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GENERAL DIRICHLET SERIES

Frequency:

(λ) = (λk)k , 0 ≤ λ1 < λ2 < ... , λk → ∞.

General Dirichlet series

D(s) =
∞∑

k=1

ak e−λk s, ak ∈ C.

Ordinary Dirichlet series:
∑

k ak k−s, (λ) = (log k)k≥1.
Power series:

∑
k ak e−ks =

∑
k ak zk (z = e−s), (λ) = (k)k≥0
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BOHR’S THEOREM
Abscissas:

σc = inf{σ : D(s) converges on Re s > σ},

σu = inf{σ : D(s) converges uniformly on Re s > σ},

σa = inf{σ : D(s) converges absolutely on Re s > σ}.

Clearly σc ≤ σu ≤ σa, and D(s) is bounded on {Re s ≥ σu + ε}.

Theorem (Bohr)

Suppose that

λk+1 − λk ≫ e−cλk+1 , for some c > 0. (BC)

If D(s) =
∑

k ak e−λk s converges somewhere, and the limit function has
bounded analytic extension to {Re s > 0}, then σu ≤ 0.
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BEURLING NUMBER SYSTEMS

Beurling generalized primes and integers: (P ,N ).

P = (pj)j≥1, 1 < p1 ≤ p2 ≤ ... , pj → ∞;

N = (nk)k≥0, 1 = n0 < n1 ≤ n2 ≤ ... , nk = pα1
1 · · · p

αj
j .

Counting functions:

πP(x) = #{pj ≤ x}, NP(x) = #{nk ≤ x}.

Associated frequency: (λ) = (log nk)k

Beurling zeta function

ζP(s) =
∞∑

k=0

1

ns
k
=

∞∏
j=1

1

1 − p−s
j

.
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SYSTEMS WITH BOHR’S THEOREM

Theorem (B., Kouroupis, Perfekt)

There exist Beurling number systems (P ,N ) such that
1 πP(x) = Li(x) + O(1);

2 NP(x) = ax + Oε(x1/2+ε), for some a > 0 and all ε > 0;

3 λ = (log nk)k satisfies (BC).

In particular, RH and Bohr’s theorem both hold.
ζP(s) has analytic continuation to Re s > 0, except for simple pole with
residue a at s = 1. ζP(s) has no zeros and is of zero order for σ > 1/2:
ζP(σ + it) ≪ tε for all ε > 0.
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PROOF SKETCH
Let qj be such that Li(qj) = j . Then d Li|[qj−1,qj ] is a probability measure. We
choose pj randomly from [qj−1, qj ] with this distribution.

By construction,
πP(x) = Li(x) + O(1).

To ensure that power saving for N , we pass through the zeta function. Now

ζP(s) =
∑

k

1

ns
k
=

∏
j

1

1 − p−s
j

.

We consider the events

AJ,m =

{
(p1, p2, ... ) :

∣∣∣ J∑
j=1

p−im
j −

∫ qJ

1
u−imd Li(u)

∣∣∣ ≥ CJ,m

}
.

If CJ,m are chosen such that
∑

J,m P(AJ,m) < ∞, then by Borel–Cantelli,
with probability 1 only finitely many AJ,m occur.
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PROOF SKETCH CONTINUED

To ensure sufficiently large gaps between the generalized integers, we follow
a similar strategy.
We consider sets MJ(p1, p2, ... , pJ−1), which is “forbidden” for pJ , given the
choice of the first J − 1 Beurling primes p1, ... , pJ−1.

We set
BJ =

{
(p1, p2, ... ) : pJ ∈ MJ(p1, ... , pJ−1)

}
.

Again we show that
∑

J P(BJ) < ∞.
By Borel–Cantelli, with probability 1 only finitely many BJ occur. If only
BJ1 , ... , BJN occur, we delete the corresponding primes:

P̃ = P \ {pJ1 , ... , pJN}.
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HARDY SPACES

For power series: H∞(D) ∼= H∞(T).

What about general Dirichlet series?
We set
H∞

N = {D(s) =
∑

k ak n−s
k : convergent and bounded on Re s > 0}.

Normed space when equipped with sup-norm.
Can we see this as a space from harmonic analysis?
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BOHR’S POINT OF VIEW

With each prime pj , we associate an independent complex variable zj = p−s
j .

If n = pα1
1 · · · pαJ

J , then n−s = zα1
1 · · · zαJ

J .

Dirichlet series ↔ power series in ∞ variables:

∞∑
n=1

an

ns
↔

∑
α∈N(∞)

cαzα,

cα = an if n = pα1
1 pα2

2 · · ·

N(∞) ⊆ Z(∞) = T̂∞.
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HARDY SPACES

H∞(T∞) = {f ∈ L∞(T∞) : supp f̂ ⊆ N(∞)}.

Theorem (Defant, Schoolmann)

B : H∞
N → H∞(T∞) : D(s) =

∑
k

ak n−s
k 7→ f ∼

∑
α

cαzα,

with cα = ak if nk = pα1
1 pα2

2 · · · is a well-defined isometric imbedding. It
is surjective if and only if Bohr’s theorem holds for the frequency
(λ) = (log nk)k .
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QUESTIONS?
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