BMS Young Scholar Day, 20 December 2023

BOHR'S THEOREM FOR
 BEURLING INTEGER SYSTEMS

Frederik Broucke — fabrouck.broucke@ugent.be

General Dirichlet series

Frequency:

$$
(\lambda)=\left(\lambda_{k}\right)_{k}, \quad 0 \leq \lambda_{1}<\lambda_{2}<\ldots, \quad \lambda_{k} \rightarrow \infty
$$

General Dirichlet series

$$
D(s)=\sum_{k=1}^{\infty} a_{k} e^{-\lambda_{k} s}, \quad a_{k} \in \mathbb{C}
$$

General Dirichlet series

Frequency:

$$
(\lambda)=\left(\lambda_{k}\right)_{k}, \quad 0 \leq \lambda_{1}<\lambda_{2}<\ldots, \quad \lambda_{k} \rightarrow \infty
$$

General Dirichlet series

$$
D(s)=\sum_{k=1}^{\infty} a_{k} e^{-\lambda_{k} s}, \quad a_{k} \in \mathbb{C}
$$

Ordinary Dirichlet series: $\sum_{k} a_{k} k^{-s},(\lambda)=(\log k)_{k \geq 1}$.

General Dirichlet series

Frequency:

$$
(\lambda)=\left(\lambda_{k}\right)_{k}, \quad 0 \leq \lambda_{1}<\lambda_{2}<\ldots, \quad \lambda_{k} \rightarrow \infty .
$$

General Dirichlet series

$$
D(s)=\sum_{k=1}^{\infty} a_{k} e^{-\lambda_{k} s}, \quad a_{k} \in \mathbb{C}
$$

Ordinary Dirichlet series: $\sum_{k} a_{k} k^{-s},(\lambda)=(\log k)_{k \geq 1}$.
Power series: $\sum_{k} a_{k} e^{-k s}=\sum_{k} a_{k} z^{k}\left(z=e^{-s}\right),(\lambda)=(k)_{k \geq 0}$

BOHR'S THEOREM

Abscissas:

$$
\begin{aligned}
& \sigma_{c}=\inf \{\sigma: D(s) \text { converges on } \operatorname{Re} s>\sigma\}, \\
& \sigma_{u}=\inf \{\sigma: D(s) \text { converges uniformly on } \operatorname{Re} s>\sigma\} \\
& \sigma_{a}=\inf \{\sigma: D(s) \text { converges absolutely on } \operatorname{Re} s>\sigma\} .
\end{aligned}
$$

BOHR'S THEOREM

Abscissas:

$$
\begin{aligned}
& \sigma_{c}=\inf \{\sigma: D(s) \text { converges on } \operatorname{Re} s>\sigma\}, \\
& \sigma_{u}=\inf \{\sigma: D(s) \text { converges uniformly on } \operatorname{Re} s>\sigma\} \\
& \sigma_{a}=\inf \{\sigma: D(s) \text { converges absolutely on } \operatorname{Re} s>\sigma\} .
\end{aligned}
$$

Clearly $\sigma_{c} \leq \sigma_{u} \leq \sigma_{a}$, and $D(s)$ is bounded on $\left\{\operatorname{Re} s \geq \sigma_{u}+\varepsilon\right\}$.

BOHR'S THEOREM

Abscissas:

$$
\begin{aligned}
& \sigma_{c}=\inf \{\sigma: D(s) \text { converges on } \operatorname{Re} s>\sigma\}, \\
& \sigma_{u}=\inf \{\sigma: D(s) \text { converges uniformly on } \operatorname{Re} s>\sigma\}, \\
& \sigma_{a}=\inf \{\sigma: D(s) \text { converges absolutely on } \operatorname{Re} s>\sigma\} .
\end{aligned}
$$

Clearly $\sigma_{c} \leq \sigma_{u} \leq \sigma_{a}$, and $D(s)$ is bounded on $\left\{\operatorname{Re} s \geq \sigma_{u}+\varepsilon\right\}$.

Theorem (Bohr)

If $D(s)=\sum_{n} a_{n} n^{-s}$ converges somewhere, and the limit function has bounded analytic extension to $\{\operatorname{Re} s>0\}$, then $\sigma_{u} \leq 0$.

BOHR'S THEOREM

Abscissas:

$$
\begin{aligned}
& \sigma_{c}=\inf \{\sigma: D(s) \text { converges on } \operatorname{Re} s>\sigma\}, \\
& \sigma_{u}=\inf \{\sigma: D(s) \text { converges uniformly on } \operatorname{Re} s>\sigma\} \\
& \sigma_{a}=\inf \{\sigma: D(s) \text { converges absolutely on } \operatorname{Re} s>\sigma\} .
\end{aligned}
$$

Clearly $\sigma_{c} \leq \sigma_{u} \leq \sigma_{a}$, and $D(s)$ is bounded on $\left\{\operatorname{Re} s \geq \sigma_{u}+\varepsilon\right\}$.

Theorem (Bohr)

Suppose that

$$
\begin{equation*}
\lambda_{k+1}-\lambda_{k} \gg e^{-c \lambda_{k+1}}, \quad \text { for some } c>0 \tag{BC}
\end{equation*}
$$

If $D(s)=\sum_{k} a_{k} e^{-\lambda_{k} s}$ converges somewhere, and the limit function has bounded analytic extension to $\{\operatorname{Re} s>0\}$, then $\sigma_{u} \leq 0$.

Beurling number systems

Beurling generalized primes and integers: $(\mathcal{P}, \mathcal{N})$.

Beurling number systems

Beurling generalized primes and integers: $(\mathcal{P}, \mathcal{N})$.

$$
\begin{array}{lll}
\mathcal{P}=\left(p_{j}\right)_{j \geq 1}, & 1<p_{1} \leq p_{2} \leq \ldots, & p_{j} \rightarrow \infty ; \\
\mathcal{N}=\left(n_{k}\right)_{k \geq 0}, & 1=n_{0}<n_{1} \leq n_{2} \leq \ldots, & n_{k}=p_{1}^{\alpha_{1}} \cdots p_{j}^{\alpha_{j}} .
\end{array}
$$

Beurling number systems

Beurling generalized primes and integers: $(\mathcal{P}, \mathcal{N})$.

$$
\begin{array}{lll}
\mathcal{P}=\left(p_{j}\right)_{j \geq 1}, & 1<p_{1} \leq p_{2} \leq \ldots, & p_{j} \rightarrow \infty ; \\
\mathcal{N}=\left(n_{k}\right)_{k \geq 0}, & 1=n_{0}<n_{1} \leq n_{2} \leq \ldots, & n_{k}=p_{1}^{\alpha_{1}} \cdots p_{j}^{\alpha_{j}}
\end{array}
$$

Counting functions:

$$
\pi_{\mathcal{P}}(x)=\#\left\{p_{j} \leq x\right\}, \quad N_{\mathcal{P}}(x)=\#\left\{n_{k} \leq x\right\}
$$

Beurling number systems

Beurling generalized primes and integers: $(\mathcal{P}, \mathcal{N})$.

$$
\begin{array}{lll}
\mathcal{P}=\left(p_{j}\right)_{j \geq 1}, & 1<p_{1} \leq p_{2} \leq \ldots, & p_{j} \rightarrow \infty ; \\
\mathcal{N}=\left(n_{k}\right)_{k \geq 0}, & 1=n_{0}<n_{1} \leq n_{2} \leq \ldots, & n_{k}=p_{1}^{\alpha_{1}} \cdots p_{j}^{\alpha_{j}} .
\end{array}
$$

Counting functions:

$$
\pi_{\mathcal{P}}(x)=\#\left\{p_{j} \leq x\right\}, \quad N_{\mathcal{P}}(x)=\#\left\{n_{k} \leq x\right\}
$$

Associated frequency: $(\lambda)=\left(\log n_{k}\right)_{k}$
Beurling zeta function

$$
\zeta_{\mathcal{P}}(s)=\sum_{k=0}^{\infty} \frac{1}{n_{k}^{s}}=\prod_{j=1}^{\infty} \frac{1}{1-p_{j}^{-s}} .
$$

Systems with Bohr's theorem

Theorem (B., Kouroupis, Perfekt)

There exist Beurling number systems $(\mathcal{P}, \mathcal{N})$ such that
$1 \pi_{\mathcal{P}}(x)=\mathrm{Li}(x)+O(1)$;
$2 N_{\mathcal{P}}(x)=a x+O_{\varepsilon}\left(x^{1 / 2+\varepsilon}\right)$, for some $a>0$ and all $\varepsilon>0$;
з $\lambda=\left(\log n_{k}\right)_{k}$ satisfies $(B C)$.

Systems with Bohr's theorem

Theorem (B., Kouroupis, Perfekt)

There exist Beurling number systems $(\mathcal{P}, \mathcal{N})$ such that
$1 \pi_{\mathcal{P}}(x)=\mathrm{Li}(x)+O(1)$;
$2 N_{\mathcal{P}}(x)=a x+O_{\varepsilon}\left(x^{1 / 2+\varepsilon}\right)$, for some $a>0$ and all $\varepsilon>0$;
3 $\lambda=\left(\log n_{k}\right)_{k}$ satisfies $(B C)$.
In particular, RH and Bohr's theorem both hold.
$\zeta_{\mathcal{P}}(s)$ has analytic continuation to $\operatorname{Re} s>0$, except for simple pole with residue a at $s=1 . \zeta_{\mathcal{P}}(s)$ has no zeros and is of zero order for $\sigma>1 / 2$: $\zeta_{\mathcal{P}}(\sigma+i t) \ll t^{\varepsilon}$ for all $\varepsilon>0$.

Proof sketch

Let q_{j} be such that $\operatorname{Li}\left(q_{j}\right)=j$. Then $d \mathrm{Li}_{\left[q_{j-1}, q_{j}\right]}$ is a probability measure. We choose p_{j} randomly from $\left[q_{j-1}, q_{j}\right]$ with this distribution.

Proof sketch

Let q_{j} be such that $\operatorname{Li}\left(q_{j}\right)=j$. Then $d \mathrm{Li}_{\left[q_{j-1}, q_{j}\right]}$ is a probability measure. We choose p_{j} randomly from $\left[q_{j-1}, q_{j}\right]$ with this distribution.
By construction,

$$
\pi_{\mathcal{P}}(x)=\operatorname{Li}(x)+O(1)
$$

Proof sketch

Let q_{j} be such that $\operatorname{Li}\left(q_{j}\right)=j$. Then $d \mathrm{Li}_{\left[q_{j-1}, q_{j}\right]}$ is a probability measure. We choose p_{j} randomly from $\left[q_{j-1}, q_{j}\right]$ with this distribution.
By construction,

$$
\pi_{\mathcal{P}}(x)=\operatorname{Li}(x)+O(1)
$$

To ensure that power saving for \mathcal{N}, we pass through the zeta function. Now

$$
\zeta_{\mathcal{P}}(s)=\sum_{k} \frac{1}{n_{k}^{s}}=\prod_{j} \frac{1}{1-p_{j}^{-s}}
$$

Proof sketch

Let q_{j} be such that $\operatorname{Li}\left(q_{j}\right)=j$. Then $d \mathrm{Li}_{\left[q_{j-1}, q_{j}\right]}$ is a probability measure. We choose p_{j} randomly from $\left[q_{j-1}, q_{j}\right]$ with this distribution.
By construction,

$$
\pi_{\mathcal{P}}(x)=\operatorname{Li}(x)+O(1)
$$

To ensure that power saving for \mathcal{N}, we pass through the zeta function. Now

$$
\zeta_{\mathcal{P}}(s)=\sum_{k} \frac{1}{n_{k}^{s}}=\prod_{j} \frac{1}{1-p_{j}^{-s}}
$$

We consider the events

$$
A_{J, m}=\left\{\left(p_{1}, p_{2}, \ldots\right):\left|\sum_{j=1}^{J} p_{j}^{-i m}-\int_{1}^{q_{J}} u^{-i m} d \operatorname{Li}(u)\right| \geq C_{J, m}\right\} .
$$

Proof sketch

Let q_{j} be such that $\operatorname{Li}\left(q_{j}\right)=j$. Then $d \mathrm{Li}_{\left[q_{j-1}, q_{j}\right]}$ is a probability measure. We choose p_{j} randomly from $\left[q_{j-1}, q_{j}\right]$ with this distribution.
By construction,

$$
\pi_{\mathcal{P}}(x)=\operatorname{Li}(x)+O(1)
$$

To ensure that power saving for \mathcal{N}, we pass through the zeta function. Now

$$
\zeta_{\mathcal{P}}(s)=\sum_{k} \frac{1}{n_{k}^{s}}=\prod_{j} \frac{1}{1-p_{j}^{-s}}
$$

We consider the events

$$
A_{J, m}=\left\{\left(p_{1}, p_{2}, \ldots\right):\left|\sum_{j=1}^{J} p_{j}^{-i m}-\int_{1}^{q_{J}} u^{-i m} d \operatorname{Li}(u)\right| \geq C_{J, m}\right\} .
$$

If $C_{J, m}$ are chosen such that $\sum_{J, m} P\left(A_{J, m}\right)<\infty$, then by Borel-Cantelli, with probability 1 only finitely many $A_{J, m}$ occur.

Proof sketch continued

To ensure sufficiently large gaps between the generalized integers, we follow a similar strategy.
We consider sets $\mathcal{M}_{J}\left(p_{1}, p_{2}, \ldots, p_{J-1}\right)$, which is "forbidden" for p_{J}, given the choice of the first $J-1$ Beurling primes p_{1}, \ldots, p_{J-1}.

PROOF SKETCH CONTINUED

To ensure sufficiently large gaps between the generalized integers, we follow a similar strategy.
We consider sets $\mathcal{M}_{J}\left(p_{1}, p_{2}, \ldots, p_{J-1}\right)$, which is "forbidden" for p_{J}, given the choice of the first $J-1$ Beurling primes p_{1}, \ldots, p_{J-1}.
We set

$$
B_{J}=\left\{\left(p_{1}, p_{2}, \ldots\right): p_{J} \in \mathcal{M}_{J}\left(p_{1}, \ldots, p_{J-1}\right)\right\}
$$

Proof sketch continued

To ensure sufficiently large gaps between the generalized integers, we follow a similar strategy.
We consider sets $\mathcal{M}_{J}\left(p_{1}, p_{2}, \ldots, p_{J-1}\right)$, which is "forbidden" for p_{J}, given the choice of the first $J-1$ Beurling primes p_{1}, \ldots, p_{J-1}.
We set

$$
B_{J}=\left\{\left(p_{1}, p_{2}, \ldots\right): p_{J} \in \mathcal{M}_{J}\left(p_{1}, \ldots, p_{J-1}\right)\right\}
$$

Again we show that $\sum_{J} P\left(B_{J}\right)<\infty$.
By Borel-Cantelli, with probability 1 only finitely many B_{J} occur. If only $B_{J_{1}}, \ldots, B_{J_{N}}$ occur, we delete the corresponding primes:

$$
\tilde{\mathcal{P}}=\mathcal{P} \backslash\left\{p_{\mathcal{J}_{1}}, \ldots, p_{J_{N}}\right\}
$$

Hardy spaces

For power series: $H^{\infty}(\mathbb{D}) \cong H^{\infty}(\mathbb{T})$.

Hardy spaces

For power series: $H^{\infty}(\mathbb{D}) \cong H^{\infty}(\mathbb{T})$.
What about general Dirichlet series?
We set
$\mathcal{H}_{\mathcal{N}}^{\infty}=\left\{D(s)=\sum_{k} a_{k} n_{k}^{-s}:\right.$ convergent and bounded on $\left.\operatorname{Re} s>0\right\}$. Normed space when equipped with sup-norm.

HaRdY spaces

For power series: $H^{\infty}(\mathbb{D}) \cong H^{\infty}(\mathbb{T})$.
What about general Dirichlet series?
We set
$\mathcal{H}_{\mathcal{N}}^{\infty}=\left\{D(s)=\sum_{k} a_{k} n_{k}^{-s}\right.$: convergent and bounded on $\left.\operatorname{Re} s>0\right\}$. Normed space when equipped with sup-norm.
Can we see this as a space from harmonic analysis?

BOHR'S POINT OF VIEW

With each prime p_{j}, we associate an independent complex variable $z_{j}=p_{j}^{-s}$. If $n=p_{1}^{\alpha_{1}} \cdots p_{J}^{\alpha_{J}}$, then $n^{-s}=z_{1}^{\alpha_{1}} \cdots z_{J}^{\alpha_{J}}$.

BOHR'S POINT OF VIEW

With each prime p_{j}, we associate an independent complex variable $z_{j}=p_{j}^{-s}$. If $n=p_{1}^{\alpha_{1}} \cdots p_{J}^{\alpha_{J}}$, then $n^{-s}=z_{1}^{\alpha_{1}} \cdots z_{J}^{\alpha_{J}}$.
Dirichlet series \leftrightarrow power series in ∞ variables:

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}} \leftrightarrow \sum_{\alpha \in \mathbb{N}(\infty)} c_{\alpha} z^{\alpha}, \\
c_{\alpha}=a_{n} \quad \text { if } \quad n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots
\end{gathered}
$$

BOHR'S POINT OF VIEW

With each prime p_{j}, we associate an independent complex variable $z_{j}=p_{j}^{-s}$. If $n=p_{1}^{\alpha_{1}} \cdots p_{J}^{\alpha_{J}}$, then $n^{-s}=z_{1}^{\alpha_{1}} \cdots z_{J}^{\alpha_{J}}$.
Dirichlet series \leftrightarrow power series in ∞ variables:

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}} \leftrightarrow \sum_{\alpha \in \mathbb{N}^{(\infty)}} c_{\alpha} z^{\alpha}, \\
c_{\alpha}=a_{n} \quad \text { if } \quad n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots \\
\mathbb{N}^{(\infty)} \subseteq \mathbb{Z}^{(\infty)}=\widehat{\mathbb{T}^{\infty}} .
\end{gathered}
$$

Hardy spaces

$$
H^{\infty}\left(\mathbb{T}^{\infty}\right)=\left\{f \in L^{\infty}\left(\mathbb{T}^{\infty}\right): \operatorname{supp} \hat{f} \subseteq \mathbb{N}^{(\infty)}\right\} .
$$

HaRdy spaces

$$
H^{\infty}\left(\mathbb{T}^{\infty}\right)=\left\{f \in L^{\infty}\left(\mathbb{T}^{\infty}\right): \operatorname{supp} \hat{f} \subseteq \mathbb{N}^{(\infty)}\right\} .
$$

Theorem (Defant, Schoolmann)

$$
\mathcal{B}: \mathcal{H}_{\mathcal{N}}^{\infty} \rightarrow H^{\infty}\left(\mathbb{T}^{\infty}\right): D(s)=\sum_{k} a_{k} n_{k}^{-s} \mapsto f \sim \sum_{\alpha} c_{\alpha} z^{\alpha},
$$

with $c_{\alpha}=a_{k}$ if $n_{k}=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots$ is a well-defined isometric imbedding. It is surjective if and only if Bohr's theorem holds for the frequency $(\lambda)=\left(\log n_{k}\right)_{k}$.

QUESTIONS?

