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Basic example: Riemann zeta function
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BOHR’S THEOREM

f(s) = S0 ann
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0, = inf{o : f(s) converges absolutely on Res > o}.
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BOHR’S THEOREM

f(s) =202y ann °

oc = inf{o : f(s) converges on Res > o},
o, = inf{o : f(s) converges uniformly on Res > o},

0, = inf{o : f(s) converges absolutely on Res > o}.

Clearly o, < 0, < 0,, and f(s) is bounded on {Re s > o, + ¢}.

Theorem (Bohr)

Iff(s) = > .2, a,n~° converges somewhere, and the limit function has
bounded analytic extension to {Re s > 0}, then o, < 0.
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BOHR’S POINT OF VIEW

For each prime p;, write z; = pj_s. Bohr: z’s act as independent variables.
Fundamental theorem of arithmetic = log p; linearly independent over Q.

Kronecker’s theorem yields:

oo
:Z\af\-

j=1

o
Z g
sup s
Re s>0 p;

J=1

lfn=p---p’ thenn=s =z" ... 25",

Pis) = 2 BP)2) =Y caz®,

Co=ap it n=ppy?---

sup ’P(s)‘ = sup’P(z)‘
Re s>0 zel?
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HILBERT SPACE H?

oo an oo
H? = {f(s) = Z = Z|an]2 < oo}.
n=1 n=1

Hilbert space with (f, g) = >, anby.
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HILBERT SPACE H?

2 _ _Ooﬂ.oo 2
H —{f(s)— ns.2|an] <oo}.

n=1 n=1
Hilbert space with (f, g) = > ", anby.
By Cauchy—Schwarz, f(s) converges and is holomorphic on Re s > 1/2.

o0

Reproducing kernel is (s + W) = 0%, =2 (£(s), {(s + W)) = f(w).

6/26



HILBERT SPACE H?

2 _ _Ooﬂ.oo 2
H —{f(s)— ns.2|anl <oo}.

n=1 n=1
Hilbert space with (f, g) = > ", anby.

By Cauchy—Schwarz, f(s) converges and is holomorphic on Re s > 1/2.

Reproducing kernel is (s + W) = 0%, =2 (£(s), {(s + W)) = f(w).

H?2 is the closure of {P(s) = >_N_, a,n~°}, w.r.t norm

] T 1/2 N 1/2
- . o .\ |2 o 2
1P|, = (Th_)moo T _T}f(,t)y dt) = <;|an\ ) :
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DIRICHLET SERIES AS POWER SERIES

For Dirichlet series, we can make the same formal association with power

(8) =D 2B = Y o

n=1 aeN(ee)
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DIRICHLET SERIES AS POWER SERIES

For Dirichlet series, we can make the same formal association with power

(8) =D 2B = Y o

n=1 aeN(ee)

series:

f € H* = B(f) holomorphic on D> N (2,
setting H2(D>°) = B(H?), B is an isometric isomorphism H2 — H?(D>°).
Let

7—[00_{ Z— f converges, ||f|| ., = sup |f(s)| < OO},
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DIRICHLET SERIES AS POWER SERIES

For Dirichlet series, we can make the same formal association with power

series: -
a
(=20 B0E= Y o
n=1 a€N(®)
f € H* = B(f) holomorphic on D> N ¢2.
setting H>(D>°) = B(H?2), B is an isometric isomorphism H2 — H?(D>).
Let

es>0

o0
a
H>® = {f(s) = Zn—z : f converges,||f|| ., = sup [7(s)| < oo},

n=1

H>*(D*) = {F(z) : F bounded holomorphic on D*° N ¢y }.

Theorem (Hedenmalm, Lindqvist, Seip)

B : H™® — H>(DD*>°) is an isometric isomorphism.
7/26



HARMONIC ANALYSIS POINT OF VIEW

Set
T = {(z1,22....) : z € C/|z| = 1}.

Compact abelian group with normalized haar measure disc.-
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HARMONIC ANALYSIS POINT OF VIEW

Set
T = {(z1,22....) : z € C/|z| = 1}.

Compact abelian group with normalized haar measure ditoo-
Dual group: Too 2 7<)
given o = (a1, ..., a,0,...) € 7(>°) | associate the character

2% (z1, 20, .. ) o 20 - 20k

Every F € L'(T*°) has Fourier series

F(2)~ > Fla)z% Fla)= / . F(2)z2% djioo(2).

aEZ(OO)
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HARDY SPACES

We now set

H(T>) = {F € L3(T*>) : F(a) = 0if oy < 0 for some j },
H®(T*) = {F € L>°(T*) : F(a) = 0if a; < 0 for some }
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HARDY SPACES

We now set

H(T>) = {F € L3(T*>) : F(a) = 0if oy < 0 for some j },
H®(T*) = {F € L>°(T*) : F(a) = 0if a; < 0 for some }

We then have the isometric isomorphisms

H? = H(D™) = H(T), H™ = H>®(D™®) = H>(T™).

Extension to p € [1, 00) by Bayart: let ” be closure of polynomials
P(s) = S_N_. a,n~° with norm

] T 1/p
. NP
1P, = <TI|_>m002T/T‘P(/t)’ dt) .

Then HP = HP(T).
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GENERAL DIRICHLET SERIES

Frequency:
(A) = ()\k)k’ 0< A< <., A— 0.

General Dirichlet series

oo
f(s) = Z ae S, g, €C,
k=1
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Frequency:
(A) = ()\k)k’ 0< A< <., A— 0.

General Dirichlet series
o0
f(s) = Z axe S, g, € C.
k=1

Ordinary Dirichlet series: (\) = (log k)k>1.
Power series: (A) = (k)k>o0.
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GENERAL DIRICHLET SERIES

Frequency:

(A) = ()\k)k’ 0< A< <., A— 0.

General Dirichlet series
o0
f(s) = Z axe S, g, € C.
k=1

Ordinary Dirichlet series: (\) = (log k)k>1.
Power series: (A) = (k)k>o0.
Abscissas are defined similarly.
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BOHR’S THEOREM

Recall Bohr’s theorem:

o0

a
f(s) = Z n—'s’ bounded analytic extensionto Res >0 — o, < 0.

n=1
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BOHR’S THEOREM

Recall Bohr’s theorem:

o0

a
f(s) = Z n—z bounded analytic extensionto Res >0 = o, <0.

n=1

Bohr’s theorem may fail for general Dirichlet series!

Theorem (Bohr)
Suppose that

Ak1 — Ak > e M+ for some ¢ > 0. (BC)

Then Bohr’s theorem holds for \-Dirichlet series
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HARDY SPACES

1 < p < 0o: HP() closure of polynomials P(s) = 25:1 ake NS wirt.

’ T 1/p
| im = [P
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HARDY SPACES
1 < p < 0o: HP() closure of polynomials P(s) = 25:1 ake NS wirt.

’ T 1/p
1P|, = <TIme27_/_T‘P(it)’pdt> .

Two candidates for co-space:

H>®(N) = { Zake s : g, < 0 and bounded on Res > 0}

>\ = {f(s) = Z axe” ™ : g, < 0o and bounded extension to Res > 0}

ext

H>®(X) € Hog(A) can oceur!
H>°()\) complete <= Bohr’s theorem holds for \.

12/26



HARMONIC ANALYSIS POINT OF VIEW

Recent theory due to Defant and Schoolmann. For frequency \ , define
A-Dirichlet group:

G compact abelian with (\) C G.
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HARMONIC ANALYSIS POINT OF VIEW

Recent theory due to Defant and Schoolmann. For frequency \ , define
A-Dirichlet group:

G compact abelian with (\) C G.

For1 < p < oc:

HY(G) = {Fe °(G): F(v) =0ifv & (V) }.

Z ake M F(x Z akya, (x
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HARMONIC ANALYSIS POINT OF VIEW 2

1<p<oo B:HP(\) — H5(G) isometric isomorphism
B : Hy(A) — H°(G) isometric embedding.
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HARMONIC ANALYSIS POINT OF VIEW 2

1<p<oo B:HP(\) — H5(G) isometric isomorphism
B : Hy(A) — H°(G) isometric embedding.

Bohr's theorem —> H*°(A\) = Hgg(A) and B : H(\) — H°(G)
surjective.

q; positive reals, log g; linearly independent over Q.
(Ak) = (log my), (my) sequence of all possible products of g;.

Then we may take G = T as before.

14/26
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BEURLING NUMBER SYSTEMS

Beurling generalized primes and integers: (P, ).
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BEURLING NUMBER SYSTEMS

Beurling generalized primes and integers: (P, ).

P = (q)>1 1< <., g — o9;

Q'

N=(m)kso, 1=mp<m<m<.,6 m=d 2

.. q] .
Counting functions:
mp(x) = #{g < x}, Np(x) = #{me < x}.

Associated frequency: (A) = (log my)«
Beurling zeta function

:ZE_H

k=0 'k 111—q]
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EXAMPLES

P =1{357,11,..}, N ={1,35,7,9,..}.

Np(x) = [x/2].

mp(x) =7(x) — 1~ log x
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EXAMPLES

P =1{357,11,..}, N ={1,35,7,9,..}.

7p(x) = 7(x) — 1 ~ Np(x) = [x/2].

log x
m Oy the ring of integers of a number field K.

P = (|P|,P < Ok, P prime ideal),
N = (|l],1 Q Ok, I integral ideal).

TO,(x) ~ No, (x) = Axx + O(x1_di+1).

log x°
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BEURLING’S PNT

Main goal: investigate relation 7mp(x) and Np(x), often via (p(s)
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Main goal: investigate relation p(x) and Np(x), often via (p(s)
Usually assume

du X

X
Np(x) ~ Ax, some A >0, mp(x) = Li(x) = /2 o

Theorem (Beurling)

Suppose Np(x) = Ax + O(x(log x)~7) with A > 0 and~y > 3/2. Then
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BEURLING’S PNT

Main goal: investigate relation p(x) and Np(x), often via (p(s)
Usually assume

du X

X
Np(x) ~ Ax, some A >0, mp(x) = Li(x) = /2 o

Theorem (Beurling)

Suppose Np(x) = Ax + O(x(log x)~7) with A > 0 and~y > 3/2. Then
mp(x) ~ Li(x).

The threshold y = 3/2 is sharp.

18/26



LANDAU’S PNT, DENSITY

Theorem (Landau)

Suppose Np(x) = Ax + O(x?) with A > 0 and § < 1. Then

mp(x) = Li(x) + O(x exp(—cy/log x)), somec > 0.
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Suppose Np(x) = Ax + O(x?) with A > 0 and § < 1. Then

mp(x) = Li(x) + O(x exp(—cy/log x)), somec > 0.

Shown to be sharp by Diamond, Montgomery, and Vorhauer.

Theorem (Hilberdink, Lapidus)
Suppose m(x) = Li(x) + O(x?) with & < 1. Then

Np(x) = Ax + O(x exp(—c+/log x log log x)), some ¢ > 0.
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LANDAU’S PNT, DENSITY

Theorem (Landau)

Suppose Np(x) = Ax + O(x?) with A > 0 and § < 1. Then

mp(x) = Li(x) + O(x exp(—cy/log x)), somec > 0.

Shown to be sharp by Diamond, Montgomery, and Vorhauer.

Theorem (Hilberdink, Lapidus)
Suppose m(x) = Li(x) + O(x?) with & < 1. Then

Np(x) = Ax + O(x exp(—c+/log x log log x)), some ¢ > 0.

Shown to be sharp by B., Debruyne, Vindas.
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HELSON’S CONJECTURE




VERTICAL LIMITS

(A\) = (log my) frequency coming from Beurling number system.

HZ(N) = {f(s) = :O :7—% : i\aklz < oo} =~ H?(T).

k=0
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VERTICAL LIMITS

(A\) = (log my) frequency coming from Beurling number system.
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We can interpret (z, zo, ... ) € T as multiplicative character x defined by
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VERTICAL LIMITS

(A\) = (log my) frequency coming from Beurling number system.

oo
H2() {f(s Z 23 el < oo} ~ (T,
Mk o
We can interpret (z, zo, ... ) € T as multiplicative character x defined by

_ S oy H _ g
x(mg) = 2" - 257, it me =g - qfY.

Theorem (Helson)

Suppose (\) = (log my) satisfies (BC). Given f € H?(\), for almost
every x € T°°,

fx(s) _ i ax(m)

S
m
k=0 k

converges in Re s > 0.
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OQUTER FUNCTIONS AND HELSON’S CONJECTURE

f € H?(\) is outer (also cyclic) if { Pf : P polynomial} is dense in H?.
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OQUTER FUNCTIONS AND HELSON’S CONJECTURE

f € H?(\) is outer (also cyclic) if { Pf : P polynomial} is dense in H2.
f outer = f, outer in classical sense on right half-plane for almost every
x € T°°, hence has no zeros.

Conjecture (Helson)

Suppose (\) = (log my) satisfies (BC) and f € H?(\) is outer. Then f,
never vanishes in its half-plane of convergence, for every x € T°°.

Helson: Some doubt is thrown on the conjecture, or at least on the ease of
proving it.

f(s) = 1/¢(s + u) is outer if u > 1/2. RH implies convergence in
Res+ u > 1/2,buthasazerofors =1— u.
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SYSTEMS WITH BOHR’S THEOREM

Theorem (B., Kouroupis, Perfekt)

There exist Beurling number systems (P, N) such that
mp(x) = Li(x) + O(1);
Np(x) = Ax + O-(x"/?*¢), for some A > 0 and all ¢ > 0;
(A) = (log my ) satisfies (BC).
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In particular, RH and Bohr’s theorem both hold.

¢p(s) meromorphic continuation to Re s > 0, simple pole with residue A at
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(p(s) has no zeros and of zero order for o > 1/2: (p(o + it) < t° for all
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SYSTEMS WITH BOHR’S THEOREM

Theorem (B., Kouroupis, Perfekt)

There exist Beurling number systems (P, N') such that
mp(x) = Li(x) + O(1);
Np(x) = Ax + O-(x"/?*¢), for some A > 0 and all ¢ > 0;
(A) = (log my ) satisfies (BC).

In particular, RH and Bohr’s theorem both hold.

¢p(s) meromorphic continuation to Re s > 0, simple pole with residue A at
s=1.

(p(s) has no zeros and of zero order for o > 1/2: (p(o + it) < t° for all

€>0.
1/¢p(s+ u), 1/2 < u < 1, counterexample to Helson’s conjecture!
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PROOF SKETCH

Let x; be such that Li(x;) = j. Then d Lil},,_, ] is a probability measure. We
choose g; randomly from [x;_+, X;] with this distribution.
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Let x; be such that Li(x;) = j. Then d Lil},,_, ] is a probability measure. We
choose g; randomly from [x;_+, X;] with this distribution.

By construction,
mp(x) = Li(x) + O(1).

To ensure that power saving for A/, we pass through the zeta function. Now

o= =1l

kK Ok j

We consider the events

J . XJ .
Aym = {(Q1,C72,---) : ’Z q " —/ u~"d Li(u)‘ > CJ,m}.
1
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PROOF SKETCH
Let x; be such that Li(x;) = j. Then d Lil},,_, ] is a probability measure. We
choose g; randomly from [x;_+, X;] with this distribution.

By construction,
mp(x) = Li(x) + O(1).

To ensure that power saving for A/, we pass through the zeta function. Now
1 1
S) = _— =
SCED IR | P
We consider the events
Aym = { a1, Gz, ---) ’Z q / u"md Li(u)‘ > CJ,m}.
1

If C;m are chosen such that ) -, - P(A,n) < oo, then by Borel-Cantelli,
with probability 1 only finitely many A, ,, occur.
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PROOF SKETCH CONTINUED

To ensure sufficiently large gaps between the generalized integers, we follow

a similar strategy.
We consider sets M (g1, @o, ..., qu—1), Which is “forbidden” for g, given the
choice of the first J — 1 Beurling primes g, ..., Qy—1.
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PROOF SKETCH CONTINUED

To ensure sufficiently large gaps between the generalized integers, we follow

a similar strategy.
We consider sets M (g1, @o, ..., qu—1), Which is “forbidden” for g, given the
choice of the first J — 1 Beurling primes g, ..., Qy—1.

We set
B, = {(Q1,Q2,---) L qu € My(an, ---7QJ71)}-
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PROOF SKETCH CONTINUED

To ensure sufficiently large gaps between the generalized integers, we follow
a similar strategy.
We consider sets M (g1, @o, ..., qu—1), Which is “forbidden” for g, given the
choice of the first J — 1 Beurling primes g, ..., Qy—1.
We set

By={(aq1.q,..) : q € My(a,....qu-1)}.

Again we show that ) |, P(B,) < oc.
By Borel-Cantelli, with probability 1 only finitely many B, occur. If only
By, ..., By, occur, we delete the corresponding primes:

B =P\ {q - au -
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