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BEST APPROXIMATION

Eor = {G entire of exponential type < 2, real-valued on R}
‘G(Z)‘ < Cse(27r+6)|z\_
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BEST APPROXIMATION

Eor = {G entire of exponential type < 2, real-valued on R}
‘G(Z)‘ < Cee(2ﬂ+5)|z\_

Lets € L},. Goal: minimize

[ 10 - ctlax @ e

—00

If = 5|r\[—2r.20] € Co(R \ [-27, 27]), then equivalent to finding minimal
extrapolation f € A(R):

minimize ||g||,; among all g € L' with §|r\[—2r 27] = -
g minimal extrapolation <= G = s — g best approximation.
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s(x) = sgn(x)

1 x>0,
s(x)=sgnx=4¢0 x=0,
-1 x<O0.
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5(x) = sgn(x)

1 x>0,
s(x)=sgnx=<¢0 x=0,
-1 x<0.

In this case, the solution can be found by interpolating sgn x:

F(Z):sirl(ZTrz)Z(sgnk - sgn(k+1/z))_

o7 z—k z—(k+1/2)

kEZ
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5(x) = sgn(x)

1 x>0,
s(x) =sgnx=<0 x=0,
-1 x<0.

In this case, the solution can be found by interpolating sgn x:

F(z)=MZ(Sgnk B sgn(k+1/2))'

o7 z—k z—(k+1/2)

kEZ

If G € Eoy, then
o
/ |sgnx — G(x)| dx > 1/2,
—o

with equality if and only if G = F.
Loy ./ 3/24



APPLICATION

Theorem (finite form Ingham—Karamata, Debruyne, Vindas, 2018)

LetT : (0,00) — R be differentiable with|7'(x)| < M. Suppose that
L{r;s} = [;° T(x)e”** dx converges for Re s > 0 and admits
continuous extension to a segment [—i\, i\] for some A > 0. Then

: T
lim sup|7(x)| < 5

X—»00
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APPLICATION

Theorem (finite form Ingham—Karamata, Debruyne, Vindas, 2018)

LetT : (0,00) — R be differentiable with|7'(x)| < M. Suppose that
L{r;s} = [;° T(x)e”** dx converges for Re s > 0 and admits
continuous extension to a segment [—i\, i\] for some A > 0. Then

M
Ii)r('rl/solip’T(x)} < g By
Proof sketch:
W.lo.g. A = 27.
27(x) = / T(x + y)dsgny
= / T(x+y) d(sgny — F(y)) + / 7(x + y)F'(y)dy

4/24



PROOF SKETCH CONTINUED

Integrating by parts, first term is

—/oo T'(x+y)(sgny — F(y)) dy, [..] < g

—0o0
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PROOF SKETCH CONTINUED

Integrating by parts, first term is

—/OO T'(x+y)(sgny — F(y)) dy, |..| < g

—0o0

Second term, change variables and consider for ¢ > 0:

/ T(}/)e_UYF/(y —x)dy = P / L{T, o0+ it}F’(t)e_mdt_

—00
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PROOF SKETCH CONTINUED

Integrating by parts, first term is

—/oo T'(x+y)(sgny — F(y)) dy, |..| < g

—0o0

Second term, change variables and consider for ¢ > 0:

/ T(}/)e_UYF/(y —x)dy = P / L{T, o0+ it}F’(t)e_mdt_

—00

We have supp F' C [—27, 27], so letting 0 — O:

/oo T(y)F'(y — x)dy = 1 o ?(t)/—:’(t)e_mdt.

—00 2m —27
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PROOF SKETCH CONTINUED

Integrating by parts, first term is

—/oo T'(x+y)(sgny — F(y)) dy, |..| < g

Second term, change variables and consider for ¢ > 0:

—00

We have supp F' C [—27, 27], so letting 0 — O:

/°° () (y — ) dy = N 7(HF (e d.

—00 2m —27

By Riemann—-Lebesgue, the above — 0 as x — 0o.

/ T(}/)e_UYF/(y —x)dy = P / L{T, o0+ it}F’(t)e_mdt_
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BEURLING—SELBERG PROBLEM
Lets € L},.. Goal: minimize

/°° (G(X) _5(X)) dx, GE Er, s(x) < G(x),Vx.

—0o0
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BEURLING—SELBERG PROBLEM
Lets € L},. Goal: minimize

/°° (G(X) - 5(X)) dx, GE Er, s(x) < G(x),Vx.

—0o0

Solved by Beurling for s(x) = sgn x in late 1930’s,
“Popularized” by Selberg in 1970’s, when s = x|, 5] in connection with large
sieve.
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BEURLING—SELBERG PROBLEM
Lets € L},. Goal: minimize
/ (G(x) — s(x)) dx, G € Eamr 5(x) < G(x).¥x.

Solved by Beurling for s(x) = sgn x in late 1930’s,
“Popularized” by Selberg in 1970’s, when s = x|, 5] in connection with large

sieve.
Interpolating sgn x and the derivative:

Blz) = (Sin;ﬂ)>2<z e RN 2)

n>0 n<0

6/24



BEURLING’S FUNCTION

Theorem (Beurling)

If G € Exr with G(x) > sgn x, for all x € R, then

/00 (G(x) — sgnx) dx > 1,

—00

with equality if and only if G = B.
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BEURLING’S FUNCTION

Theorem (Beurling)
If G € Exr with G(x) > sgn x, for all x € R, then
(o ¢]
/ (G(x) — sgnx) dx > 1,
—00

with equality if and only if G = B.

Theorem (one-sided finite form Ingham—Karamata, Debruyne,

Vindas, 2018)

LetT : (0,00) — R be differentiable with 7'(x) < M. Suppose that
L{r;s} = [;° T(x)e ** dx converges for Re s > 0 and admits
continuous extension to a segment [—1\,i)] for some A > 0. Then

. M
lim sup|(x)| < - 3
e 7/24



APPLICATION: MEAN VALUE THEOREM

Leta, € C, A\, € Rwith |\, — Ap| > 0 ifn % m. Then

_ 2m\ |-
dt = <T+19 6);‘&"2’

N 2

To+T .
/ § anel)\nt
To

n=1

for some ¥ € [—1,1].
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PROOF MVT

Set
s(t) = 1{3(2(;0 — To)) + B(zi(r0 T . t))}.

2
Then st f ps(t)dt =T+ Zgr and supp p5 C [0, 0]
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PROOF MVT
Set

s(t) = %{B(;(t — To)) + B(%(To T . t))}.

Then ¢s(t t), [T ws(t)dt = T+ 2%, and supp ;5 C [—6,0].

To+T 5 o] 5
/T (1) dtg/_ s (O[F(OF dt = 3 2 55(00m — M),

Here, p5(Am — \n) = 0if n # m.
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PROOF MVT

Set

s(t) = *{5’(2(;0 — To)) + B(%(To T . t))}.

2
Then ¢s(t t), [T ws(t)dt = T+ 2%, and supp ;5 C [—6,0].

To+T 5 o] 5
/T (1) dtg/_ s (O[F(OF dt = 3 2 55(00m — M),

Here, ©5(Am — An) = 0if n £ m.  To prove the reverse inequality, use the
optimal minorant B_(x).
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FURTHER APPLICATIONS

Proporties of B can applied to obtain:

Bohr’s inequality

Hilbert’s inequality

u

m Erdés—Turan inequality
m Large sieve inequality
u

Berry—Esseen inequality
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FURTHER APPLICATIONS

Proporties of B can applied to obtain:
m Bohr’s inequality

Hilbert’s inequality

u

m Erdés—Turan inequality
m Large sieve inequality
u

Berry—Esseen inequality

Solutions for other s(x): applied in estimates for Riemann zeta ((s).
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ASYMMETRIC BEURLING—SELBERG

Letn € (0,1). Forg € L, set
Z,(9) = (1 —77)/ g+(X)dX+n/ g-(x)dx.

—0o0

Here g, (x) = max{g(x), 0}, g (x) = max{—g(x),0}.
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ASYMMETRIC BEURLING—SELBERG

Letn € (0,1). Forg € L, set

o0 o0

In(g)—(1—n)/ g+(X)dx+n/ g (x)dx.

—0o0 —0o0

Here g, (x) = max{g(x), 0}, g (x) = max{—g(x),0}.

Let again s € L,... We call the asymmetric Beurling—Selberg problem for
s(x) the problem of minimizing Z,,(s — G) among G € Ep.
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ASYMMETRIC BEURLING—SELBERG

Letn € (0,1). Forg € L, set

o0 o0

g+(x)dx +1n / g-(x) dx.

—0o0

7@~ (- |

—0o0

Here g, (x) = max{g(x), 0}, g (x) = max{—g(x),0}.

Let again s € L,... We call the asymmetric Beurling—Selberg problem for
s(x) the problem of minimizing Z,,(s — G) among G € Ep.

Case 7 = 1/2 corresponds to best approximation problem.
Limits 7 — 0 or 1 correspond to majorants or minorants (Beurling—Selberg
problem)?
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GENERALITIES

Suppose there exists G € Eor NS’ withs — G € L'. Then

P = §|R\[—27T,27T] € CO(R\ [_27T’ 27T])'
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GENERALITIES

Suppose there exists G € Eor NS’ withs — G € L'. Then

P = §|R\[—27T,27T] € CO(R\ [_27T’ 27T])'

Equivalent problem: given ¢ € Co(R \ [—2m, 27]), minimize Z,(g) among
alge Ll'withg =ponR\ [-27,27] (g =5 — G).
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GENERALITIES

Suppose there exists G € E,; NS’ withs — G € L'. Then
¢ = 8|g\[-2r2x] € Co(R\ [-2m, 27]).

Equivalent problem: given ¢ € Co(R \ [—2m, 27]), minimize Z,(g) among
alge Ll'withg=ponR\ [-2m,271] (g =5— G).

Using compactness argument:

Proposition (B., Debruyne, Vindas, 2025)

Letp € Co(R \ [—2m,27]). If there exists an extrapolation g, then there
exists an n-minimal extrapolation.
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DUAL PROBLEM
For h € L*°, set
. > 11+ lloo 1=l
Z;(h) == sup / 9(x)h(x) dx = max{ , = .

gel' J—oo 1—1n n
In(g)=1
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DUAL PROBLEM
For h € L®°, set

> h h_
L= s | g(x)h(x)dx:max{’—'1+_”oo,‘—' ”oo}.
gel' J—oo n n
Zy(g)=1

Using Hahn—Banach:

Proposition (B., Debruyne, Vindas, 2025)

Letf € L'. Thent is an n-minimal extrapolation of itself (i.e. of
TR\ [—2r2x)) if and only if there is Xo € L with

Z,(x0) =1, suppXo C R\ (—2m,2m),
7,00 = | el dx

—00
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DUAL PROBLEM

Theorem (B., Debruyne, Vindas, 2025)

Letf € L'. Then

o0
min T,(g) = max / f(x)xo(x) dx.
QGL: Ty (x0)=1 —00
IR\ [—2r 2n] =R\ [—27 2n] supp XoCR\ (—2m,2m)
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OBSERVATIONS

If f only vanishes on a null set, then Z(xo) = 1 and
Z,(f) = 72 f(x)xo(x) dx forces

—n  iff(x) <O,

1—n iff(x) >0,
Xo(x) = { g () for almost every x.
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OBSERVATIONS

If f only vanishes on a null set, then Z(xo) = 1 and
Z,(f) = 72 f(x)xo(x) dx forces

1—n iff(x) >0,
Xo(x) = { g () for almost every x.

—n  iff(x) <O,

In this case, f is an n-minimal extrapolation
<= suppXxo C R\ (—2m,2n).
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OBSERVATIONS

If f only vanishes on a null set, then Z(xo) = 1 and
Z,(f) = 72 f(x)xo(x) dx forces

1—n iff(x) >0,
Xo(x) = { g () for almost every x.

—n  iff(x) <O,

In this case, f is an n-minimal extrapolation
<= suppXxo C R\ (—2m,2n).

If xo0(x) is 1-periodic with zero mean, then supp xo C R \ (—27, 27).

15/24



GENERAL ANSATZ

Lets € L},.. We want to find the minimizer of Z,,(s — G) among G € Ep.
m Consider the dual problem. Anticipate that a solution is given by a
translate of
1—n ifxelo,n)+2Z,
XU(X) = .
—-n ifxen1)+Z.
Note that Z,s(x;;) = 1 and supp X, € R\ (=27, 27).
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GENERAL ANSATZ
Lets € L},.. We want to find the minimizer of Z,,(s — G) among G € Ep.
m Consider the dual problem. Anticipate that a solution is given by a
translate of
1—n ifxelo,n)+2Z,
XU(X) = .
—-n ifxen1)+Z.
Note that Z,s(x;;) = 1 and supp X, € R\ (=27, 27).
m Maximize

/ T (x + Ds(x) dx.

—00
Suppose maximum is attained for t = f,.
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GENERAL ANSATZ

Lets € L},.. We want to find the minimizer of Z,,(s — G) among G € Ep.

m Consider the dual problem. Anticipate that a solution is given by a
translate of
1—n ifxelo,n)+2Z,
XU(X) = .
—-n ifxen1)+Z.

Note that Z,s(x;;) = 1 and supp X, € R\ (=27, 27).
m Maximize
o0
/ Xn(x + t)s(x) dx.
—0o0
Suppose maximum is attained for t = f,.
m Construct F € E,,; by interpolating s at the points —ty + Z,
—1g + n + Z.
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GENERAL ANSATZ

Lets € L},.. We want to find the minimizer of Z,,(s — G) among G € Ep.
m Consider the dual problem. Anticipate that a solution is given by a
translate of
1—n ifxelo,n)+2Z,
XU(X) = .
—-n ifxen1)+Z.
Note that Z,s(x;;) = 1 and supp X, € R\ (=27, 27).
m Maximize
[o.¢]
/ Xn(x + t)s(x) dx.
—00
Suppose maximum is attained for t = f,.
m Construct F € E,,; by interpolating s at the points —ty + Z,

—t0‘|‘77+Z
m Verify that a.e.
>0 ifx € (—ty, —t 7,
s(x) — F(x) € (o, —lo+m) +
<0 ifxe(—to+n—ty+1)+2Z.

16/24



SOLUTION FOR §(x) = sgn x

Following the above steps, we maximize

—0o0

Here, X(_1) is the primitive with mean zero. The maximum is attained at
t=1t =0.

/ Xn(x +t)sgnxdx = — / X,(7_1)(X + t)dsgn x = —2x,(7_1)(t).
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SOLUTION FOR §(x) = sgn x

Following the above steps, we maximize

/ Xn(x +t)sgnxdx = — / X,(7_1)(X + t)dsgn x = —2x,(7_1)(t).

—0o0

Here, X(_1) is the primitive with mean zero. The maximum is attained at
t =ty = 0. Hence we set

So(x) = — sin(mx) sin(7(x — 77))

msin(7n)
- sgn k sgn k 1—2n 1
Fn(Z)—So,n(Z)(kZﬂ<z—k_z—(k—i—n))+ z _2—77>.
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SOLUTION FOR §(x) = sgn x

Following the above steps, we maximize

—0o0

Here, X(_1) is the primitive with mean zero. The maximum is attained at
t =ty = 0. Hence we set

_sin(mx) sin(m(x — 7))
msin(mn)

E]

Son(x) =

/ Xn(x +t)sgnxdx = — / X,(7_1)(X + t)dsgn x = —2x,(7_1)(t).

- sgn k sgn k 1—2n 1
Fn(z)—so,n(z)(z(z_k —Z_(Hn)) TR 2_77)-

k0

Via Euler-Maclaurin summation, one may check that sgn x — F(x)
displays the correct sign pattern.

17/24



UNIQUENESS

For a, b € Rwith a— b ¢ Z, we set S,(x) trig polynomial vanishing at
a+ 7, b+ Z, with derivative +1 resp. —1:

_sin(m(x — a))sin(7(x — b))

Sap(x) = wsin(m(b — a))

18/24



UNIQUENESS

For a, b € R with a— b ¢ Z, we set S, (x) trig polynomial vanishing at
a+ 7, b+ Z, with derivative +1 resp. —1:
sin(m(x — a)) sin(w(x — b))
mwsin(m(b — a))

Sa’b(X) =

If G € Eoy with Glg € L2(R), then

6(2) = 5u(2) Z( G(a+ k) G(b + k) )

KkEZ

z—(a+k) z—(b+k)

18/24



ASYMMETRIC IK

Theorem (Asymmetric finite form of Ingham—Karamata, B.,

Debruyne, Vindas, 2025)

LetT : (0,00) — R be differentiable with —N < 7'(x) < M. Suppose
that L{7; s} = [° T(x)e™** dx converges for Re s > 0 and admits
continuous extension to a segment [—i\, i\] for some A > 0. Then

lim sup|7(x)| < - L
X—00 a A(M + N)

Moreover, the above constant is sharp.
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ASYMMETRIC IK

Theorem (Asymmetric finite form of Ingham—Karamata, B.,

Debruyne, Vindas, 2025)

LetT : (0,00) — R be differentiable with —N < 7'(x) < M. Suppose
that L{7; s} = [° T(x)e™** dx converges for Re s > 0 and admits
continuous extension to a segment [—i\, i\] for some A > 0. Then

lim sup|7(x)| < - L
X—00 a A(M + N)

Moreover, the above constant is sharp.

The proof is as before, now utilizing F;)(x) with ) = M.
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ASYMMETRIC IK

Theorem (Asymmetric finite form of Ingham—Karamata, B.,

Debruyne, Vindas, 2025)

LetT : (0,00) — R be differentiable with —N < 7'(x) < M. Suppose
that L{7; s} = [° T(x)e™** dx converges for Re s > 0 and admits
continuous extension to a segment [—1\,i)] for some X\ > 0. Then

lim sup|7(x)| < - L
X—00 B A(M+ N)

Moreover, the above constant is sharp.

The proof is as before, now utilizing F;)(x) with ) = M.
Note that we recover the symmetric and one-sided forms by taking N = M
and N — oo respectively (7 = 1/2and n — 0).

19/24



THE SIGNED POWERS

We also consider s(x) = x"sgn x/n!, n € N. Same ansatz: maximize

> x"sgn x
/ Xn(x +1) gl dx.
oo n!
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THE SIGNED POWERS
We also consider s(x) = x"sgn x/n!, n € N. Same ansatz: maximize
/ Xn(x + t))(iﬂ dx.

The maximum is attained at t, = HT" ifn=1mod4, 1t = ifn=3mod
4. In case n > 0 even, the maximum is attained at a certain point related to
Bernoulli functions, but having no explicit expression.
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THE SIGNED POWERS

We also consider s(x) = x"sgn x/n!, n € N. Same ansatz: maximize

> x"sgn x
/ Xn(x +1) ng' dx.

—00

The maximum is attained at t, = HT" ifn=1mod4, 1t = ifn=3mod
4. In case n > 0 even, the maximum is attained at a certain point related to
Bernoulli functions, but having no explicit expression.

The solution is given by interpolating s(x) at the points —ty + Z,
—ty + 1 + Z, and by prescribing the correct derivatives at z = 0:

Fn’”(z) = S—fo,—fo-l-?l(z)%: (Z( Sgn(k — tO) — Sgn(k +n - tO) >

= z—(k—t)) z—(k+n—1)

a a
+1+~-+Z>.
V4 V4

20/24




ASYMMETRIC IK

Theorem

Let T : (0,00) — R be n times differentiable with —N < 7(")(x) < M.
Suppose that L{T; s} = [~ T(x)e™** dx converges for Re s > 0 and
admits continuous extension to a segment [—i\, 1\] for some A > 0.
Then there are sharp constants c,(M, N), C,(M, N) so that
M, N _ : Cn(M, N
—Ln) <liminf7(x) < limsup7(x) < (M. N)

A X—00 G0 A7
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ASYMMETRIC IK

Let T : (0,00) — R be n times differentiable with —N < 7(")(x) < M.
Suppose that L{T; s} = [~ T(x)e™** dx converges for Re s > 0 and
admits continuous extension to a segment [—i\, 1\] for some A > 0.
Then there are sharp constants c,(M, N), C,(M, N) so that
cn(M, N .. . Cn(M, N
—"(—n) <liminf7(x) < limsup7(x) < (M. N)

A X=rCO X—$00 A?

One always has c,(M, N) = Cn(N, M).
If nis even, then c,(M, N) = C,(M, N)
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THE LIMIT CASE

It holds that

7|7il>no Fno(z) = B(2).
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THE LIMIT CASE

It holds that

#Lno Fno(z) = B(2).

Similarly,

lim Fyo(2) = B(2),

where B,(z) is the optimal majorant of x” sgn x/n!, first found by Littmann
(2006).
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QUESTIONS?
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