Generalizing Moufang sets to a local setting

Erik Rijcken (erijcken@cage.ugent.be)

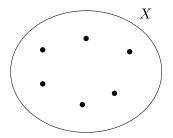
Ghent University

September 29 Buildings 2014, Münster

What is a Moufang set?

What is a Moufang set?

A set X with $|X| \ge 3$



Definition

What is a Moufang set?

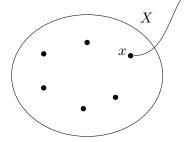
A set X with $|X| \ge 3$ X x

 $\rightarrow U_x \leqslant \text{Sym}X$ a root group $G := \langle U_x \mid x \in X \rangle$ the little projective group

Definition

What is a Moufang set?

A set X with $|X| \ge 3$



 $\Rightarrow U_x \leqslant \mathsf{Sym}X \text{ a root group}$ $G := \langle U_x \mid x \in X \rangle \text{ the little}$ projective group

If for all $x \in X$, we have:

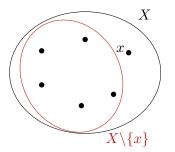
(M1) U_x fixes x and acts regularly on $X \setminus \{x\}$;

(M2) $U_x^g = U_{x \cdot g}$ for all $g \in G$;

then we call $(X, \{U_x\}_{x \in X})$ a Moufang set.

What is a Moufang set?

A set X with $|X| \ge 3$



 $U_x \leqslant \mathsf{Sym}X \text{ a root group}$ $G := \langle U_x \mid x \in X \rangle \text{ the little}$ projective group

If for all $x \in X$, we have:

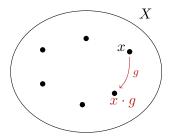
(M1) U_x fixes x and acts regularly on $X \setminus \{x\}$;

(M2)
$$U_x^g = U_{x \cdot g}$$
 for all $g \in G$;

then we call $(X, \{U_x\}_{x \in X})$ a Moufang set.

What is a Moufang set?

A set X with $|X| \ge 3$



 $U_x \leqslant \mathsf{Sym}X \text{ a root group}$ $G := \langle U_x \mid x \in X \rangle \text{ the little}$ projective group

If for all $x \in X$, we have:

(M1) U_x fixes x and acts regularly on $X \setminus \{x\}$;

(M2) $U_x^g = U_{x \cdot g}$ for all $g \in G$;

then we call $(X, \{U_x\}_{x \in X})$ a Moufang set.

An example: $\mathsf{PSL}_2(K)$

Let K be a field, then denote the projective line over K

$$\mathbb{P}^{1}(K) := \{ [a, b] \mid a, b \in K, aK + bK = K \}.$$

An example: $\mathsf{PSL}_2(K)$

Let K be a field, then denote the projective line over K

$$\mathbb{P}^{1}(K) := \{ [a, b] \mid a, b \in K, aK + bK = K \}.$$

Denote

$$\boldsymbol{\alpha}_{[1,k]} := \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}, \ \boldsymbol{\tau} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \text{ and } \boldsymbol{U}_{[0,1]} := \left\{ \alpha_{[1,k]} \middle| k \in K \right\}.$$

An example: $\mathsf{PSL}_2(K)$

Let K be a field, then denote the projective line over K

$$\mathbb{P}^{1}(K) := \{ [a, b] \mid a, b \in K, aK + bK = K \}.$$

Denote

$$\boldsymbol{\alpha}_{[1,k]} := \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}, \ \boldsymbol{\tau} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \text{ and } \boldsymbol{U}_{[0,1]} := \left\{ \alpha_{[1,k]} \big| k \in K \right\}.$$

We define

$$U_{[1,0]} := U_{[0,1]}^{\tau}$$
 and $U_{[1,k]} := U_{[1,0]}^{lpha_{[1,k]}}$.

With these definitions, $(\mathbb{P}^1(K), \{U_{[a,b]}\})$ is a Moufang set. The little projective group is $G = \mathsf{PSL}_2(K)$.

Constructing Moufang sets

The same construction works for general $\pmb{U} \leqslant {\rm Sym}X$ and $\tau \in {\rm Sym}X$ such that

(i) U has a fixed point ∞ and acts regularly on $X \setminus \{\infty\}$; (ii) $\infty \tau \neq \infty$ and $\infty \tau^2 = \infty$.

Constructing Moufang sets

The same construction works for general $\pmb{U} \leqslant {\rm Sym}X$ and $\tau \in {\rm Sym}X$ such that

(i) U has a fixed point ∞ and acts regularly on $X \setminus \{\infty\}$; (ii) $\infty \tau \neq \infty$ and $\infty \tau^2 = \infty$.

In that case, we denote $0 \coloneqq \infty au$, $\alpha_{0 \cdot g} \coloneqq g$ for $g \in U$, and we set

$$U_{\infty} := U \qquad U_0 := U^{\tau} \qquad U_x := U_0^{\alpha_x} \text{ for } x \neq 0, \infty$$
.

Question

When does this construction give a Moufang set?

Constructing Moufang sets

The same construction works for general $\pmb{U} \leqslant {\rm Sym}X$ and $\tau \in {\rm Sym}X$ such that

(i) U has a fixed point ∞ and acts regularly on $X \setminus \{\infty\}$; (ii) $\infty \tau \neq \infty$ and $\infty \tau^2 = \infty$.

In that case, we denote $0 \coloneqq \infty au$, $\alpha_{0 \cdot g} \coloneqq g$ for $g \in U$, and we set

$$U_{\infty} := U \qquad U_0 := U^{\tau} \qquad U_x := U_0^{\alpha_x} \text{ for } x \neq 0, \infty$$
.

Question

When does this construction give a Moufang set?

Theorem (T. De Medts, R. Weiss, '06)

Denote $h_x := \tau \alpha_x \tau^{-1} \alpha_{x\tau^{-1}}^{-1} \tau \alpha_{(-x\tau^{-1})\tau}^{-1}$ for $x \neq 0, \infty$. Then $(X, \{U_x\})$ as described above is a Moufang set if and only if $U^{h_x} = U$ for all $x \neq 0, \infty$.

Generalizing to $\mathsf{PSL}_2(R)$

Instead of a field K, we can consider a local ring R:

- (i) R unital, commutative;
- (ii) R has a unique maximal ideal \mathfrak{m} .

We can consider

$$\mathsf{PSL}_2(R) := \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| a, b, c, d \in R, ad - bc = 1 \right\}.$$

Generalizing to $\mathsf{PSL}_2(R)$

Instead of a field K, we can consider a local ring R:

- (i) R unital, commutative;
- (ii) R has a unique maximal ideal \mathfrak{m} .

We can consider

$$\mathsf{PSL}_2(R) := \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| a, b, c, d \in R, ad - bc = 1 \right\}.$$

Goal

Find a structure generalizing Moufangs sets, that includes 'local versions', for example $\mathsf{PSL}_2(R).$

Projective line over a local ring

$$\mathbb{P}^{1}(R) := \{ [a, b] \mid a, b \in R, aR + bR = R \}.$$

Projective line over a local ring

Let R be a local ring with unique maximal ideal \mathfrak{m} . We define the projective line over R

$$\mathbb{P}^{1}(R) := \{ [a, b] \mid a, b \in R, aR + bR = R \}.$$

 $\mathbb{P}^1(R/\mathfrak{m})$

Projective line over a local ring

Let R be a local ring with unique maximal ideal \mathfrak{m} . We define the projective line over R

$$\mathbb{P}^{1}(R) := \{ [a, b] \mid a, b \in R, aR + bR = R \}.$$

 $\mathbb{P}^1(R/\mathfrak{m})$

 $\mathbb{P}^1(R/\mathfrak{m}^2)$

Projective line over a local ring

Let R be a local ring with unique maximal ideal \mathfrak{m} . We define the projective line over R

$$\mathbb{P}^1(R) := \{ [a,b] \mid a, b \in R, aR + bR = R \}.$$

 $\mathbb{P}^1(R/\mathfrak{m})$

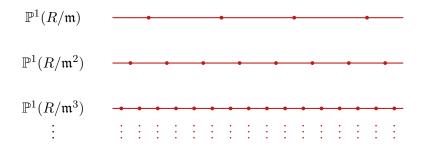
 $\mathbb{P}^1(R/\mathfrak{m}^2)$

 $\mathbb{P}^1(R/\mathfrak{m}^3)$

Projective line over a local ring

Let R be a local ring with unique maximal ideal \mathfrak{m} . We define the projective line over R

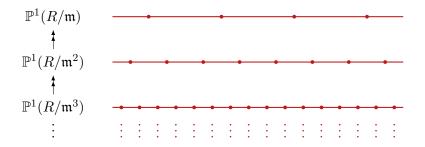
$$\mathbb{P}^1(R) := \{ [a,b] \mid a, b \in R, aR + bR = R \}.$$



6 / 14

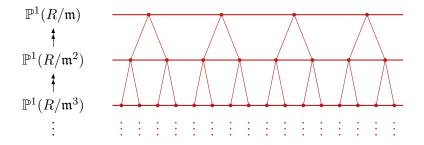
Projective line over a local ring

$$\mathbb{P}^{1}(R) := \{ [a, b] \mid a, b \in R, aR + bR = R \}.$$



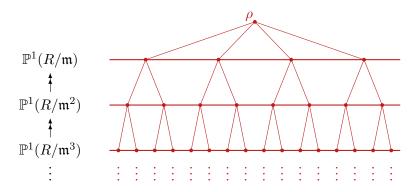
Projective line over a local ring

$$\mathbb{P}^{1}(R) := \{ [a, b] \mid a, b \in R, aR + bR = R \}.$$

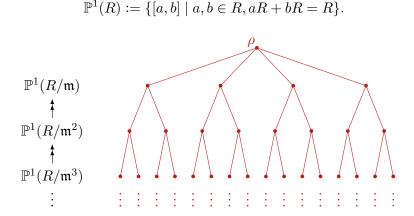


Projective line over a local ring

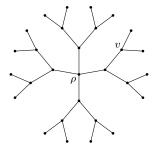
$$\mathbb{P}^1(R) := \{ [a,b] \mid a, b \in R, aR + bR = R \}.$$



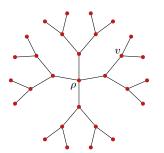
Projective line over a local ring



A rooted tree $\ensuremath{\mathcal{T}}$

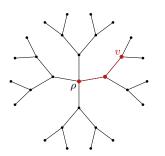


A rooted tree ${\mathcal T}$



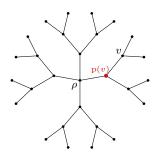
• vertex set: $V(\mathcal{T})$

A rooted tree ${\mathcal T}$



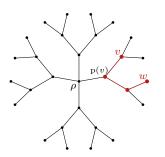
- vertex set: $V(\mathcal{T})$
- depth of a vertex v: $dp(v) := d(v, \rho)$

A rooted tree $\ensuremath{\mathcal{T}}$



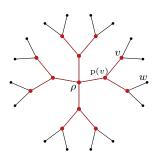
- \bullet vertex set: $V(\mathcal{T})$
- depth of a vertex v: $dp(v) := d(v, \rho)$
- parent $\mathbf{p}(v)$ of a vertex v

A rooted tree ${\mathcal T}$



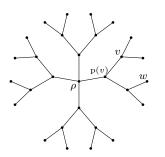
- vertex set: $V(\mathcal{T})$
- depth of a vertex $v \colon \operatorname{dp}(v) \mathrel{\mathop:}= \operatorname{d}(v,\rho)$
- $\bullet \ {\rm parent} \ {\bf p}(v)$ of a vertex v
- v and w are in the same branch, written as v ~ w, if the path from v to w does not contain ρ.

A rooted tree $\ensuremath{\mathcal{T}}$



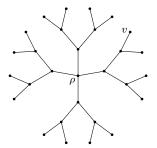
- vertex set: $V(\mathcal{T})$
- depth of a vertex v: $dp(v) := d(v, \rho)$
- parent $\mathbf{p}(v)$ of a vertex v
- v and w are in the same branch, written as v ~ w, if the path from v to w does not contain ρ.
- the ball of radius i: $B(i) := \{v \in V(\mathcal{T}) \mid dp(v) \leq i\}$

A rooted tree $\ensuremath{\mathcal{T}}$



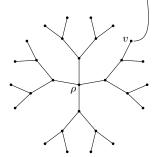
- vertex set: $V(\mathcal{T})$
- depth of a vertex v: $dp(v) := d(v, \rho)$
- parent $\mathbf{p}(v)$ of a vertex v
- v and w are in the same branch, written as v ~ w, if the path from v to w does not contain ρ.
- the ball of radius i: $B(i) := \{ v \in V(\mathcal{T}) \mid dp(v) \leq i \}$

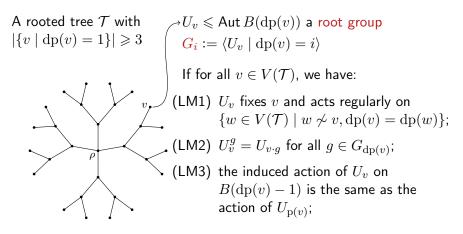
A rooted tree \mathcal{T} with $|\{v \mid dp(v) = 1\}| \ge 3$



A rooted tree \mathcal{T} with $|\{v \mid dp(v) = 1\}| \ge 3$

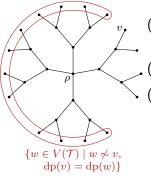
$$\bigvee U_v \leq \operatorname{Aut} B(\operatorname{dp}(v)) \text{ a root group}$$
$$\bigcup G_i := \langle U_v \mid \operatorname{dp}(v) = i \rangle$$





then we call $(\mathcal{T}, \{U_v\}_{v \in V(\mathcal{T})})$ a local Moufang set.

A rooted tree \mathcal{T} with $|\{v \mid dp(v) = 1\}| \ge 3$



$$\begin{split} U_v \leqslant \operatorname{Aut} B(\operatorname{dp}(v)) \text{ a root group} \\ G_i &:= \langle U_v \mid \operatorname{dp}(v) = i \rangle \end{split}$$

If for all $v \in V(\mathcal{T})$, we have:

(LM1) U_v fixes v and acts regularly on $\{w \in V(\mathcal{T}) \mid w \not\sim v, dp(v) = dp(w)\};$

(LM2)
$$U_v^g = U_{v \cdot g}$$
 for all $g \in G_{\mathrm{dp}(v)}$;

(LM3) the induced action of U_v on B(dp(v) - 1) is the same as the action of $U_{p(v)}$;

then we call $(\mathcal{T}, \{U_v\}_{v \in V(\mathcal{T})})$ a local Moufang set.

A rooted tree \mathcal{T} with $|\{v \mid dp(v) = 1\}| \ge 3$

 $\begin{aligned} U_v \leqslant \operatorname{Aut} B(\operatorname{dp}(v)) \text{ a root group} \\ G_i &:= \langle U_v \mid \operatorname{dp}(v) = i \rangle \end{aligned}$

If for all $v \in V(\mathcal{T})$, we have: (LM1) U_v fixes v and acts regularly on $\{w \in V(\mathcal{T}) \mid w \not\sim v, \operatorname{dp}(v) = \operatorname{dp}(w)\};$ (LM2) $U_v^g = U_{v \cdot g}$ for all $g \in G_{\operatorname{dp}(v)};$

(LM3) the induced action of U_v on B(dp(v) - 1) is the same as the action of $U_{p(v)}$;

then we call $(\mathcal{T}, \{U_v\}_{v \in V(\mathcal{T})})$ a local Moufang set.

Defining a local Moufang set

A rooted tree \mathcal{T} with $|\{v \mid dp(v) = 1\}| \ge 3$

 $U_v \leq \operatorname{Aut} B(\operatorname{dp}(v))$ a root group $G_i := \langle U_v \mid \operatorname{dp}(v) = i \rangle$

If for all $v \in V(\mathcal{T})$, we have:

(LM1) U_v fixes v and acts regularly on $\{w \in V(\mathcal{T}) \mid w \not\sim v, dp(v) = dp(w)\};$

LM2)
$$U_v^g = U_{v \cdot g}$$
 for all $g \in G_{dp(v)}$;

(LM3) the induced action of U_v on B(dp(v) - 1) is the same as the action of $U_{p(v)}$;

then we call $(\mathcal{T}, \{U_v\}_{v \in V(\mathcal{T})})$ a local Moufang set.

Building blocks of a local Moufang sets

Let \mathcal{T} be a rooted tree (finite depth), $U \leqslant \operatorname{Aut} \mathcal{T}$ and $\tau \in \operatorname{Aut} \mathcal{T}$ such that:

(i) U has a fixed vertex ∞ at maximal depth N;

(ii) the induced action of U on B(i) is regular on $\{v \in V(\mathcal{T}) \mid v \not\sim \infty, dp(v) = i\}$ for $i = 1, \dots, N$;

(iii)
$$\infty \tau \not\sim \infty$$
 and $\infty \tau^2 = \infty$.

We denote $0 := \infty \tau$. Using U and τ , we can define root groups in each vertex of the tree.

Building blocks of a local Moufang sets

Let \mathcal{T} be a rooted tree (finite depth), $U \leqslant \operatorname{Aut} \mathcal{T}$ and $\tau \in \operatorname{Aut} \mathcal{T}$ such that:

(i) U has a fixed vertex ∞ at maximal depth N;

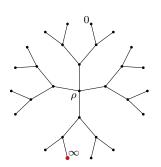
(ii) the induced action of U on B(i) is regular on $\{v \in V(\mathcal{T}) \mid v \not\sim \infty, dp(v) = i\}$ for $i = 1, \dots, N$;

(iii)
$$\infty \tau \not\sim \infty$$
 and $\infty \tau^2 = \infty$.

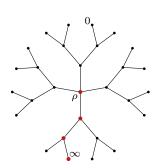
We denote $0 := \infty \tau$. Using U and τ , we can define root groups in each vertex of the tree.

Note

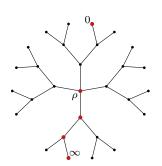
There is little control on what U does on $\{v \in V(\mathcal{T}) \mid v \sim \infty\}$.



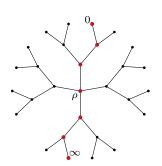
- $U_{\infty} := U$:
- $U_{\mathrm{p}^{i}(\infty)} := \mathrm{Im}(U \to \operatorname{Aut} B(N-i));$
- $U_0 := U_{\infty}^{\tau}$;
- $U_{\mathbf{p}^{i}(0)} := U_{\mathbf{p}^{i}(\infty)}^{\tau};$



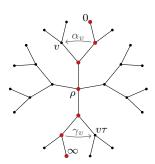
- $U_{\infty} := U$:
- $U_{\mathbf{p}^{i}(\infty)} := \operatorname{Im}(U \to \operatorname{Aut} B(N-i));$
- $U_0 := U_{\infty}^{\tau}$;
- $U_{\mathbf{p}^{i}(0)} := U_{\mathbf{p}^{i}(\infty)}^{\tau};$



- $U_{\infty} := U$:
- $U_{\mathbf{p}^{i}(\infty)} := \operatorname{Im}(U \to \operatorname{Aut} B(N-i));$
- $U_0 := U_{\infty}^{\tau};$
- $U_{\mathbf{p}^{i}(0)} := U_{\mathbf{p}^{i}(\infty)}^{\tau};$



- $U_{\infty} := U$:
- $U_{\mathbf{p}^{i}(\infty)} := \operatorname{Im}(U \to \operatorname{Aut} B(N-i));$
- $U_0 := U_{\infty}^{\tau};$
- $U_{\mathbf{p}^i(\mathbf{0})} \coloneqq U_{\mathbf{p}^i(\infty)}^{\tau};$



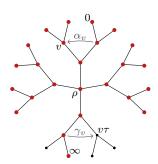
We define:

- $U_{\infty} := U$:
- $U_{\mathbf{p}^{i}(\infty)} := \operatorname{Im}(U \to \operatorname{Aut} B(N-i));$

•
$$U_0 := U_\infty^{\prime};$$

•
$$U_{\mathrm{p}^{i}(0)} := U_{\mathrm{p}^{i}(\infty)}^{\tau};$$

For $v \not\sim \infty$ s.t. dp(v) = N - i, denote $\alpha_{v} \in U_{\mathbf{p}^{i}(\infty)}$ the unique element mapping $\mathbf{p}^{i}(0)$ to v. Denote $\gamma_v := \alpha_v^{\tau}$, so $p^i(\infty)\gamma_v = v\tau$.



We define:

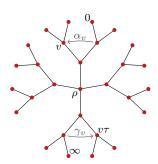
- $U_{\infty} := U$:
- $U_{\mathbf{p}^{i}(\infty)} := \operatorname{Im}(U \to \operatorname{Aut} B(N-i));$

•
$$U_0 := U_\infty^{\prime};$$

• $U_{\mathbf{p}^i(0)} := U_{\mathbf{p}^i(\infty)}^{\tau};$

For $v \not\sim \infty$ s.t. dp(v) = N - i, denote $\alpha_{v} \in U_{p^{i}(\infty)}$ the unique element mapping $p^{i}(0)$ to v. Denote $\gamma_v := \alpha_v^{\tau}$, so $p^i(\infty)\gamma_v = v\tau$.

•
$$U_v := U_{\mathbf{p}^i(0)}^{\alpha_v}$$
 for $v \not\sim \infty$;
• $U_v := U_{\mathbf{p}^i(\infty)}^{\gamma_{v\tau}-1}$ for $v \sim \infty$.



We define:

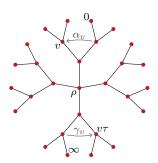
- $U_{\infty} := U$:
- $U_{\mathbf{p}^{i}(\infty)} := \operatorname{Im}(U \to \operatorname{Aut} B(N-i));$

•
$$U_0 := U_\infty^{\prime};$$

• $U_{\mathbf{p}^i(0)} := U_{\mathbf{p}^i(\infty)}^{\tau};$

For $v \not\sim \infty$ s.t. dp(v) = N - i, denote $\alpha_{v} \in U_{p^{i}(\infty)}$ the unique element mapping $p^{i}(0)$ to v. Denote $\gamma_v := \alpha_v^{\tau}$, so $p^i(\infty)\gamma_v = v\tau$.

•
$$U_v := U_{\mathbf{p}^i(0)}^{\alpha_v}$$
 for $v \not\sim \infty$;
• $U_v := U_{\mathbf{p}^i(\infty)}^{\gamma_{v\tau}-1}$ for $v \sim \infty$.



We define:

- $U_{\infty} := U$:
- $U_{\mathbf{p}^{i}(\infty)} := \operatorname{Im}(U \to \operatorname{Aut} B(N-i));$

•
$$U_0 := U_\infty^{\prime};$$

• $U_{\mathbf{p}^i(\mathbf{0})} := U_{\mathbf{p}^i(\infty)}^{\tau};$

For $v \not\sim \infty$ s.t. dp(v) = N - i, denote $\alpha_{v} \in U_{\mathbf{p}^{i}(\infty)}$ the unique element mapping $\mathbf{p}^{i}(0)$ to v. Denote $\gamma_v := \alpha_v^{\tau}$, so $p^i(\infty)\gamma_v = v\tau$.

•
$$U_v := U_{\mathbf{p}^i(0)}^{\alpha_v}$$
 for $v \not\sim \infty$;
• $U_v := U_{\mathbf{p}^i(\infty)}^{\gamma_{v\tau}-1}$ for $v \sim \infty$.

Question

When does this construction give a local Moufang set?

Erik Rijcken (Ghent University) Generalizing Moufang sets to a local setting

Conditions to get a local Moufang set

Some terminology and notation:

- we call $v \in V(\mathcal{T})$ a unit if $v \not\sim 0$ and $v \not\sim \infty$;
- $-v := 0 \cdot \alpha_v^{-1}$ for $v \not\sim \infty$ and dp(v) = N;
- $h_v := \tau \alpha_v \tau^{-1} \alpha_{v\tau^{-1}}^{-1} \tau \alpha_{(-v\tau^{-1})\tau}^{-1}$ the Hua map for v a unit and dp(v) = N (Hua maps fix 0 and ∞);
- $H := \langle h_v \mid v \text{ a unit}, dp(v) = N \rangle$, the Hua subgroup;
- $U_0^{\circ} := \{ \gamma_v \in U_0 \mid v \sim 0, dp(v) = N \}.$

Conditions to get a local Moufang set

Some terminology and notation:

• we call $v \in V(\mathcal{T})$ a unit if $v \not\sim 0$ and $v \not\sim \infty$; • $-v := 0 \cdot \alpha_v^{-1}$ for $v \not\sim \infty$ and dp(v) = N; • $h_v := \tau \alpha_v \tau^{-1} \alpha_{v\tau^{-1}}^{-1} \tau \alpha_{(-v\tau^{-1})\tau}^{-1}$ the Hua map for v a unit and dp(v) = N (Hua maps fix 0 and ∞); • $H := \langle h_v \mid v \text{ a unit, } dp(v) = N \rangle$, the Hua subgroup; • $U_0^\circ := \{\gamma_v \in U_0 \mid v \sim 0, dp(v) = N\}$.

Proposition (ER)

If $U^{h_v} = U$ for all units v with dp(v) = N, and $U_0^{\circ}U_{\infty} \subseteq U_{\infty}HU_0^{\circ}$, then the given construction gives a local Moufang set.

An example: $PSL_2(R)$

Let R be a local ring with maximal ideal \mathfrak{m} , and take

$$\boldsymbol{U} = \left\{ \begin{bmatrix} 1 & r \\ 0 & 1 \end{bmatrix} \in \mathsf{PSL}_2(R) \; \middle| \; r \in R \right\} \qquad \boldsymbol{\tau} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \; .$$

Example

An example: $PSL_2(R)$

Let R be a local ring with maximal ideal \mathfrak{m} , and take

$$\boldsymbol{U} = \left\{ \begin{bmatrix} 1 & r \\ 0 & 1 \end{bmatrix} \in \mathsf{PSL}_2(R) \; \middle| \; r \in R \right\} \qquad \boldsymbol{\tau} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \; .$$

With $\infty = [0, 1]$ and 0 = [1, 0], we get

$$v \text{ is a unit } \Leftrightarrow v = [1, r] \text{ with } r \text{ invertible in } R$$
$$U_0^\circ = \left\{ \begin{bmatrix} 1 & 0 \\ m & 1 \end{bmatrix} \middle| m \in \mathfrak{m} \right\} \qquad h_{[1, r]} = \begin{bmatrix} r^{-1} & 0 \\ 0 & r \end{bmatrix}$$

٠

Example

An example: $\mathsf{PSL}_2(R)$

Let R be a local ring with maximal ideal \mathfrak{m} , and take

$$\frac{U}{U} = \left\{ \begin{bmatrix} 1 & r \\ 0 & 1 \end{bmatrix} \in \mathsf{PSL}_2(R) \; \middle| \; r \in R \right\} \qquad \tau = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

With $\infty = [0, 1]$ and 0 = [1, 0], we get

$$\begin{array}{l} v \text{ is a unit } \Leftrightarrow v = [1, r] \text{ with } r \text{ invertible in } R \\ U_0^\circ = \left\{ \begin{bmatrix} 1 & 0 \\ m & 1 \end{bmatrix} \middle| m \in \mathfrak{m} \right\} \qquad h_{[1, r]} = \begin{bmatrix} r^{-1} & 0 \\ 0 & r \end{bmatrix}$$

Without too much trouble, one can check that

$$U_0^{\circ}U_{\infty} \subseteq U_{\infty}HU_0^{\circ} \text{ and } U^{h_{[1,r]}} = U ,$$

so using the construction, we get a local Moufang set.

.

A small lemma

Lemma

Let v be a unit with dp(v) = N, then

$$U^{h_v}_{\infty} = U_{\infty} \iff U_v = U^{\gamma_{v\tau}-1}_{\infty}$$
.

Proof.

A small lemma

Lemma

Let
$$v$$
 be a unit with $dp(v) = N$, then

$$U^{h_v}_{\infty} = U_{\infty} \iff U_v = U^{\gamma_{v\tau}-1}_{\infty}$$
.

Proof.

$$U_{\infty}^{h_{v}} = U_{\infty} \Leftrightarrow U_{\infty}^{\tau \alpha_{v} \tau^{-1} \alpha_{v\tau^{-1}}^{-1} \tau \alpha_{(-v\tau^{-1})\tau}^{-1}} = U_{\infty} \qquad (\text{definition } h_{v})$$

$$\Leftrightarrow U_{0}^{\alpha_{v}} = U_{\infty}^{\alpha_{(-v\tau^{-1})\tau} \tau^{-1} \alpha_{v\tau^{-1}}\tau} \qquad (\text{definition } U_{0})$$

$$\Leftrightarrow U_{v} = U_{\infty}^{\alpha_{v\tau^{-1}}^{\tau}} \qquad (\text{definition } U_{v}, \alpha_{(\dots)} \in U_{\infty})$$

$$\Leftrightarrow U_{v} = U_{\infty}^{\gamma_{v\tau^{-1}}} \qquad (\text{definition } \gamma_{v\tau^{-1}}) \qquad \Box$$

Related work in progress

- Studying the Hua subgroup.
- Describing $PSU_3(R)$ as a local Moufang set.
- Characterizing $PSL_2(R)$ by group-theoretical conditions.

Related work in progress

- Studying the Hua subgroup.
- Describing $PSU_3(R)$ as a local Moufang set.
- Characterizing $PSL_2(R)$ by group-theoretical conditions.

Thank you for your attention!

Erik Rijcken (erijcken@cage.ugent.be)

Ghent University

Extra: Sketch of the proof

Proposition (ER)

If $U^{h_v} = U$ for all units v with dp(v) = N, and $U_0^{\circ}U_{\infty} \subseteq U_{\infty}HU_0^{\circ}$, then the given construction gives a local Moufang set.

Proof sketch.

The key of the proof is to show (LM2) for any v with dp(v) = N: (LM2) $U_v^g = U_{v \cdot g}$ for all $g \in G_N$.

We can find an element $\mu \in G_N$ that swaps 0 and ∞ such that

$$U_0^\mu = U_\infty$$
 and $U_\infty^\mu = U_0$, so $G_N = \langle U_\infty, \mu
angle$.

We need to show:

$$(\star_1) \ U_v^{\mu} = U_{v \cdot \mu} \qquad (\star_2) \ U_v^{\alpha_w} = U_{v \alpha_w} \text{ for all } w \not\sim \infty$$

in two cases: $v \sim \infty$ and $v \not\sim \infty$.