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INTRODUCTION 
Many of the models used in chemical engineering involve distribution functions. Examples include 
particle size distributions in multiphase flows, molecular weight distributions in polymer systems, and 
probabil i ty distributions in turbulent flows. In general, transport equations for such distribution 
functions arise naturally in mesoscale descriptions of microscale phenomena, the classical example 
being the Boltzmann equation of molecular transport and coll isions in an ideal gas.  Another classica l 
example is the Smolokowski equation for Brownian aggregation of nanoparticles that describes the 
number density of particles composed of a given number of monomers.  In other applications such as 
aerosol transport, the distribution function will have more than one internal variable (e.g., volume and 
surface area).  Indeed, the number of internal variables can be quite large when many microscale 
properties evolve at the same time.  The resulting transport equation for the distribution function wil l 
have a large number of independent variables (time, physical space, internal variables) and its 
solution for realistic flow geometries (e.g., a chemical reactor) represents a signif icant challenge. 

In the chemical engineering literature, the transport equation for the distribution function is usual ly 
referred to as a population balance equation (PBE). However, it is important to distinguish between a 
dynamically passive distribution function wherein the velocity does not appear as an internal variable, 
and a dynamically active distribution function (e.g., the velocity distribution in the Boltzmann equation). 
For the latter, the internal variable (i.e., velocity) determines the spatia l transport, while in the 
former the spatia l transport occurs due to an external velocity field (e.g., the fluid velocity) that is 
found by solving a separate momentum equation.  In order to make this distinction clear, we use the term 
“PBE” to refer to the transport equation for a dynamically passive distribution function, and the term 
“generalized PBE” (GPBE) to refer to the transport equation for a dynamically active distribution 
function.  Note that many of the applications of distribution functions in chemical engineering (e.g., 
colloids, aerosols, nanoparticles) involve very small particles whose mean velocity is the same as the 
carrier fluid, and thus they can be described by a PBE. However, for larger particles with non-zero 
Stokes numbers (e.g., granular flows, gas-solid flows, bubbly flows) it is necessary to use the GPBE.  In 
the more complicated case of polydisperse multiphase flows, both the particle size and the particle 
velocity appear in the GPBE as internal variables.  Likewise, for polydisperse reacting multiphase 
flows additional internal variables are needed to describe the chemical composition and temperature. 

The numerical solution of a PBE or a GPBE is chal lenging due to the number of independent variables. 
Only in the simplest cases, where the distribution function is spatia l ly homogeneous and contains one 
or, at most two, internal variables, is a direct solution possible.  Otherwise, for modeling spatia l ly 
inhomogeneous cases (e.g. a gas-solid riser), it is necessary to reduce the number of degrees of freedom 
used to represent the distribution function.  The classical Eulerian method for accomplishing this task is 
to solve transport equations for a finite set of moments of the distribution function [1].  For example, in 
the kinetic theory of an ideal gas near equil ibrium, the Boltzmann equation for the velocity 
distribution function is replaced by transport equations for density (zero-order moment), mean velocity 
(f irst-order moments), and energy (trace of second-order moments). However, for rarefied gases, closure 
at the level of the second-order moments is no longer sufficient [2].  More generally, the transport 
equations for the moments derived from the PBE or GPBE will not be closed for a finite set.  It is thus 



necessary to introduce a closure that prescribes how the moments not included in the set of transported 
moments are found from the transported moments.  This procedure is not uniquely defined and thus, 
ideally, we would like to find a closure that minimizes the error in the unclosed moments.  The 
quadrature method of moments is such a procedure that, for univariate distribution functions on finite 
intervals, has minimum error and tight error bounds [3, 4]. For univariate distribution functions, an 
eff icient algorithm exists [3, 4, 5] for computing the quadrature weights and abscissas given a finite set 
of moments. Solution methods based on inverting a finite set of moments to compute weights and 
abscissas are referred to as quadrature-based moment methods. For strongly non-equil ibrium flows (e.g., 
wherein coll isions are rare), the most reliable method for approximating the moments of a distribution 
function is to estimate them from a Lagrangian simulation.  However, such estimates have statistica l 
noise and can be inaccurate for two-way coupling between the solid and fluid phases.  In comparison, 
Eulerian methods are stra ightforward for two-way coupling and generally less costly for the same 
level of accuracy. 

APPLICATIONS OF QUADRATURE-BASED MOMENT METHODS  
The quadrature method of moments (QMOM) were first applied by McGraw [6] to close a univariate 
PBE equation for an aerosol undergoing coagulation. A multi-variate PBE can be treated in a similar 
manner using the direct quadrature method of moments (DQMOM) described in [7, 14].  The treatment of 
more complicated particle processes described by a PBE for nucleation and growth coupled with 
aggregation is relatively straightforward and surprisingly accurate given the low computational cost 
[8, 9, 10]. Quadrature-based moment methods are particularly attractive for solving a PBE coupled to a 
computational f luid dynamics (CFD) code [10, 17]. A similar approach can also be used to treat 
conditional moments with good accuracy [16]. Because of the velocity variable, the treatment of a GPBE 
requires specia l care.  The simplest applications can be treated as mono-kinetic (i.e., al l particle with 
the same size have the same velocity), resulting in an Eulerian multi-f luid model [20] where only the 
mean velocity conditioned on the particle size appears [11, 12, 13].  In essence, such problems are treated 
by using quadrature-based moment methods for the size moments without accounting for correlations 
with the velocity. The range of validity of the mono-kinetic assumption is however rather l imited, 
holding primarily for particles with low Stokes numbers and when particles do not cross each other.   To 
do better, one must use quadrature-based moment methods to treat GPBE moments involving velocity [15, 
18, 19] or joint moments involving size and velocity [20]. It is then possible to compute jets of non-
coll iding particles and particles with large Stokes numbers - something that cannot be done with 
standard two-fluid models. 

The treatment of velocity moments requires an efficient moment-inversion algorithm to find the 
weights and three components of the velocity abscissas for each quadrature node starting from the 
moments. Mathematically, this is a non-trivia l task and current a lgorithms [21, 23] use multiple 
univariate quadratures [4] to construct tensor-product abscissas and non-negative weights.  An 
alternative would be to use DQMOM with optimal moment sets [22]; however, care must be taken to 
handle cases where the velocity abscissas have shocks and other non-smooth behavior. Remarkably, 
treating shocks and other highly a non-equil ibrium behavior with QMOM is straightforward [21, 23]. 
The fully coupled treatment of fluid-solid flows uses a GPBE for the solid phase and a hydrodynamic 
equation for the fluid phase [24]. The coupling between the phases occurs at the level of the velocity 
moments.  Thus, unlike with Euler-Lagrange description, quadrature-based moment closures for 
multiphase flows are fully Eulerian and do not suffer from statistical noise due to finite sample sizes. 
Ultimately, it should be possible to develop an Eulerian CFD code for polydisperse multiphase flows 



that can capture highly non-equil ibrium behavior (e.g., jet crossing, wall rebounds, Knudsen layers) 
currently captured only by Lagrangian solvers.  
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