
STIRLING’S SERIES FOR n! MADE EASY

C. IMPENS

A Stirling formula is an estimate for n!. In its qualitative form, it
simply states that
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√

2πn
(n

e

)n

i.e.
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n! en

√
2π nn+ 1

2

≈ 0.

Quantitative Stirling formulas give estimates for rn. Here are some
examples, all having appeared in American Mathematical Monthly.
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(H. Robbins, 1955)
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(T. S. Nanjundiah, 1959)
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< rn (A. J. Maria, 1965)
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(R. Michel, 2002).

The sharpest of these estimates are Nanjundiah’s. It is our purpose to
do better than that, and to prove a formula of the form

rn ∼
A

n
− B

n3
+

C

n5
− D

n7
+

E

n9
− . . . ,

where ∼ means: lies between any two successive partial sums. In this
notation, Nanjundiah’s estimates amount to

rn ∼
1

12n
− 1

360n3
.

Moreover, we shall prove that the constants obtained cannot be im-
proved. This whole paper is based on repeated application of the fol-
lowing very simple fact:

f ↘ 0 =⇒ f > 0

f ↗ 0 =⇒ f < 0,

in the sequel simply called (SF). Some elementary high school calculus
is also required: f ′ > 0 =⇒ f ↗ and f ′ < 0 =⇒ f ↘ ; ln and
exp are mutual inverses, both ↗ ; ln 1, ln e, ln(xy), ln x

y
,
(
ln(1 + 1

x
)
)′

;
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derivative and limx→+∞ of rational functions ; Wallis’ estimates (i.e.
integration by parts in

∫
cosn x dx).
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