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Introduction 
The steady state behaviour of (bio)chemical reaction systems is an important aspect in view of their process 
design and control. In particular, it is important to identify process conditions under which steady state 
multiplicity occurs, by which we mean that different initial reactor conditions result in different steady states 
reached for the same input variables. Whereas in a non-isothermal reacting system, the nonlinear dependence of 
the rate constant on temperature may contribute to system multiplicity, in isothermal systems like biological 
wastewater treatment systems, multiplicity may result from nonlinear kinetics. A widespread application in this 
field is the nitrification process, i.e. the oxidation of ammonium, being the main form in which nitrogen is 
present in wastewater. Volcke et al. (2007) demonstrated how microbial (inhibition) kinetics affect the number 
and the stability of a two-step nitrification model by considering a few different cases w.r.t. the associated 
reaction kinetics. While the latter contribution devoted particular attention to the physical interpretation of the 
results for the nitrification process, this study focuses on the mathematics behind the steady state behaviour of 
two-step (bio)chemical reaction systems, also related to other applications and considering more general 
reaction kinetics. 
 
Two-step reaction model under study – canonical state space representation 
The system under study concerns a continuous stirred tank reactor (CSTR) with constant volume, in which two 
reactions take place, according to the following stoichiometry (left) and kinetics (right): 

 (1) 

These reactions are essentially consecutive (a substrate x1 is converted to an intermediate x2, which is 
subsequently converted to a final product P), although a (small) amount of x1 can also be consumed in the 
second reaction. x3 and x4 represent the biomass carrying out these reactions and benefiting from this through 
growth. This reaction scheme describes a two-step nitrification process, in which ammonium (x1) is converted 
to nitrite (x2) by ammonium oxidizing biomass (x3) and subsequently to nitrate (P) by nitrite oxidizing biomass 
(x4), using a small amount of ammonium for incorporation in biomass. Nevertheless, it can also describe other 
applications, such as a (simplified) two-step anaerobic digestion process (Bernard et al., 2001). In this widely 
applied wastewater treatment process taking place in absence of oxygen, acidogenic bacteria (x3) consume 
organic substrate (x1) and produce volatile fatty acids (x2), which methanogenic bacteria (x4) subsequently 
convert to methane gas (P). The latter reaction does not involve organic substrate, so b = 0 in this application. 
Noteworthy is that accumulation of the intermediate (x2) is highly desirable in certain nitrification reactors, but 
should be absolutely avoided during anaerobic digestion. The reaction rates ρi depend on the reactor 
concentrations of the components (also denoted by the respective xi). They consist of substrate limitation terms 
(in bi) and inhibition terms (in ci and di). 
The system’s state equations in the state variables are given by the mass balances of the 
individual xi. They can subsequently be transformed by defining new state space variables y (left), bringing the 
model in a so-called canonical form (right): 



               ⇒                 (2) 

in which . u0 represents the dilution rate (i.e. the ratio of the influent flow rate over the 
reactor volume), u1 represents the substrate concentration in the influent. It has been assumed that the influent 
does not contain intermediate, neither biomass. The canonical model form consists of a linear part of dimension 
2 coupled with a nonlinear part of dimension 2. The state variables xi (i=1,…4) cannot become negative. Call Sy 
the image of  under the transformation . Sy is the state space of the 
system defined by Eqs. 2. Every trajectory that starts at t = 0 in a point y0 of Sy, stays in Sy for t ≥ 0.  
 
Calculation of steady states 
Using the canonical state space model representation, the calculation of steady states of the model is 
substantially simplified. For positive dilution rates and influent ammonium concentrations (u0 > 0 and u1 > 0), 
three types of steady states are obtained from eq. 2 in which (i=1,…4): 
1. yss3 = yss4 = 0 : the washout state - no biomass is present and hence no conversion takes place 
2. yss4 = 0 ; yss3 ≠ 0 ; : only intermediate (x2) is produced (further denoted by superscript α) 
3. yss3 ≠ 0 ; yss4 ≠ 0 ; : with formation of product (P) (further denoted by superscript β) 
The washout state is unique and is always a physical steady state. In the latter two cases, the number of steady 
states depends on the conversion kinetics. They are found as (note that the steady state values in the x-space can 
be calculated straightforwardly from the values obtained in the y-space):  

     (3);         (4) 

in which  results from 

 (5) 

and and  are calculated from 

 (6) 

It is clear that the number of solutions of the type  and  is not always unique. Besides, one also needs to 
check rigorously whether the steady states calculated algebraically are also physical steady states in the sense 
that they lie in Sy (in the y-space) or  (in the x-space). The values of steady states have been calculated for a 
number of ‘elementary’ cases (model I to V in Table 1), which differ in the inhibition terms considered (c1, d1 
c2, d2 refer to the corresponding inhibition terms, if not mentioned this means that their value has been assumed 
to be infinity i.e. the corresponding inhibition term has not been considered). Table 1 further indicates the 
maximum number of physical steady states of type  and , as well as the maximum total number of 
physical steady states (including the washout state).  While some solutions of eqs. 3, 5 and 4, 6 can be excluded 
a priori from being physical steady states, others being physical steady states or not will depend on the values of 
the input variables u0 and u1. This is illustrated for model III (the results for the remaining models are not 
shown) in Figure 1, which includes the equations for the boundaries between the different operating zones.  



From the results for the elementary models I-V, the maximum number of steady states for composite models 
has been derived subsequently (Table 1). The conditions for each of the steady states to be a physical steady 
state (dependent on u0 and u1) has been derived as well (results not shown). 
 
Table 1. Maximum number of steady states for elementary (I-V) and composite (VI-VIII) models 

model I II III IV V VI VII VIII 
inhibition terms considered - c1 d1 d2 c2 c1, d1 c2, d2 c1, d1 

c2, d2 
maximum number of steady states 
(type , type , total) 

(1,1,3) (1,1,3) (2,2,5) (1,2,4) (1,1,3) (2,2,5) (1,2,4) (2,4,7) 

 
 

 

 
Operating 

region 
Physical steady states (type, stability) 

A washout (g.a.s.) 
AB washout (unstable); xssB (α, l.a.s.) 

ABC washout (l.a.s.); xssB (α, l.a.s.);  
xssC (α, unstable) 

ABD washout (unstable); xssB (α, unstable);  
xssD (β,l.a.s.) 

ABCD washout (l.a.s.); xssB (α, unstable);  
xssC (α, unstable); xssD (β,l.a.s.); 

ABCDE washout (l.a.s.); xssB (α, unstable);  
xssC (α, unstable); xssD (β,l.a.s.);  
xssE (β,unstable); 

l.a.s., g.a.s. = locally, globally asymptotically stable 
 

Figure 1. Occurrence and stability of steady states for model III.  
 
Local asymptotic stability 
In this contribution the term ‘steady state’ has been used synonymous to ‘equilibrium’ or ‘equilibrium state’, as 
a solution of the steady state process model. It should be stressed that these steady states are not a priori stable. 
The linearization principle has been used to investigate local asymptotic stability of the steady states. The 
results for model III have been indicated in Figure 1. 
 
Conclusions 
The stability of two-step biochemical reaction systems has been assessed in terms of the number of steady 
states, their nature and their local asymptotic stability. It has been shown possible to generalize the results 
obtained for models with ‘elementary’ reaction kinetics (considering one type of inhibition at a time) to models 
including ‘composite’ reaction kinetics, thus covering a broad range of applications. 
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