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Abstract. In this paper we consider Beurling number systems with very well-behaved primes, in
the sense that ψ(x) = x+O(xα) for some α < 1/2. We investigate how small the error term in the
asymptotic formula for the integer-counting function N(x) can be for such systems. In particular
we show that

N(x)− ρx = Ω
(√
xe−(log x)β)

for any β > 2
3
.

1. Introduction

A Beurling or g-prime system (P,N ) consists of a non-decreasing sequence P = (pk)k≥1 of real
numbers satisfying p1 > 1 and pk → ∞ as k → ∞ (called Beurling primes) and all the finite
products formed from these (called Beurling integers) which we denote by N = (nk)k≥1 (these
include possible repetitions). They generalize the usual primes and integers and were introduced
by Beurling [1] to investigate what conditions are necessary for a Prime Number Theorem to hold.
Let

π(x) =
∑
pk≤x

1 and N(x) =
∑
nk≤x

1,

denote the counting functions of the Beurling primes and integers respectively. Beurling [1] showed
that π(x) ∼ x

log x under the assumption that N(x) − ρx = O(x(log x)−γ) for some ρ > 0 and

γ > 3
2 , but may fail if γ ≤ 3

2 . Since then there has been much research regarding these systems,
concentrating mainly on (i) obtaining weaker (or even optimal) conditions for a PNT to hold,
(ii) the effects of stronger error terms, and (iii) obtaining results in the converse direction; i.e.
assumptions on π(x) leading to asymptotic behaviour of N(x). For a survey of such results, see [5].

We shall also need the generalized von Mangoldt and Chebyshev functions: Λ(prk) = log pk if

r ≥ 1 and zero otherwise1, while ψ(x) =
∑

nk≤x Λ(nk). The Beurling zeta function is defined as

ζ(s) =
∞∑
k=1

1

nsk

for complex s whenever this series converges. The Dirichlet series associated to Λ is minus the
logarithmic derivative of ζ:

ϕ(s) :=

∞∑
k=1

Λ(nk)

nsk
= −ζ

′(s)

ζ(s)
.
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Let P be a g-prime system for which

(1.1) ψ(x) = x+O(xα) for some α <
1

2
.

We note that in the first place, (1.1) (just with α < 1) implies that

N(x) = ρx+O(xe−c
√
log x log log x), for some ρ > 0 and any c <

√
2(1− α).

Further, this is optimal, as was recently shown in [2].
Here we are interested in how small N(x) − ρx can be on the assumption that (1.1) holds

with α < 1
2 . In [6] it was shown that under this condition, N(x) − ρx = Ωε(x

1/2−ε) for any

ε > 0. Here we improve this result. We note that the condition α < 1
2 is crucial. For larger

α, N(x) − ρx can (presumably) be much smaller. For example, on the Riemann Hypothesis the
g-prime system (P,N>0) consisting of the rational primes and integers satisfies (1.1) for every α > 1

2
while N(x)− x = O(1).

Our main result is:

Theorem 1.1. Let P be a g-prime system for which (1.1) holds. Then

N(x)− ρx = Ω
(√
xe−(log x)β

)
for every β > 2

3 .

This can be compared to [3, Theorem 3.1], giving the existence of a Beurling prime system
satisfying

ψ(x) = x+O(log x log log x) and N(x) = x+O
(√
xec(log x)

2/3)
for some c > 0. Note that the exponent in the error term of N is positive here. Combining Theorem
1.1 with this result gives substantial progress to answering the question of how small N(x) − ρx
can be under the assumption (1.1), although there is not yet a definitive answer. One might for
example conjecture there are Beurling systems satisfying (1.1) and with N(x)−ρx≪

√
x, and that

this is best possible.
There is a closely related problem concerning a system with very well behaved integers, namely

when N(x) = ρx+O(xα) with α < 1
2 . Under this assumption, it was shown in [6] that ψ(x)− x =

Ω(x1/2−ε) for all ε > 0. A natural question is to ask how small ψ(x)− x can be. This was recently
considered in [7], where this was improved to

ψ(x)− x = Ω
(√
xe−c

√
log x log log x

)
for some c > 0. Although there is some overlap in ideas with the present paper, the actual details
of the proof are quite different.

Notation The symbols ∼, ≍, ≺, ≪, and Ω(·) have their usual meaning: namely f(x) ∼ g(x)
as x → ∞ means f(x)/g(x) → 1 as x → ∞, f(x) ≍ g(x) means there exist a, b > 0 such that
a < f(x)/g(x) < b for all x sufficiently large, while f(x) ≺ g(x) means f = o(g) or f(x)/g(x) → 0;
f ≪ g has the same meaning as f = O(g); i.e. |f(x)| ≤ Cg(x) for some constant C and all x in
the range; f = Ω(g) means f ̸= o(g); in other words, there exist a > 0 and xn → ∞ such that
|f(xn)| > ag(xn).

Finally, for sums over Beurling integers, we typically omit the index k and write e.g.
∑

n∈N f(n)
to denote

∑
k≥1 f(nk), where it is understood any multiplicities are included.

2. Preliminary bounds

We begin with a simple lemma providing bounds on the Mellin–Stieltjes transform of certain
functions A(x).



OMEGA-RESULTS FOR BEURLING GENERALIZED INTEGERS 3

Lemma 2.1. Let A(x) be a non-decreasing function, supported on [1,∞), and which satisfies

A(x) = ax+O(xθ), for some a > 0 and θ < 1.

Then its Mellin–Stieltjes transform F (s) =
∫∞
1− x

−s dA(x) has analytic continuation, apart for a
simple pole at s = 1, to σ > θ. For |t| ≥ 2 we have the bounds

F (s) ≪
( |t|
σ − θ

) 1−σ
1−θ

, for θ < σ <
θ + 1

2
;

F (s) ≪|t|
1−σ
1−θ log|t|+ 1, for σ ≥ θ + 1

2
.

Proof. We write s = σ + it and A(x) = ax + R(x). Let X > 1 be a parameter to be determined
later. Then integration by parts yields, for σ > 1,

F (s)− a

s− 1

=

∫ ∞

1−
x−s dA(x)− a

∫ ∞

1
x−s dx =

∫ X

1−
x−s dA(x)− a

∫ X

1
x−s dx+

∫ ∞

X
x−s dR(x)

=

∫ X

1−
x−s dA(x)− a

X1−s − 1

1− s
− R(X)

Xs
+ s

∫ ∞

X
x−s−1R(x) dx.

The right hand side yields the analytic continuation to σ > θ. Since A is non-decreasing and
R(x) ≪ xθ, we can bound the left hand side as

F (s)− a

s− 1
≪

∫ X

1−
x−σ dA(x) +

∣∣∣∣X1−s − 1

1− s

∣∣∣∣+|s| X
θ−σ

σ − θ
.

Integration by parts gives ∫ X

1−
x−σ dA(x) = a

X1−σ − 1

1− σ
+O

(
σ

σ − θ

)
,

where the first term is set to be a logX if σ = 1. Substituting this in the above yields, for |t| ≥ 2,

F (s) ≪ X1−σ +|t| X
θ−σ

σ − θ
, for θ < σ <

θ + 1

2
,

F (s) ≪ X1−σ logX +|t|Xθ−σ + 1, for σ ≥ θ + 1

2
.

Selecting

X =
( |t|
σ − θ

) 1
1−θ

and X = |t|
1

1−θ ,

respectively, yields the desired result. □

Suppose now thatN(x) = ρx+O(
√
x) for some ρ > 0 and ψ(x) = x+O(xα) for some α ∈ (0, 1/2).

Then ζ(s) has analytic continuation to σ > α except for a simple pole at s = 1 with residue
ρ, and has no zeroes there. The lemma provides bounds on ζ(s) for σ > 1/2 and bounds on
ϕ(s) = −ζ ′(s)/ζ(s) for σ > α. From these bounds we can derive bounds on log ζ(s), which has
analytic continuation to {s : σ > α} \ (−∞, 1].

Let s = σ + it where σ ∈ (1/2, 1) and |t| ≥ 2. The bounds on ζ(s) provided by the lemma give
upper bounds on log

∣∣ζ(s)∣∣ = Re log ζ(s). Applying the Borel–Carathéodory lemma with circles

with centre 2 + it and radii 2− σ and 2− σ+1/2
2 , we see that

(2.1) log ζ(s) ≪ 1

σ − 1/2

(
log|t|+ log

1

σ − 1/2

)
, for 1/2 < σ < 1.
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On the other hand, by integrating the bounds for ϕ(s), we get

(2.2) log ζ(s) ≪
( |t|
σ − α

) 1−σ
1−α

, for α < σ < 1/2.

We obtain bounds in the region σ ≥ 1/2− a log log|t|
log|t| , a > 0, by interpolating these two bounds.

Lemma 2.2. There exists a constant c such that, for any a > 0, we have the bounds

log ζ(s) ≪ (log|t|)2+ac, for |t| ≥ t0 = t0(a) and σ ≥ 1/2− a
log log|t|
log|t|

.

Furthermore, if there exists some a0 > 0 and some b > 0 such that log ζ(s) ≪ (log|t|)b holds for

σ ≥ 1/2− a0
log log|t|
log|t| , then we have for any a ≥ a0

log ζ(s) ≪ (log|t|)b+(a−a0)c, for |t| ≥ t0 and σ ≥ 1/2− a
log log|t|
log|t|

.

From the proof it will follow that we can take any c > 2/(1− 2α).

Proof. Let t > 0 be sufficiently large and set σ = 1/2 − a log log t
log t > α. We set σ′ = 1/2 + 1/ log t

and σ̃ = α+ δ for some small δ > 0. We apply Hadamard’s three circles theorem to the circles Ci,
i = 1, 2, 3 with centre log t+ it and passing through σ′ + it, σ+ it, and σ̃+ it when i = 1, 2, and 3,
respectively. Denoting by Mi = supz∈Ci

∣∣log ζ(z)∣∣, we have

M2 ≤M1−κ
1 Mκ

3 , with κ =
log log t−σ

log t−σ′

log log t−σ̃
log t−σ′

.

A small calculation gives

κ =
a

1/2− α− δ

log log t

log t

{
1 +O

(
1

log log t

)}
.

By (2.1), we have M1 ≪ (log t)2, while (2.2) gives M3 ≪ t/δ. Hence we get

M2 ≪δ (log t)
2+ac, with c =

1

1/2− α− δ
.

The proof of the second part of the lemma is analogous: we now select σ′ = 1/2−a0 log log tlog t , so that

κ =
a− a0

1/2− α− δ

log log t

log t

{
1 +O

(
1

log log t

)}
.

□

3. Improving the bounds

We now assume that
N(x) = ρx+O

(
x1/2 exp

(
−k(x)

))
for some function k(x) which is non-decreasing, tending to ∞, and for which k′(x)x is decreasing

to zero; the typical example we have in mind is k(x) = logβ x for some β ∈ (0, 1). In this section,
we show how to exploit the better error term in the asymptotic relation for N(x) to improve the
bounds given by Lemma 2.2.

We assume again that t is sufficiently large, and we let s = σ + it with σ = 1/2 − a log log t
log t . For

any δ ∈ (0, 1) and κ > 1− σ we have∑
n∈N

n−se−δn =
1

2πi

∫ κ+i∞

κ−i∞
ζ(s+ w)Γ(w)δ−w dw.
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By the exponential decay of the Gamma-function, we may shift the contour of integration to the
left. Let γ denote the contour consisting of the oriented lines Li, i = 1, . . . , 5, defined respecitvely as
(−i∞,−2it], [−2it,−1/ log t−2it], [−1/ log t−2it,−1/ log t+2it], [−1/ log t+2it, 2it], and [2it, i∞).
Moving the contour to γ, we cross two poles: one at w = 1− s with residu ρΓ(1− s)δs−1, and one
at w = 0 with residu ζ(s). We get

ζ(s) =
∑
n

n−se−δn − ρΓ(1− s)δs−1 − 1

2πi

∫
γ
ζ(s+ w)Γ(w)δ−w dw

=

∫ ∞

1−
x−se−δx dR(x)− 1

2πi

∫
γ
ζ(s+ w)Γ(w)δ−w dw +O(1),(3.1)

where we have written R(x) = N(x)− ρx. Integrating by parts, the first integral can be written as

I :=

∫ ∞

1
R(x)x−se−δx

( s
x
+ δ

)
dx.

To estimate this integral, we split it into two parts I1 and I2, with domain of integration [1, 1/δ]
and [1/δ,∞) respectively. For I1, we perform a dyadic splitting to get

I1 ≪ t

∫ 1/δ

1
x−1/2−σe−k(x) dx≪ t

⌊log(1/δ)/ log 2⌋∑
j=0

∫ 2j+1

2j
x−1/2−σe−k(x) dx

≪ t
∑
j

exp
(
−k(2j)

)(2j+1)1/2−σ − (2j)1/2−σ

1/2− σ

≪ t
∑
j

exp
(
−k(2j) + (1/2− σ) log 2j

)
.

Now (
−k(x) + (1/2− σ) log x

)′
=

1

x

(
−xk′(x) + (1/2− σ)

)
,

so that by the assumptions on k

max
x∈[1,X]

(
−k(x) + (1/2− σ) log x

)
≤ max

{
−k(1); (1/2− σ) logX − k(X)

}
.

Hence the first part is bounded as

I1 ≪ t
(
1 + δσ−1/2e−k(1/δ)

)
log

1

δ
.

For I2 we get

I2 ≪
∫ ∞

1/δ
e−k(x)x1/2−σe−δx

( t
x
+ δ

)
dx

≪ e−k(1/δ)

∫ ∞

1
e−u

(
tu−1/2−σ + u1/2−σ

)
δσ−1/2 du≪ tδσ−1/2e−k(1/δ).

Collecting both estimates yields

I ≪ t
(
1 + δσ−1/2e−k(1/δ)

)
log

1

δ
.

Let us now estimate the contour integral in (3.1). For the lines Li, i ̸= 3, we use the bound (2.2)
and the exponential decay of the Gamma-function to see that∫

L1∪L5

ζ(s+ w)Γ(w)δ−w dw ≪
∫ ∞

2t
exp

{
O
(
v

1
2−2α (log v)

a
1−α

)
− π

2
v
}
dv ≪ 1,∫

L2∪L4

ζ(s+ w)Γ(w)δ−w dw ≪ 1.
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Hence we get

(3.2)

∫
γ
ζ(s+ w)Γ(w)δ−w dw ≪ δ

1
log t

∫ 2t

−2t

∣∣∣∣ζ(s− 1

log t
+ iv

)∣∣∣∣∣∣∣∣Γ(− 1

log t
+ iv

)∣∣∣∣ dv + 1.

For w ∈ L3, we have that

Re(s+ w) ≥ 1

2
− a′

log log
∣∣Im(s+ w)

∣∣
log

∣∣Im(s+ w)
∣∣ , a′ = a+O

( 1

log log t

)
,

so that by Lemma 2.2∫
γ
ζ(s+ w)Γ(w)δ−w dw ≪ δ

1
log t exp

(
A(log t)2+ac

) ∫ 2t

−2t

∣∣∣∣Γ(− 1

log t
+ iv

)∣∣∣∣dv + 1

≪ exp
(
− 1

log t
log

1

δ
+A(log t)2+ac

)
(log t) + 1,

for some constant A > 0. We now take log 1
δ = A(log t)3+ac, then the above is ≪ log t. With this

choice of δ we get

ζ(s) ≪|I|+ log t≪ t(log t)O(1)
(
1 + exp

{
aA(log t)2+ac log log t− k

(
exp(A(log t)3+ac)

)})
.

Suppose now that k(x) ≥ (log x)β for some β > 2/3. Then we get

ζ(s) ≪ t(log t)O(1),

provided that β(3 + ac) > 2 + ac, or equivalently

a <
3β − 2

c(1− β)
.

By an application of Borel–Carathéodory we see that

log ζ(s) ≪ (log|t|)2

log log|t|
,

provided that

σ ≥ 1

2
− a0

log log|t|
log|t|

, a0 :=
3β − 2

2c(1− β)
.

We now use the second part of Lemma 2.2 to improve the exponent 2 + ac to 2 + (a − a0)c for
a ≥ a0:

log ζ(s) ≪ (log|t|)2+max{(a−a0)c,0} for σ ≥ 1

2
− a

log log|t|
log|t|

.

This improved bound can be fed into the above argument. In order to bound the integral (3.2),
we can now take a slightly larger choice for δ, which improves the range where we have polynomial
bounds on ζ(s). Indeed, one verifies that we can now get

log ζ(s) ≪ (log|t|)2

log log|t|
, for σ ≥ 1

2
− 2a0

log log|t|
log|t|

.

This process can be iterated: for each positive integer K we get

(3.3) log ζ(s) ≪K
(log|t|)2

log log|t|
, for σ ≥ 1

2
−Ka0

log log|t|
log|t|

.

Remark 3.1. To bound the integral in the right hand side of (3.2), we used a supremum bound for
the zeta-function. One might expect to gain something if one has a good bound for ζ on average.
For example, if one can show that∫ T

−T

∣∣∣∣ζ(12 − a
log log T

log T
+ it

)∣∣∣∣2 dt≪ exp
{
O
(
(log T )1+(a−a0)c

)}
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holds with a0 = 0 and with a ≥ a0, a0 > 0 provided that

log ζ(s) ≪ (log|t|)2 for σ ≥ 1

2
− a0

log log|t|
log|t|

,

then the above argument can be applied to all functions k satisfying k(x) ≥ (log x)β with β > 1/2,
instead of only β > 2/3.

The bounds in (3.3) readily give a bound for ϕ(s) using

ϕ(s) = − 1

2πi

∫
C(s,ε)

log ζ(z)

(z − s)2
dz,

where C(s, ε) is the circular contour with centre s and radius ε. As such,
∣∣ϕ(s)∣∣ ≤ 1

ε max|z−s|=ε

∣∣log ζ(z)∣∣
and taking ε = log log|t|

log|t| gives

(3.4) ϕ(s) ≪K
(log|t|)3

(log log|t|)2
, for σ ≥ 1

2
−Ka0

log log|t|
log|t|

.

4. Lower bounds for the mean square value of ϕN (s)

Let

ϕN (s) =
∑
n≤N

Λ(n)

ns
,

where the sum is over the generalised integers of a system satisfying (1.1) and Λ(n) is the generalised
von Mangoldt function. Let δ = δN > 0. Then

(4.1)

∫ T

0

∣∣∣∣ϕN(1
2
− δ + it

)∣∣∣∣2 dt = T
∑
n≤N

∗Λ(n)2

n1−2δ
+ 2

∑
m<n≤N

Λ(m)Λ(n)

(mn)
1
2
−δ

Sm,n(T ),

where Sm,n(T ) =
sin(T log(n/m))

log(n/m) , and the ∗ means any multiplicities are to be squared. If δ ≪ 1
logN ,

then nδ ≍ 1 for n ≤ N and
∑

n≤N
Λ(n)2

n1−2δ ≍ (logN)2, but we require this sum to be larger. So we

will take δ = κN
logN with 1 ≺ κN ≺ logN . As such, we see that on writing θ(x) = x+ E(x),∑

n≤N

Λ(n)2

n1−2δ
≥

∑
p≤N

(log p)2

p1−2δ
=

∫ N

1

log x

x1−2δ
dθ(x)

=

∫ logN

0
ue2δu du+

E(N) logN

N1−2δ
+

∫ N

1

E(x)((1− 2δ) log x− 1)

x2−2δ
dx

=
N2δ logN

2δ
− N2δ − 1

(2δ)2
+O(1) ≥ e2κN (logN)2

4κN
,

if N is sufficiently large. In the second term in (4.1) the part of the sum where m ≤ n
2 (for which∣∣Sm,n(T )

∣∣ ≤ 1
log 2), is

≤ 2

log 2

∑
n≤N

Λ(n)

n
1
2
−δ

∑
m≤n

2

Λ(m)

m
1
2
−δ

≪ N1+2δ = Ne2κN .

Put T = 2r − 1 and sum over r = 1, . . . , R. Since

R∑
r=1

sin
(
(2r − 1)x

)
=

1− cos(2Rx)

2 sinx
≥ 0 if 0 ≤ x ≤ π,
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the sum over r of the terms for which n
2 < m < n is positive, so

R∑
r=1

∫ 2r−1

0

∣∣∣ϕN(1
2
− δ + it

)∣∣∣2 dt ≥ R2e2κN (logN)2

4κN
− CRNe2κN ,

for some C > 0. Thus, for R ≥ 8CNκN
(logN)2

,

R∑
r=1

∫ 2r−1

0

∣∣∣ϕN(1
2
− δ + it

)∣∣∣2 dt ≥ R2e2κN (logN)2

8κN
.

This holds for a general κN , but for our purpose we shall choose κN = µ log logN , for a constant
µ > 0. Thus,

(4.2)

R∑
r=1

∫ 2r−1

0

∣∣∣ϕN(1
2
− δ + it

)∣∣∣2 dt ≥ R2(logN)2+2µ

8µ log logN
, for R ≥ 8CµN log logN

(logN)2
.

Approximating ϕN by ϕ
Let c > 0 and N ̸∈ N . Then, for n ∈ N ,

1

2πi

∫ c+iT

c−iT

(N
n

)w dw

w
= O

(
(N/n)c

T
∣∣logN/n∣∣

)
+

{
1 if n < N,

0 if n > N,

where the implied constant is independent of n and N . Multiply through by Λ(n)n−s = Λ(n)n−σ−it,
where |t| < T , and sum over all n ∈ N . Thus

1

2πi

∫ c+iT

c−iT

ϕ(s+ w)Nw

w
dw = ϕN (s) +O

(
N c

T

∑
n∈N

Λ(n)

nc+σ
∣∣logN/n∣∣

)
.

For n ≤ N
2 and n ≥ 2N ,

∣∣logN/n∣∣ ≥ log 2, while for N
2 < n < 2N we have

∣∣logN/n∣∣ ≍ |n−N |
N so

with s = σ + it such that c+ σ > 1

(4.3) ϕN (s) =
1

2πi

∫ c+iT

c−iT

ϕ(s+ w)Nw

w
dw +O

(
N c

T

∑
n∈N

Λ(n)

nc+σ

)
+O

(
N1−σ

T

∑
N
2
<n<2N

Λ(n)

|n−N |

)
.

Now as N(x) ∼ ρx, we can take arbitrarily large values of N such that dist(N,N ) ≥ 1/(2ρ) = d
say. Then for the sum on the right of (4.3) we have∑

N
2
<n<2N
n∈N

Λ(n)

|n−N |
=

(∫
(N/2,N−d]

+

∫
[N+d,2N)

)
dψ(x)

|x−N |
≪ logN +Nα,

using (1.1) and integration by parts. We shall be taking σ = 1
2 − δ, so choosing c = 1−σ+1/ logN

gives

(4.4) ϕN (s) =
1

2πi

∫ c+iT

c−iT

ϕ(s+ w)Nw

w
dw +O

(N 1
2
+α+δ

T
logN

)
The error is small if we take T ≥ N . Indeed, we will take T = N2.
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5. Proof of Theorem 1.1

For a contradiction, assume that N(x)−ρx = O(
√
xe−(log x)β ) for some β > 2

3 . Then the bounds
on ϕ(s) in (3.4) hold.

We will apply (4.4) with s = σ + it, where

σ =
1

2
− δ =

1

2
− µ log logN

logN
, |t| ≤ T/2 = N2/2.

We will shift the contour of integration to Rew = −η. In order to exploit the bound (3.4), we will
take η of the same order as δ, say η = log logN/ logN . As such, Nη = logN ≍ log T .

Pushing the contour in (4.4) to Rew = −η, we pick up the residues at w = 0 and w = 1 − s

(since |t| < T/2). These are ϕ(s) and N1−s

1−s . Note that∣∣∣∣N1−s

1− s

∣∣∣∣ ≪ N1−σ

|t|+ 1
≪

√
N(logN)µ

|t|+ 1
.

Now

σ − η =
1

2
− (µ+ 1)

log logN

logN
, and

log logN

logN
≪ log log|t+ y|

log|t+ y|
for |y| ≤ T, |t+ y| ≥ ee.

Hence for fixed µ, we can take K = K(µ) large enough such that the bound (3.4) is applicable.
Then the integral along Rew = −η is, in absolute value, bounded by

N−η

2π

∫ T

−T

∣∣ϕ(σ − η + i(t+ y))
∣∣√

η2 + y2
dy ≪ (log T )3

Nη(log log T )2

∫ T

0

dy√
η2 + y2

≍ (logN)2 log(T/η)

(log logN)2
.

The contribution along the horizontal line [−η + iT, c+ iT ] is, in modulus, less than

1

2π

∫ c

−η

Ny
∣∣ϕ(σ + x+ i(t+ T ))

∣∣
√
x2 + T 2

dx≪ N c(log T )3

T (log log T )2
= o(1),

as c = 1/2 + o(1). Similarly on [−η − iT, c− iT ].
Putting these observations together (noting that log T/η ≍ logN) we obtain

ϕN (s) = ϕ(s) +O
(√N(logN)µ

|t|+ 1

)
+ o(1) +O

( (logN)3

(log logN)2

)
.

Squaring and using (3.4) gives∣∣∣ϕN(1
2
− δ + it

)∣∣∣2 ≪ (logN)6

(log logN)4
+
N(logN)2µ

|t|2 + 1
, for |t| ≤ N2

2
.

Integrating and summing gives, for R ≤ N2/4,

R∑
r=1

∫ 2r−1

0

∣∣∣ϕN(1
2
− δ + it

)∣∣∣2 dt≪ R2 (logN)6

(log logN)4
+RN(logN)2µ.

Taking R = N2/4, the second term is of smaller order than the first one. As such, this contradicts
(4.2) if µ ≥ 2.
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