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GENERAL DIRICHLET SERIES

Frequency:
()\) = ()\k)k’ 0< )\1 < )\2 < .., >\k — OQ.

General Dirichlet series

o0
D(s) = Z axe ™M, a cC.
k=1
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GENERAL DIRICHLET SERIES

Frequency:
()\) = ()\k)k, 0< )\1 < )\2 < .., >\k — OQ.

General Dirichlet series
o0
D(s) = Z axe ™M, a cC.
k=1

Ordinary Dirichlet series: ), axk ™%, (A) = (log k)x>1-

Power series: >, axe " = >, akz¥ (z = €7%), (\) = (k)k>o0
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BOHR’S THEOREM

Abscissas:

o = inf{o : D(s) converges on Res > o},
o, = inf{o : D(s) converges uniformly on Res > o},

0, = inf{o : D(s) converges absolutely on Res > o}.
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Abscissas:
oc = inf{o : D(s) converges on Res > o},
o, = inf{o : D(s) converges uniformly on Res > o},
04 = inf{o : D(s) converges absolutely on Res > o}.

Clearly o, < 0, < 04, and D(s) is bounded on {Res > o, + ¢}.

Theorem (Bohr)

IfD(s) = ), a.n—° converges somewhere, and the limit function has
bounded analytic extension to {Re s > 0}, then o, < 0.
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BOHR’S THEOREM

Abscissas:

o = inf{o : D(s) converges on Res > o},
oy = inf{o : D(s) converges uniformly on Res > o},

0, = inf{o : D(s) converges absolutely on Res > o}.

Clearly o, < 0, < 04, and D(s) is bounded on {Res > o, + ¢}.

Theorem (Bohr)
Suppose that

Ak1 — Ak > e M+ for some ¢ > 0. (BC)

IfD(s) = 3", ake~*** converges somewhere, and the limit function has
bounded analytic extension to {Re s > 0}, then o, < 0.
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BEURLING NUMBER SYSTEMS

Beurling generalized primes and integers: (P, ).
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Beurling generalized primes and integers: (P, \).

P=(p)p>, 1<pr<p<.., Py — 00;
Qi

N = (n)i>o, 1T=n <n <<, nkZP?1"'Pj-
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BEURLING NUMBER SYSTEMS

Beurling generalized primes and integers: (P, ).

P:(pf)/21’ 1<pr<p< ., pj — 00;
Qi

N:(”k)kzo, 1=n<n<n<..., nk:pfh..pj_
Counting functions:

Tp(x) = #{p < X} Np(x) = #{n < x).
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BEURLING NUMBER SYSTEMS

Beurling generalized primes and integers: (P, ).

P:(pf)/21’ 1<pr<p< ..., pj — 00;
N = (n)ezo, T=n<m<nmn< ., nk:P?1"‘p/l‘1j.

Counting functions:
mp(x) = #{p < x}, Np(x) = #{n < x}.

Associated frequency: (\) = (log nk)«
Beurling zeta function

DI

k=0 111—p]
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SYSTEMS WITH BOHR’S THEOREM

Theorem (B., Kouroupis, Perfekt)

There exist Beurling number systems (P, N) such that
mp(x) = Li(x) + O(1);
Np(x) = ax + O-(x'/2*¢), for some a > 0 and all e > 0;
A = (log nk ) satisfies (BC).
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SYSTEMS WITH BOHR’S THEOREM

Theorem (B., Kouroupis, Perfekt)

There exist Beurling number systems (P, N) such that
mp(x) = Li(x) + O(1);
Np(x) = ax + O-(x'/2*¢), for some a > 0 and all e > 0;
A = (log nk ) satisfies (BC).

In particular, RH and Bohr’s theorem both hold.

(p(s) has analytic continuation to Re s > 0, except for simple pole with
residue aat s = 1. {p(s) has no zeros and is of zero order for o > 1/2:
(p(o+it) < t=foralle > 0.
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PROOF SKETCH

Let g; be such that Li(q;) = j. Then d Li[[,_, 4] is @ probability measure. We
choose p; randomly from [gj—+, g;] with this distribution.
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PROOF SKETCH
Let g; be such that Li(q;) = j. Then d Li[[,_, 4] is @ probability measure. We
choose p; randomly from [q,-,1, q,-] with this distribution.

By construction,
mp(x) = Li(x) + O(1).

To ensure that power saving for A/, we pass through the zeta function. Now
1

1
@)= 0 —H s
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PROOF SKETCH
Let g; be such that Li(q;) = j. Then d Li[[,_, 4] is @ probability measure. We
choose p; randomly from [q,-,1, q,-] with this distribution.

By construction,
mp(x) = Li(x) + O(1).

To ensure that power saving for A/, we pass through the zeta function. Now
1

1
we)=> <s=l—==
Ny ; 1—p
We consider the events

o W
AJ,m = {(p1,p2, ) . ‘ij_lm —/ U_’md LI(U)’ Z CJ’m}.
j=1 !
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PROOF SKETCH
Let g; be such that Li(q;) = j. Then d Li[[,_, 4] is @ probability measure. We
choose p; randomly from [q,-,1, q,-] with this distribution.

By construction,
mp(x) = Li(x) + O(1).

To ensure that power saving for A/, we pass through the zeta function. Now
1

1
(p(s)=) —= —-
Zk: i H 1=p°
We consider the events
o @
A = {(p1,p2,...) : ‘pr’m —/ u—mg Ll(u)’ > CJ,,,,}.
j=1 !

If C;m are chosen such that ) -, - P(A,n) < oo, then by Borel-Cantelli,
with probability 1 only finitely many A, ,, occur.
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PROOF SKETCH CONTINUED

To ensure sufficiently large gaps between the generalized integers, we follow

a similar strategy.
We consider sets M (p1, p2, ... , Ps—1), Which is “forbidden” for p,, given the
choice of the first J — 1 Beurling primes py, ..., py—1.
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a similar strategy.
We consider sets M (p1, p2, ... , Ps—1), Which is “forbidden” for p,, given the
choice of the first J — 1 Beurling primes py, ..., py—1.
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PROOF SKETCH CONTINUED

To ensure sufficiently large gaps between the generalized integers, we follow
a similar strategy.
We consider sets M (p1, p2, ... , Ps—1), Which is “forbidden” for p,, given the
choice of the first J — 1 Beurling primes py, ..., py—1.
We set

By = {(p1.p2,...) : ps € My(p1,....Ps—1)}.

Again we show that ) |, P(B,) < oc.
By Borel-Cantelli, with probability 1 only finitely many B, occur. If only
By, ..., By, occur, we delete the corresponding primes:

B =P\ {os. P}
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HARDY SPACES

For power series: H°(ID) = H>°(T).
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HARDY SPACES

For power series: H°(ID) = H>°(T).

What about general Dirichlet series?

We set
HR? = {D(s) = >, any ° : convergent and bounded on Res > 0}.

Normed space when equipped with sup-norm.
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HARDY SPACES

For power series: H°(ID) = H>°(T).

What about general Dirichlet series?

We set

HR? = {D(s) = >, any ° : convergent and bounded on Res > 0}.
Normed space when equipped with sup-norm.

Can we see this as a space from harmonic analysis?
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BOHR’S POINT OF VIEW

With each prime p;, we associate an independent complex variable z; = pj_s.

lfn=p .- pf thenn=s =z ... 25"
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BOHR’S POINT OF VIEW

With each prime p;, we associate an independent complex variable z; = pj_s.
lfn=p---pf thenn° =2z .. z3".
Dirichlet series <+ power series in 0o variables:

Co =ap, if n=p{py?---
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BOHR’S POINT OF VIEW

With each prime p;, we associate an independent complex variable z; = pj_s.
lfn=p---pf thenn° =2z .. z3".
Dirichlet series <+ power series in 0o variables:

Co =ap, if n=p{py?---

N(®) ¢ 7() — Too,
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HARDY SPACES

H®(T>) = {f € L>°(T*) : suppf C N(®}.
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HARDY SPACES
H®(T>) = {f € L>°(T*) : suppf C N(®}.

Theorem (Defant, Schoolmann)

B:HFF — H®(T™) : D(s) = Z agny S f ~ Z caz?,
k a

with ¢, = ay if ng = py' py? - - - is a well-defined isometric imbedding. It
is surjective if and only if Bohr's theorem holds for the frequency
()\) = (|Og nk)k.
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