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We propose a systematic treatment of model reduction of multiscale reaction
networks. First, we consider linear kinetic models, which appear as “pseudo-
monomolecular” subsystems of multiscale nonlinear reaction networks. For such
linear models, we propose a reduction algorithm which is based on a generalized
theory of the limiting step developed by Gorban & Radulescu (2008).

For any ordering of reaction rate constants we look for the dominant kinetic
system. The dominant system is, by definition, the system that gives us the
main asymptotic terms of the stationary state and relaxation in the limit for
well separated rate constants. In this limit any two constants are connected by
the relation > or <.

The topology of dominant systems is rather simple; they are those networks
which are graphs of discrete dynamical systems on the set of vertices. In such
graphs each vertex has no more than one outgoing reaction. This allows us to
construct the explicit asymptotics of eigenvectors and eigenvalues. In the limit
of well separated constants, the coordinates of eigenvectors for dominant systems
can take only three values: £1 or 0. All algorithms are represented topologically
by transformation of the graph of reaction (labeled by reaction rate constants).
We call these transformations “cycles surgery”, because the main operations
are gluing cycles and cutting cycles in graphs of auxiliary discrete dynamical
systems.

In the simplest case, the dominant system is determined by the ordering of
constants. But for sufficiently complex systems we need to introduce auxiliary
elementary reactions. They appear after cycle gluing and have monomial rate
constants of the form k¢ =[], k;'. The dominant system depends on the place
of these monomial values among the ordered constants.

Construction of the dominant system clarifies the notion of limiting steps for
relaxation. There is an exponential relaxation process that lasts much longer
than the others. This is the slowest relaxation and it is controlled by one reaction
in the dominant system, the limiting step. The limiting step for relaxation is
not the slowest reaction, or the second slowest reaction of the whole network,
but the slowest reaction of the dominant system. That limiting step constant
is not necessarily a reaction rate constant for the initial system, but can be



represented by a monomial of such constants as well.

The idea of dominant subsystems in asymptotic analysis was proposed by
Newton and developed by Kruskal (1963). In our analysis we do not use the
powers of small parameters but operate directly with the rate constants ordering.

To develop the idea of systems with well separated constants to the state of
a mathematical notion, we introduce multiscale ensembles of constant tuples.
This notion allows us to discuss rigorously uniform distributions on infinite space
and gives the answers to a question: what does it mean “to pick a multiscale
system at random”.

Some of results obtained are rather surprising and unexpected. First of all
is the zero-one asymptotic of eigenvectors. Then, the good approximation to
eigenvectors does not give approximate eigenvectors (the inverse situation is
more common: an approximate eigenvector could be far from the eigenvector).
The almost exact lumping analysis provided by the zero-one approximation of
eigenvectors has an unexpected property: the lumped groups for different eigen-
values can intersect (compare to the classical results of approximate lumping
analysis by Kuo & Wei (1969)). Rather unexpected seems the change of reac-
tion sequence when we construct the dominant systems. And, of course, it was
surprising to observe how the dynamics of linear multiscale networks transforms
into the dynamics on finite sets of reagent names.

In this work, in addition to our previous research (Gorban & Radulescu
(2008)) we

e Construct dominant systems for the reaction network that has a group of
constants with comparable values (without relations > between them).

e Construct dominant systems for reaction networks with modular struc-
ture. We assume that the ratio of any two rate constants inside each
module be bounded and separated from zero, but the ratios between mod-
ules form a well separated ensemble. We describe all solvable modules such
that it is possible to solve the kinetic equation for every module in explicit
analytical (algebraic) form with quadratures.

Now we have the complete theory and the exhaustive construction of algo-
rithms for linear reaction networks with well separated rate constants. There
are several ways of using the developed theory and algorithms:

1. For direct computation of steady states and relaxation dynamics; this may
be useful for complex systems because of the simplicity of the algorithm
and resulting formulas and because often we do not know the rate con-
stants for complex networks, and kinetics that is ruled by orderings rather
than by exact values of rate constants may be very useful;

2. For planning of experiments and mining the experimental data — the ob-
servable kinetics is more sensitive to reactions from the dominant network,
and much less sensitive to other reactions, the relaxation spectrum of the
dominant network is explicitly connected with the correspondent reaction
rate constants, and the eigenvectors (“modes”) are sensitive to the con-
stant ordering, but not to exact values;

3. The steady states and dynamics of the dominant system could serve as a
robust first approximation in perturbation theory or as a preconditioning
in numerical methods.



The developed methods are computationally cheap, for example, the algo-
rithm for construction of dominant system has linear complexity (~ number of
reactions).

The next step should be construction of dominant systems for nonlinear re-
action networks. The first idea here is the representation of a nonlinear reaction
as a pseudomonomolecular reaction: if for reaction A + B — ... concentrations
ca and cp are well separated, say, c4 > cp, then we can consider this reaction
as B — ... with rate constant dependent on c4. The relative change of ¢4 is
slow, and we can consider this reaction as pseudomonomolecular until the rela-
tion c4 > cp changes to cq4 ~ cp. We can assume that in the general case only
for small fraction of nonlinear reactions the pseudomonomolecular approach is
not applicable, and this set of genuinely nonlinear reactions changes in time,
but remains small. First steps of this research program are done in the recent
work by Radulescu & Gorban & Zinovyev & Lilienbaum (2008).

Finally, the concept of “limit simplification” will be developed. For mul-
tiscale nonlinear reaction networks the expected dynamical behaviour is to be
approximated by the system of dominant networks. these networks may change
in time but remain small enough. This hypothetical picture should give an an-
swer to a very practical question: how to describe kinetics beyond the standard
quasi-steady-state and quasiequilibrium approximations. We guess that the an-
swer has the following form: during almost all time almost everything could be
simplified and the whole system behaves as a small one. But this picture is also
nonstationary: this small system change in time. Almost always “something is
very small and something is very big”, but due to nonlinearity this ordering can
change in time. The whole system walks along small subsystems, and constants
of these small subsystems change in time under control of the whole system
state. The dynamics of this walk supplements the dynamics of individual small
subsystems.

The corresponding structure of fast—slow time separation in phase space
is not necessarily a smooth slow invariant manifold, but may be similar to a
“crazy quilt” and may consist of fragments of various dimensions that do not
join smoothly or even continuously.
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