Journées Complexes du Nord - 7 June 2024

## BOHR'S THEOREM FOR BEURLING INTEGER SYSTEMS

Frederik Broucke — fabrouck.broucke@ugent.be

## DIRICHLET SERIES AND BOHR'S THEOREM

## DIRICHLET SERIES

$$
f(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}, \quad a_{n} \in \mathbb{C}, \quad s=\sigma+i t
$$

## DIRICHLET SERIES

$$
f(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}, \quad a_{n} \in \mathbb{C}, \quad s=\sigma+i t .
$$

Basic example: Riemann zeta function

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} .
$$

## DIRICHLET SERIES

$$
f(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}, \quad a_{n} \in \mathbb{C}, \quad s=\sigma+i t .
$$

Basic example: Riemann zeta function

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} .
$$

Power series:

$$
\sum_{k=0}^{\infty} a_{k}\left(2^{-s}\right)^{k}
$$

## BOHR'S THEOREM

$$
f(s)=\sum_{n=1}^{\infty} a_{n} n^{-s}
$$

$$
\begin{aligned}
\sigma_{c} & =\inf \{\sigma: f(s) \text { converges on } \operatorname{Re} s>\sigma\} \\
\sigma_{u} & =\inf \{\sigma: f(s) \text { converges uniformly on } \operatorname{Re} s>\sigma\} \\
\sigma_{a} & =\inf \{\sigma: f(s) \text { converges absolutely on } \operatorname{Re} s>\sigma\}
\end{aligned}
$$

## BOHR'S THEOREM

$$
f(s)=\sum_{n=1}^{\infty} a_{n} n^{-s}
$$

$$
\begin{aligned}
\sigma_{c} & =\inf \{\sigma: f(s) \text { converges on } \operatorname{Re} s>\sigma\} \\
\sigma_{u} & =\inf \{\sigma: f(s) \text { converges uniformly on } \operatorname{Re} s>\sigma\} \\
\sigma_{a} & =\inf \{\sigma: f(s) \text { converges absolutely on } \operatorname{Re} s>\sigma\}
\end{aligned}
$$

Clearly $\sigma_{c} \leq \sigma_{u} \leq \sigma_{a}$, and $f(s)$ is bounded on $\left\{\operatorname{Re} s \geq \sigma_{u}+\varepsilon\right\}$.

## BOHR'S THEOREM

$f(s)=\sum_{n=1}^{\infty} a_{n} n^{-s}$

$$
\begin{aligned}
\sigma_{c} & =\inf \{\sigma: f(s) \text { converges on } \operatorname{Re} s>\sigma\} \\
\sigma_{u} & =\inf \{\sigma: f(s) \text { converges uniformly on } \operatorname{Re} s>\sigma\} \\
\sigma_{a} & =\inf \{\sigma: f(s) \text { converges absolutely on } \operatorname{Re} s>\sigma\}
\end{aligned}
$$

Clearly $\sigma_{c} \leq \sigma_{u} \leq \sigma_{a}$, and $f(s)$ is bounded on $\left\{\operatorname{Re} s \geq \sigma_{u}+\varepsilon\right\}$.

## Theorem (Bohr)

If $f(s)=\sum_{n=1}^{\infty} a_{n} n^{-s}$ converges somewhere, and the limit function has bounded analytic extension to $\{\operatorname{Re} s>0\}$, then $\sigma_{u} \leq 0$.

## BOHR'S POINT OF VIEW

For each prime $p_{j}$, write $z_{j}=p_{j}^{-s}$. Bohr: $z_{j}$ 's act as independent variables.

## BOHR'S POINT OF VIEW

For each prime $p_{j}$, write $z_{j}=p_{j}^{-s}$. Bohr: $z_{j}$ 's act as independent variables. Fundamental theorem of arithmetic $\Longrightarrow \log p_{j}$ linearly independent over $\mathbb{Q}$.

## BOHR'S POINT OF VIEW

For each prime $p_{j}$, write $z_{j}=p_{j}^{-s}$. Bohr: $z_{j}$ 's act as independent variables. Fundamental theorem of arithmetic $\Longrightarrow \log p_{j}$ linearly independent over $\mathbb{Q}$.

Kronecker's theorem yields:

$$
\sup _{\operatorname{Re} s>0}\left|\sum_{j=1}^{\infty} \frac{a_{j}}{p_{j}^{s}}\right|=\sum_{j=1}^{\infty}\left|a_{j}\right| .
$$

## BOHR'S POINT OF VIEW

For each prime $p_{j}$, write $z_{j}=p_{j}^{-s}$. Bohr: $z_{j}$ 's act as independent variables. Fundamental theorem of arithmetic $\Longrightarrow \log p_{j}$ linearly independent over $\mathbb{Q}$.

Kronecker's theorem yields:

$$
\sup _{\operatorname{Re} s>0}\left|\sum_{j=1}^{\infty} \frac{a_{j}}{p_{j}^{s}}\right|=\sum_{j=1}^{\infty}\left|a_{j}\right|
$$

If $n=p_{1}^{\alpha_{1}} \cdots p_{J}^{\alpha_{J}}$, then $n^{-s}=z_{1}^{\alpha_{1}} \cdots z_{J}^{\alpha_{J}}$.

$$
\begin{gathered}
P(s)=\sum_{n=1}^{N} \frac{a_{n}}{n^{s}} \leftrightarrow \mathcal{B}(P)(z)=\sum_{\alpha} c_{\alpha} z^{\alpha}, \\
c_{\alpha}=a_{n} \quad \text { if } n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots
\end{gathered}
$$

## BOHR'S POINT OF VIEW

For each prime $p_{j}$, write $z_{j}=p_{j}^{-s}$. Bohr: $z_{j}$ 's act as independent variables. Fundamental theorem of arithmetic $\Longrightarrow \log p_{j}$ linearly independent over $\mathbb{Q}$.

Kronecker's theorem yields:

$$
\sup _{\operatorname{Re} s>0}\left|\sum_{j=1}^{\infty} \frac{a_{j}}{p_{j}^{s}}\right|=\sum_{j=1}^{\infty}\left|a_{j}\right|
$$

If $n=p_{1}^{\alpha_{1}} \cdots p_{J}^{\alpha_{J}}$, then $n^{-s}=z_{1}^{\alpha_{1}} \cdots z_{J}^{\alpha_{J}}$.

$$
\begin{gathered}
P(s)=\sum_{n=1}^{N} \frac{a_{n}}{n^{s}} \leftrightarrow \mathcal{B}(P)(z)=\sum_{\alpha} c_{\alpha} z^{\alpha}, \\
c_{\alpha}=a_{n} \quad \text { if } n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots \\
\sup _{\operatorname{Re} s>0}|P(s)|=\sup _{z \in \mathbb{D}^{J}}|P(z)|
\end{gathered}
$$

## Hilbert space $\mathcal{H}^{2}$

$$
\mathcal{H}^{2}=\left\{f(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}: \sum_{n=1}^{\infty}\left|a_{n}\right|^{2}<\infty\right\}
$$

Hilbert space with $\langle f, g\rangle=\sum_{n=1}^{\infty} a_{n} \overline{b_{n}}$.

## Hilbert space $\mathcal{H}^{2}$

$$
\mathcal{H}^{2}=\left\{f(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}: \sum_{n=1}^{\infty}\left|a_{n}\right|^{2}<\infty\right\} .
$$

Hilbert space with $\langle f, g\rangle=\sum_{n=1}^{\infty} a_{n} \overline{b_{n}}$.
By Cauchy-Schwarz, $f(s)$ converges and is holomorphic on $\operatorname{Re} s>1 / 2$.

## Hilbert space $\mathcal{H}^{2}$

$$
\mathcal{H}^{2}=\left\{f(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}: \sum_{n=1}^{\infty}\left|a_{n}\right|^{2}<\infty\right\}
$$

Hilbert space with $\langle f, g\rangle=\sum_{n=1}^{\infty} a_{n} \overline{b_{n}}$.
By Cauchy-Schwarz, $f(s)$ converges and is holomorphic on $\operatorname{Re} s>1 / 2$.
Reproducing kernel is $\zeta(s+\bar{w})=\sum_{n=1}^{\infty} \frac{n^{-\bar{w}}}{n^{s}}:\langle f(s), \zeta(s+\bar{w})\rangle=f(w)$.

## Hilbert space $\mathcal{H}^{2}$

$$
\mathcal{H}^{2}=\left\{f(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}: \sum_{n=1}^{\infty}\left|a_{n}\right|^{2}<\infty\right\}
$$

Hilbert space with $\langle f, g\rangle=\sum_{n=1}^{\infty} a_{n} \overline{b_{n}}$.
By Cauchy-Schwarz, $f(s)$ converges and is holomorphic on $\operatorname{Re} s>1 / 2$.
Reproducing kernel is $\zeta(s+\bar{w})=\sum_{n=1}^{\infty} \frac{n^{-\bar{w}}}{n^{s}}:\langle f(s), \zeta(s+\bar{w})\rangle=f(w)$.
$\mathcal{H}^{2}$ is the closure of $\left\{P(s)=\sum_{n=1}^{N} a_{n} n^{-s}\right\}$, w.r.t norm

$$
\|P\|_{2}=\left(\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|f(i t)|^{2} \mathrm{~d} t\right)^{1 / 2}=\left(\sum_{n=1}^{N}\left|a_{n}\right|^{2}\right)^{1 / 2}
$$

## DIRICHLET SERIES AS POWER SERIES

For Dirichlet series, we can make the same formal association with power series:

$$
f(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}} \leftrightarrow \mathcal{B}(f)(z)=\sum_{\alpha \in \mathbb{N}(\infty)} c_{\alpha} z^{\alpha} .
$$

## DIRICHLET SERIES AS POWER SERIES

For Dirichlet series, we can make the same formal association with power series:

$$
f(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}} \leftrightarrow \mathcal{B}(f)(z)=\sum_{\alpha \in \mathbb{N}(\infty)} c_{\alpha} z^{\alpha}
$$

$$
f \in \mathcal{H}^{2} \Longrightarrow \mathcal{B}(f) \text { holomorphic on } \mathbb{D}^{\infty} \cap \ell^{2} .
$$

setting $H^{2}\left(\mathbb{D}^{\infty}\right)=\mathcal{B}\left(\mathcal{H}^{2}\right), \mathcal{B}$ is an isometric isomorphism $\mathcal{H}^{2} \rightarrow H^{2}\left(\mathbb{D}^{\infty}\right)$.

## Dirichlet series as power series

For Dirichlet series, we can make the same formal association with power series:

$$
\begin{aligned}
& f(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}} \leftrightarrow \mathcal{B}(f)(z)=\sum_{\alpha \in \mathbb{N}^{(\infty)}} c_{\alpha} z^{\alpha} . \\
& f \in \mathcal{H}^{2} \Longrightarrow \mathcal{B}(f) \text { holomorphic on } \mathbb{D}^{\infty} \cap \ell^{2} .
\end{aligned}
$$

setting $H^{2}\left(\mathbb{D}^{\infty}\right)=\mathcal{B}\left(\mathcal{H}^{2}\right), \mathcal{B}$ is an isometric isomorphism $\mathcal{H}^{2} \rightarrow H^{2}\left(\mathbb{D}^{\infty}\right)$. Let

$$
\mathcal{H}^{\infty}=\left\{f(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}: f \text { converges, }\|f\|_{\infty}=\sup _{\operatorname{Re} s>0}|f(s)|<\infty\right\}
$$

$H^{\infty}\left(\mathbb{D}^{\infty}\right)=\left\{F(z): F\right.$ bounded holomorphic on $\left.\mathbb{D}^{\infty} \cap c_{0}\right\}$.

## Dirichlet series as power series

For Dirichlet series, we can make the same formal association with power series:

$$
\begin{aligned}
& f(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}} \leftrightarrow \mathcal{B}(f)(z)=\sum_{\alpha \in \mathbb{N}(\infty)} c_{\alpha} z^{\alpha} . \\
& f \in \mathcal{H}^{2} \Longrightarrow \mathcal{B}(f) \text { holomorphic on } \mathbb{D}^{\infty} \cap \ell^{2} .
\end{aligned}
$$

setting $H^{2}\left(\mathbb{D}^{\infty}\right)=\mathcal{B}\left(\mathcal{H}^{2}\right), \mathcal{B}$ is an isometric isomorphism $\mathcal{H}^{2} \rightarrow H^{2}\left(\mathbb{D}^{\infty}\right)$. Let

$$
\mathcal{H}^{\infty}=\left\{f(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}: f \text { converges, }\|f\|_{\infty}=\sup _{\operatorname{Re} s>0}|f(s)|<\infty\right\},
$$

$H^{\infty}\left(\mathbb{D}^{\infty}\right)=\left\{F(z): F\right.$ bounded holomorphic on $\left.\mathbb{D}^{\infty} \cap c_{0}\right\}$.

Theorem (Hedenmalm, Lindqvist, Seip)
$\mathcal{B}: \mathcal{H}^{\infty} \rightarrow H^{\infty}\left(\mathbb{D}^{\infty}\right)$ is an isometric isomorphism.

## HARMONIC ANALYSIS POINT OF VIEW

Set

$$
\mathbb{T}^{\infty}=\left\{\left(z_{1}, z_{2}, \ldots\right): z_{j} \in \mathbb{C},\left|z_{j}\right|=1\right\} .
$$

Compact abelian group with normalized haar measure $\mathrm{d} \mu_{\infty}$.

## HARMONIC ANALYSIS POINT OF VIEW

Set

$$
\mathbb{T}^{\infty}=\left\{\left(z_{1}, z_{2}, \ldots\right): z_{j} \in \mathbb{C},\left|z_{j}\right|=1\right\} .
$$

Compact abelian group with normalized haar measure $\mathrm{d} \mu_{\infty}$. Dual group: $\widehat{\mathbb{T}^{\infty}} \cong \mathbb{Z}^{(\infty)}$ : given $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}, 0, \ldots\right) \in \mathbb{Z}^{(\infty)}$, associate the character

$$
z^{\alpha}:\left(z_{1}, z_{2}, \ldots\right) \mapsto z_{1}^{\alpha_{1}} \cdots z_{k}^{\alpha_{k}} .
$$

## HARMONIC ANALYSIS POINT OF VIEW

Set

$$
\mathbb{T}^{\infty}=\left\{\left(z_{1}, z_{2}, \ldots\right): z_{j} \in \mathbb{C},\left|z_{j}\right|=1\right\} .
$$

Compact abelian group with normalized haar measure $\mathrm{d} \mu_{\infty}$. Dual group: $\widehat{\mathbb{T}^{\infty}} \cong \mathbb{Z}^{(\infty)}$ :
given $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}, 0, \ldots\right) \in \mathbb{Z}^{(\infty)}$, associate the character

$$
z^{\alpha}:\left(z_{1}, z_{2}, \ldots\right) \mapsto z_{1}^{\alpha_{1}} \cdots z_{k}^{\alpha_{k}} .
$$

Every $F \in L^{1}\left(\mathbb{T}^{\infty}\right)$ has Fourier series

$$
F(z) \sim \sum_{\alpha \in \mathbb{Z}^{(\infty)}} \widehat{F}(\alpha) z^{\alpha}, \quad \widehat{F}(\alpha)=\int_{\mathbb{T}^{\infty}} F(z) \overline{z^{\alpha}} \mathrm{d} \mu_{\infty}(z)
$$

## Hardy spaces

We now set

$$
\begin{aligned}
H^{2}\left(\mathbb{T}^{\infty}\right) & =\left\{F \in L^{2}\left(\mathbb{T}^{\infty}\right): \widehat{F}(\alpha)=0 \text { if } \alpha_{j}<0 \text { for some } j\right\} \\
H^{\infty}\left(\mathbb{T}^{\infty}\right) & =\left\{F \in L^{\infty}\left(\mathbb{T}^{\infty}\right): \widehat{F}(\alpha)=0 \text { if } \alpha_{j}<0 \text { for some } j\right\}
\end{aligned}
$$

## Hardy spaces

We now set

$$
\begin{aligned}
H^{2}\left(\mathbb{T}^{\infty}\right) & =\left\{F \in L^{2}\left(\mathbb{T}^{\infty}\right): \widehat{F}(\alpha)=0 \text { if } \alpha_{j}<0 \text { for some } j\right\}, \\
H^{\infty}\left(\mathbb{T}^{\infty}\right) & =\left\{F \in L^{\infty}\left(\mathbb{T}^{\infty}\right): \widehat{F}(\alpha)=0 \text { if } \alpha_{j}<0 \text { for some } j\right\}
\end{aligned}
$$

We then have the isometric isomorphisms

$$
\mathcal{H}^{2} \cong H^{2}\left(\mathbb{D}^{\infty}\right) \cong H^{2}\left(\mathbb{T}^{\infty}\right), \quad \mathcal{H}^{\infty} \cong H^{\infty}\left(\mathbb{D}^{\infty}\right) \cong H^{\infty}\left(\mathbb{T}^{\infty}\right)
$$

## HaRdY SPACES

We now set

$$
\begin{aligned}
H^{2}\left(\mathbb{T}^{\infty}\right) & =\left\{F \in L^{2}\left(\mathbb{T}^{\infty}\right): \widehat{F}(\alpha)=0 \text { if } \alpha_{j}<0 \text { for some } j\right\}, \\
H^{\infty}\left(\mathbb{T}^{\infty}\right) & =\left\{F \in L^{\infty}\left(\mathbb{T}^{\infty}\right): \widehat{F}(\alpha)=0 \text { if } \alpha_{j}<0 \text { for some } j\right\}
\end{aligned}
$$

We then have the isometric isomorphisms

$$
\mathcal{H}^{2} \cong H^{2}\left(\mathbb{D}^{\infty}\right) \cong H^{2}\left(\mathbb{T}^{\infty}\right), \quad \mathcal{H}^{\infty} \cong H^{\infty}\left(\mathbb{D}^{\infty}\right) \cong H^{\infty}\left(\mathbb{T}^{\infty}\right)
$$

Extension to $p \in[1, \infty)$ by Bayart: let $\mathcal{H}^{p}$ be closure of polynomials $P(s)=\sum_{n=1}^{N} a_{n} n^{-s}$ with norm

$$
\|P\|_{p}=\left(\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|P(i t)|^{p} \mathrm{~d} t\right)^{1 / p}
$$

Then $\mathcal{H}^{p} \cong H^{p}\left(\mathbb{T}^{\infty}\right)$.

## General Dirichlet series

Frequency:

$$
(\lambda)=\left(\lambda_{k}\right)_{k}, \quad 0 \leq \lambda_{1}<\lambda_{2}<\ldots, \quad \lambda_{k} \rightarrow \infty .
$$

General Dirichlet series

$$
f(s)=\sum_{k=1}^{\infty} a_{k} e^{-\lambda_{k} s}, \quad a_{k} \in \mathbb{C} .
$$

## General Dirichlet series

Frequency:

$$
(\lambda)=\left(\lambda_{k}\right)_{k}, \quad 0 \leq \lambda_{1}<\lambda_{2}<\ldots, \quad \lambda_{k} \rightarrow \infty .
$$

General Dirichlet series

$$
f(s)=\sum_{k=1}^{\infty} a_{k} e^{-\lambda_{k} s}, \quad a_{k} \in \mathbb{C} .
$$

Ordinary Dirichlet series: $(\lambda)=(\log k)_{k \geq 1}$.
Power series: $(\lambda)=(k)_{k \geq 0}$.

## General Dirichlet series

Frequency:

$$
(\lambda)=\left(\lambda_{k}\right)_{k}, \quad 0 \leq \lambda_{1}<\lambda_{2}<\ldots, \quad \lambda_{k} \rightarrow \infty .
$$

General Dirichlet series

$$
f(s)=\sum_{k=1}^{\infty} a_{k} e^{-\lambda_{k} s}, \quad a_{k} \in \mathbb{C} .
$$

Ordinary Dirichlet series: $(\lambda)=(\log k)_{k \geq 1}$.
Power series: $(\lambda)=(k)_{k \geq 0}$.
Abscissas are defined similarly.

## BOHR'S THEOREM

Recall Bohr's theorem:
$f(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$ bounded analytic extension to $\operatorname{Re} s>0 \Longrightarrow \sigma_{u} \leq 0$.

## BOHR'S THEOREM

Recall Bohr's theorem:
$f(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$ bounded analytic extension to $\operatorname{Re} s>0 \Longrightarrow \sigma_{u} \leq 0$.
Bohr's theorem may fail for general Dirichlet series!

## BOHR'S THEOREM

Recall Bohr's theorem:
$f(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$ bounded analytic extension to $\operatorname{Re} s>0 \Longrightarrow \sigma_{u} \leq 0$.
Bohr's theorem may fail for general Dirichlet series!

## Theorem (Bohr)

Suppose that

$$
\begin{equation*}
\lambda_{k+1}-\lambda_{k} \gg e^{-c \lambda_{k+1}}, \quad \text { for some } c>0 \tag{BC}
\end{equation*}
$$

Then Bohr's theorem holds for $\lambda$-Dirichlet series

## Hardy spaces

$1 \leq p<\infty: \mathcal{H}^{p}(\lambda)$ closure of polynomials $P(s)=\sum_{k=1}^{K} a_{k} e^{-\lambda_{k} s}$ w.r.t.

$$
\|P\|_{p}=\left(\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|P(i t)|^{p} \mathrm{~d} t\right)^{1 / p}
$$

## HARDY SPACES

$1 \leq p<\infty: \mathcal{H}^{p}(\lambda)$ closure of polynomials $P(s)=\sum_{k=1}^{K} a_{k} e^{-\lambda_{k} s}$ w.r.t.

$$
\|P\|_{p}=\left(\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|P(i t)|^{p} \mathrm{~d} t\right)^{1 / p}
$$

Two candidates for $\infty$-space:
$\mathcal{H}^{\infty}(\lambda)=\left\{f(s)=\sum_{k=1}^{\infty} a_{k} e^{-\lambda_{k} s}: \sigma_{c} \leq 0\right.$ and bounded on $\left.\operatorname{Re} s>0\right\}$
$\mathcal{H}_{e x t}^{\infty}(\lambda)=\left\{f(s)=\sum_{k=1}^{\infty} a_{k} e^{-\lambda_{k} s}: \sigma_{c}<\infty\right.$ and bounded extension to $\left.\operatorname{Re} s>0\right\}$

## Hardy spaces

$1 \leq p<\infty: \mathcal{H}^{p}(\lambda)$ closure of polynomials $P(s)=\sum_{k=1}^{K} a_{k} e^{-\lambda_{k} s}$ w.r.t.

$$
\|P\|_{p}=\left(\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|P(i t)|^{p} \mathrm{~d} t\right)^{1 / p}
$$

Two candidates for $\infty$-space:
$\mathcal{H}^{\infty}(\lambda)=\left\{f(s)=\sum_{k=1}^{\infty} a_{k} e^{-\lambda_{k} s}: \sigma_{c} \leq 0\right.$ and bounded on $\left.\operatorname{Re} s>0\right\}$
$\mathcal{H}_{\text {ext }}^{\infty}(\lambda)=\left\{f(s)=\sum_{k=1}^{\infty} a_{k} e^{-\lambda_{k} s}: \sigma_{c}<\infty\right.$ and bounded extension to Res>0\}
$\mathcal{H}^{\infty}(\lambda) \subsetneq \mathcal{H}_{\text {ext }}^{\infty}(\lambda)$ can occur!

## HaRdY spaces

$1 \leq p<\infty: \mathcal{H}^{p}(\lambda)$ closure of polynomials $P(s)=\sum_{k=1}^{K} a_{k} e^{-\lambda_{k} s}$ w.r.t.

$$
\|P\|_{p}=\left(\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|P(i t)|^{p} \mathrm{~d} t\right)^{1 / p}
$$

Two candidates for $\infty$-space:
$\mathcal{H}^{\infty}(\lambda)=\left\{f(s)=\sum_{k=1}^{\infty} a_{k} e^{-\lambda_{k} s}: \sigma_{c} \leq 0\right.$ and bounded on $\left.\operatorname{Re} s>0\right\}$
$\mathcal{H}_{\text {ext }}^{\infty}(\lambda)=\left\{f(s)=\sum_{k=1}^{\infty} a_{k} e^{-\lambda_{k} s}: \sigma_{c}<\infty\right.$ and bounded extension to $\left.\operatorname{Re} s>0\right\}$
$\mathcal{H}^{\infty}(\lambda) \subsetneq \mathcal{H}_{\text {ext }}^{\infty}(\lambda)$ can occur!
$\mathcal{H}^{\infty}(\lambda)$ complete $\Longleftrightarrow$ Bohr's theorem holds for $\lambda$.

## HARMONIC ANALYSIS POINT OF VIEW

Recent theory due to Defant and Schoolmann. For frequency $\lambda$, define $\lambda$-Dirichlet group:
$G$ compact abelian with $(\lambda) \subseteq \widehat{G}$.

## HARMONIC ANALYSIS POINT OF VIEW

Recent theory due to Defant and Schoolmann. For frequency $\lambda$, define $\lambda$-Dirichlet group:

G compact abelian with $(\lambda) \subseteq \widehat{G}$.
For $1 \leq p \leq \infty$ :

$$
H_{\lambda}^{p}(G)=\left\{F \in L^{p}(G): \widehat{F}(\gamma)=0 \text { if } \gamma \notin(\lambda)\right\} .
$$

## HARMONIC ANALYSIS POINT OF VIEW

Recent theory due to Defant and Schoolmann. For frequency $\lambda$, define $\lambda$-Dirichlet group:

$$
\mathcal{G} \text { compact abelian with }(\lambda) \subseteq \widehat{G} .
$$

For $1 \leq p \leq \infty$ :

$$
\begin{aligned}
H_{\lambda}^{p}(G) & =\left\{F \in L^{p}(G): \widehat{F}(\gamma)=0 \text { if } \gamma \notin(\lambda)\right\} . \\
\mathcal{B}: f(s) & =\sum_{k=1}^{\infty} a_{k} e^{-\lambda_{k} s} \mapsto F(x) \sim \sum_{k=1}^{\infty} a_{k} \gamma_{\lambda_{k}}(x) .
\end{aligned}
$$

## HARMONIC ANALYSIS POINT OF VIEW 2

$$
\begin{aligned}
1 \leq p<\infty & \mathcal{B}: \mathcal{H}^{p}(\lambda) \rightarrow H_{\lambda}^{p}(G) \text { isometric isomorphism } \\
& \mathcal{B}: \mathcal{H}_{\text {ext }}^{\infty}(\lambda) \rightarrow H_{\lambda}^{\infty}(G) \text { isometric embedding. }
\end{aligned}
$$

## HARMONIC ANALYSIS POINT OF VIEW 2

$$
\begin{aligned}
1 \leq p<\infty & \mathcal{B}: \mathcal{H}^{p}(\lambda) \rightarrow H_{\lambda}^{p}(G) \text { isometric isomorphism } \\
& \mathcal{B}: \mathcal{H}_{\text {ext }}^{\infty}(\lambda) \rightarrow H_{\lambda}^{\infty}(G) \text { isometric embedding. }
\end{aligned}
$$

Bohr's theorem $\Longrightarrow \mathcal{H}^{\infty}(\lambda)=\mathcal{H}_{\text {ext }}^{\infty}(\lambda)$ and $\mathcal{B}: \mathcal{H}^{\infty}(\lambda) \rightarrow H_{\lambda}^{\infty}(G)$ surjective.

## HARMONIC ANALYSIS POINT OF VIEW 2

$$
\begin{aligned}
1 \leq p<\infty & \mathcal{B}: \mathcal{H}^{p}(\lambda) \rightarrow H_{\lambda}^{p}(G) \text { isometric isomorphism } \\
& \mathcal{B}: \mathcal{H}_{e x t}^{\infty}(\lambda) \rightarrow H_{\lambda}^{\infty}(G) \text { isometric embedding. }
\end{aligned}
$$

Bohr's theorem $\Longrightarrow \mathcal{H}^{\infty}(\lambda)=\mathcal{H}_{\text {ext }}^{\infty}(\lambda)$ and $\mathcal{B}: \mathcal{H}^{\infty}(\lambda) \rightarrow H_{\lambda}^{\infty}(G)$ surjective.
$q_{j}$ positive reals, $\log q_{j}$ linearly independent over $\mathbb{Q}$.
$\left(\lambda_{k}\right)=\left(\log m_{k}\right),\left(m_{k}\right)$ sequence of all possible products of $q_{j}$.

## HARMONIC ANALYSIS POINT OF VIEW 2

$$
\begin{aligned}
1 \leq p<\infty & \mathcal{B}: \mathcal{H}^{p}(\lambda) \rightarrow H_{\lambda}^{p}(G) \text { isometric isomorphism } \\
& \mathcal{B}: \mathcal{H}_{e x t}^{\infty}(\lambda) \rightarrow H_{\lambda}^{\infty}(G) \text { isometric embedding. }
\end{aligned}
$$

Bohr's theorem $\Longrightarrow \mathcal{H}^{\infty}(\lambda)=\mathcal{H}_{\text {ext }}^{\infty}(\lambda)$ and $\mathcal{B}: \mathcal{H}^{\infty}(\lambda) \rightarrow H_{\lambda}^{\infty}(G)$ surjective.
$q_{j}$ positive reals, $\log q_{j}$ linearly independent over $\mathbb{Q}$.
$\left(\lambda_{k}\right)=\left(\log m_{k}\right),\left(m_{k}\right)$ sequence of all possible products of $q_{j}$.
Then we may take $G=\mathbb{T}^{\infty}$ as before.

## BEURLING GENERALIZED NUMBER SYSTEMS

## Beurling number systems

Beurling generalized primes and integers: $(\mathcal{P}, \mathcal{N})$.

## BEURLING NUMBER SYSTEMS

Beurling generalized primes and integers: $(\mathcal{P}, \mathcal{N})$.

$$
\begin{aligned}
& \mathcal{P}=\left(q_{j}\right)_{j \geq 1}, \quad 1<q_{1} \leq q_{2} \leq \ldots, \\
& \mathcal{N}=\left(m_{k}\right)_{k \geq 0}, \quad 1=m_{0}<m_{1} \leq m_{2} \leq \ldots, \\
& \begin{array}{l}
q_{j} \rightarrow \infty ; \\
m_{k}=q_{1}^{\alpha_{1}} \cdots q_{j}^{\alpha_{j}} .
\end{array}
\end{aligned}
$$

## Beurling number systems

Beurling generalized primes and integers: $(\mathcal{P}, \mathcal{N})$.

$$
\begin{array}{lll}
\mathcal{P}=\left(q_{j}\right)_{j \geq 1}, & 1<q_{1} \leq q_{2} \leq \ldots, & q_{j} \rightarrow \infty ; \\
\mathcal{N}=\left(m_{k}\right)_{k \geq 0}, & 1=m_{0}<m_{1} \leq m_{2} \leq \ldots, & m_{k}=q_{1}^{\alpha_{1}} \cdots q_{j}^{\alpha_{j}}
\end{array}
$$

Counting functions:

$$
\pi_{\mathcal{P}}(x)=\#\left\{q_{j} \leq x\right\}, \quad N_{\mathcal{P}}(x)=\#\left\{m_{k} \leq x\right\} .
$$

## Beurling number systems

Beurling generalized primes and integers: $(\mathcal{P}, \mathcal{N})$.

$$
\begin{array}{lll}
\mathcal{P}=\left(q_{j}\right)_{j \geq 1}, & 1<q_{1} \leq q_{2} \leq \ldots, & q_{j} \rightarrow \infty ; \\
\mathcal{N}=\left(m_{k}\right)_{k \geq 0}, & 1=m_{0}<m_{1} \leq m_{2} \leq \ldots, & m_{k}=q_{1}^{\alpha_{1}} \cdots q_{j}^{\alpha_{j}}
\end{array}
$$

Counting functions:

$$
\pi_{\mathcal{P}}(x)=\#\left\{q_{j} \leq x\right\}, \quad N_{\mathcal{P}}(x)=\#\left\{m_{k} \leq x\right\} .
$$

Associated frequency: $(\lambda)=\left(\log m_{k}\right)_{k}$
Beurling zeta function

$$
\zeta_{\mathcal{P}}(s)=\sum_{k=0}^{\infty} \frac{1}{m_{k}^{s}}=\prod_{j=1}^{\infty} \frac{1}{1-q_{j}^{-s}} .
$$

## EXAMPLES

$$
\begin{gathered}
\mathcal{P}=\{3,5,7,11, \ldots\}, \quad \mathcal{N}=\{1,3,5,7,9, \ldots\} \\
\pi_{\mathcal{P}}(x)=\pi(x)-1 \sim \frac{x}{\log x}, \quad N_{\mathcal{P}}(x)=\lfloor x / 2\rfloor
\end{gathered}
$$

## EXAMPLES

$$
\begin{gathered}
\mathcal{P}=\{3,5,7,11, \ldots\}, \quad \mathcal{N}=\{1,3,5,7,9, \ldots\} . \\
\pi_{\mathcal{P}}(x)=\pi(x)-1 \sim \frac{x}{\log x}, \quad N_{\mathcal{P}}(x)=\lfloor x / 2\rfloor .
\end{gathered}
$$

$\square \mathcal{O}_{K}$ the ring of integers of a number field $K$.

$$
\begin{gathered}
\mathcal{P}=\left(|P|, P \unlhd \mathcal{O}_{K}, P \text { prime ideal }\right) \\
\mathcal{N}=\left(|I|, I \unlhd \mathcal{O}_{K}, l \text { integral ideal }\right) \\
\pi_{\mathcal{O}_{K}}(x) \sim \frac{x}{\log x}, \quad N_{\mathcal{O}_{K}}(x)=A_{K} x+O\left(x^{1-\frac{2}{d+1}}\right) .
\end{gathered}
$$

## Beurling's PNT

Main goal: investigate relation $\pi_{\mathcal{P}}(x)$ and $N_{\mathcal{P}}(x)$, often via $\zeta_{\mathcal{P}}(s)$

## Beurling's PNT

Main goal: investigate relation $\pi_{\mathcal{P}}(x)$ and $N_{\mathcal{P}}(x)$, often via $\zeta_{\mathcal{P}}(s)$ Usually assume

$$
N_{\mathcal{P}}(x) \approx A x, \quad \text { some } A>0, \quad \pi_{\mathcal{P}}(x) \approx \operatorname{Li}(x)=\int_{2}^{x} \frac{\mathrm{~d} u}{\log u} \sim \frac{x}{\log x}
$$

## Beurling's PNT

Main goal: investigate relation $\pi_{\mathcal{P}}(x)$ and $N_{\mathcal{P}}(x)$, often via $\zeta_{\mathcal{P}}(s)$ Usually assume

$$
N_{\mathcal{P}}(x) \approx A x, \quad \text { some } A>0, \quad \pi_{\mathcal{P}}(x) \approx \operatorname{Li}(x)=\int_{2}^{x} \frac{\mathrm{~d} u}{\log u} \sim \frac{x}{\log x}
$$

## Theorem (Beurling)

$$
\begin{aligned}
& \text { Suppose } N_{\mathcal{P}}(x)=A x+O\left(x(\log x)^{-\gamma}\right) \text { with } A>0 \text { and } \gamma>3 / 2 \text {. Then } \\
& \pi_{\mathcal{P}}(x) \sim \operatorname{Li}(x) .
\end{aligned}
$$

## Beurling's PNT

Main goal: investigate relation $\pi_{\mathcal{P}}(x)$ and $N_{\mathcal{P}}(x)$, often via $\zeta_{\mathcal{P}}(s)$ Usually assume

$$
N_{\mathcal{P}}(x) \approx A x, \quad \text { some } A>0, \quad \pi_{\mathcal{P}}(x) \approx \operatorname{Li}(x)=\int_{2}^{x} \frac{\mathrm{~d} u}{\log u} \sim \frac{x}{\log x}
$$

## Theorem (Beurling)

$$
\begin{aligned}
& \text { Suppose } N_{\mathcal{P}}(x)=A x+O\left(x(\log x)^{-\gamma}\right) \text { with } A>0 \text { and } \gamma>3 / 2 \text {. Then } \\
& \pi_{\mathcal{P}}(x) \sim \operatorname{Li}(x) .
\end{aligned}
$$

The threshold $\gamma=3 / 2$ is sharp.

## LANDAU'S PNT, DENSITY

Theorem (Landau)
Suppose $N_{\mathcal{P}}(x)=A x+O\left(x^{\theta}\right)$ with $A>0$ and $\theta<1$. Then

$$
\pi_{\mathcal{P}}(x)=\operatorname{Li}(x)+O(x \exp (-c \sqrt{\log x})), \quad \text { some } c>0 .
$$

## LANDAU's PNT, DENSITY

## Theorem (Landau)

$$
\begin{aligned}
& \text { Suppose } N_{\mathcal{P}}(x)=A x+O\left(x^{\theta}\right) \text { with } A>0 \text { and } \theta<1 \text {. Then } \\
& \qquad \pi_{\mathcal{P}}(x)=\operatorname{Li}(x)+O(x \exp (-c \sqrt{\log x})), \quad \text { some } c>0 .
\end{aligned}
$$

Shown to be sharp by Diamond, Montgomery, and Vorhauer.

## LANDAU'S PNT, DENSITY

## Theorem (Landau)

$$
\begin{aligned}
& \text { Suppose } N_{\mathcal{P}}(x)=A x+O\left(x^{\theta}\right) \text { with } A>0 \text { and } \theta<1 \text {. Then } \\
& \qquad \pi_{\mathcal{P}}(x)=\operatorname{Li}(x)+O(x \exp (-c \sqrt{\log x})), \quad \text { some } c>0 .
\end{aligned}
$$

Shown to be sharp by Diamond, Montgomery, and Vorhauer.

## Theorem (Hilberdink, Lapidus)

Suppose $\pi(x)=\operatorname{Li}(x)+O\left(x^{\theta}\right)$ with $\theta<1$. Then

$$
N_{\mathcal{P}}(x)=A x+O(x \exp (-c \sqrt{\log x \log \log x})), \quad \text { some } c>0 .
$$

## LANDAU'S PNT, DENSITY

## Theorem (Landau)

$$
\begin{aligned}
& \text { Suppose } N_{\mathcal{P}}(x)=A x+O\left(x^{\theta}\right) \text { with } A>0 \text { and } \theta<1 \text {. Then } \\
& \qquad \pi_{\mathcal{P}}(x)=\operatorname{Li}(x)+O(x \exp (-c \sqrt{\log x})), \quad \text { some } c>0 .
\end{aligned}
$$

Shown to be sharp by Diamond, Montgomery, and Vorhauer.

## Theorem (Hilberdink, Lapidus)

Suppose $\pi(x)=\operatorname{Li}(x)+O\left(x^{\theta}\right)$ with $\theta<1$. Then

$$
N_{\mathcal{P}}(x)=A x+O(x \exp (-c \sqrt{\log x \log \log x})), \quad \text { some } c>0 .
$$

Shown to be sharp by B., Debruyne, Vindas.

## HELSON'S CONJECTURE

## VERTICAL LIMITS

$(\lambda)=\left(\log m_{k}\right)$ frequency coming from Beurling number system.

$$
\mathcal{H}^{2}(\lambda)=\left\{f(s)=\sum_{k=0}^{\infty} \frac{a_{k}}{m_{k}^{s}}: \sum_{k=0}^{\infty}\left|a_{k}\right|^{2}<\infty\right\} \cong H^{2}\left(\mathbb{T}^{\infty}\right)
$$

## VERTICAL LIMITS

$(\lambda)=\left(\log m_{k}\right)$ frequency coming from Beurling number system.

$$
\mathcal{H}^{2}(\lambda)=\left\{f(s)=\sum_{k=0}^{\infty} \frac{a_{k}}{m_{k}^{s}}: \sum_{k=0}^{\infty}\left|a_{k}\right|^{2}<\infty\right\} \cong H^{2}\left(\mathbb{T}^{\infty}\right)
$$

We can interpret $\left(z_{1}, z_{2}, \ldots\right) \in \mathbb{T}^{\infty}$ as multiplicative character $\chi$ defined by

$$
\chi\left(m_{k}\right)=z_{1}^{\alpha_{1}} \cdots z_{J}^{\alpha_{J}}, \quad \text { if } m_{k}=q_{1}^{\alpha_{1}} \cdots q_{J}^{\alpha_{J}} .
$$

## Vertical Limits

$(\lambda)=\left(\log m_{k}\right)$ frequency coming from Beurling number system.

$$
\mathcal{H}^{2}(\lambda)=\left\{f(s)=\sum_{k=0}^{\infty} \frac{a_{k}}{m_{k}^{s}}: \sum_{k=0}^{\infty}\left|a_{k}\right|^{2}<\infty\right\} \cong H^{2}\left(\mathbb{T}^{\infty}\right)
$$

We can interpret $\left(z_{1}, z_{2}, \ldots\right) \in \mathbb{T}^{\infty}$ as multiplicative character $\chi$ defined by

$$
\chi\left(m_{k}\right)=z_{1}^{\alpha_{1}} \cdots z_{J}^{\alpha_{J}}, \quad \text { if } m_{k}=q_{1}^{\alpha_{1}} \cdots q_{J}^{\alpha_{J}} .
$$

## Theorem (Helson)

Suppose $(\lambda)=\left(\log m_{k}\right)$ satisfies $(B C)$. Given $f \in \mathcal{H}^{2}(\lambda)$, for almost every $\chi \in \mathbb{T}^{\infty}$,

$$
f_{\chi}(s)=\sum_{k=0}^{\infty} \frac{a_{k} \chi\left(m_{k}\right)}{m_{k}^{s}}
$$

converges in $\operatorname{Re} s>0$.

## Outer functions and Helson's conjecture

$f \in \mathcal{H}^{2}(\lambda)$ is outer (also cyclic) if $\{P f: P$ polynomial $\}$ is dense in $\mathcal{H}^{2}$.

## Outer functions and Helson's conjecture

$f \in \mathcal{H}^{2}(\lambda)$ is outer (also cyclic) if $\{P f: P$ polynomial $\}$ is dense in $\mathcal{H}^{2}$. $f$ outer $\Longrightarrow f_{\chi}$ outer in classical sense on right half-plane for almost every $\chi \in \mathbb{T}^{\infty}$, hence has no zeros.

## Outer functions and Helson's conjecture

$f \in \mathcal{H}^{2}(\lambda)$ is outer (also cyclic) if $\{P f$ : $P$ polynomial $\}$ is dense in $\mathcal{H}^{2}$.
$f$ outer $\Longrightarrow f_{\chi}$ outer in classical sense on right half-plane for almost every $\chi \in \mathbb{T}^{\infty}$, hence has no zeros.

## Conjecture (Helson)

Suppose $(\lambda)=\left(\log m_{k}\right)$ satisfies $(B C)$ and $f \in \mathcal{H}^{2}(\lambda)$ is outer. Then $f_{\chi}$ never vanishes in its half-plane of convergence, for every $\chi \in \mathbb{T}^{\infty}$.

## Outer functions and Helson's conjecture

$f \in \mathcal{H}^{2}(\lambda)$ is outer (also cyclic) if $\{P f: P$ polynomial $\}$ is dense in $\mathcal{H}^{2}$.
$f$ outer $\Longrightarrow f_{\chi}$ outer in classical sense on right half-plane for almost every $\chi \in \mathbb{T}^{\infty}$, hence has no zeros.

## Conjecture (Helson)

Suppose $(\lambda)=\left(\log m_{k}\right)$ satisfies $(B C)$ and $f \in \mathcal{H}^{2}(\lambda)$ is outer. Then $f_{\chi}$ never vanishes in its half-plane of convergence, for every $\chi \in \mathbb{T}^{\infty}$.

Helson: Some doubt is thrown on the conjecture, or at least on the ease of proving it.
$f(s)=1 / \zeta(s+u)$ is outer if $u>1 / 2$. RH implies convergence in $\operatorname{Re} s+u>1 / 2$, but has a zero for $s=1-u$.

## Systems with Bohr's theorem

## Theorem (B., Kouroupis, Perfekt)

There exist Beurling number systems $(\mathcal{P}, \mathcal{N})$ such that
$1 \pi_{\mathcal{P}}(x)=\operatorname{Li}(x)+O(1)$;
$2 N_{\mathcal{P}}(x)=A x+O_{\varepsilon}\left(x^{1 / 2+\varepsilon}\right)$, for some $A>0$ and all $\varepsilon>0$;
$3(\lambda)=\left(\log m_{k}\right)_{k}$ satisfies $(B C)$.

## Systems with Bohr's theorem

## Theorem (B., Kouroupis, Perfekt)

There exist Beurling number systems $(\mathcal{P}, \mathcal{N})$ such that
$1 \pi_{\mathcal{P}}(x)=\operatorname{Li}(x)+O(1)$;
$2 N_{\mathcal{P}}(x)=A x+O_{\varepsilon}\left(x^{1 / 2+\varepsilon}\right)$, for some $A>0$ and all $\varepsilon>0$;
उ $(\lambda)=\left(\log m_{k}\right)_{k}$ satisfies $(B C)$.
In particular, RH and Bohr's theorem both hold.
$\zeta_{\mathcal{P}}(s)$ meromorphic continuation to $\operatorname{Re} s>0$, simple pole with residue $A$ at $s=1$.
$\zeta_{\mathcal{P}}(s)$ has no zeros and of zero order for $\sigma>1 / 2: \zeta_{\mathcal{P}}(\sigma+i t) \ll t^{\varepsilon}$ for all $\varepsilon>0$.

## Systems with Bohr's theorem

## Theorem (B., Kouroupis, Perfekt)

There exist Beurling number systems $(\mathcal{P}, \mathcal{N})$ such that
$1 \pi_{\mathcal{P}}(x)=\operatorname{Li}(x)+O(1)$;
$2 N_{\mathcal{P}}(x)=A x+O_{\varepsilon}\left(x^{1 / 2+\varepsilon}\right)$, for some $A>0$ and all $\varepsilon>0$;
उ $(\lambda)=\left(\log m_{k}\right)_{k}$ satisfies $(B C)$.
In particular, RH and Bohr's theorem both hold.
$\zeta_{\mathcal{P}}(s)$ meromorphic continuation to $\operatorname{Re} s>0$, simple pole with residue $A$ at $s=1$.
$\zeta_{\mathcal{P}}(s)$ has no zeros and of zero order for $\sigma>1 / 2: \zeta_{\mathcal{P}}(\sigma+i t) \ll t^{\varepsilon}$ for all $\varepsilon>0$.
$1 / \zeta_{\mathcal{P}}(s+u), 1 / 2<u<1$, counterexample to Helson's conjecture!

## Proof sketch

Let $x_{j}$ be such that $\mathrm{Li}\left(x_{j}\right)=j$. Then $\left.d \mathrm{Li}\right|_{x_{j}-1, x_{j}}$ is a probability measure. We choose $q_{j}$ randomly from $\left[x_{j-1}, x_{j}\right]$ with this distribution.

## Proof sketch

Let $x_{j}$ be such that $\operatorname{Li}\left(x_{j}\right)=j$. Then $\left.d \operatorname{Li}\right|_{\left[x_{j-1}, x_{j}\right]}$ is a probability measure. We choose $q_{j}$ randomly from $\left[x_{j-1}, x_{j}\right]$ with this distribution.
By construction,

$$
\pi_{\mathcal{P}}(x)=\operatorname{Li}(x)+O(1)
$$

## Proof sketch

Let $x_{j}$ be such that $\operatorname{Li}\left(x_{j}\right)=j$. Then $\left.d \operatorname{Li}\right|_{x_{j-1}, x_{j}}$ is a probability measure. We choose $q_{j}$ randomly from $\left[x_{j-1}, x_{j}\right]$ with this distribution.
By construction,

$$
\pi_{\mathcal{P}}(x)=\mathrm{Li}(x)+O(1) .
$$

To ensure that power saving for $\mathcal{N}$, we pass through the zeta function. Now

$$
\zeta_{\mathcal{P}}(s)=\sum_{k} \frac{1}{m_{k}^{s}}=\prod_{j} \frac{1}{1-q_{j}^{-s}}
$$

## Proof sketch

Let $x_{j}$ be such that $\mathrm{Li}\left(x_{j}\right)=j$. Then $d \mathrm{Li}_{\left[x_{j-1}, x_{j}\right]}$ is a probability measure. We choose $q_{j}$ randomly from $\left[x_{j-1}, x_{j}\right]$ with this distribution.
By construction,

$$
\pi_{\mathcal{P}}(x)=\operatorname{Li}(x)+O(1)
$$

To ensure that power saving for $\mathcal{N}$, we pass through the zeta function. Now

$$
\zeta_{\mathcal{P}}(s)=\sum_{k} \frac{1}{m_{k}^{s}}=\prod_{j} \frac{1}{1-q_{j}^{-s}}
$$

We consider the events

$$
A_{J, m}=\left\{\left(q_{1}, q_{2}, \ldots\right):\left|\sum_{j=1}^{J} q_{j}^{-i m}-\int_{1}^{x_{J}} u^{-i m} d \operatorname{Li}(u)\right| \geq C_{J, m}\right\} .
$$

## Proof sketch

Let $x_{j}$ be such that $\mathrm{Li}\left(x_{j}\right)=j$. Then $d \mathrm{Li}_{\left[x_{j-1}, x_{j}\right]}$ is a probability measure. We choose $q_{j}$ randomly from $\left[x_{j-1}, x_{j}\right]$ with this distribution.
By construction,

$$
\pi_{\mathcal{P}}(x)=\mathrm{Li}(x)+O(1)
$$

To ensure that power saving for $\mathcal{N}$, we pass through the zeta function. Now

$$
\zeta_{\mathcal{P}}(s)=\sum_{k} \frac{1}{m_{k}^{s}}=\prod_{j} \frac{1}{1-q_{j}^{-s}}
$$

We consider the events

$$
A_{J, m}=\left\{\left(q_{1}, q_{2}, \ldots\right):\left|\sum_{j=1}^{J} q_{j}^{-i m}-\int_{1}^{x_{J}} u^{-i m} d \operatorname{Li}(u)\right| \geq C_{J, m}\right\} .
$$

If $C_{J, m}$ are chosen such that $\sum_{J, m} P\left(A_{J, m}\right)<\infty$, then by Borel-Cantelli, with probability 1 only finitely many $A_{J, m}$ occur.

## Proof sketch continued

To ensure sufficiently large gaps between the generalized integers, we follow a similar strategy.
We consider sets $\mathcal{M}_{J}\left(q_{1}, q_{2}, \ldots, q_{J-1}\right)$, which is "forbidden" for $q_{J}$, given the choice of the first $J-1$ Beurling primes $q_{1}, \ldots, q_{J-1}$.

## PROOF SKETCH CONTINUED

To ensure sufficiently large gaps between the generalized integers, we follow a similar strategy.
We consider sets $\mathcal{M}_{J}\left(q_{1}, q_{2}, \ldots, q_{J-1}\right)$, which is "forbidden" for $q_{J}$, given the choice of the first $J-1$ Beurling primes $q_{1}, \ldots, q_{J-1}$.
We set

$$
B_{J}=\left\{\left(q_{1}, q_{2}, \ldots\right): q_{J} \in \mathcal{M}_{J}\left(q_{1}, \ldots, q_{J-1}\right)\right\}
$$

## Proof sketch continued

To ensure sufficiently large gaps between the generalized integers, we follow a similar strategy.
We consider sets $\mathcal{M}_{J}\left(q_{1}, q_{2}, \ldots, q_{J-1}\right)$, which is "forbidden" for $q_{J}$, given the choice of the first $J-1$ Beurling primes $q_{1}, \ldots, q_{J-1}$.
We set

$$
B_{J}=\left\{\left(q_{1}, q_{2}, \ldots\right): q_{J} \in \mathcal{M}_{J}\left(q_{1}, \ldots, q_{J-1}\right)\right\}
$$

Again we show that $\sum_{J} P\left(B_{J}\right)<\infty$.
By Borel-Cantelli, with probability 1 only finitely many $B_{J}$ occur. If only $B_{J_{1}}, \ldots, B_{J_{N}}$ occur, we delete the corresponding primes:

$$
\tilde{\mathcal{P}}=\mathcal{P} \backslash\left\{q_{J_{1}}, \ldots, q_{J_{N}}\right\} .
$$

## References

■ H. Hedenmalm, P. Lindqvist, K. Seip, A Hilbert space of Dirichlet series and a system of dilated functions in $L^{2}([0,1])$, Duke Math. J. 86, 1-36 (1997).

- F. Bayart, Hardy spaces of Dirichlet series and their composition operators, Monatsh. Math. 136, 203-236 (2002).
■ H. Queffélec, M. Queffélec, Diophantine Approximation and Dirichlet Series, Texts and Readings in Mathematics 80, Hindustan Book Agency, New Delhi, Springer, Singapore (2020), Second edition.
- A. Defant, I. Schoolmann, $\mathcal{H}_{p}$-theory of general Dirichlet series, J. Fourier Anal. Appl. 25, 3220-3258 (2019).
- H. G. Diamond, W.-B. Zhang, Beurling generalized numbers, Mathematical Surveys and Monographs series, American Mathematical Society, Providence, RI, 2016.
- F. Broucke, A. Kouroupis, K.-M. Perfekt, A note on Bohr's theorem for Beurling integer systems, Math. Ann. (2023) https://doi.org/10.1007/s00208-023-02756-x.

