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THE WIENER-IKEHARA THEOREM

Theorem (Wiener-Ikehara)

Let S be a non-decreasing function and suppose that

G(s) :=

∫ ∞
1

S(x)x−s−1 dx converges for Re s > 1

and that there exists a constant A such that G(s)− A/(s − 1) admits a
continuous extension to Re s ≥ 1. Then

S(x) = Ax + o(x).

No better remainder can be expected using solely analytic continuation to a
larger region.
This talk is based on collaborative work with Gregory Debruyne and Jasson
Vindas.
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ABSENCE OF REMAINDERS
Analytic continuation and bounds give better remainder, e.g.

Theorem

If G(s)− A
s−1 � (1 +|Im s|)N−1 on the strip α < Re s < 2, then

S(x) = Ax + O
(
x

N+1+α
N+2

)
.

Can we expect a better remainder for functions S only using assumption of
analytic continuation of G to Re s > α? Answer: no.

Theorem (Debruyne, Vindas, 2018)

Suppose ρ is a positive function such that for any such S,
S(x) = Ax + O(xρ(x)). Then

ρ(x) = Ω(1) (i.e. ρ(x) 6= o(1)).
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MAIN RESULT

The proof of Debruyne and Vindas uses functional analysis techniques and is
non-constructive. In this talk we give an overview to construct explicit
counterexamples. Explicitely:

Theorem (B., Debruyne, Vindas)

Suppose ρ is a positive function tending to 0. Then there exists a
non-decreasing function S such that its Mellin transform G has, after
subtraction of the pole 1/(s − 1), continuation to the whole of C, yet

S(x) = x + Ω(xρ(x)) (i.e. S(x)− x 6= o(xρ(x))).
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PROTOTYPICAL EXAMPLE

S(x) = x +

∫ x

2
cos((log t)2) dt .

Using partial integration, one sees that

S(x) = x + Ω

(
x

log x

)
.

By a change of variables, the Mellin transform of S is related to the Laplace
transforms∫ ∞

0
e−(s−1)x cos(x2) dx or

∫ ∞
0

exp(−(s − 1)x + ix2) dx .

Show analytic continuation of the latter by shifting the contour of integration
to a contour where Re(iz2) is negative, so e.g. to the contour arg z = π/4.
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OVERVIEW

We generalize the previous example to

S(x) := x +

∫ x

2
cos(W(log t) log t) dt

for W growing arbitrarily slow to∞.

Set ρ̃(x) := supy≤x ρ(y), and ω(x) := 1/ρ̃(ex ).

Step 1: construct regularization W of ω.

Step 2: the Omega result (by partial integration).

Step 3: the analytic continuation of the Mellin transform.
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STEP 1

Lemma

Let ω be a positive non-decreasing function on the positive real axis
satisfying

lim
x→∞

ω(x) =∞ and ω(x)�
√

x .

Then there exists an C∞-function W on (0,∞) with the following
properties:

ω(x)� W(x)� ω(x2);

W(ax) ≥ aW(x) for every a ≤ 1;

W ′(x) ≥ 0;

for any n ≥ 1 and x > 0:
∣∣W (n)(x)

∣∣ ≤ 2n+1n!x−nW(x).

Idea: set

W(y) :=

∫ ∞
0

ω(x)
y

y2 + x2
dx .
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STEP 2

Define

T (x) :=

∫ x

2
cos
(
W(log t) log t

)
dt

V(x) := W(log x) + W ′(log x) log x .

By partial integration,

T (x) =
x

V(x)
sin
(
W(log x) log x

)
+ O

(
x

V(x)2

)
= Ω(xρ(x2)).

We set
S(x) := x + T (x).
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STEP 3

Lemma

F(s) :=

∫ ∞
0

e−sx eixW(x) dx

has analytic continuation to the whole of C.

Idea: by the bounds on the Taylor coefficients of W , one may shift the
contour of integration to a contour Γ on which
Re(izW(z)) ≤ −C|z|

√
W(|z|) for some constant C > 0. Then the integral∫

Γ
exp
(
izW(z)− sz) dz

is convergent for any value of s ∈ C.
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Thank you for your attention!
Questions?
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