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Extended abstract

We consider a convection-diffusion-adsorption-reaction system in 1D, which
models contaminant transport in groundwater. Mathematical model is numeri-
cally solved by the method of line (MOL) using the space discretization with the
moving grid points. The method is suitable to capture the sharp fronts of the
solution which can arize by an strong adsorption. The large scale of isotherms
are included in the adsorption model for both equilibrium and nonequilibrium
modes. Also the numerical approximation by operator splitting method is ap-
plied when adsorption process is splitted with the convection-diffusion along the
short time intervals and the fixed space grid points. The numerical efficiency
of all methods is discussed and obtained numerical results are compared. The
presented methods are suitable for the solution of inverse problems in scaling of
the mathematical model for its practical implementations.

The contaminant transport in porous media is modelled (see [5, 2],etc. ) by
system of PDE’s in the following form:

θ∂tC + ρ∂tψe(C) + θv∇C −∇(θD∇C) + ρ∂tS = 0
∂tS = κ(ψn(C)− S) (1) eq1.1

where C is the contaminant concentration, θ, ρ are porosity and specific density
of the porous media, v is the water flow in which contaminant is soluted, and
ψe, ψn are adsorption isotherms in the equilibrium and nonequilibrium mode,
respectively. The matrix D represents the dispersion. System (1) can be com-
pleted by an initial and boundary conditions which will be specified below. The
adsorption phenomenon is characterized by adsorption isotherm - a function
that relates the amount of adsorbed material to its amount in the water when
the equilibrium state is reached. Different adsorbate-adsorbent pairs can have
different isotherms. The most common isotherms (ψe, ψn) used in practice are:
Linear isotherm - ψ(C) = aC
Freundlich isotherm - ψ(C) = aCp

Langmuir isotherm - ψ(C) = aC
1+bC

Mixed F-L isotherm - ψ(C) = aCp

1+bCp
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Lindstrom-Van Genuchten isotherm -ψ(C) = aCe−2bψ(C).
If κ → ∞ (case of equilibrium adsorption mode) then S = Ψn(C) and then
we can add ∂tΨn(C) to the parabolic term. Thus, ∂tΨe(C) in (1) represents
the adsorption part in equilibrium mode. The porous medium can be a com-
position of various materials. That means that while some compounds adsorb
the contaminant in equilibrium mode, the other ones may adsorb in nonequi-
librium mode or need not adsorb at all. Thus, (1) represents the transport of
contaminant in porous media with (reversible) adsorption in equilibrium and
nonequilibrium mode. If in (1) the term ∂tS is of the form

∂tS = κ max(0, ψn(C)− S)

then we have irreversible adsorption.
To apply (1) in site, the hydrodynamical and geochemical datas included in
D, ψe and ψn are needed. These can be determined in the solution of the
corresponding inverse problems. For this purpose, precise and very efficient nu-
merical method is needed solving the direct problem, i.e., when all model datas
are known. Many of these model datas one can obtain in laboratory conditions
with a column.
The main goal of this contribution is the construction of a precise and efficient
numerical methods to solve 1D problems of the type (1). If an equilibrium ad-
sorption in (1) (i.e., Ψn(s) ≡ 0) is considered with ψ(C) = aCp

1+bCp and 0 ≤ p < 1,
then the solution can have profile of the damped travelling wave with sharp front.
Moreover, this phenomenon is strengthened when an irreversible adsorption is
considered with the pulse type of initial concentration profile. The additional
numerical difficulties are added when the problem is convection dominant. The
numerical solution of this type of problems needs a special type of treatment.
There are many numerical methods devoted to the solution of these type of
problems. Some of them using some types of “up winding”, or regularizations
(see [9, 7] ) , operator splitting (see [2, 3]) and interface modelling (see [1]). The
“up winding”, or regularizations introduce the additional numerical dispersion
which dampes the senzitivity of the solution on model parameters. In [2, 3] the
splitting has been applied to diffusion, convection and adsorption and semian-
alytical solution has been found for nonliner convection only for the Langmuir
and Freundlich isotherms. The interafce modelling is a very powerful method,
hovewer, the interface evolution model is required. For nonequilibrium adsorp-
tion model in (1) nothing is known about the existence of the interface (interface
is the boundary of the spport of the solution).
In the present paper we construct the numerical method for (1) based on MOL
(space discretization) leading to the ODE system.
In the first method , developed in [4] (see also references there) this ODE-system
results by using moving grid points. The profit of this method is that the the
sharp fronts of the solution are captured by authomatic adaptivity of moving
grid points and the corresponding ODE-solver needs not to be restarted along
the time evolution. This will be presented in Section 1.
In the second method we solve this system using fixed grid and operator split-
ting, where the splitting between adsorption fhenomenon on one hand and
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convection-diffusion phenomenon on other hand is applied. The reason is that
the time scaling for adsorbtion and convection-diffusion is different at least one
order which leads to very stiff ODE system. The profit of this strategy is twofold.
The solution of adsorption part leads to a single ODE in each (space) grid point.
On every time section we can redistribute the density of grid points which suits
to the solution profile. The disadvantage of this splitting is that at every time
section we have to restart the ODE-solver.
We consider the 1D case of (1) with x ∈ (0, t), t > 0 and for simplicity we as-
sume v = V ≡ const,D ≡ const = D, θ = 1 and denote by F (C) := C+ρΨe(C)
in (1).
Together with (1) we consider (in 1D) the initial and boundary conditions

C(x, 0) ≡ 0, S(x, 0) ≡ 0; C(0, t) = C0, C(L, t) = 0. (2) IBC

We shall use the value C0 = 1, which can switch at a prescribed time to the
value C0 = 0. The more general boundary conditions for C can be considered,
too. To discuss the efficiency of the numerical approximation it is sufficient to
consider the progress of the input from the boundary x = 0 up to x = L. Let
us consider a space discredization with the moving grid points

0 = x0 < x1(t) < ... < xi(t) < ...xN = L

which are not yet determined. Consider the solution C(xi(t), t) along the curve
(xi(t), t) . Then we rewrite (1) in the form (Lagrange coordinates)

∂tF (C(xi(t), t)) = F ′(C(xi(t), t))[ẋi(t)∂xC(xi(t), t) + ∂tC(xi(t), t)] =

−V ∂xC(xi(t), t) + D∂2
xC(xi(t), t)− ρκ(Ψn(C(xi(t), t))− S), (3) e2:1

∂S(xi(t), t) + ẋi(t)∂xS(xi(t), t) = κ(Ψn(C(xi(t), t))− S).

We apply here the space discretization and denote by yi(t) an approximation
of C(xi(t), t) and by wi(t) an approximation of S(xi(t), t). To approximate
∂xC, ∂2

xC and ∂xS at the grid point xi we use the tree point approximation
using the Lagrange polynomial of the second order crossing the points

(xi−1(t), yi−1(t)), (xi(t), yi(t)), (xi+1(t), yi+1(t)).

Then y(t) := (y1(t), ..., yN−1) and w(t) := (w0(t), w1(t), ..., wN−1(t)) represent-
ing the numerical approximation of (1), (2),we determine by an ODE-system.
For the determination of x(t) := (x1(t), ..., xN−1(t)) we follow the [4] where the
density of moving grid points automatically follows the high spacial activity of
the solution. For this purpose it is defined the monitoring function

m ≡ m(x; C,S) :=

√
γ +

1
2
(∂xC)2 +

1
2
(∂xS)2, with γ > 0.

In the place of C, S we take theire approximations y, w and use the central
diffference for the space derivative.
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Denote by αi(t) := xi(t) − xi−1(t) for i = 1, ..., N with α0 = 0. Then ni :=
1
αi

, i = 1, ..., N represent the densities of grid points. The mathematical model
for moving grids is based on the following two criteria:

k

k + 1
≤ ni−1

ni
≤ k + 1

k
. (4) eq5.1

and
ni−1

mi−1
=

ni

mi
, i = 2, ..., N − 1. (5) eq6.1

Efficiency of this numerical modelling is demonstrated on a series of numerical
experiments.
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