STIRLING’S SERIES FOR n! MADE EASY

C. IMPENS

A Stirling formula is an estimate for n!. In its qualitative form, it
simply states that
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Quantitative Stirling formulas give estimates for r,. Here are some
examples, all having appeared in American Mathematical Monthly.
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The sharpest of these estimates are Nanjundiah’s. It is our purpose to
do better than that, and to prove a formula of the form

where ~ means: [ies between any two successive partial sums. In this
notation, Nanjundiah’s estimates amount to
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Moreover, we shall prove that the constants obtained cannot be im-
proved. This whole paper is based on repeated application of the fol-
lowing very simple fact:

N0 = f>0

f/ 0= f<0,
in the sequel simply called (SF). Some elementary high school calculus
is also required: f' >0 = f S and f/ <0 = [ \,; In and

exp are mutual inverses, both *; In1, Ine, In(zy), In . (ln(l + %))’;
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derivative and lim, ., of rational functions; Wallis" estimates (i.e.
integration by parts in [ cos™ z dx).
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