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DIRICHLET SERIES AND BOHR’S
THEOREM



DIRICHLET SERIES

f (s) =
∞∑

n=1

an

ns
, an ∈ C, s = σ + it .

Basic example: Riemann zeta function

ζ(s) =
∞∑

n=1

1

ns
.

Power series:
∞∑

k=0

ak(2
−s)k .

3 / 26



DIRICHLET SERIES

f (s) =
∞∑

n=1

an

ns
, an ∈ C, s = σ + it .

Basic example: Riemann zeta function

ζ(s) =
∞∑

n=1

1

ns
.

Power series:
∞∑

k=0

ak(2
−s)k .

3 / 26



DIRICHLET SERIES

f (s) =
∞∑

n=1

an

ns
, an ∈ C, s = σ + it .

Basic example: Riemann zeta function

ζ(s) =
∞∑

n=1

1

ns
.

Power series:
∞∑

k=0

ak(2
−s)k .

3 / 26



BOHR’S THEOREM

f (s) =
∑∞

n=1 ann−s

σc = inf{σ : f (s) converges on Re s > σ},

σu = inf{σ : f (s) converges uniformly on Re s > σ},

σa = inf{σ : f (s) converges absolutely on Re s > σ}.

Clearly σc ≤ σu ≤ σa, and f (s) is bounded on {Re s ≥ σu + ε}.

Theorem (Bohr)

If f (s) =
∑∞

n=1 ann−s converges somewhere, and the limit function has
bounded analytic extension to {Re s > 0}, then σu ≤ 0.
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BOHR’S POINT OF VIEW
For each prime pj , write zj = p−s

j . Bohr: zj ’s act as independent variables.

Fundamental theorem of arithmetic =⇒ log pj linearly independent over Q.

Kronecker’s theorem yields:

sup
Re s>0

∣∣∣∣ ∞∑
j=1

aj

ps
j

∣∣∣∣ = ∞∑
j=1

∣∣aj

∣∣ .

If n = pα1
1 · · · pαJ

J , then n−s = zα1
1 · · · zαJ

J .

P(s) =
N∑

n=1

an

ns
↔ B(P)(z) =

∑
α

cαzα,

cα = an if n = pα1
1 pα2

2 · · ·

sup
Re s>0

∣∣P(s)∣∣ = sup
z∈DJ

∣∣P(z)∣∣
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HILBERT SPACE H2

H2 =

{
f (s) =

∞∑
n=1

an

ns
:

∞∑
n=1

|an|2 < ∞
}

.

Hilbert space with ⟨f , g⟩ =
∑∞

n=1 anbn.

By Cauchy–Schwarz, f (s) converges and is holomorphic on Re s > 1/2.

Reproducing kernel is ζ(s + w) =
∑∞

n=1
n−w

ns : ⟨f (s), ζ(s + w)⟩ = f (w).

H2 is the closure of {P(s) =
∑N

n=1 ann−s}, w.r.t norm

∥P∥2 =

(
lim

T→∞

1

2T

∫ T

−T

∣∣f (it)∣∣2 dt

)1/2

=

(
N∑

n=1

|an|2
)1/2

.
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DIRICHLET SERIES AS POWER SERIES
For Dirichlet series, we can make the same formal association with power
series:

f (s) =
∞∑

n=1

an

ns
↔ B(f )(z) =

∑
α∈N(∞)

cαzα.

f ∈ H2 =⇒ B(f ) holomorphic on D∞ ∩ ℓ2.

setting H2(D∞) = B(H2), B is an isometric isomorphism H2 → H2(D∞).
Let

H∞ =

{
f (s) =

∞∑
n=1

an

ns
: f converges,∥f∥∞ = sup

Re s>0

∣∣f (s)∣∣ < ∞
}

,

H∞(D∞) =
{

F(z) : F bounded holomorphic on D∞ ∩ c0
}

.

Theorem (Hedenmalm, Lindqvist, Seip)

B : H∞ → H∞(D∞) is an isometric isomorphism.
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HARMONIC ANALYSIS POINT OF VIEW

Set
T∞ =

{
(z1, z2, ... ) : zj ∈ C,

∣∣zj

∣∣ = 1
}

.

Compact abelian group with normalized haar measure dµ∞.

Dual group: T̂∞ ∼= Z(∞):
given α = (α1, ... ,αk , 0, ... ) ∈ Z(∞), associate the character

zα : (z1, z2, ... ) 7→ zα1
1 · · · zαk

k .

Every F ∈ L1(T∞) has Fourier series

F(z) ∼
∑

α∈Z(∞)

F̂(α)zα, F̂(α) =

∫
T∞

F(z)zα dµ∞(z).
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HARDY SPACES
We now set

H2(T∞) =
{

F ∈ L2(T∞) : F̂(α) = 0 if αj < 0 for some j
}

,

H∞(T∞) =
{

F ∈ L∞(T∞) : F̂(α) = 0 if αj < 0 for some j
}

We then have the isometric isomorphisms

H2 ∼= H2(D∞) ∼= H2(T∞), H∞ ∼= H∞(D∞) ∼= H∞(T∞).

Extension to p ∈ [1,∞) by Bayart: let Hp be closure of polynomials
P(s) =

∑N
n=1 ann−s with norm

∥P∥p =

(
lim

T→∞

1

2T

∫ T

−T

∣∣P(it)∣∣p dt

)1/p

.

Then Hp ∼= Hp(T∞).
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GENERAL DIRICHLET SERIES

Frequency:

(λ) = (λk)k , 0 ≤ λ1 < λ2 < ... , λk → ∞.

General Dirichlet series

f (s) =
∞∑

k=1

ak e−λk s, ak ∈ C.

Ordinary Dirichlet series: (λ) = (log k)k≥1.
Power series: (λ) = (k)k≥0.
Abscissas are defined similarly.
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BOHR’S THEOREM

Recall Bohr’s theorem:

f (s) =
∞∑

n=1

an

ns
bounded analytic extension to Re s > 0 =⇒ σu ≤ 0.

Bohr’s theorem may fail for general Dirichlet series!

Theorem (Bohr)

Suppose that

λk+1 − λk ≫ e−cλk+1 , for some c > 0. (BC)

Then Bohr’s theorem holds for λ-Dirichlet series
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HARDY SPACES

1 ≤ p < ∞: Hp(λ) closure of polynomials P(s) =
∑K

k=1 ak e−λk s w.r.t.

∥P∥p =

(
lim

T→∞

1

2T

∫ T

−T

∣∣P(it)∣∣p dt

)1/p

.

Two candidates for ∞-space:

H∞(λ) =

{
f (s) =

∞∑
k=1

ak e−λk s : σc ≤ 0 and bounded on Re s > 0

}

H∞
ext(λ) =

{
f (s) =

∞∑
k=1

ak e−λk s : σc < ∞ and bounded extension to Re s > 0

}
.

H∞(λ) ⊊ H∞
ext(λ) can occur!

H∞(λ) complete ⇐⇒ Bohr’s theorem holds for λ.
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1

2T

∫ T

−T

∣∣P(it)∣∣p dt

)1/p

.

Two candidates for ∞-space:

H∞(λ) =

{
f (s) =

∞∑
k=1

ak e−λk s : σc ≤ 0 and bounded on Re s > 0

}

H∞
ext(λ) =

{
f (s) =

∞∑
k=1

ak e−λk s : σc < ∞ and bounded extension to Re s > 0

}
.

H∞(λ) ⊊ H∞
ext(λ) can occur!
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HARMONIC ANALYSIS POINT OF VIEW

Recent theory due to Defant and Schoolmann. For frequency λ , define
λ-Dirichlet group:

G compact abelian with (λ) ⊆ Ĝ.

For 1 ≤ p ≤ ∞:

Hp
λ(G) =

{
F ∈ Lp(G) : F̂(γ) = 0 if γ /∈ (λ)

}
.

B : f (s) =
∞∑

k=1

ak e−λk s 7→ F(x) ∼
∞∑

k=1

akγλk (x).
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For 1 ≤ p ≤ ∞:

Hp
λ(G) =

{
F ∈ Lp(G) : F̂(γ) = 0 if γ /∈ (λ)

}
.

B : f (s) =
∞∑

k=1

ak e−λk s 7→ F(x) ∼
∞∑

k=1

akγλk (x).

13 / 26



HARMONIC ANALYSIS POINT OF VIEW 2

1 ≤ p < ∞ B : Hp(λ) → Hp
λ(G) isometric isomorphism

B : H∞
ext(λ) → H∞

λ (G) isometric embedding.

Bohr’s theorem =⇒ H∞(λ) = H∞
ext(λ) and B : H∞(λ) → H∞

λ (G)
surjective.

qj positive reals, log qj linearly independent over Q.
(λk) = (logmk), (mk) sequence of all possible products of qj .

Then we may take G = T∞ as before.
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BEURLING GENERALIZED NUM-
BER SYSTEMS



BEURLING NUMBER SYSTEMS

Beurling generalized primes and integers: (P ,N ).

P = (qj)j≥1, 1 < q1 ≤ q2 ≤ ... , qj → ∞;

N = (mk)k≥0, 1 = m0 < m1 ≤ m2 ≤ ... , mk = qα1
1 · · · q

αj
j .

Counting functions:

πP(x) = #{qj ≤ x}, NP(x) = #{mk ≤ x}.

Associated frequency: (λ) = (logmk)k

Beurling zeta function

ζP(s) =
∞∑

k=0

1

ms
k
=

∞∏
j=1

1

1 − q−s
j

.
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EXAMPLES

P = {3, 5, 7, 11, ... }, N = {1, 3, 5, 7, 9, ... }.

πP(x) = π(x)− 1 ∼ x

log x
, NP(x) = ⌊x/2⌋.

OK the ring of integers of a number field K .

P = (|P| , P ⊴ OK , P prime ideal),

N = (|I| , I ⊴ OK , I integral ideal).

πOK (x) ∼
x

log x
, NOK (x) = AK x + O

(
x1− 2

d+1
)
.
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BEURLING’S PNT

Main goal: investigate relation πP(x) and NP(x), often via ζP(s)

Usually assume

NP(x) ≈ Ax , some A > 0, πP(x) ≈ Li(x) =

∫ x

2

du

log u
∼ x

log x
.

Theorem (Beurling)

Suppose NP(x) = Ax + O(x(log x)−γ) with A > 0 and γ > 3/2. Then
πP(x) ∼ Li(x).

The threshold γ = 3/2 is sharp.
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LANDAU’S PNT, DENSITY

Theorem (Landau)

Suppose NP(x) = Ax + O(xθ) with A > 0 and θ < 1. Then

πP(x) = Li(x) + O
(
x exp(−c

√
log x)

)
, some c > 0.

Shown to be sharp by Diamond, Montgomery, and Vorhauer.

Theorem (Hilberdink, Lapidus)

Suppose π(x) = Li(x) + O(xθ) with θ < 1. Then

NP(x) = Ax + O
(
x exp(−c

√
log x log log x)

)
, some c > 0.

Shown to be sharp by B., Debruyne, Vindas.
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HELSON’S CONJECTURE



VERTICAL LIMITS
(λ) = (logmk) frequency coming from Beurling number system.

H2(λ) =

{
f (s) =

∞∑
k=0

ak

ms
k

:
∞∑

k=0

|ak |2 < ∞
}

∼= H2(T∞).

We can interpret (z1, z2, ... ) ∈ T∞ as multiplicative character χ defined by

χ(mk) = zα1
1 · · · zαJ

J , if mk = qα1
1 · · · qαJ

J .

Theorem (Helson)

Suppose (λ) = (logmk) satisfies (BC). Given f ∈ H2(λ), for almost
every χ ∈ T∞,

fχ(s) =
∞∑

k=0

akχ(mk)

ms
k

converges in Re s > 0.
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OUTER FUNCTIONS AND HELSON’S CONJECTURE

f ∈ H2(λ) is outer (also cyclic) if {Pf : P polynomial} is dense in H2.

f outer =⇒ fχ outer in classical sense on right half-plane for almost every
χ ∈ T∞, hence has no zeros.

Conjecture (Helson)

Suppose (λ) = (logmk) satisfies (BC) and f ∈ H2(λ) is outer. Then fχ
never vanishes in its half-plane of convergence, for every χ ∈ T∞.

Helson: Some doubt is thrown on the conjecture, or at least on the ease of
proving it.
f (s) = 1/ζ(s + u) is outer if u > 1/2. RH implies convergence in
Re s + u > 1/2, but has a zero for s = 1 − u.
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SYSTEMS WITH BOHR’S THEOREM

Theorem (B., Kouroupis, Perfekt)

There exist Beurling number systems (P ,N ) such that
1 πP(x) = Li(x) + O(1);

2 NP(x) = Ax + Oε(x1/2+ε), for some A > 0 and all ε > 0;

3 (λ) = (logmk)k satisfies (BC).

In particular, RH and Bohr’s theorem both hold.
ζP(s) meromorphic continuation to Re s > 0, simple pole with residue A at
s = 1.
ζP(s) has no zeros and of zero order for σ > 1/2: ζP(σ + it) ≪ tε for all
ε > 0.
1/ζP(s + u), 1/2 < u < 1, counterexample to Helson’s conjecture!
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PROOF SKETCH
Let xj be such that Li(xj) = j . Then d Li|[xj−1,xj ] is a probability measure. We
choose qj randomly from [xj−1, xj ] with this distribution.

By construction,
πP(x) = Li(x) + O(1).

To ensure that power saving for N , we pass through the zeta function. Now

ζP(s) =
∑

k

1

ms
k
=
∏

j

1

1 − q−s
j

.

We consider the events

AJ,m =

{
(q1, q2, ... ) :

∣∣∣ J∑
j=1

q−im
j −

∫ xJ

1
u−imd Li(u)

∣∣∣ ≥ CJ,m

}
.

If CJ,m are chosen such that
∑

J,m P(AJ,m) < ∞, then by Borel–Cantelli,
with probability 1 only finitely many AJ,m occur.
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PROOF SKETCH CONTINUED

To ensure sufficiently large gaps between the generalized integers, we follow
a similar strategy.
We consider sets MJ(q1, q2, ... , qJ−1), which is “forbidden” for qJ , given the
choice of the first J − 1 Beurling primes q1, ... , qJ−1.

We set
BJ =

{
(q1, q2, ... ) : qJ ∈ MJ(q1, ... , qJ−1)

}
.

Again we show that
∑

J P(BJ) < ∞.
By Borel–Cantelli, with probability 1 only finitely many BJ occur. If only
BJ1 , ... , BJN occur, we delete the corresponding primes:

P̃ = P \ {qJ1 , ... , qJN}.
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