Local Moufang sets

Erik Rijcken

Promotor: Prof. Dr. Tom De Medts

Faculteit Wetenschappen Universiteit Gent 14 juni 2017

1 Group actions: using symmetry

5 A local approach

Symmetries of a mattress

Four symmetries of a mattress:

Symmetries of a mattress

Four symmetries of a mattress:

- id: do nothing

Symmetries of a mattress

Four symmetries of a mattress:

- id: do nothing
- \uparrow : flip it around the short side

Symmetries of a mattress

Four symmetries of a mattress:

- id: do nothing
- \uparrow : flip it around the short side
- \leftrightarrow : flip it around the long side

Symmetries of a mattress

Four symmetries of a mattress:

- id: do nothing
- \downarrow : flip it around the short side
- \leftrightarrow : flip it around the long side
- © : rotate 180°

What is a group action?

A group action is a list of actions you can perform on an object, with the following properties:
$\{i d, \downarrow, \leftrightarrow, \circlearrowright\}$ on a mattress

You can undo every action using one action from the list.
$\downarrow \downarrow=\mathrm{id}, \leftrightarrow \leftrightarrow=\mathrm{id} \ldots$
Performing two actions gives the
$\downarrow \leftrightarrow=\circlearrowright, \circlearrowright \leftrightarrow=\downarrow$, $\leftrightarrow \mathrm{id}=\leftrightarrow$, ల巳 $=\mathrm{id} \ldots$

The list of actions is a group.

Rotating a tetrahedron

12 possible rotations.

Rotating a tetrahedron

12 possible rotations.
Interesting ways?
Fix a vertex!

$$
U_{\mathrm{B}}=\{\mathrm{id}, \circlearrowright, \circlearrowleft\}
$$

Rotating a tetrahedron

12 possible rotations.
Interesting ways?
Fix a vertex!

$$
\begin{aligned}
U_{B} & =\left\{i d, O_{B}, \circlearrowleft_{B}\right\} \\
U_{F} & =\left\{i d, O_{F}, \circlearrowleft_{F}\right\} \\
U_{L} & =\left\{i d, O_{L}, \circlearrowleft_{L}\right\} \\
U_{R} & =\left\{i d, O_{R}, \circlearrowleft_{R}\right\}
\end{aligned}
$$

Rotating a tetrahedron

12 possible rotations.

Interesting ways?
Fix a vertex!

$$
\begin{aligned}
& U_{B}=\left\{i d, \circlearrowright_{B}, \circlearrowleft_{B}\right\} \\
& U_{F}=\left\{i d, O_{F}, \circlearrowleft_{F}\right\} \\
& U_{L}=\left\{i d, \circlearrowright_{L}, \circlearrowleft_{L}\right\} \\
& U_{R}=\left\{i d, O_{R}, \circlearrowleft_{R}\right\}
\end{aligned}
$$

By performing multiple of these actions, we find the other rotations.

Example:
we can swap B and L by $\circlearrowright_{B} \circlearrowleft_{F}$.

What if the tetrahedron is invisible?

What if the tetrahedron is invisible?

The tetrahedron may be invisible, but the possible actions remain the same!

$$
\begin{aligned}
& U_{B}=\left\{\text { id, } O_{B}, \circlearrowleft_{B}\right\} \\
& U_{F}=\left\{\text { id, } O_{F}, \circlearrowleft_{F}\right\} \quad \text { (and } 3 \text { others) } \\
& U_{L}=\left\{\text { id, } O_{L}, \circlearrowleft_{L}\right\} \\
& U_{R}=\left\{i d, O_{R}, \circlearrowleft_{R}\right\}
\end{aligned}
$$

The tetrahedron may be invisible, but the possible actions remain the same!

$$
\begin{aligned}
& U_{B}=\left\{\text { id, } O_{B}, \circlearrowleft_{B}\right\} \\
& U_{F}=\left\{\text { id, } O_{F}, \circlearrowleft_{F}\right\} \quad \text { (and } 3 \text { others) } \\
& U_{L}=\left\{\text { id, } O_{L}, \circlearrowleft_{L}\right\} \\
& U_{R}=\left\{i d, O_{R}, \circlearrowleft_{R}\right\}
\end{aligned}
$$

Question

How can we recognize the tetrahedron using the possible actions?

Moufang sets: a specific type of action

Properties of the action on the tetrahedron

Fix a vertex B.
There is a unique way from

$$
U_{\mathrm{B}}=\left\{\mathrm{id}, \circlearrowright_{\mathrm{B}}, \circlearrowleft_{\mathrm{B}}\right\}
$$

to move F to F, L or R .
We say the action of U_{B} is regular.

Properties of the action on the tetrahedron

Fix a vertex B.
There is a unique way from
$U_{B}=\left\{\mathrm{id}, \circlearrowright_{B}, \circlearrowleft_{B}\right\}$
to move F to F, L or R .
We say the action of U_{B} is regular.
\circlearrowright_{L} moves B to F,
O_{L} cancels that action
We see $\circlearrowleft_{L} \circlearrowright_{B} \circlearrowright_{L}=\circlearrowright_{F}$
In general, we get $\circlearrowleft_{L} U_{B} \circlearrowright_{L}=U_{F}$
We say U_{B} and U_{F} are conjugate.

What is a Moufang set?

A Moufang set is a collection of points with for each point x an action of a root group U_{x} on the points, such that

$$
U_{\mathrm{B}}=\left\{\mathrm{id}, \circlearrowright_{\mathrm{B}}, \circlearrowleft_{\mathrm{B}}\right\}
$$

1 every U_{x} fixes the point x;

2every U_{x} acts regularly on the other points;
the root groups are all conjugate.

$$
\begin{aligned}
& \circlearrowleft_{L} U_{B} \circlearrowright_{L}=U_{F} \\
& \circlearrowright_{B} U_{R} \circlearrowleft_{B}=U_{L} \ldots
\end{aligned}
$$

A field is a structure with at least

- 0
- 1
in which we can do
- addition
- subtraction
- multiplication
- division
as you are used to.

Rational numbers (fractions)

$$
0+5=5 \quad 1 \times \frac{3}{4}=\frac{3}{4}
$$

$$
2-\frac{1}{2}=\frac{3}{2}
$$

$$
5 \div 7=\frac{5}{7}
$$

$$
2-2=0 \quad 3 \times \frac{1}{3}=1
$$

$$
\frac{3}{2}+(5-2) \times \frac{4}{3} \div 8=2
$$

Modular arithmetic: a clock 5 hours

Numbers: 0, 1, 2, 3 en 4

Addition, subtraction and multiplication: subtract 5 or add 5 , until you get $0, \ldots, 4$ $4+3 \equiv 7 \equiv 2 \quad 2-4 \equiv-2 \equiv 3$

Modular arithmetic: a clock 5 hours

Numbers: 0, 1, 2, 3 en 4

Addition, subtraction and multiplication: subtract 5 or add 5 , until you get $0, \ldots, 4$ $4+3 \equiv 7 \equiv 2 \quad 2-4 \equiv-2 \equiv 3$

Division: find numbers which multiply to 1 :
$2 \times 3 \equiv 6 \equiv 1$, so $2 \equiv \frac{1}{3}$
$\Longrightarrow 4 \div 3 \equiv 4 \times \frac{1}{3} \equiv 4 \times 2 \equiv 8 \equiv 3$

This is arithmetic modulo 5 and is a field.

construction
for every field

fields

Moufang sets

construction
for every field

fields

Moufang sets

From fields to Moufang sets

From fields to Moufang sets

Points:
the field and one extra point ∞

Root group:
$U_{\infty}=\{+0,+1,+2,+3,+4\}$

From fields to Moufang sets

Points:
the field and one extra point ∞

Root group:
$U_{\infty}=\{+0,+1,+2,+3,+4\}$

From fields to Moufang sets

Points:
the field and one extra point ∞

Root group:
$U_{\infty}=\{+0,+1,+2,+3,+4\}$

From fields to Moufang sets

∞

Points:
the field and one extra point ∞

Root group:
$U_{\infty}=\{+0,+1,+2,+3,+4\}$

Other root groups:
construct them using conjugation

From Moufang sets to fields

Take a root group:

$$
U_{\mathrm{B}}=\left\{\mathrm{id}, \mathrm{O}_{\mathrm{B}}, \circlearrowleft_{\mathrm{B}}\right\}
$$

$$
\text { id } \rightsquigarrow 0 \quad \bigcup_{B} \rightsquigarrow 1 \quad \circlearrowleft_{B} \rightsquigarrow 2
$$

From Moufang sets to fields

Take a root group:

$$
U_{\mathrm{B}}=\left\{\mathrm{id}, \mathrm{O}_{\mathrm{B}}, \circlearrowleft_{\mathrm{B}}\right\}
$$

The elements become the numbers:

$$
\text { id } \rightsquigarrow 0 \quad \bigcup_{B} \rightsquigarrow 1 \quad \circlearrowleft_{B} \rightsquigarrow 2
$$

We find addition by composing the corresponding actions:
$2+0=? \rightsquigarrow \circlearrowleft_{\mathrm{B}}$ id $=\circlearrowleft_{\mathrm{B}} \rightsquigarrow 2+0=2$
$1+1=? \rightsquigarrow \bigcup_{\mathrm{B}} \bigcup_{\mathrm{B}}=\circlearrowleft_{\mathrm{B}} \rightsquigarrow 1+1=2$
$2+2=? \rightsquigarrow \circlearrowleft_{\mathrm{B}} \circlearrowleft_{\mathrm{B}}=\bigcup_{\mathrm{B}} \rightsquigarrow 2+2=1$

From Moufang sets to fields

Take a root group:

$$
U_{\mathrm{B}}=\left\{\mathrm{id}, \mathrm{O}_{\mathrm{B}}, \circlearrowleft_{\mathrm{B}}\right\}
$$

The elements become the numbers:

$$
\text { id } \rightsquigarrow 0 \quad \circlearrowright_{B} \rightsquigarrow 1 \quad \circlearrowleft_{B} \rightsquigarrow 2
$$

We find addition by composing the corresponding actions:
$2+0=? \rightsquigarrow \circlearrowleft_{\mathrm{B}}$ id $=\circlearrowleft_{\mathrm{B}} \rightsquigarrow 2+0=2$
$1+1=? \rightsquigarrow \bigcup_{\mathrm{B}} \bigcup_{\mathrm{B}}=\circlearrowleft_{\mathrm{B}} \rightsquigarrow 1+1=2$
$2+2=? \rightsquigarrow \circlearrowleft_{\mathrm{B}} \circlearrowleft_{\mathrm{B}}=\bigcup_{\mathrm{B}} \rightsquigarrow 2+2=1$
We find arithmetic modulo 3.

5

A local approach: close and far apart

Points are close together or far apart from each other.
There is a local structure.

Group actions preserving 'close' and 'far apart'

A group action on an object with a local structure preserves the local structure if

Points that are close together, stay close together after applying any action.

Points that are far apart, stay far apart after applying any action.

What is a local Moufang set?

A local Moufang set is a collection of points with a local structure, with for every point x the action of a root group U_{x} preserving the local structure, such that

1 every U_{x} fixes the point x;
2 every U_{x} acts regularly on the points that are far apart from x;
every U_{x} acts regularly on the groups of points except for that of x;

4 the root groups are all conjugate.

Arithmetic modulo 9: not a field, but a local ring

Numbers: $0,1,2,3,4,5,6,7$ en 8
Addition, subtraction and multiplication:
as before (add or subtract 9)

Arithmetic modulo 9: not a field, but a local ring

Numbers: $0,1,2,3,4,5,6,7$ en 8
Addition, subtraction and multiplication: as before (add or subtract 9)

To divide by 3 : find a number such that $3 \times ? \equiv 1$, but $3 \times$? is always a multiple of 3 !

Dividing by 3 , 6 en 0 is impossible.

Arithmetic modulo 9 is not a field, but a local ring.

Numbers are close together if their difference is 0,3 or 6 .

From local rings to local Moufang sets

Points:

the local ring and three extra points

Root group:
$\begin{aligned} U_{\infty}=\{ & +0,+1,+2,+3, \\ & +4,+5,+6,+7,+8\}\end{aligned}$

From local rings to local Moufang sets

Points:

the local ring and three extra points

Root group:
$\begin{aligned} U_{\infty}=\{ & +0,+1,+2,+3, \\ & +4,+5,+6,+7,+8\}\end{aligned}$

From local rings to local Moufang sets

Points:

the local ring and three extra points

Root group:

$$
\begin{aligned}
U_{\infty}=\{ & +0,+1,+2,+3 \\
& +4,+5,+6,+7,+8\}
\end{aligned}
$$

From local rings to local Moufang sets

Points:
the local ring and three extra points

Root group:
$U_{\infty}=\{+0,+1,+2,+3$,
$+4,+5,+6,+7,+8\}$

Other root groups:
construct them by conjugation

construction for all local rings

local rings
local Moufang sets

construction for all local rings

local rings

construction with assumptions
local Moufang sets

