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Hydrogenation of benzene to cyclohexane is an important case of the large-scale chemical
processes. The reaction described by equation

C6H6 + 3H2 — C6H6; AHzgg = -206,2 [kJ/mol] (1)
is the first stage of a caprolactam production process according to the polish technology named
CYCLOPOL. The industrial process is conducted in heterogeneous multitubular reactor at
temperature in range 150-260°C on a commercial catalyst KUB-3 (manufacturer: Fertilizers
Research Institute, Pulawy, POLAND). The main components of the KUB-3 catalyst are Ni, NiO,
and AI203. Nickel is the active component of the catalyst while alumina is a structural promoter
which provides the catalyst with high thermal stability. Physicochemical properties of the KUB-3
are as follows:
* chemical composition, wt. % NiO min. 45 (NiO to Ni reduction degree min. 40%), Al,O; as a
support
* balls of a diameter 4-6 mm
« density 1.0 + 0.1 kg/dm’
Hydrogenation of benzene is conducted in two stages. Partial hydrogenation takes place in the first
stage, under pressure 0.3 MPa in a shortage of hydrogen,. In the second one, benzene is, in practice,
completely hydrogenated to cyclohexane under pressure 1.0 MPa and an excess of hydrogen. In the
catalyst bed there appears a reaction zone, which runs, step by step, along the reactor during its
normal operation. The zone position change results from a progress of catalyst bed deactivation
which is caused by sorption of sulphur compounds and coke deposition. Full deactivation process of
the first catalyst bed lasts about 1-4 years. Nitrogen is the inert component of the reaction mixture.

Presented in the Table 1 model concerns the reactor at the first stage of benzene
hydrogenation. It is assumed that catalyst is deactivated only by sorption of thiophene. The model is
described by differential-algebraic equations set and contains mass balance equations for fluid and
for pellet (for hydrogen, benzene, cyclohexane, nitrogen and thiophene) and heat balance equations
for fluid and for pellet. The presented model is of a semiempirical type. It was developed using
theoretical equations with experimental rate equation (fully described in [1]) and transfer
coefficients were calculated from commonly accepted mass and heat transfer correlations [2]-[4].
Model equations set was solved using the authors’ own program Estym_mh, which is able to solve
differential equations by collocation on finite elements method. Results of the simulation were
verified by comparison with single unit tube temperature measurements and are presented in Fig.1.

Typical results of simulations of the first stage reactor for hydrogenation of benzene are
presented in Fig. 2. Catalyst bed was completely deactivated after approximately 3 years and 2
months. Such a result corresponds to the value presented above.



Table 1. Model of reactor of hydrogenation of benzene
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Symbols r — pellet coordinate D —nitrogen
o - conversion S — poison (thiophene)
c- concentration indexes 0 — reactor inlet
y- mole fraction A — hydrogen in — initial value
T — temperature B — benzene
x — reactor coordinate C — cyclohexane
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Fig. 1. Verification of the model with experimental

data from the single unit tube; solid line — results of
experiments, dashed line — results of simulations
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Fig. 2. Reactor outlet concentrations and temperature
for process with catalyst deactivation vs. time
Line 1 — no changes in outlet composition and




