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ABSTRACT. In this paper we consider Beurling number systems with very well-behaved primes, in
the sense that ¢(z) = x4 O(z*) for some a < 1/2. We investigate how small the error term in the
asymptotic formula for the integer-counting function N(z) can be for such systems. In particular
we show that

N(z)— pz = Q(\/Eefaogz)ﬁ)
for any 8 > %

1. INTRODUCTION

A Beurling or g-prime system (P, N') consists of a non-decreasing sequence P = (py)r>1 of real
numbers satisfying p; > 1 and py — oo as k — oo (called Beurling primes) and all the finite
products formed from these (called Beurling integers) which we denote by N = (ng)r>1 (these
include possible repetitions). They generalize the usual primes and integers and were introduced
by Beurling [1] to investigate what conditions are necessary for a Prime Number Theorem to hold.

Let
m(x) = Z 1 and N(z)= Z 1,

pr<® ng<w

denote the counting functions of the Beurling primes and integers respectively. Beurling [1] showed

that m(2) ~ [z under the assumption that N(z) — pr = O(z(logz)™7) for some p > 0 and

v > %, but may fail if v < % Since then there has been much research regarding these systems,
concentrating mainly on (i) obtaining weaker (or even optimal) conditions for a PNT to hold,
(ii) the effects of stronger error terms, and (iii) obtaining results in the converse direction; i.e.
assumptions on 7(x) leading to asymptotic behaviour of N(z). For a survey of such results, see [5].

We shall also need the generalized von Mangoldt and Chebyshev functions: A(pj) = logpy if
r > 1 and zero otherwise!, while ¢(z) = 3 A(ng). The Beurling zeta function is defined as

nE<x

()=~

nS
k=1 k

for complex s whenever this series converges. The Dirichlet series associated to A is minus the
logarithmic derivative of (:

¢(S) — Z A(nk) _ _C,(S>'

2T T )
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1Stric‘cly speaking A(n) is not a function in case the Beurling integers are not all distinct, but this is no problem
as sums 5, A(n) are well-defined.
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Let P be a g-prime system for which

(1.1) Y(x) =z + O(x*) for some a < %

We note that in the first place, (1.1) (just with a < 1) implies that
N(z) = px 4+ O(xecVioezloglosz) = f41 some p > 0 and any ¢ < /2(1 — ).

Further, this is optimal, as was recently shown in [2].

Here we are interested in how small N(xz) — pz can be on the assumption that (1.1) holds
with @ < 4. In [6] it was shown that under this condition, N(z) — pz = Q.(2'/27) for any
€ > 0. Here we improve this result. We note that the condition o < % is crucial. For larger
a, N(z) — pz can (presumably) be much smaller. For example, on the Riemann Hypothesis the
g-prime system (P, Ns) consisting of the rational primes and integers satisfies (1.1) for every a > %
while N(z) — 2 = O(1).

Our main result is:
Theorem 1.1. Let P be a g-prime system for which (1.1) holds. Then
N(z) — px = Q(\/Ee_(logz)ﬂ)
for every B > %

This can be compared to [3, Theorem 3.1], giving the existence of a Beurling prime system
satisfying

Y(z) =x+ O(logzloglogz) and N(z)==x+ O(\/Eec(logx)z/?’)

for some ¢ > 0. Note that the exponent in the error term of N is positive here. Combining Theorem
1.1 with this result gives substantial progress to answering the question of how small N(z) — px
can be under the assumption (1.1), although there is not yet a definitive answer. One might for
example conjecture there are Beurling systems satisfying (1.1) and with N(z) — pz < /z, and that
this is best possible.

There is a closely related problem concerning a system with very well behaved integers, namely
when N(z) = pz + O(2®) with o < . Under this assumption, it was shown in [6] that 1(z) — 2 =
Q(z'/272) for all € > 0. A natural question is to ask how small ¢)(z) —  can be. This was recently
considered in [7], where this was improved to

Y(z) —x = Q(\/Ee*C\/W)

for some ¢ > 0. Although there is some overlap in ideas with the present paper, the actual details
of the proof are quite different.

Notation The symbols ~, =<, <, <, and Q(-) have their usual meaning: namely f(z) ~ g(x)
as © — oo means f(x)/g(z) — 1 as x — oo, f(r) =< g(x) means there exist a,b > 0 such that
a < f(x)/g(x) < b for all x sufficiently large, while f(x) < g(x) means f = o(g) or f(x)/g(z) — 0;
f < g has the same meaning as f = O(g); i.e. |f(z)| < Cg(x) for some constant C' and all x in
the range; f = Q(g) means f # o(g); in other words, there exist a > 0 and x,, — oo such that
|f(zn)| > ag(an).

Finally, for sums over Beurling integers, we typically omit the index & and write e.g. > -\, f(n)
to denote ), -, f(ng), where it is understood any multiplicities are included.

2. PRELIMINARY BOUNDS

We begin with a simple lemma providing bounds on the Mellin—Stieltjes transform of certain
functions A(x).
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Lemma 2.1. Let A(z) be a non-decreasing function, supported on [1,00), and which satisfies

A(x) = ax + O($9), for some a >0 and 0 < 1.

Then its Mellin—Stieltjes transform F(s fl ~*dA(x) has analytic continuation, apart for a
simple pole at s =1, to o > 6. Forlt| 2 2 we have the bounds
t| \i% 0+1
F(s)<<<L)19, f0r9<a<i;
o—10
l-o 0+1
F(s) <|t] =7 logt| + 1. foro = =

Proof. We write s = 0 + it and A(x) = ax + R(z). Let X > 1 be a parameter to be determined
later. Then integration by parts yields, for o > 1,

a
s—1

oo 00 X X )
= / x *dA(x) — a/ x ¥de = / x *dA(z) — a/ x ¥dr + / z *dR(x)
- 1 - 1 X

X —s Xl_s_l R(X) > —s5—1
—/x dA(z) —a T T xs —|—S/X x R(z)dz.

The right hand side yields the analytic continuation to ¢ > 6. Since A is non-decreasing and
R(x) < 2%, we can bound the left hand side as

F(s) -

X 1—s 0—o
a . X 1 X
F(S)_S—1<</ X dA(fE)+’1_‘+| ’ 9

X Y Xl—a_l o
/_33 dA(:L‘)—al_(T—i—O(U_e),

where the first term is set to be alog X if o = 1. Substituting this in the above yields, for [t| > 2,

Integration by parts gives

X@—J 0+1
F X0 4t for 6 <=
(s) < +||0_9, orf <o 5
0+1
F(s) < XY 7log X +t| X077 41, f0r0>%
Selecting
t] 19 o
X=(-E)"7 and X =7,
o—=0
respectively, yields the desired result. O

Suppose now that N(z) = pz+O(y/z) for some p > 0 and ¥(z) = x+0(z*) for some a € (0,1/2).
Then ((s) has analytic continuation to ¢ > « except for a simple pole at s = 1 with residue
p, and has no zeroes there. The lemma provides bounds on ((s) for ¢ > 1/2 and bounds on
o(s) = —('(s)/¢(s) for 0 > . From these bounds we can derive bounds on log((s), which has
analytic continuation to {s: o > a}\ (—oo, 1].

Let s = 0 + it where o € (1/2,1) and |¢| > 2. The bounds on ((s) provided by the lemma give
upper bounds on log}g } = Relog((s). Applying the Borel-Carathéodory lemma with circles

with centre 2 + it and radii 2 — o and 2 — U+1/2 , we see that

1 1
2.1 1 7(1 1 7) for 1/2 1.
(2.1) 0g((s) < —1/2 og|t| + og(j_l/2 orl/2<o<
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On the other hand, by integrating the bounds for ¢(s), we get

t| \i=2
(2.2) log (s) < (a‘—o)l , fora<o<1/2
We obtain bounds in the region o > 1/2 — aloﬁ) lgo‘im, a > 0, by interpolating these two bounds.

Lemma 2.2. There exists a constant ¢ such that, for any a > 0, we have the bounds

log log|t
log ((s) < (log|t)***¢,  for |t| > to = to(a) and o > 1/2 — fgrfr”
og

Furthermore, if there exists some ag > 0 and some b > 0 such that log ((s) < (log|t|)* holds for

oc>1/2—ag loig)'ﬂtl, then we have for any a > ag

log log|t
log ¢(s) < (log|t|)P+(@=a0)e  for |t| > tg and o > 1/2 — aoligéH

From the proof it will follow that we can take any ¢ > 2/(1 — 2a).

Proof. Let t > 0 be sufficiently large and set o = 1/2 — alolgol%gt > a. Weset o/ =1/2+1/logt

and & = a + ¢ for some small § > 0. We apply Hadamard’s three circles theorem to the circles Cj,
1 =1,2,3 with centre logt + it and passing through ¢’ + it, o +it, and & + it when ¢ = 1, 2, and 3,

respectively. Denoting by M; = sup, ¢, ’log((z) , we have
logt—o
og 2 =%
My < MITFM§,  with k= — =7
0g logt—o’

A small calculation gives

a loglogt 1
= 1+0 —— | ;.
" 1/2—a—4d logt { + (loglogt)}

By (2.1), we have M; < (logt)?, while (2.2) gives M3 < t/6. Hence we get
_r
1/2—a—4§"

The proof of the second part of the lemma is analogous: we now select ¢/ = 1/2 —ag loi g’ft, so that
— loglogt 1
— @74 08008014 +0(—— ) 7.
1/2—a—-9§ logt loglogt

3. IMPROVING THE BOUNDS

My <5 (logt)?+¢,  with ¢ =

K

We now assume that
N(2) = pa + O (a2 exp(—h(x)))
for some function k(z) which is non-decreasing, tending to oo, and for which k'(x)z is decreasing
to zero; the typical example we have in mind is k(z) = log? 2 for some § € (0,1). In this section,

we show how to exploit the better error term in the asymptotic relation for N(z) to improve the
bounds given by Lemma 2.2.

We assume again that ¢ is sufficiently large, and we let s = o + it with 0 = 1/2 — alolgol%gt. For
any ¢ € (0,1) and kK > 1 — o we have

1 K-+ioco
Z n"%e 0" = 2/ (s +w)I'(w)d™* dw.

Tl i
neN 100
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By the exponential decay of the Gamma-function, we may shift the contour of integration to the
left. Let « denote the contour consisting of the oriented lines L;, i = 1,..., 5, defined respecitvely as
(—ioco, —2it], [-2it, —1/logt —2it], [-1/logt — 2it, —1/log t + 2it], [-1/ log t + 2it, 2it], and [2it, ic0).
Moving the contour to 7, we cross two poles: one at w = 1 — s with residu pI'(1 — s)6°~ !, and one
at w = 0 with residu ((s). We get

1
= Zn_se_(sn —pI(1 =)0t — — / C(s+w)'(w)d™ " dw
— 271 J,

(3.1) - /OO x4 0" dR(z) — ;ﬁ/é(s—i-w)F(w)(Sw dw + O(1),
il

where we have written R(z) = N(z) — pz. Integrating by parts, the first integral can be written as

I:= /100 R(x)x%e%% (2 + 5) dz.

To estimate this integral, we split it into two parts I; and I, with domain of integration [1,1/4]
and [1/6, 00) respectively. For I, we perform a dyadic splitting to get

[log( 1/5 /log2] .9j+1

/ o 1/2-0 k(@) qy
27

1/6
I < t/ p V20 k@) g <« t
1

(2]+1)1/2 o _ (2]')1/27:7
< tZeXp 1/2—0

<<tZexp( (1/2—U)log23)

Now )
(—k(x) +(1/2-0) log:r)/ = ;(—xk'(x) +(1/2 - J)),
so that by the assumptions on k

xrerhaé(q(—k(:r) +(1/2 — o) logz) < max{—k(1); (1/2 — o) log X — k(X)}.
Hence the first part is bounded as
I < t(1+ 671271/ Jog %
For I we get

> t
IDR¢ / e k@) pl/2-0 o0z (* + 5) dz
1/6 €

< e—k(1/§) /OO e—u(tu—l/Q—a + u1/2—0)50—1/2 du < tda_l/Qe_k(l/é).
1
Collecting both estimates yields
1
I < t(l + 5”_1/Qe_k(1/5)) log 5

Let us now estimate the contour integral in (3.1). For the lines L;, ¢ # 3, we use the bound (2.2)

and the exponential decay of the Gamma-function to see that
o0

/ (s +w)N(w)d " dw <« / exp{O(vﬁ(log v)ﬁ> - —v} dv < 1,
L1ULs5 2t 2

/ C(s+w)M'w)d ¥dw < 1.
LoULy
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Hence we get

(3.2) /C (s +w)l(w)d™ wdw<<51°1gt/

—2t

2t
dv + 1.

1
Mgt )
‘ log + 1w

log log|I
,ogog‘ m(s—i—w)!’ a’:a+0( 1 )’
log‘lm(s + w)| loglogt

1
r(-L in)
logt

+ A(log t)2+ac> (logt) + 1,

C(s—l();f—i-iv)

For w € L3, we have that

|
S]

so that by Lemma 2.2

2t
/C s+ w)L(w)d ™" dw < §rest exp (A(log t)*+%) / dv+1
2t

1 1
< exp(—@ log 5

for some constant A > 0. We now take Iog% = A(logt)3T%¢, then the above is < logt. With this
choice of 0 we get

C(s) < |I| +logt < t(logt)PW) (1 + exp{aA(log t)2Tloglogt — k(exp(A(log t)3+‘w)) })
Suppose now that k(x) > (logz)? for some 8 > 2/3. Then we get

((s) < t(log )W),
provided that 5(3 + ac) > 2 + ac, or equivalently

38 —2
a < ————.
c(1=p)
By an application of Borel-Carathéodory we see that
(log|t])?
1 sl
provided that
1 logloglt| . 3B=2

725 TN gt T T (1= B)
We now use the second part of Lemma 2.2 to improve the exponent 2 + ac to 2 + (a — ag)c for
@ = 1 log log|t|
24+max{(a—ap)c,0
log ((s) < (log|t|) {(a=a0)e0}  for 5 > 5 am
This improved bound can be fed into the above argument. In order to bound the integral (3.2),
we can now take a slightly larger choice for §, which improves the range where we have polynomial

bounds on ((s). Indeed, one verifies that we can now get
(log]t])? 1
1 — fi > - —200—————
0g((s) < log log|t]’ orT=g T log|t|
This process can be iterated: for each positive integer K we get

(log]t[) 1 log log||
3.3 1 — f > - —Kay————>—
(3.3) 08 U(s) S o for 07> 5~ Kag ek
Remark 3.1. To bound the integral in the right hand side of (3.2), we used a supremum bound for
the zeta-function. One might expect to gain something if one has a good bound for ( on average.
For example, if one can show that

T 2
1 loglog T
/ C(,_Q%Ht)
-7

1+(a—ao)c
5 log T dt < exp{O((logT) o))}
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holds with ag = 0 and with a > agy, ag > 0 provided that
1 log log|t|

log ((s) < (logltl)*  foro > 5 —a0o=

)

then the above argument can be applied to all functions k satisfying k(z) > (logz)? with 8 > 1/2,
instead of only 5 > 2/3.

The bounds in (3.3) readily give a bound for ¢(s) using
1 log ¢(z)

O p— dz,
270 Jo(s,e) (2 — 5)?
where C(s,¢) i ($)| < %max\zfﬂzs‘logC(g)‘
and taking € = lolgo gﬁlt' gives
(log|t])? 1 log log|t|
4 for 0 > - — Kag—o—oll
&4) ) S Cogloglirr 77 2 T KO o

4. LOWER BOUNDS FOR THE MEAN SQUARE VALUE OF ¢n(s)

Let A
on(s) =) r(::)’

n<N

where the sum is over the generalised integers of a system satisfying (1.1) and A(n) is the generalised
von Mangoldt function. Let 6 = § > 0. Then

(4.1) /OT

where Sy, n(T) = W and the * means any multiplicities are to be squared. If § < —logl N

then n% < 1 for n < N and Zn<N An ;5 = (log N)2, but we require this sum to be larger. So we
will take 6 = (7% with 1 < ry < log N. As such, we see that on writing 0(x) = = + E(z),

A(n)? log p)? N log x
> o> Y S - [ e

I

m<n<N mn

m,n(T)a

¢N<;—5+it)' dt =

l
2

n<N p<N
log N E(N)log N N B(z)((1 - 26)logx — 1)
_ 26 g x ogx
N2 log N N2 _1 26N (log N)?
_ og +O(1) > e“"N (log N)

20 (26)2
if N is sufficiently large. In the second term in (4.1) the part of the sum where m < % (for which
| S (T)] < @), is

4Kk N

- 10g2 Z 15 Z ——5 << NI+20 _ Ne2bN

nen N2 <nm2
Put T =2r —1 and sum over r = 1, ..., R. Since
1-— 2R
Zsm (2r —1)x MZO if0<z<m,
2sinx
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the sum over r of the terms for which § < m < n is positive, so

R 2r—1 2 2 2k 2

1 N(log N
) j/ ‘¢N(——5+it)‘ > B N)T o2
-1 70 2 4/{3]\[

for some C' > 0. Thus, for R > ?Sévﬁ)]\g,

R 2r—1 2 2 2k 2

1 N (log N
) / )¢N(——5+it)‘ ae > e log )7
r=170 2

8Kk N

This holds for a general kp, but for our purpose we shall choose Ky = ploglog N, for a constant
p > 0. Thus,

R por—1 2 2 242
1 i R*(log N)=*=H 8CuN loglog N
4.2 ‘ St ‘ dt > —2 for R> .
(4.2) ;/0 ¢N(2 +1) 8uloglog N or i 2 (log N)?

Approximating ¢y by ¢
Let ¢ >0 and N € N. Then, for n € N,

1 C+iT<N>wdw:O< (N/n)° >+{1 if n < N,
c—iT

2ri n/) w T|log N/n| 0 ifn> N,

where the implied constant is independent of n and N. Multiply through by A(n)n=% = A(n)n=7 "1
where [t| < T, and sum over all n € N'. Thus

i /c—HT ¢(S + ’LU)Nw
c w

27

dw = ¢N(S)+O<T 2 71‘3*"\10g1\7/n|>

—iT neN

For n < % and n > 2N, logN/n| > log 2, while for % <n < 2N we have |logN/n| = ln_TN' SO

with s = o + it such that c+ 0 > 1

05 ont [ THEI (¥ MY (27 5 At

—iT
! neN %<n<2N

Now as N(z) ~ px, we can take arbitrarily large values of N such that dist(N,N) > 1/(2p) = d
say. Then for the sum on the right of (4.3) we have

A
Y () _ </ +/ > dy(z) < log N + N¢,
NN In — NI (N/2.N—d]  J[N+d2n)/ |2 — N

2
neN

using (1.1) and integration by parts. We shall be taking o = % —

gives

J, so choosing c =1—0o+1/log N

cHT w 1tats
(4.4) n(s) = — / de+0(T

T 2mi

log N )
c—iT

The error is small if we take 7' > N. Indeed, we will take 7' = N2,
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5. PROOF OF THEOREM 1.1

For a contradiction, assume that N(z) — pz = O(y/ze~ 18" for some 3 > 2. Then the bounds
on ¢(s) in (3.4) hold.
We will apply (4.4) with s = o + it, where

1 _1_,uloglogN

_ t| <T/2 = N?%/2.
2 2 logN ~’ =T/ /

We will shift the contour of integration to Rew = —n. In order to exploit the bound (3.4), we will
take n of the same order as 0, say n = loglog N/log N. As such, N7 =log N < logT.
Pushing the contour in (4.4) to Rew = —n, we pick up the residues at w = 0 and w =1 —s

(since |t| < T/2). These are ¢(s) and ¥—". Note that

N'=7  /N(log N)*
It] +1 It +1

les
‘ <

1—s

Now

loglog N and loglog N loglog|t + y|
—_ n
logN '’ log N log|t + y|

1
oc—n=5—(n+1)

5 for |y| <T, |t+y|>e".

Hence for fixed p, we can take K = K(u) large enough such that the bound (3.4) is applicable.
Then the integral along Rew = —n is, in absolute value, bounded by

N /T |¢(0 —n+i(t+y))] ay < (log T)3 _ (log N)2log(T/n)

2r J_r NET N1 (loglog T)? / ,/77 +y (loglog N)?

The contribution along the horizontal line [—n 4 iT, ¢ + iT] is, in modulus, less than

1 [Nl ta it D] NUogT? _ )
), veer S Tloglgry ~ O

as ¢ =1/2+ o(1). Similarly on [-n —iT, ¢ —iT].
Putting these observations together (noting that log7'/n < log N) we obtain

N(log N)* log N)3
on(s) = o(s) + o(‘ﬁ’t(’ (fl ) ) +o(1) + o((k();ig])v)Q).
Squaring and using (3.4) gives

1 2 (log N)© N(log N)?* N?
5 —0+it)] for [t < .
‘¢N<2 il > < (loglog N )4 t* + 1 or || < 2

)

Integrating and summing gives, for R < N2 /4,

2r—1 6
i Qﬂ 2p
Z/ \qu 5+1t)‘ dt < B2y + RN (og V)

Taking R = N?/4, the second term is of smaller order than the first one. As such, this contradicts
(4.2) if p > 2.
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