integra-

tion method used. Morphogen constraints were implemented by forcing elements of

the temperature vector {T} to the desired value before each simulation step.

Using a 1.4GHz Intel IV processor, a single time step for 100 elements took

approximately 1 second. This generally meant that interactive exploration could not

be achieved, and most simulations needed to be rendered offline. For this reason

Canvas includes an option to write the frames to a Windows avi file that can later

be played at 30 fps. This feature is quite useful, often making the model dynamics

much clearer. This however, comes at the cost of no interaction with the model.

7.4 Examples

To illustrate the basic operation of Canvas some simple examples of growth are

shown in Figures 7.3 and 7.4. Each are comparable to the CanvasLite examples, and

show that similar behavior is obtained. The results are discretization independent.

Figure 7.5 shows the same positive curvature example of Figure 7.3, except with

more elements, obtaining the same result. More advanced examples with Canvas are

given in Chapter 8.

95

(a) initial morphogen concentration (b) the surface begins to deform

(c) a bulge appears (d) final surface

Figure 7.3: Positive curvature. Isotropic growth morphogen is placed at the center
of the surface. A bulge with positive curvature results.

96

(a) initial morphogen concentration (b) the surface begins to deform

(c) final surface (d) final surface (rotated)

Figure 7.4: Negative curvature. Isotropic growth morphogen is placed at the edges
of the surface. A rippled saddle shape with negative curvature results.

97

Figure 7.5: Discretization comparison. This is the same positive curvature simulation
as shown in Figure 7.3 except that 3600 initial elements were used instead of 1000.
The same result is obtained.

Chapter 8

Examples

The practical use of Canvas is illustrated using a number of growing models in this

Chapter. I show that Canvas is well suited for modeling the growth of biological

organisms.

The first model simulates the development of a sea urchin. The next models

simulate the growth of leaves and petals of an Antirrhinum majus. The final model

controls the growth of a surface using using a genetic network.

8.1 Sea Urchin

Sea urchins are a popular subject of morphologists because of their simple shape. A

typical sea urchin test is shown in Figure 8.1. Sea urchins have a mouth situated at

the peristomal (bottom) end of the test, and an anus at the apical (top) end of the

urchin test. The test is composed of a number of plates. The dome shape of the urchin

apical system

plates

peristomal system

Figure 8.1: Photograph of a sea urchin test.

98

99

growth
rate

distance from apical system

Figure 8.2: Growth rate as a function of distance from the apical system. Abitrary
units of measurement (after [74]).

test is believed to be a structurally optimized shape and morphological research has

focused on the function and evolutionary origins of this form [84]. Thomson [88]

noted that the sea urchin has a pneu shape. A pneu is the shape that would result if

a balloon full of water is placed on a table. This simple shape suggests that a simple

mechanism is responsible for sea urchin morphology.

Raup [74] first modeled sea urchin development in 1968. His work directly ad-

dressed the development of plate shape of the sea urchin. Much subsequent modeling

work has followed in these lines [84, 31, 67].

My model draws its main inspiration from Raup’s original work. Raup plots

the growth increment (or growth rate) of the test as a function of distance from

the apical system (Figure 8.2). This exponential decay curve observed suggests that

a diffusing/decaying morphogen may be responsible for influencing growth. Thus

providing an ideal test case for the canvas system because it involves both growth

and diffusible morphogens.

A model was developed using canvas to test this hypothesis. The initial shape was

an immature sea urchin test, modelled by hand from a real baby urchin shape (Figure

100

(a) A cross section of a baby urchin. (b) The morphogen source is placed at
the apical system.

Figure 8.3: Initial shape and morphogen location of the sea urchin model. The model
begins with the geometry shown on the left. The isotropic growth morphogen source
is placed as shown on the right. Morphogens (blue) diffuse from the apical system
toward the peristomal system, causing isotropic growth.

8.3(a)). A morphogen release location was specified near the apical system (top) of

the urchin (Figure 8.3(b)), and diffusion parameters set such that the morphogen

decayed near the peristomal system (bottom). Isotropic growth was proportional to

morphogen concentration. The resulting growth of the urchin is shown in Figures

8.4(a) to 8.4(c).

The results show that qualitatively the sea urchin tends to maintain a pneu

shape, but without quantitative sea urchin growth data, it is impossible to draw any

conclusions about the accuracy of the model. The model does however illustrate a

successful use of the Canvas modeling system to produce a morphogenetic result.

Unfortunately, just because a model can reproduce a given result, does not mean

101

(a) The initial urchin shape. (b) The morphogen begins to dif-
fuse.

(c) The surface begins to deform. (d) The final surface

Figure 8.4: Time series of the sea urchin simulation.

the model is correct. Many models could produce valid results. Recent work from the

Santa Fe Institute suggests that it is primarily biomechanical factors that influence

sea urchin morphology [28], and not diffusible morphogens as this model presents.

8.2 Antirrhinum majus

The Antirrhinum majus (commonly known as a snapdragon) is a good subject for

geneticists because of its high mutability and ease of cultivation [14]. The two models

presented here were a collaborative effort with Dr. Enrico Coen and Anne-Gaelle

Rolland [77] of the John Innes Center, England.

102

Figure 8.5: Flowers of Antirrhinum majus. This particular plant variant is the palrec

mutant.

dorsal petal lobes

tube
sepal

lateral and ventral petal lobes

Figure 8.6: Anatomy of the Antirrhinum majus flower. (Reprinted with permission
from [14].)

103

dorsal petal lobes

dorsal tube fully grownprimordial

growth direction

Figure 8.7: Normal lobe and tube development of A. majus (not to scale, longer
arrows indicate greater growth). Note that although the boundary between the
tube and lobes shifts significantly, the growth direction of the lobes remains almost
perpendicular to the base of the tube.

8.2.1 Lobe Tube Mechanistic Model

The flower of A. majus is quite unique (Figures 8.5 and 8.6), making it a compelling

organism to model. This model focuses on the development of the dorsal petal lobes

and tube (Figure 8.6) of A. majus. Data was collected on the growth of these surfaces

using the palrec mutant flower [41, 11, 15, 94, 77]. During development the central

portion of the tube grows faster than the lateral portions, distorting the lobe-tube

boundary by approximately 45 degrees (Figure 8.7). However, the primary growth

direction of the lobes remains oriented perpendicular to the base of the tube, strongly

indicating the presence of an external orientation field [77]. If there was no external

influence on the growth direction, then growth might be expected to proceed as

shown in Figure 8.8. Coen and Rolland theorized that this orientation field could be

the gradient of a morphogen released at the base of the tube.

To test this hypothesis a model was developed with canvas (Figure 8.9) to attempt

104

fully grownprimordial

Figure 8.8: Illustration of how growth should occur if the growth direction is “im-
printed” during the primordial phase. The shifting lobe tube boundary changes the
direction of growth, causing the dorsal petal lobes to diverge significantly.

morphogen "a" (direction)

morphogen "b" (magnitude)

Figure 8.9: Lobe-tube simulation model. Morphogen “a” is released from the base
of the tube. The gradient of “a” is used to orient growth. Morphogen “b” is re-
leased from the center of the tube. The magnitude of growth is proportional to the
concentration of morphogen “b”.

105

(a) The initial lobe shape. (b) The surface begins to
deform.

(c) The final surface.

Figure 8.10: Time series of the lobe-tube simulation.

to reproduce the growth observed in A. majus using a diffusible morphogen that

orients growth. The starting geometry used was an approximation of the primordial

lobe and tube shape. Two diffusible morphogens were used. The magnitude of

anisotropic growth was set to be proportional to the concentration of morphogen

“b”, released in the central portion of the tube (Figure 8.9). This caused the central

portion of the tube to grow faster, as observed in A. majus. A second morphogen

“a” was released at the base, and oriented the anisotropic growth to the gradient of

this morphogen.

The results of the simulation are shown in Figure 8.10. The results indicate that

the lobes in the simulation tend to grow away from the base, and are not heavily

influenced by the shifting lobe-tube boundary. The final shape of the simulated

model (Figure 8.10(c)) is similar to that of the real case (Figure 8.7). It should not

be taken that this must be the valid model driving lobe growth. However we can

conclude that a diffusible morphogen that orients growth is a valid possibility.

106

Figure 8.11: Photograph of an A. majus cincinnata mutant leaf.

8.2.2 Rippling Leaf

An interesting A. majus mutant is the cincinnata mutant. The leaves of cincinnata

are not flat like regular A. majus leaves, they are malformed with a large number

of ripples over the surface (Figure 8.11). The question addressed here is how they

obtain these ripples.

The ripples observed in the leaf are similar to the elementary examples shown in

Figures 6.3(b) and 7.4. A simple test would be to model a leaf shape with isotropic

growth morphogen placed at the edges. A model of an A. majus leaf was created,

initial morphogen concentration distributed as shown in Figure 8.12, and simulated

with canvas.

The results simulation produced the same type of rippling seen in the cincin-

107

initial morphogen
concentration

Figure 8.12: The cincinnata leaf simulation model. The initial morphogen distribu-
tion was painted on the edges as shown. The morphogen causes isotropic growth.

Figure 8.13: Resulting shape of the cincinnata mutant leaf simulation. The leaf has
rippled along its edges.

108

B

R G

inhibition

Figure 8.14: A limit cycle oscillator. Each gene inhibits the production of the next.

nata mutants (Figure 8.13). This suggests that the cincinnata mutants obtain their

rippled edges because they are growing faster at their edges than at the center.

8.3 Repressilator

A model was developed to explore the possibilities of the connectionist method (Sec-

tion 3.4), inspired from work by Elowitz and Liebler [32]. Elowitz and Liebler de-

signed a synthetic genetic network to cause periodic expression of green fluorescent

protein (GFP) in the bacteria Escherichia coli. They used GFP because it is easily

observable with an ultraviolet light source.

They named their network the “repressilator”. It was composed of three genes

each inhibiting the production of the next, forming a stable oscillator. A similar

system was constructed for this example using the connectionist formulation. Three

morphogens were used, conveniently named R,G and B (drawn as red, green and

blue) over a square surface. Each morphogen inhibits the production of the next, as

shown in Figure 8.14).

109

(a) (b)

(c) (d)

Figure 8.15: Time series of repressilator oscillation. The surface is initially seeded
as shown in (a) by painting a few spots of the “R” morphogen. Figures (b)–(c) show
the progression of morphogen oscillation on the surface.

The morphogens are also allowed to diffuse and decay. Diffusion creates a form

of local communication, having the interesting effect of self synchronizing the system

over the entire surface. Figure 8.15 shows an evolution of the morphogen concentra-

tions over time.

As an experiment, the expression of R was linked to isotropic growth. Many novel

forms were obtained in this way, with one example shown in Figure 8.16. Although

110

(a) (b)

(c) (d)

(e) (f)

Figure 8.16: Time series of a surface growing from repressilator oscillation linked to
isotropic growth.

111

far from any type of recognizable surface, this example illustrates the type of complex

surfaces achievable using a simple feedback system.

Chapter 9

Conclusions

9.1 Summary of Contributions

I have developed Canvas and CanvasLite, tools for exploring the link between growth,

form and pattern formation models. Both tools use physically based simulation to

model the growth of two-dimensional surfaces deforming in three dimensions. Each

tool simulates diffusible morphogens over the surface that are responsible for effecting

growth.

CanvasLite used a mass-spring system for simulating surface physics. The tool is

fast enough for interactive experimentation, though at the cost of fixed discretization,

and rectilinear geometry. Morphogens could effect isotropic and anisotropic growth,

as well as changes in curvature. The tool is useful enough to model elementary

examples of growth, but too limited for practical biological modeling.

Three methods for visualizing surface properties with CanvasLite were presented.

An internal strain visualization method inspired by glass stress rings reveals the

strain state of the surface. Gaussian curvature was calculated based on a modi-

fied Gauss-Bonet theorem and used to show the curvature of the surface. Finally,

indicatrices were used for visualizing the measured growth tensor of the surface.

Canvas was developed as a more versatile tool, using finite element methods

for simulating surface physics and morphogen diffusion and decay. FEM allowed

for arbitrary and dynamic discretization of the surface. Viscoelastic growth was

112

113

introduced as a method for integrating growth into FEM elasticity. Canvas also

integrated a simple model for morphogen interactions, based on the connectionist

formulation of Mjolsness et al [60].

Four biological models using Canvas were presented. A model of sea urchin

development used a morphogen to isotropically grow a test. The leaf and dorsal

petal lobes of A. majus were modeled. Isotropic growth morphogen at the edges of a

leaf was used to achieve similar ripples to those seen in the cincinnata mutant. The

gradient of a morphogen was used to orient growth globally in a model of dorsal petal

lobe development. Finally, morphogen interactions were used simulate a repressilator

[32] genetic network and used to drive isotropic growth, creating some novel forms.

9.2 Future Work

9.2.1 Large Deformations

Although viscoelastic growth provides a way to implement growth within linear FEM

elasticity, it cannot be assumed that all biological tissues grow in this way. The

purely elastic growth of CanvasLite produces ripples much more readily and easily

than Canvas. It should be possible to implement a purely elastic growth into Canvas

using large deformation (non-linear) FEM methods. A method that seems well suited

for this purpose would be a corotational formulation as presented by Cook [18].

9.2.2 Hybrid Surface Models

Methods that are neither particle or finite element based have been developed for

surface simulation [3, 17]. These methods use arbitrary polygonal meshes for the

114

surface, and simplified physics. It should be possible to develop a faster growth model

based on these methods. It would also be interesting to construct a volumetric model,

so that models such as root apices could be properly modeled as a solid, instead of

a surface.

9.2.3 Programmability

During the construction of the models in Chapter 8, the need to re-program the

system was recurrent. It is unlikely that the current implementation could serve as

a tool to implement every conceivable biological system. What is needed is an en-

vironment for rapid experimentation, which could be satisfied with a programmable

system. A system with all the flexibilities of L-systems would be ideal. This could

allow for anisotropic diffusion, finer construction of the growth tensor, and almost

any morphogen interactions conceivable.

9.2.4 Other Uses

The current implementation of Canvas could be coupled with genetic algorithms. A

large part of constructing the models of Chapter 8 involved optimizing parameters,

which genetic algorithms are ideal for. Genetic algorithms could also be used in

conjunction with connectionist interactions to evolve regulatory networks for growth.

Bibliography

[1] M. Abramowitz and I. A. Stegun, eds., Handbook of mathematical func-

tions, Dover Publications, Inc., New York, 1972.

[2] B. Alberts, S. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Wal-

ter, Essential Cell Biology, Garland Publishing, 1998.

[3] D. Baraff and A. Witkin, Large steps in cloth simulation, in Proceedings

of the 25th annual conference on Computer graphics and interactive techniques,

ACM Press, 1998, pp. 43–54.

[4] N. Barkai and S. Leibler, Robustness in simple biochemical networks, Na-

ture, 387 (1997), pp. 913–917.

[5] J. Blinn, Using tensor diagrams to represent and solve geometric problems,

2001. SIGGRAPH Course Notes.

[6] H. D. Block, Introduction to Tensor Analysis, Charles E. Merrill Books Inc.,

1962.

[7] M. T. Borisuk and J. J. Tyson, Bifurcation analysis of a model of mitotic

control in frog eggs, Journal of Theoretical Biology, 195 (1998), pp. 69–85.

[8] D. Breen, D. House, and P. Getto, A physically-based particle model of

woven cloth, The Visual Computer, 8 (1992), pp. 264–267.

[9] L. Brillouin, Tensors in Mechanics and Elasticity, Academic Press, 1964.

115

116

[10] A. Cachia, J.-F. Mangin, D. Rivire, F. Kherif, N. Boddaert, A. An-

drade, D. Papadopoulos-Orfanos, J.-B. Poline, I. Bloch, M. Zil-

bovicius, P. Sonigo, F. Brunelle, , and J. Rgis, A primal sketch of the

cortex mean curvature: a morphogenesis based approach to study the variability

of the folding patterns, Submitted to IEEE Transactions on Medical Imaging,

(2002).

[11] R. Carpenter, C. Martin, and E. S. Coen, Comparison of genetic behav-

ior of the transposable element tam3 at 2 unlinked pigment loci in antirrhinum-

majus, Molecular and General Genetics, 207 (1987), pp. 82–89.

[12] K. C. Chen, A. Csikasz-Nagy, B. Gyorffy, J. Val, B. Novak, and

J. J. Tyson, Kinetic analysis of a molecular model of the budding yeast cell

cycle, Molecular Biology of the Cell, 11 (2000), pp. 369–391.

[13] R. W. Clough, The finite element method in plane stress analysis, in Pro-

ceedings of 2nd ASCE Conference on Electronic Computation, Pittsburgh, PA,

1960.

[14] E. Coen, The Art of Genes, Oxford University Press, 1999.

[15] E. S. Coen, R. Carpenter, and C. Martin, Transposable elements gen-

erate novel spatial patterns of gene- expression in antirrhinum majus, Cell, 47

(1986), pp. 285–296.

[16] D. Cohen, Computer simulation of biological pattern generation processes, Na-

ture, 216 (1967), pp. 246–248.

117

[17] J. Combaz and F. Neyret, Painting folds using expansion textures, in Pacific

Graphics, october 2002.

[18] R. Cook, D. Malkus, M. Plesha, and R. J. Witt, Concepts and Appli-

cations of Finite Element Analysis, John Wiley & Sons, 2002.

[19] R. Courant, Variational methods for the solutions of problems of equilibrium

and vibrations, Bulletin of the American Mathematical Society, 49 (1943), pp. 1–

23.

[20] E. Crampin, E. Gaffney, and P. Maini, Reaction and diffusion on grow-

ing domains: Scenarios for robust pattern formation, Bulletin of Mathematical

Biology, 61 (1999), pp. 1093–1120.

[21] E. Crampin and P. Maini, Modelling biological pattern formation: The role

of domain growth, Comments on Theoretical Biology, 6 (2001), pp. 229–249.

[22] T. Delmarcelle and L. Hesselink, Visualizing second order tensor fields

with hyperstreamlines, IEEE Computer Graphics and Applications, 13 (1993),

pp. 25–33.

[23] , The topology of symmetric second-order tensor fields, Proceedings IEEE

Visualization, (1994), pp. 140–147.

[24] D. M. Dimian, A physically-based model of folded surfaces with an application

to plant leaves, Master’s thesis, University of Calgary, 1997.

[25] D. Dooley and M. Cohen, Automatic illustration of 3d geometric models:

Surfaces, in Proceedings of Visualization 90, 1990, pp. 307–313.

118

[26] S. Douady and Y. Couder, Phyllotaxis as a dynamical self organizing process

(part i, ii, iii), Jounal of Theoretical Biology, 178 (1996).

[27] C. L. Dym, Introduction to the Theory of Shells, Hemisphere Publishing Cor-

poration, New York, 1990. QA935.D89 1990.

[28] G. Eble, D. Erwin, M. Foote, and D. Raup, Computational approaches

to theoretical morphology, tech. rep., Santa Fe Institute, November 2001.

[29] L. Edelstein-Keshet, Mathematical Models in Biology, Random

House/Birkhauser, 1988.

[30] M. Eden, A two-dimensional growth process, in Proceedings of Fourth Berkeley

Symposium on Mathematics, Statistics, and Probability, vol. 4, University of

California Press, Berkeley, 1960, pp. 223–239.

[31] O. Ellers, A mechanical model of growth in regular sea urchins: redictions of

shape and a developmental morphospace, Proceedings of the Royal Society of

London B, 254 (1993), pp. 123–129.

[32] M. B. Elowitz and S. Liebler, A synthetic oscillatory network of transcrip-

tional regulators, Nature, 403 (2000), pp. 335–338.

[33] M. Epstein and G. A. Maugin, On the geometrical material structure of

anelasticity, Acta Mechanica, 115 (1996), pp. 119–131.

[34] P. Federl, Modeling Fracture Formation on Growing Surfaces, PhD thesis,

University of Calgary, 2002.

119

[35] J. P. Fitch and B. A. Sokhansanj, Genomic engineering: moving beyond

dna sequence to function, Proceedings of the IEEE, 88 (2000), pp. 1949 – 1971.

[36] F. D. Fracchia, P. Prusinkiewicz, and M. J. M. de Boer, Anima-

tion of the development of multicellular structures, in Computer Animation ’90,

N. Magnenat-Thalmann and D. Thalmann, eds., Tokyo, 1990, Springer-Verlag,

pp. 3–18.

[37] H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, MA, 1950.

[38] P. B. Green, Pattern formation in shoots: A likely role for minimal energy

configurations of the tunica, International Journal of Plant Science, 153 (1992),

pp. S59–S75.

[39] E. Grinspun, P. Krysl, and P. Schröder, Charms: a simple framework

for adaptive simulation, in Proceedings of the 29th annual conference on Com-

puter graphics and interactive techniques, ACM Press, 2002, pp. 281–290.

[40] P. Hanrahan and P. Haeberli, Direct WYSIWYG painting and texturing

on 3D shapes. Proceedings of SIGGRAPH 90 (Dallas, Texas, August 6-10,

1990). ACM SIGGRAPH, New York, 1990, pp. 215–223.

[41] B. J. Harrison and J. Fincham, Instability at the pal locus in antirrhinum

majus. i. effects of environment on frequencies of somatic and germinal muta-

tion, Heredity, 19 (1964), pp. 237–258.

[42] L. H. Hartwell, J. J. Hopfield, S. Leibler, and A. W. Murray, From

molecular to modular cell biology, Nature, 402 (1999), pp. C47–C52.

120

[43] Z. Hejnowicz and J. Romberger, Growth tensor of plant organs, Journal

of Theoretical Biology, 110 (1984), pp. 93–114.

[44] W. G. Hopkins, Introduction to Plant Physiology, John Wiley and Sons, Inc.,

New York, 1999.

[45] K. H. Huebner, E. A. Thornton, and T. G. Byrom, The Finite Element

Method for Engineers, John Wiley and Sons, Inc., 1995.

[46] V. Interrante, H. Fuchs, and S. Pizer, Conveying the 3d shape of

smoothly curving transparent surfaces via texture, IEEE Transactions on Vi-

sualization and Computer Grahics, 3 (1997), pp. 98–117.

[47] A. G. Jacobson and R. Gordon, Changes in the shape of the developing

vertebrate nervous system analyzed experimentally, mathematically and by com-

puter simulation, Journal of Experimental Zoology, 197 (1976), pp. 191–246.

[48] C. Jirasek, Branch shape expressed using l-systems, Master’s thesis, University

of Calgary, Canada, 2000.

[49] E. Kreyszig, Advanced Engineering Mathematics, John Wiley and Sons, Inc.,

1993.

[50] R. D. Kriz, E. H. Glaesgen, and J. D. MacRae, Eigenvalue-eigenvector

glyphs: Visualizing zeroth, second, forth and higher order tensors in a con-

tinuum, Workshop on Modelling the Development of Residual Stresses During

Thermoset Composite Curing, (1995).

121

[51] A. Lindenmayer, Mathematical models for cellular interaction in development,

Parts I and II., Journal of Theoretical Biology, 18 (1968), pp. 280–315.

[52] A. Lindenmayer and G. Rozenberg, Parallel generation of maps: Devel-

opmental systems for cell layers., in Graph grammars and their application

to computer science; First International Workshop, V. Claus, H. Ehrig, and

G. Rozenberg, eds., Lecture Notes in Computer Science 73, Springer-Verlag,

Berlin, 1979, pp. 301–316.

[53] H. H. McAdams and A. Arkin, Simulation of prokaryotic genetic circuits,

Annual Review of Biophysics and Biomolecular Structure, 27 (1998), pp. 199–

224.

[54] H. H. McAdams and L. Shapiro, Circuit simulation of genetic networks,

Science, 269 (1995), pp. 650–656.

[55] H. Meinhardt, The Algorithmic Beauty of Seashells, Springer Verlag, 1998.

[56] H. Meinhardt and A. Gierer, A theory of biological pattern formation,

Kybernetik, 12 (1972), pp. 30–39.

[57] , Applications of a theory of biological pattern formation based on lateral

inhibition, Journal of Cell Science, 15 (1974), pp. 321–346.

[58] D. Metaxas and D. Terzopoulos, Dynamic deformation of solid primitives

with constraints, in Proceedings of the 19th annual conference on Computer

graphics and interactive techniques, ACM Press, 1992, pp. 309–312.

122

[59] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr, Discrete

differential-geometry operators for triangulated 2-manifolds, in VisMath ’02,

2002.

[60] E. Mjolsness, D. H. Sharp, and J. Reinitz, A connectionist model of

development, Journal of Theoretical Biology, 152 (1991), pp. 429–454.

[61] D. R. Musser, J. D. Gillmer, and A. Saini, STL Tutorial and Reference

Guide, Second Edition: C++ Programming with the Standard Template Library,

Addison-Wesley, Boston, MA, 2001.

[62] J. Nakielski and M. Rumpf, Growth in apical meristems of plants visual-

ization tools and growth tensor methods. SFB 256 (Report no. 11).

[63] J. Neider, T. Davis, and M. Woo, OpenGL Programming Guide, Addison-

Wesley, 1993.

[64] I. Newton, Philosophiae Naturalis Principia Mathematica, Printed by Joseph

Streater by order of the Royal Society, London, 1687.

[65] J. F. O’Brien, A. W. Bargteil, and J. K. Hodgins, Graphical modeling

and animation of ductile fracture, in Proceedings of the 29th annual conference

on Computer graphics and interactive techniques, ACM Press, 2002, pp. 291–

294.

[66] J. F. O’Brien and J. K. Hodgins, Graphical modeling and animation of brit-

tle fracture, in Proceedings of the 26th annual conference on Computer graphics

123

and interactive techniques, ACM Press/Addison-Wesley Publishing Co., 1999,

pp. 137–146.

[67] U. Philippi and W. Nachtigall, Constructionaly morphology of sea urchin

tests, Proceedings of the 2nd international symposium, (1991), pp. 183–191.

[68] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-

nery, Numerical Recipes in C, Cambridge University Press, 1999.

[69] P. Prusinkiewicz, M. Hammel, and R. Mech, Visual models of mor-

phogenesis:a guided tour. http://www.cpsc.ucalgary.ca/Redirect/bmv/vmm-

deluxe/TitlePage.html.

[70] P. Prusinkiewicz and A. Lindenmayer, The algorithmic beauty of plants,

Springer-Verlag, New York, 1990. With J. S. Hanan, F. D. Fracchia, D. R.

Fowler, M. J. M. de Boer, and L. Mercer.

[71] M. Ptashne, A Genetic Switch, Cell Press and Blackwell Scientific Publica-

tions, 1986.

[72] S. Pulla, A. Razdan, and G. Farin, Improved curvature estimation for wa-

tershed segmentation of 3-dimensional meshes, Submitted to IEEE Transactions

on Vizualization and Computer Graphics, (2002).

[73] C. V. Rao and A. Arkin, Control motifs for intracellular regulatory networks,

Annual Review of Biomedical Engineering, 3 (2001), pp. 391–419.

[74] D. M. Raup, Theoretical morphology of echinoid growth, Journal of Paleontol-

ogy, 42 (1968), pp. 50–63.

124

[75] O. W. Richards and A. J. Kavanagh, The analysis of the relative growth

gradients and changing form of growing organisms: Illustrated by the tobacco

leaf, The American Naturalist, 77 (1943), p. 385.

[76] M.-C. Rivara and P. Inostroa, A discussion on mixed (longest-side mid-

point insertion) delaunay techniques for the triangulation refinement problem,

in 4th International Meshing Roundtable, Albaquerque, New Mexico, Oct 1995,

pp. 335–346.

[77] A.-G. Rolland, Quantitative analysis of petal morphology in Antirrhinum

majus: an interdisciplinary approach, PhD thesis, University of East Anglia,

2003.

[78] D. Schweitzer, Artificial texturing: An aid to surface visualization, in Pro-

ceedings of the 10th annual conference on Computer graphics and interactive

techniques, 1983, pp. 23–29.

[79] J. R. Shewchuk, An introduction to the conjugate gradient method without

the agonizing pain, teaching notes, Carnegie Mellon University, 1994.

[80] L. Snyder and W. Champness, Molecular Genetics of Bacteria, ASM Press,

Washington, DC, 1997.

[81] A. Stepanov and M. Lee, The Standard Template Library, HP Technical

Report HPL-94-34, Hewlett Packard, 1995.

[82] P. S. Stevens, Patterns in nature, Brown Little, Boston, 1974.

125

[83] L. A. Taber, Biomechanics of growth, remodeling, and morphogenesis, Applied

Mechanics Rewiews, 48 (1995), pp. 487–545.

[84] M. Telfrod, Structural models and graphical simulation of echinoids,

Balkema, Rotterdam, 1994, pp. 895–899.

[85] D. Terzopoulos and K. Fleischer, Deformable models, The Visual Com-

puter, 4 (1988), pp. 306–331.

[86] D. Terzopoulos and K. Fleischer, Modeling inelastic deformation: vis-

colelasticity, plasticity, fracture, in Proceedings of the 15th annual conference on

Computer graphics and interactive techniques, ACM Press, 1988, pp. 269–278.

[87] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer, Elastically de-

formable models. Proceedings of SIGGRAPH ’87 (Anaheim, July 27-31, 1987),

in Computer Graphics 21,4 (July 1987), pages 205-214, ACM SIGGRAPH, New

York, 1987.

[88] D. Thomson, On growth and form, Cambridge University Press, London, 1917.

[89] J. Todd and E. Mingolla, Perception of surface curvature and direction

of illumination from patterns of shading, Journal of Experimental Psychology:

Human Perception and Performance, 9 (1983), pp. 583–595.

[90] T. Toffoli and N. Margolus, Cellular automata machines: a new envi-

ronment for modelling, The MIT Press, Cambridge, MA, 1987.

[91] A. Turing, The chemical basis of morphogenesis, Philosophical Transactions

of the Royal Society of London B, 237 (1952), pp. 37–72.

126

[92] G. Turk, Generating textures on arbitrary surfaces using reaction diffusion.

Proceedings of SIGGRAPH 91 (Las Vegas, California, July 28–August 2, 1991).

ACM SIGGRAPH, New York, 1991, pp. 289–298.

[93] S. Ulam, On some mathematical properties connected with patterns of growth of

figures, in Proceedings of Symposia on Applied Mathematics, vol. 14, American

Mathematical Society, 1962, pp. 215–224.

[94] C. A. Vincent, R. Carpenter, and E. S. Coen, Cell lineage3 patterns and

homeotic gene activity during antirrhinum flower development, Current Biology,

5 (1995), pp. 1449–1457.

[95] M. Walter, A. Fournier, and D. Menevaux, Integrating shape and pat-

tern in mammalian models, in Proceedings of the 28th annual conference on

Computer graphics and interactive techniques, ACM Press, 2001, pp. 317–326.

[96] T. J. Willmore, An Introduction to Differential Geometry, Oxford University

Press, 1957.

[97] A. Witkin and M. Kass, Reaction diffusion textures. Proceedings of SIG-

GRAPH 91 (Las Vegas, California, July 28–August 2, 1991). ACM SIGGRAPH,

New York, 1991, pp. 289–298.

[98] O. C. Zienkiewicz, The Finite Element Method, McGraw Hill, 1967.

Appendix A

A.1 Elasticity Stiffness Matrix Derivation

There are many methods to derive the finite element stiffness matrix for elasticity,

but here we use the principle of virtual work [18]. This principle states that the

internal virtual work of a body (IV W) must be equal to the external virtual work

(EV W):

IV W = EV W (A.1)

The IV W is the internal strain energy stored in the body. In continuous terms

the IVW density can be stated as {ε}T{σ} (Symbols are as defined in Section 2.2.2,

2.2.3 and 4.2.2). The EV W is the work done on the object by external forces. The

EV W density can be stated as {δ̃}T{F̃}, where {F̃} is a body force that acts on an

infinitesimal unit dΩ. Integrating these quantities over the volume of the element,

we obtain [18, p.88]:

∫
Ω(e)
{ε}T{σ}dΩ =

∫
Ω(e)
{δ̃}T{F̃}dΩ (A.2)

Substituting this with a modified Hookes law that incorporates a pre-strain:

{σ} = [C]{ε} − [C]{ε0} (A.3)

we obtain:

127

128

∫
Ω(e)
{ε}T [C]{ε}dΩ =

∫
Ω(e)
{ε}T [C]{ε0}dΩ +

∫
Ω(e)
{δ̃}T{F̃}dΩ (A.4)

We can then apply the finite element formulation of the strain {ε} = [B]{δ}

(equation 4.28), displacement interpolation {δ̃} = [N]{δ} (equation 4.21), and the

matrix identity (AB)T = BTAT to obtain:

{δ}T
(∫

Ω(e)
[B]T [C][B]dΩ{δ} −

∫
Ω(e)

[B]T [C]{ε0}dΩ−
∫
Ω(e)

[N]T{F̃}dΩ
)

= 0 (A.5)

Note that {δ}T and {δ} are not functions of the material coordinates and don’t

appear inside the integral. We can therefore factor {δ} out and we obtain the linear

system:

[K]{δ} = {F} (A.6)

Where our stiffness-matrix is given by:

[K] =
∫
Ω(e)

[B]T [C][B]dΩ (A.7)

and our force vector is given by:

{F} =
∫
Ω(e)

[N]T{F̃}dΩ (A.8)

and the pre-strain term given by:

{F0} =
∫
Ω(e)

[B]T [C]{ε0}dΩ (A.9)

129

ξ

1

1

η

6
1

6
1

3
2

3
2

Figure A.1: Integration points for a 2D triangle.

i ξ η ζ

1 0.1666666667 0.1666666667 0.5773502691
2 0.6666666667 0.1666666667 0.5773502691
3 0.1666666667 0.6666666667 0.5773502691
4 0.1666666667 0.1666666667 -0.5773502691
5 0.6666666667 0.1666666667 -0.5773502691
6 0.1666666667 0.6666666667 -0.5773502691

Table A.1: Integration points for a wedge. (wgauss = 1
6

for all points.)

A.2 Integration Points for Wedge Elements

The points used for integrating a wedge element were obtained by applying the

standard Gaussian rule in the ζ dimension [1, p.892], and using three points within

the ξη plane (Figure A.1). Combining these, we obtain the six integration points

shown in table A.2. The weight of each point (wgauss) is equal to 1
6
, giving a total

volume of 1.0.

130

A.3 CanvasLite Input File

Usage: canvaslite.exe inputfile

inputfile will default to input.cvs if it is not specified. If no input file is found, the

program will exit. Each line in the input file specifies one or a set of parameters. No

item may be omitted, and keywords must follow this order. Blank lines are allowed.

The keywords are described in the following table. Italicized words are variables

with subscripts indicating the type of variable: f=float, u=unsigned, b=boolean,

s=string.

131

Command Param. Description

Size widthu lengthu specifies the number of particles in the
width and length of the mesh to be cre-
ated

Noise valuef initial randomization of particle location
(even distribution over [−value, value])

PointMass valuef m mass of all particles
Damping valuef kd damping coefficient
StretchStiffness valuef ks resistance to stretching deformations
ShearStiffness valuef ks resistance to shearing deformations
BendingStiffness valuef kbs resistance to bending deformations
TimeStep valuef ∆t time step
RButtonChemxu valuef amount of morphogen x to be painted

when the right mouse button is used to
paint surface (x = 0..3)

MButtonChemxu valuef amount of morphogen x to be painted
when the middle mouse button is used to
paint surface (x = 0..3)

Edges valueu if equal to 1, the concentration of mor-
phogen 0 is set to 1.0 along the edges of
the surface

center valueu if equal to 1, the concentration of mor-
phogen 0 is set to 1.0 in the central 3 × 3
region of the surface

ChemicalxuDiffusibility

valuef

kdiff diffusibility of morphogen x (x = 0..3)

ChemicalxuDecay valuef kdecay decay rate of of morphogen x (x = 0..3)
ChemicalxuSensitivity

valuef

ksens growth sensitivity of morphogen x (x =
0..1)

ChemicalxuUCurl valuef kcurl sensitivity of morphogen on bending
springs in the u direction x (x = 0..1)

ChemicalxuVCurl valuef kcurl sensitivity of morphogen on bending
springs in the v direction x (x = 0..1)

TensorGrowth valueu turns the tensorial growth mode on (1) or
off (0)

TensorSensitivity valuef ktsens tensorial growth sensitivity
Flat valueu if equal to 1, constrain particles within the

xz plane
Texture ”filenames” texture filename to be mapped to surface

(Use 0 for no texture mapping.)
Distance valuef viewing distance from object
Specularity valuef specularity of surface [0, 1]

132

A.4 Sample CanvasLite Input File

Size: 25 25

Noise: 0.04

PointMass: 5.0

Damping: 0.3

StretchStiffness: 1.0

ShearStiffness: 1.0

BendingStiffness: 0.1

TimeStep: 0.5

RButtonChem0: 4.0

RButtonChem1: 0.0

RButtonChem2: 0.0

RButtonChem3: 0.0

MButtonChem0: 0.0

MButtonChem1: 4.0

MButtonChem2: 0.0

MButtonChem3: 0.0

Edges: 0

Center: 0

Chemical0Diffusibility: 0.025

Chemical0Decay: 0.01

Chemical0Sensitivity: 0.001

Chemical0UCurl: 0.00

Chemical0VCurl:0.00

Chemical1Diffusibility: 0.025

Chemical1Decay: 0.01

Chemical1Sensitivity: -0.001

Chemical1UCurl: 0.00

Chemical1VCurl: 0.00

133

Chemical2Diffusibility: 0.025

Chemical2Decay: 0.01

Chemical3Diffusibility: 0.025

Chemical3Decay: 0.01

TensorGrowth: 0

TensorSensitivity: 0.01

Flat: 0

Texture: 0

Distance: 35

Specularity: 0.7

134

A.5 Canvas Input File

Usage: canvas.exe inputfile

If no input file is specified, the program will exit. The input file consists of a

number of nested sections, as described in section A.5.1. The format of the data in

each section is described in sections A.5.2 to A.5.8.

A.5.1 Layout

The input file is structured into a number of nested data sections, as shown in the

following listing. Each line in the input file contains one set of parameters, or an

identifier beginning or ending a data section. No blank lines are allowed.

BeginCanvas 1.0

BeginMaterial

material data

BeginColor

color-1 data

EndColor

...

BeginColor

color-n data

EndColor

EndMaterial

BeginGeometry

geometry data

EndGeometry

BeginConstraint

constraint data

135

EndConstraint

BeginForce

force data

EndForce

BeginSimulation

simulation data

EndSimulation

BeginDraw

draw data

EndDraw

EndCanvas

White space before each identifier is ignored, and the layout of data within each

section is“free-format”. That is, the parameter lines can be specified in any order.

The keywords are described in the following sections. Italicized words are variables

with subscripts indicating the type of variable: f=float, u=unsigned, b=boolean,

s=string.

A.5.2 Material Data

This section is used to define a number of physical properties of the surface, and the

connectionist interaction variables. All lines are required.
Command Param. Description

Youngs valuef E Young’s modulus of the material
Poisson valuef ν Poisson’s ratio of the material
BaseColor redf greenf bluef natural RGB color of the surface
PaintValue valuef morhogen concentration for painting
OffsetVector vectorf {h} threshold vector of the connectionist for-

mulation (Section 4.3.4)
RateVector vectorf {R} rate vector of the connectionist formula-

tion
ExponentVector vectorf {y} exponent of equation 4.48 for each gi

ConnectionMatrix matrixf [W] connection matrix of the connectionist for-
mulation

136

A.5.3 Color Data

This section describes parameters for morphogens. All lines are required.
Command Param. Description

Name ”filenames” defines a name for the morphogen
Diffusibility valuef k diffusibility of the morphogen
Density valuef ρ density of material the morphogen diffuses

through (see equation 4.43)
Capacity valuef c capacitance of material the morphogen dif-

fuses through (see equation 4.43)
Decay valuef h decay rate of the morphogen
DecayTo valuef Te concentration the morphogen decays to

(usually 0.0)
DrawColor redf greenf bluef RGB values used to draw this morphogen

A.5.4 Geometry Data

This section is used to specify the surface geometry. All lines are optional.
Command Description

Form sheet

widthf lengthf thicknessf numelemsu

Generate a sheet of the given dimensions.
Use numelems number of elements.

Form urchin scalef segmentsuanusb Generate an elementary sea urchin shape.
If anusb is true, a hole is placed at apical
system.

File ”filenames” thicknessf scalef Import a text file describing a polygonal
mesh. Antiquated, use Obj instead.

Obj ”filenames” thicknessf scalef Import a Wavefront object file describing
a polygonal mesh. Note: Obj file must
be structured to use absolute vertex refer-
ences and use only one normal per vertex.

AddNoise valuef Add a random value to every XYZ coordi-
nate between [−value, value].

137

A.5.5 Constraint Data

The data in this section defines constraints to be placed on simulation variables. All

lines are optional.
Command Description

Displacement nodeu [XYZ] valuef fix the displacement {δ} of a given node in
dimension [xyz] to value

Color nodeu ”colors” valuef fix the concentration {T} of a morphogen
at a given node to value

A.5.6 Force Data

Data in this section specifies how to construct the growth tensor. The Growth line

is optional and may appear multiple times.
Command Description

Growth ”magnitudes” multf
anisotropy ”gradients”

Construct a growth tensor (Section 4.4).
magnitude is the morphogen name from
which the magnitude of the growth is
derived, multiplied by the value mult.
anisotropy is the anisotropy factor, which
can be a float value or morphogen name.
If it is not equal to 1.0, then gradient, a
morphogen name must be specified. The
gradient of morphogen ”gradient” is used
to derive a direction.

A.5.7 Simulation Data

This section specifies data relevant to the simulation of the model. All lines are

required, except for Alpha and Plasticity, of which only one must be specified.

138

Command Param. Description

Elasticity stateb activates the FEM elasticity solver (equa-
tion 4.30) Set to true for normal opera-
tion.

Diffusion stateb activates the FEM diffusion solver (equa-
tion 4.44) Set to true for normal opera-
tion.

Timestep valuef ∆t simulation timestep
Alpha valuef α viscoelastic constant (equation 4.52)
Plasticity valuef τplasticity compute α from τplasticity (equation 4.67)
DynamicSubdiv stateb activate the dynamic subdivision algo-

rithm (Section 4.2.7)
MaxArea valuef criterion for subdivision of an element

A.5.8 Draw Data

This section defines variables for drawing the model to the screen as well as the

default state of the visualization options when the program first starts. All lines are

required except for Output avi which is optional.
Command Description

Subtractive stateb If true, colors are added subtractively (like
pigments). Otherwise, the RGB value are
directly added together.

Background float float float RGB background color of the viewer win-
dow

Base stateb draw base object
Deformed stateb draw deformed object
RenderColor stateb draw morphogen concentrations
Gradient stateb draw gradient of first color
GFrame stateb draw growth frame for each element
GrowthTensor stateb draw growth tensors
Distance valuef default viewing distance
Size widthu heightu default viewing area dimensions in pixels
Output avi ”filenames” Write frames to an avi file.

139

A.6 Canvas Sample Input File

BeginCanvas 1.0

BeginMaterial

Youngs 100.0

Poisson 0.3

Heterosis false

BaseColor 0.0 0.0 0.0

BeginColor

Name "ChemicalA"

Diffusibility 0.1

Density 0.1

Capacity 0.3

Decay 0.02

DecayTo 1.00

DrawColor 1.0 0.0 0.0

EndColor

BeginColor

Name "ChemicalB"

Diffusibility 0.1

Density 0.1

Capacity 0.3

Decay 0.02

DecayTo 1.00

DrawColor 0.0 1.0 0.0

EndColor

BeginColor

Name "ChemicalC"

Diffusibility 0.1

Density 0.1

Capacity 0.3

Decay 0.02

DecayTo 1.00

DrawColor 0.0 0.0 1.0

EndColor

OffsetVector -1.0 -1.0 -1.0

RateVector -9.0 -9.0 -9.0

ExponentVector 4.0 4.0 4.0

BeginConnectionMatrix

0.0 0.0 1.0

140

1.0 0.0 0.0

0.0 1.0 0.0

EndConnectionMatrix

EndMaterial

BeginGeometry

Form sheet 40 40 0.1 900

AddNoise 0.01

EndGeometry

BeginConstraint

EndConstraint

BeginForce

Growth "ChemicalA" 0.4 1.0

EndForce

BeginSimulation

Elasticity true

Diffusion true

Timestep 0.03

Alpha 1.0

DynamicSubdiv true

MaxArea 7

EndTime 0.1

EndSimulation

BeginDraw

Subtractive false

Background 1.0 1.0 1.0

GrowthTensor false

Deformed false

DrawColor true

Distance 55.0

Size 640 480

Output avi "Animation.avi"

EndDraw

EndCanvas

