

JOURNÉES COMPLEXES DU NORD - 7 JUNE 2024

BOHR'S THEOREM FOR BEURLING INTEGER SYSTEMS

Frederik Broucke — fabrouck.broucke@ugent.be

DIRICHLET SERIES AND BOHR'S

DIRICHLET SERIES

$$f(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}, \quad a_n \in \mathbb{C}, \quad s = \sigma + it.$$

DIRICHLET SERIES

$$f(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}, \quad a_n \in \mathbb{C}, \quad s = \sigma + it.$$

Basic example: Riemann zeta function

$$\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}.$$

DIRICHLET SERIES

$$f(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}, \quad a_n \in \mathbb{C}, \quad s = \sigma + it.$$

Basic example: Riemann zeta function

$$\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}.$$

Power series:

$$\sum_{k=0}^{\infty} a_k (2^{-s})^k.$$

$$f(s) = \sum_{n=1}^{\infty} a_n n^{-s}$$

$$\begin{split} \sigma_c &= \inf \{ \sigma : f(s) \text{ converges on } \operatorname{Re} s > \sigma \}, \\ \sigma_u &= \inf \{ \sigma : f(s) \text{ converges uniformly on } \operatorname{Re} s > \sigma \}, \\ \sigma_a &= \inf \{ \sigma : f(s) \text{ converges absolutely on } \operatorname{Re} s > \sigma \}. \end{split}$$

$$\begin{split} f(s) &= \sum_{n=1}^{\infty} a_n n^{-s} \\ \sigma_c &= \inf\{\sigma : f(s) \text{ converges on } \operatorname{Re} s > \sigma\}, \\ \sigma_u &= \inf\{\sigma : f(s) \text{ converges uniformly on } \operatorname{Re} s > \sigma\}, \\ \sigma_a &= \inf\{\sigma : f(s) \text{ converges absolutely on } \operatorname{Re} s > \sigma\}. \end{split}$$

Clearly $\sigma_c \leq \sigma_u \leq \sigma_a$, and f(s) is bounded on $\{\text{Re } s \geq \sigma_u + \varepsilon\}$.

$$f(s) = \sum_{n=1}^{\infty} a_n n^{-s}$$

$$\sigma_c = \inf\{\sigma : f(s) \text{ converges on } \operatorname{Re} s > \sigma\},$$

$$\sigma_u = \inf\{\sigma : f(s) \text{ converges uniformly on } \operatorname{Re} s > \sigma\},$$

$$\sigma_a = \inf\{\sigma : f(s) \text{ converges absolutely on } \operatorname{Re} s > \sigma\}.$$

Clearly $\sigma_c \leq \sigma_u \leq \sigma_a$, and f(s) is bounded on $\{\text{Re } s \geq \sigma_u + \varepsilon\}$.

Theorem (Bohr)

If $f(s) = \sum_{n=1}^{\infty} a_n n^{-s}$ converges somewhere, and the limit function has bounded analytic extension to {Re s > 0}, then $\sigma_u \leq 0$.

For each prime p_j , write $z_j = p_j^{-s}$. Bohr: z_j 's act as independent variables.

For each prime p_j , write $z_j = p_j^{-s}$. Bohr: z_j 's act as independent variables. Fundamental theorem of arithmetic $\implies \log p_j$ linearly independent over \mathbb{Q} .

For each prime p_j , write $z_j = p_j^{-s}$. Bohr: z_j 's act as independent variables. Fundamental theorem of arithmetic $\implies \log p_j$ linearly independent over \mathbb{Q} .

Kronecker's theorem yields:

$$\sup_{\operatorname{Re} s>0} \left| \sum_{j=1}^{\infty} \frac{a_j}{p_j^s} \right| = \sum_{j=1}^{\infty} |a_j|.$$

For each prime p_j , write $z_j = p_j^{-s}$. Bohr: z_j 's act as independent variables. Fundamental theorem of arithmetic $\implies \log p_j$ linearly independent over \mathbb{Q} .

Kronecker's theorem yields:

$$\sup_{\operatorname{Re} s>0} \left| \sum_{j=1}^{\infty} \frac{a_j}{p_j^s} \right| = \sum_{j=1}^{\infty} |a_j|.$$

If $n = p_1^{\alpha_1} \cdots p_J^{\alpha_J}$, then $n^{-s} = z_1^{\alpha_1} \cdots z_J^{\alpha_J}.$
$$P(s) = \sum_{n=1}^{N} \frac{a_n}{n^s} \leftrightarrow \mathcal{B}(P)(z) = \sum_{\alpha} c_{\alpha} z^{\alpha},$$
$$c_{\alpha} = a_n \quad \text{if} \quad n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots$$

For each prime p_j , write $z_j = p_j^{-s}$. Bohr: z_j 's act as independent variables. Fundamental theorem of arithmetic $\implies \log p_j$ linearly independent over \mathbb{Q} .

Kronecker's theorem yields:

$$\sup_{\operatorname{Re} s > 0} \left| \sum_{j=1}^{\infty} \frac{a_j}{p_j^s} \right| = \sum_{j=1}^{\infty} |a_j|.$$

If $n = p_1^{\alpha_1} \cdots p_J^{\alpha_J}$, then $n^{-s} = z_1^{\alpha_1} \cdots z_J^{\alpha_J}.$
$$P(s) = \sum_{n=1}^{N} \frac{a_n}{n^s} \leftrightarrow \mathcal{B}(P)(z) = \sum_{\alpha} c_{\alpha} z^{\alpha},$$
$$c_{\alpha} = a_n \quad \text{if} \quad n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots$$
$$\sup_{\operatorname{Re} s > 0} |P(s)| = \sup_{z \in \mathbb{D}^J} |P(z)|$$

$$\mathcal{H}^2 = \bigg\{ f(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} : \sum_{n=1}^{\infty} |a_n|^2 < \infty \bigg\}.$$

Hilbert space with $\langle f, g \rangle = \sum_{n=1}^{\infty} a_n \overline{b_n}$.

$$\mathcal{H}^2 = \bigg\{ f(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} : \sum_{n=1}^{\infty} |a_n|^2 < \infty \bigg\}.$$

Hilbert space with $\langle f, g \rangle = \sum_{n=1}^{\infty} a_n \overline{b_n}$.

By Cauchy–Schwarz, f(s) converges and is holomorphic on Re s > 1/2.

$$\mathcal{H}^2 = \bigg\{ f(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} : \sum_{n=1}^{\infty} |a_n|^2 < \infty \bigg\}.$$

Hilbert space with $\langle f, g \rangle = \sum_{n=1}^{\infty} a_n \overline{b_n}$.

By Cauchy–Schwarz, f(s) converges and is holomorphic on $\operatorname{Re} s > 1/2$.

Reproducing kernel is
$$\zeta(s+\overline{w}) = \sum_{n=1}^{\infty} rac{n^{-\overline{w}}}{n^s} \colon \langle f(s), \zeta(s+\overline{w})
angle = f(w).$$

$$\mathcal{H}^2 = \bigg\{ f(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} : \sum_{n=1}^{\infty} |a_n|^2 < \infty \bigg\}.$$

Hilbert space with $\langle f, g \rangle = \sum_{n=1}^{\infty} a_n \overline{b_n}$.

By Cauchy–Schwarz, f(s) converges and is holomorphic on Re s > 1/2. Reproducing kernel is $\zeta(s + \overline{w}) = \sum_{n=1}^{\infty} \frac{n^{-\overline{w}}}{n^s} : \langle f(s), \zeta(s + \overline{w}) \rangle = f(w)$. \mathcal{H}^2 is the closure of $\{P(s) = \sum_{n=1}^{N} a_n n^{-s}\}$, w.r.t norm

$$\|P\|_{2} = \left(\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |f(it)|^{2} dt\right)^{1/2} = \left(\sum_{n=1}^{N} |a_{n}|^{2}\right)^{1/2}$$

For Dirichlet series, we can make the same formal association with power series:

$$f(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} \leftrightarrow \mathcal{B}(f)(z) = \sum_{\alpha \in \mathbb{N}^{(\infty)}} c_{\alpha} z^{\alpha}.$$

For Dirichlet series, we can make the same formal association with power series:

$$f(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} \leftrightarrow \mathcal{B}(f)(z) = \sum_{\alpha \in \mathbb{N}^{(\infty)}} c_{\alpha} z^{\alpha}.$$

 $f \in \mathcal{H}^2 \implies \mathcal{B}(f)$ holomorphic on $\mathbb{D}^{\infty} \cap \ell^2$.

setting $H^2(\mathbb{D}^\infty) = \mathcal{B}(\mathcal{H}^2), \mathcal{B}$ is an isometric isomorphism $\mathcal{H}^2 \to H^2(\mathbb{D}^\infty)$.

For Dirichlet series, we can make the same formal association with power series:

$$f(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} \leftrightarrow \mathcal{B}(f)(z) = \sum_{\alpha \in \mathbb{N}^{(\infty)}} c_{\alpha} z^{\alpha}.$$

 $f \in \mathcal{H}^2 \implies \mathcal{B}(f)$ holomorphic on $\mathbb{D}^{\infty} \cap \ell^2$.

setting $H^2(\mathbb{D}^\infty) = \mathcal{B}(\mathcal{H}^2)$, \mathcal{B} is an isometric isomorphism $\mathcal{H}^2 \to H^2(\mathbb{D}^\infty)$. Let

$$\mathcal{H}^{\infty} = \bigg\{ f(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} : f \text{ converges}, \|f\|_{\infty} = \sup_{\operatorname{Re} s > 0} |f(s)| < \infty \bigg\},$$
$$H^{\infty}(\mathbb{D}^{\infty}) = \big\{ F(z) : F \text{ bounded holomorphic on } \mathbb{D}^{\infty} \cap c_0 \big\}.$$

For Dirichlet series, we can make the same formal association with power series:

$$f(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} \leftrightarrow \mathcal{B}(f)(z) = \sum_{\alpha \in \mathbb{N}^{(\infty)}} c_{\alpha} z^{\alpha}.$$

 $f \in \mathcal{H}^2 \implies \mathcal{B}(f)$ holomorphic on $\mathbb{D}^{\infty} \cap \ell^2$.

setting $H^2(\mathbb{D}^\infty) = \mathcal{B}(\mathcal{H}^2)$, \mathcal{B} is an isometric isomorphism $\mathcal{H}^2 \to H^2(\mathbb{D}^\infty)$. Let

$$\mathcal{H}^{\infty} = \bigg\{ f(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} : f \text{ converges}, \|f\|_{\infty} = \sup_{\operatorname{Re} s > 0} |f(s)| < \infty \bigg\},$$
$$H^{\infty}(\mathbb{D}^{\infty}) = \big\{ F(z) : F \text{ bounded holomorphic on } \mathbb{D}^{\infty} \cap c_0 \big\}.$$

Theorem (Hedenmalm, Lindqvist, Seip)

 $\mathcal{B}:\mathcal{H}^\infty o\mathsf{H}^\infty(\mathbb{D}^\infty)$ is an isometric isomorphism.

HARMONIC ANALYSIS POINT OF VIEW

Set

$$\mathbb{T}^{\infty} = \big\{ \big(z_1, z_2, \dots \big) : z_j \in \mathbb{C}, \big|z_j\big| = 1 \big\}.$$

Compact abelian group with normalized haar measure d μ_{∞} .

HARMONIC ANALYSIS POINT OF VIEW

Set

$$\mathbb{T}^{\infty} = \big\{ \big(z_1, z_2, \dots \big) : z_j \in \mathbb{C}, \big| z_j \big| = 1 \big\}.$$

Compact abelian group with normalized haar measure $d\mu_{\infty}$. Dual group: $\widehat{\mathbb{T}^{\infty}} \cong \mathbb{Z}^{(\infty)}$: given $\alpha = (\alpha_1, \dots, \alpha_k, 0, \dots) \in \mathbb{Z}^{(\infty)}$, associate the character

$$z^{\alpha}:(z_1,z_2,...)\mapsto z_1^{\alpha_1}\cdots z_k^{\alpha_k}.$$

HARMONIC ANALYSIS POINT OF VIEW

Set

$$\mathbb{T}^{\infty} = \big\{ \big(z_1, z_2, ... \big) : z_j \in \mathbb{C}, \big| z_j \big| = 1 \big\}.$$

Compact abelian group with normalized haar measure $d\mu_{\infty}$. Dual group: $\widehat{\mathbb{T}^{\infty}} \cong \mathbb{Z}^{(\infty)}$: given $\alpha = (\alpha_1, \dots, \alpha_k, 0, \dots) \in \mathbb{Z}^{(\infty)}$, associate the character

$$z^{\alpha}:(z_1,z_2,\dots)\mapsto z_1^{\alpha_1}\cdots z_k^{\alpha_k}.$$

Every $F \in L^1(\mathbb{T}^\infty)$ has Fourier series

$$F(z) \sim \sum_{lpha \in \mathbb{Z}^{(\infty)}} \widehat{F}(lpha) z^{lpha}, \quad \widehat{F}(lpha) = \int_{\mathbb{T}^{\infty}} F(z) \overline{z^{lpha}} \, \mathrm{d}\mu_{\infty}(z).$$

We now set

$$\begin{aligned} & H^2(\mathbb{T}^\infty) = \big\{ F \in L^2(\mathbb{T}^\infty) : \widehat{F}(\alpha) = 0 \text{ if } \alpha_j < 0 \text{ for some } j \big\}, \\ & H^\infty(\mathbb{T}^\infty) = \big\{ F \in L^\infty(\mathbb{T}^\infty) : \widehat{F}(\alpha) = 0 \text{ if } \alpha_j < 0 \text{ for some } j \big\} \end{aligned}$$

We now set

$$H^{2}(\mathbb{T}^{\infty}) = \left\{ F \in L^{2}(\mathbb{T}^{\infty}) : \widehat{F}(\alpha) = 0 \text{ if } \alpha_{j} < 0 \text{ for some } j \right\},\$$

$$H^{\infty}(\mathbb{T}^{\infty}) = \left\{ F \in L^{\infty}(\mathbb{T}^{\infty}) : \widehat{F}(\alpha) = 0 \text{ if } \alpha_{j} < 0 \text{ for some } j \right\}$$

We then have the isometric isomorphisms

$$\mathcal{H}^2\cong H^2(\mathbb{D}^\infty)\cong H^2(\mathbb{T}^\infty), \ \mathcal{H}^\infty\cong H^\infty(\mathbb{D}^\infty)\cong H^\infty(\mathbb{T}^\infty).$$

We now set

$$H^{2}(\mathbb{T}^{\infty}) = \left\{ F \in L^{2}(\mathbb{T}^{\infty}) : \widehat{F}(\alpha) = 0 \text{ if } \alpha_{j} < 0 \text{ for some } j \right\},\$$

$$H^{\infty}(\mathbb{T}^{\infty}) = \left\{ F \in L^{\infty}(\mathbb{T}^{\infty}) : \widehat{F}(\alpha) = 0 \text{ if } \alpha_{j} < 0 \text{ for some } j \right\}$$

We then have the isometric isomorphisms

$$\mathcal{H}^2\cong H^2(\mathbb{D}^\infty)\cong H^2(\mathbb{T}^\infty), \quad \mathcal{H}^\infty\cong H^\infty(\mathbb{D}^\infty)\cong H^\infty(\mathbb{T}^\infty).$$

Extension to $p \in [1, \infty)$ by Bayart: let \mathcal{H}^p be closure of polynomials $P(s) = \sum_{n=1}^{N} a_n n^{-s}$ with norm

$$\|P\|_{p} = \left(\lim_{T\to\infty}\frac{1}{2T}\int_{-T}^{T}|P(it)|^{p} dt\right)^{1/p}.$$

Then $\mathcal{H}^p \cong H^p(\mathbb{T}^\infty)$.

GENERAL DIRICHLET SERIES

Frequency:

$$(\lambda) = (\lambda_k)_k, \quad 0 \leq \lambda_1 < \lambda_2 < ..., \quad \lambda_k \to \infty.$$

General Dirichlet series

$$f(s) = \sum_{k=1}^{\infty} a_k e^{-\lambda_k s}, \quad a_k \in \mathbb{C}.$$

GENERAL DIRICHLET SERIES

Frequency:

$$(\lambda) = (\lambda_k)_k, \quad 0 \leq \lambda_1 < \lambda_2 < ..., \quad \lambda_k \to \infty.$$

General Dirichlet series

$$f(s) = \sum_{k=1}^{\infty} a_k e^{-\lambda_k s}, \quad a_k \in \mathbb{C}.$$

Ordinary Dirichlet series: $(\lambda) = (\log k)_{k \ge 1}$. Power series: $(\lambda) = (k)_{k \ge 0}$.

GENERAL DIRICHLET SERIES

Frequency:

$$(\lambda) = (\lambda_k)_k, \quad 0 \leq \lambda_1 < \lambda_2 < ..., \quad \lambda_k \to \infty.$$

General Dirichlet series

$$f(s) = \sum_{k=1}^{\infty} a_k e^{-\lambda_k s}, \quad a_k \in \mathbb{C}.$$

Ordinary Dirichlet series: $(\lambda) = (\log k)_{k \ge 1}$. Power series: $(\lambda) = (k)_{k \ge 0}$. Abscissas are defined similarly.

Recall Bohr's theorem:

$$f(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$
 bounded analytic extension to Re $s > 0 \implies \sigma_u \le 0$.

Recall Bohr's theorem:

$$f(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$
 bounded analytic extension to Re $s > 0 \implies \sigma_u \le 0$.

Bohr's theorem may fail for general Dirichlet series!

Recall Bohr's theorem:

$$f(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$
 bounded analytic extension to $\operatorname{Re} s > 0 \implies \sigma_u \leq 0.$

Bohr's theorem may fail for general Dirichlet series!

Theorem (Bohr) Suppose that $\lambda_{k+1} - \lambda_k \gg e^{-c\lambda_{k+1}}$, for some c > 0. (BC)

Then Bohr's theorem holds for λ -Dirichlet series

 $1 \leq p < \infty$: $\mathcal{H}^p(\lambda)$ closure of polynomials $P(s) = \sum_{k=1}^{K} a_k e^{-\lambda_k s}$ w.r.t.

$$\|P\|_{p} = \left(\lim_{T\to\infty}\frac{1}{2T}\int_{-T}^{T}|P(it)|^{p} dt\right)^{1/p}.$$

 $1 \leq p < \infty$: $\mathcal{H}^p(\lambda)$ closure of polynomials $P(s) = \sum_{k=1}^{K} a_k e^{-\lambda_k s}$ w.r.t.

$$\|P\|_{\rho} = \left(\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |P(it)|^{\rho} dt\right)^{1/\rho}$$

Two candidates for ∞ -space:

$$\mathcal{H}^{\infty}(\lambda) = \left\{ f(s) = \sum_{k=1}^{\infty} a_k e^{-\lambda_k s} : \sigma_c \le 0 \text{ and bounded on } \operatorname{Re} s > 0 \right\}$$
$$\mathcal{H}^{\infty}_{ext}(\lambda) = \left\{ f(s) = \sum_{k=1}^{\infty} a_k e^{-\lambda_k s} : \sigma_c < \infty \text{ and bounded extension to } \operatorname{Re} s > 0 \right\}$$

 $1 \leq p < \infty$: $\mathcal{H}^p(\lambda)$ closure of polynomials $P(s) = \sum_{k=1}^{K} a_k e^{-\lambda_k s}$ w.r.t.

$$\|P\|_{\rho} = \left(\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |P(it)|^{\rho} dt\right)^{1/\rho}$$

Two candidates for ∞ -space:

$$\mathcal{H}^{\infty}(\lambda) = \left\{ f(s) = \sum_{k=1}^{\infty} a_k e^{-\lambda_k s} : \sigma_c \le 0 \text{ and bounded on } \operatorname{Re} s > 0 \right\}$$
$$\mathcal{H}^{\infty}_{ext}(\lambda) = \left\{ f(s) = \sum_{k=1}^{\infty} a_k e^{-\lambda_k s} : \sigma_c < \infty \text{ and bounded extension to } \operatorname{Re} s > 0 \right\}$$

 $\mathcal{H}^{\infty}(\lambda) \subsetneq \mathcal{H}^{\infty}_{ext}(\lambda)$ can occur!

HARDY SPACES

 $1 \leq p < \infty$: $\mathcal{H}^p(\lambda)$ closure of polynomials $P(s) = \sum_{k=1}^{K} a_k e^{-\lambda_k s}$ w.r.t.

$$\|P\|_{\rho} = \left(\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |P(it)|^{\rho} dt\right)^{1/\rho}$$

Two candidates for ∞ -space:

$$\mathcal{H}^{\infty}(\lambda) = \left\{ f(s) = \sum_{k=1}^{\infty} a_k e^{-\lambda_k s} : \sigma_c \le 0 \text{ and bounded on } \operatorname{Re} s > 0 \right\}$$
$$\mathcal{H}^{\infty}_{ext}(\lambda) = \left\{ f(s) = \sum_{k=1}^{\infty} a_k e^{-\lambda_k s} : \sigma_c < \infty \text{ and bounded extension to } \operatorname{Re} s > 0 \right\}$$

 $\begin{aligned} \mathcal{H}^{\infty}(\lambda) &\subsetneq \mathcal{H}^{\infty}_{ext}(\lambda) \text{ can occur!} \\ \mathcal{H}^{\infty}(\lambda) \text{ complete } \iff \text{Bohr's theorem holds for } \lambda. \end{aligned}$

Recent theory due to Defant and Schoolmann. For frequency λ , define $\lambda\text{-Dirichlet group:}$

G compact abelian with $(\lambda) \subseteq \widehat{G}$.

Recent theory due to Defant and Schoolmann. For frequency λ , define $\lambda\text{-Dirichlet group:}$

G compact abelian with $(\lambda) \subseteq \widehat{G}$.

For $1 \le p \le \infty$:

$$H^p_{\lambda}(G) = \{F \in L^p(G) : \widehat{F}(\gamma) = 0 \text{ if } \gamma \notin (\lambda)\}.$$

Recent theory due to Defant and Schoolmann. For frequency λ , define $\lambda\text{-Dirichlet group:}$

G compact abelian with $(\lambda) \subseteq \widehat{G}$.

For $1 \le p \le \infty$:

$$H^p_{\lambda}(G) = \big\{ F \in L^p(G) : \widehat{F}(\gamma) = 0 \text{ if } \gamma \notin (\lambda) \big\}.$$

$$\mathcal{B}: f(s) = \sum_{k=1}^{\infty} a_k e^{-\lambda_k s} \mapsto F(x) \sim \sum_{k=1}^{\infty} a_k \gamma_{\lambda_k}(x).$$

 $1 \leq p < \infty$ $\mathcal{B} : \mathcal{H}^{p}(\lambda) \to H^{p}_{\lambda}(G)$ isometric isomorphism $\mathcal{B} : \mathcal{H}^{\infty}_{ext}(\lambda) \to H^{\infty}_{\lambda}(G)$ isometric embedding.

$$1 \leq p < \infty$$
 $\mathcal{B} : \mathcal{H}^{p}(\lambda) \to \mathcal{H}^{p}_{\lambda}(G)$ isometric isomorphism
 $\mathcal{B} : \mathcal{H}^{\infty}_{ext}(\lambda) \to \mathcal{H}^{\infty}_{\lambda}(G)$ isometric embedding.

Bohr's theorem $\implies \mathcal{H}^{\infty}(\lambda) = \mathcal{H}^{\infty}_{ext}(\lambda)$ and $\mathcal{B} : \mathcal{H}^{\infty}(\lambda) \to \mathcal{H}^{\infty}_{\lambda}(G)$ surjective.

$$\begin{split} 1 \leq p < \infty \quad \mathcal{B} : \mathcal{H}^p(\lambda) \to \mathcal{H}^p_\lambda(G) \text{ isometric isomorphism} \\ \mathcal{B} : \mathcal{H}^\infty_{\text{ext}}(\lambda) \to \mathcal{H}^\infty_\lambda(G) \text{ isometric embedding.} \end{split}$$

Bohr's theorem $\implies \mathcal{H}^{\infty}(\lambda) = \mathcal{H}^{\infty}_{ext}(\lambda)$ and $\mathcal{B} : \mathcal{H}^{\infty}(\lambda) \to \mathcal{H}^{\infty}_{\lambda}(G)$ surjective.

 q_j positive reals, log q_j linearly independent over \mathbb{Q} . (λ_k) = (log m_k), (m_k) sequence of all possible products of q_j .

$$1 \leq p < \infty$$
 $\mathcal{B} : \mathcal{H}^{p}(\lambda) \to \mathcal{H}^{p}_{\lambda}(G)$ isometric isomorphism
 $\mathcal{B} : \mathcal{H}^{\infty}_{ext}(\lambda) \to \mathcal{H}^{\infty}_{\lambda}(G)$ isometric embedding.

Bohr's theorem $\implies \mathcal{H}^{\infty}(\lambda) = \mathcal{H}^{\infty}_{ext}(\lambda)$ and $\mathcal{B} : \mathcal{H}^{\infty}(\lambda) \to \mathcal{H}^{\infty}_{\lambda}(G)$ surjective.

 q_j positive reals, log q_j linearly independent over \mathbb{Q} . (λ_k) = (log m_k), (m_k) sequence of all possible products of q_j .

Then we may take $G = \mathbb{T}^{\infty}$ as before.

BEURLING GENERALIZED NUM-BER SYSTEMS

Beurling generalized primes and integers: $(\mathcal{P}, \mathcal{N})$.

Beurling generalized primes and integers: $(\mathcal{P}, \mathcal{N})$.

$$\mathcal{P} = (q_j)_{j \ge 1}, \qquad 1 < q_1 \le q_2 \le ..., \qquad q_j \to \infty; \ \mathcal{N} = (m_k)_{k \ge 0}, \qquad 1 = m_0 < m_1 \le m_2 \le ..., \qquad m_k = q_1^{\alpha_1} \cdots q_j^{\alpha_j}.$$

Beurling generalized primes and integers: $(\mathcal{P}, \mathcal{N})$.

$$\mathcal{P} = (q_j)_{j \ge 1}, \qquad 1 < q_1 \le q_2 \le ..., \qquad q_j \to \infty;$$

 $\mathcal{N} = (m_k)_{k \ge 0}, \qquad 1 = m_0 < m_1 \le m_2 \le ..., \qquad m_k = q_1^{\alpha_1} \cdots q_j^{\alpha_j}.$

Counting functions:

$$\pi_{\mathcal{P}}(x) = \#\{q_j \leq x\}, \quad N_{\mathcal{P}}(x) = \#\{m_k \leq x\}.$$

Beurling generalized primes and integers: $(\mathcal{P}, \mathcal{N})$.

$$\mathcal{P} = (q_j)_{j \ge 1}, \qquad 1 < q_1 \le q_2 \le ..., \qquad q_j \to \infty;$$

 $\mathcal{N} = (m_k)_{k \ge 0}, \qquad 1 = m_0 < m_1 \le m_2 \le ..., \qquad m_k = q_1^{\alpha_1} \cdots q_j^{\alpha_j}.$

Counting functions:

$$\pi_{\mathcal{P}}(x) = \#\{q_j \leq x\}, \quad N_{\mathcal{P}}(x) = \#\{m_k \leq x\}.$$

Associated frequency: $(\lambda) = (\log m_k)_k$ Beurling zeta function

$$\zeta_{\mathcal{P}}(s) = \sum_{k=0}^{\infty} \frac{1}{m_k^s} = \prod_{j=1}^{\infty} \frac{1}{1-q_j^{-s}}.$$

EXAMPLES

 $\mathcal{P} = \{3, 5, 7, 11, \dots\}, \quad \mathcal{N} = \{1, 3, 5, 7, 9, \dots\}.$ $\pi_{\mathcal{P}}(x) = \pi(x) - 1 \sim \frac{x}{\log x}, \quad N_{\mathcal{P}}(x) = \lfloor x/2 \rfloor.$

EXAMPLES

$$\mathcal{P} = \{3, 5, 7, 11, \dots\}, \quad \mathcal{N} = \{1, 3, 5, 7, 9, \dots\}.$$
$$\pi_{\mathcal{P}}(x) = \pi(x) - 1 \sim \frac{x}{\log x}, \quad N_{\mathcal{P}}(x) = \lfloor x/2 \rfloor.$$

• \mathcal{O}_K the ring of integers of a number field *K*.

$$\mathcal{P} = (|P|, P \leq \mathcal{O}_{\mathcal{K}}, P \text{ prime ideal}),$$
$$\mathcal{N} = (|I|, I \leq \mathcal{O}_{\mathcal{K}}, I \text{ integral ideal}).$$

$$\pi_{\mathcal{O}_{\mathcal{K}}}(x) \sim \frac{x}{\log x}, \quad N_{\mathcal{O}_{\mathcal{K}}}(x) = A_{\mathcal{K}}x + O(x^{1-\frac{x}{d+1}}).$$

Main goal: investigate relation $\pi_{\mathcal{P}}(x)$ and $N_{\mathcal{P}}(x)$, often via $\zeta_{\mathcal{P}}(s)$

Main goal: investigate relation $\pi_{\mathcal{P}}(x)$ and $N_{\mathcal{P}}(x)$, often via $\zeta_{\mathcal{P}}(s)$ Usually assume

$$N_{\mathcal{P}}(x) pprox Ax$$
, some $A > 0$, $\pi_{\mathcal{P}}(x) pprox {
m Li}(x) = \int_2^x rac{{
m d} u}{\log u} \sim rac{x}{\log x}.$

Main goal: investigate relation $\pi_{\mathcal{P}}(x)$ and $N_{\mathcal{P}}(x)$, often via $\zeta_{\mathcal{P}}(s)$ Usually assume

$$N_{\mathcal{P}}(x) pprox Ax$$
, some $A > 0$, $\pi_{\mathcal{P}}(x) pprox {
m Li}(x) = \int_2^x rac{{
m d} u}{\log u} \sim rac{x}{\log x}.$

Theorem (Beurling)

Suppose $N_{\mathcal{P}}(x) = Ax + O(x(\log x)^{-\gamma})$ with A > 0 and $\gamma > 3/2$. Then $\pi_{\mathcal{P}}(x) \sim \text{Li}(x)$.

Main goal: investigate relation $\pi_{\mathcal{P}}(x)$ and $N_{\mathcal{P}}(x)$, often via $\zeta_{\mathcal{P}}(s)$ Usually assume

$$N_{\mathcal{P}}(x) pprox Ax$$
, some $A > 0$, $\pi_{\mathcal{P}}(x) pprox {
m Li}(x) = \int_2^x rac{{
m d} u}{\log u} \sim rac{x}{\log x}.$

Theorem (Beurling)

Suppose $N_{\mathcal{P}}(x) = Ax + O(x(\log x)^{-\gamma})$ with A > 0 and $\gamma > 3/2$. Then $\pi_{\mathcal{P}}(x) \sim \text{Li}(x)$.

The threshold $\gamma = 3/2$ is sharp.

Theorem (Landau)

Suppose $N_{\mathcal{P}}(x) = Ax + O(x^{\theta})$ with A > 0 and $\theta < 1$. Then

$$\pi_{\mathcal{P}}(x) = \operatorname{Li}(x) + O\big(x \exp(-c\sqrt{\log x})\big), \quad \textit{some } c > 0.$$

Theorem (Landau)

Suppose $N_{\mathcal{P}}(x) = Ax + O(x^{\theta})$ with A > 0 and $\theta < 1$. Then

$$\pi_{\mathcal{P}}(x) = \operatorname{Li}(x) + O(x \exp(-c\sqrt{\log x})), \quad some \ c > 0.$$

Shown to be sharp by Diamond, Montgomery, and Vorhauer.

Theorem (Landau)

Suppose
$$N_{\mathcal{P}}(x) = Ax + O(x^{\theta})$$
 with $A > 0$ and $\theta < 1$. Then

$$\pi_{\mathcal{P}}(x) = \operatorname{Li}(x) + O(x \exp(-c\sqrt{\log x})), \quad some \ c > 0.$$

Shown to be sharp by Diamond, Montgomery, and Vorhauer.

Theorem (Hilberdink, Lapidus)

Suppose $\pi(x) = Li(x) + O(x^{\theta})$ with $\theta < 1$. Then

$$N_{\mathcal{P}}(x) = Ax + O(x \exp(-c\sqrt{\log x \log\log x})), \quad some \ c > 0.$$

Theorem (Landau)

Suppose
$$N_{\mathcal{P}}(x) = Ax + O(x^{\theta})$$
 with $A > 0$ and $\theta < 1$. Then

$$\pi_{\mathcal{P}}(x) = \operatorname{Li}(x) + O(x \exp(-c\sqrt{\log x})), \quad some \ c > 0.$$

Shown to be sharp by Diamond, Montgomery, and Vorhauer.

Theorem (Hilberdink, Lapidus)

Suppose $\pi(x) = Li(x) + O(x^{\theta})$ with $\theta < 1$. Then

$$N_{\mathcal{P}}(x) = Ax + O(x \exp(-c\sqrt{\log x \log\log x})), \quad some \ c > 0.$$

Shown to be sharp by B., Debruyne, Vindas.

HELSON'S CONJECTURE

VERTICAL LIMITS

 $(\lambda) = (\log m_k)$ frequency coming from Beurling number system.

$$\mathcal{H}^2(\lambda) = \left\{ f(s) = \sum_{k=0}^{\infty} \frac{a_k}{m_k^s} : \sum_{k=0}^{\infty} |a_k|^2 < \infty \right\} \cong H^2(\mathbb{T}^\infty).$$

VERTICAL LIMITS

 $(\lambda) = (\log m_k)$ frequency coming from Beurling number system.

$$\mathcal{H}^2(\lambda) = \left\{ f(s) = \sum_{k=0}^{\infty} \frac{a_k}{m_k^s} : \sum_{k=0}^{\infty} |a_k|^2 < \infty \right\} \cong \mathcal{H}^2(\mathbb{T}^\infty).$$

We can interpret $(z_1, z_2, ...) \in \mathbb{T}^\infty$ as multiplicative character χ defined by

$$\chi(m_k) = z_1^{\alpha_1} \cdots z_J^{\alpha_J}, \quad \text{if } m_k = q_1^{\alpha_1} \cdots q_J^{\alpha_J}.$$

VERTICAL LIMITS

 $(\lambda) = (\log m_k)$ frequency coming from Beurling number system.

$$\mathcal{H}^2(\lambda) = \left\{ f(s) = \sum_{k=0}^{\infty} \frac{a_k}{m_k^s} : \sum_{k=0}^{\infty} |a_k|^2 < \infty \right\} \cong H^2(\mathbb{T}^\infty).$$

We can interpret $(z_1, z_2, ...) \in \mathbb{T}^\infty$ as multiplicative character χ defined by

$$\chi(m_k) = z_1^{\alpha_1} \cdots z_J^{\alpha_J}, \quad \text{if } m_k = q_1^{\alpha_1} \cdots q_J^{\alpha_J}.$$

Theorem (Helson)

Suppose $(\lambda) = (\log m_k)$ satisfies (BC). Given $f \in \mathcal{H}^2(\lambda)$, for almost every $\chi \in \mathbb{T}^{\infty}$,

$$f_{\chi}(s) = \sum_{k=0}^{\infty} \frac{a_k \chi(m_k)}{m_k^s}$$

converges in Re s > 0.

 $f \in \mathcal{H}^2(\lambda)$ is outer (also cyclic) if $\{Pf : P \text{ polynomial}\}$ is dense in \mathcal{H}^2 .

 $f \in \mathcal{H}^2(\lambda)$ is outer (also cyclic) if $\{Pf : P \text{ polynomial}\}$ is dense in \mathcal{H}^2 . f outer $\implies f_{\chi}$ outer in classical sense on right half-plane for almost every $\chi \in \mathbb{T}^{\infty}$, hence has no zeros.

 $f \in \mathcal{H}^2(\lambda)$ is outer (also cyclic) if $\{Pf : P \text{ polynomial}\}$ is dense in \mathcal{H}^2 . f outer $\implies f_{\chi}$ outer in classical sense on right half-plane for almost every $\chi \in \mathbb{T}^{\infty}$, hence has no zeros.

Conjecture (Helson)

Suppose $(\lambda) = (\log m_k)$ satisfies (BC) and $f \in \mathcal{H}^2(\lambda)$ is outer. Then f_{χ} never vanishes in its half-plane of convergence, for every $\chi \in \mathbb{T}^{\infty}$.

 $f \in \mathcal{H}^2(\lambda)$ is outer (also cyclic) if $\{Pf : P \text{ polynomial}\}$ is dense in \mathcal{H}^2 . f outer $\implies f_{\chi}$ outer in classical sense on right half-plane for almost every $\chi \in \mathbb{T}^{\infty}$, hence has no zeros.

Conjecture (Helson)

Suppose $(\lambda) = (\log m_k)$ satisfies (BC) and $f \in \mathcal{H}^2(\lambda)$ is outer. Then f_{χ} never vanishes in its half-plane of convergence, for every $\chi \in \mathbb{T}^{\infty}$.

Helson: Some doubt is thrown on the conjecture, or at least on the ease of proving it.

 $f(s) = 1/\zeta(s+u)$ is outer if u > 1/2. RH implies convergence in Re s + u > 1/2, but has a zero for s = 1 - u.

SYSTEMS WITH BOHR'S THEOREM

Theorem (B., Kouroupis, Perfekt)

There exist Beurling number systems $(\mathcal{P}, \mathcal{N})$ such that $\pi_{\mathcal{P}}(x) = \text{Li}(x) + O(1);$ $N_{\mathcal{P}}(x) = Ax + O_{\varepsilon}(x^{1/2+\varepsilon})$, for some A > 0 and all $\varepsilon > 0$; $(\lambda) = (\log m_k)_k$ satisfies (BC).

SYSTEMS WITH BOHR'S THEOREM

Theorem (B., Kouroupis, Perfekt)

There exist Beurling number systems $(\mathcal{P}, \mathcal{N})$ such that $\pi_{\mathcal{P}}(x) = \text{Li}(x) + O(1);$ $N_{\mathcal{P}}(x) = Ax + O_{\varepsilon}(x^{1/2+\varepsilon})$, for some A > 0 and all $\varepsilon > 0$; $(\lambda) = (\log m_k)_k$ satisfies (BC).

In particular, RH and Bohr's theorem both hold.

 $\zeta_{\mathcal{P}}(s)$ meromorphic continuation to Re s > 0, simple pole with residue A at s = 1.

 $\zeta_{\mathcal{P}}(s)$ has no zeros and of zero order for $\sigma > 1/2$: $\zeta_{\mathcal{P}}(\sigma + it) \ll t^{\varepsilon}$ for all $\varepsilon > 0$.

SYSTEMS WITH BOHR'S THEOREM

Theorem (B., Kouroupis, Perfekt)

There exist Beurling number systems $(\mathcal{P}, \mathcal{N})$ such that $\pi_{\mathcal{P}}(x) = \text{Li}(x) + O(1);$ $N_{\mathcal{P}}(x) = Ax + O_{\varepsilon}(x^{1/2+\varepsilon})$, for some A > 0 and all $\varepsilon > 0$; $(\lambda) = (\log m_k)_k$ satisfies (BC).

In particular, RH and Bohr's theorem both hold.

 $\zeta_{\mathcal{P}}(s)$ meromorphic continuation to Re s > 0, simple pole with residue A at s = 1.

 $\zeta_{\mathcal{P}}(s)$ has no zeros and of zero order for $\sigma > 1/2$: $\zeta_{\mathcal{P}}(\sigma + it) \ll t^{\varepsilon}$ for all $\varepsilon > 0$.

 $1/\zeta_{\mathcal{P}}(s+u), 1/2 < u < 1$, counterexample to Helson's conjecture!

Let x_j be such that $\text{Li}(x_j) = j$. Then $d \text{Li}|_{[x_{j-1}, x_j]}$ is a probability measure. We choose q_j randomly from $[x_{j-1}, x_j]$ with this distribution.

Let x_j be such that $\text{Li}(x_j) = j$. Then $d \text{Li}|_{[x_{j-1}, x_j]}$ is a probability measure. We choose q_j randomly from $[x_{j-1}, x_j]$ with this distribution. By construction,

 $\pi_{\mathcal{P}}(x) = \mathrm{Li}(x) + O(1).$

Let x_j be such that $\text{Li}(x_j) = j$. Then $d \text{Li}|_{[x_{j-1}, x_j]}$ is a probability measure. We choose q_j randomly from $[x_{j-1}, x_j]$ with this distribution. By construction,

$$\pi_{\mathcal{P}}(x) = \operatorname{Li}(x) + O(1).$$

To ensure that power saving for ${\cal N},$ we pass through the zeta function. Now

$$\zeta_{\mathcal{P}}(s) = \sum_{k} \frac{1}{m_k^s} = \prod_j \frac{1}{1-q_j^{-s}}.$$

Let x_j be such that $\text{Li}(x_j) = j$. Then $d \text{Li}|_{[x_{j-1}, x_j]}$ is a probability measure. We choose q_j randomly from $[x_{j-1}, x_j]$ with this distribution. By construction,

$$\pi_{\mathcal{P}}(x) = \operatorname{Li}(x) + O(1).$$

To ensure that power saving for ${\cal N},$ we pass through the zeta function. Now

$$\zeta_{\mathcal{P}}(s) = \sum_k rac{1}{m_k^s} = \prod_j rac{1}{1-q_j^{-s}}.$$

We consider the events

$$A_{J,m} = \left\{ (q_1, q_2, ...) : \left| \sum_{j=1}^{J} q_j^{-im} - \int_1^{x_J} u^{-im} d \operatorname{Li}(u) \right| \ge C_{J,m} \right\}.$$

Let x_j be such that $\text{Li}(x_j) = j$. Then $d \text{Li}|_{[x_{j-1}, x_j]}$ is a probability measure. We choose q_j randomly from $[x_{j-1}, x_j]$ with this distribution. By construction,

$$\pi_{\mathcal{P}}(x) = \operatorname{Li}(x) + O(1).$$

To ensure that power saving for \mathcal{N} , we pass through the zeta function. Now

$$\zeta_\mathcal{P}(s) = \sum_k rac{1}{m_k^s} = \prod_j rac{1}{1-q_j^{-s}}.$$

We consider the events

$$A_{J,m} = \left\{ (q_1, q_2, ...) : \left| \sum_{j=1}^{J} q_j^{-im} - \int_1^{x_J} u^{-im} d \operatorname{Li}(u) \right| \ge C_{J,m} \right\}.$$

If $C_{J,m}$ are chosen such that $\sum_{J,m} P(A_{J,m}) < \infty$, then by Borel–Cantelli, with probability 1 only finitely many $A_{J,m}$ occur.

PROOF SKETCH CONTINUED

To ensure sufficiently large gaps between the generalized integers, we follow a similar strategy.

We consider sets $\mathcal{M}_J(q_1, q_2, ..., q_{J-1})$, which is "forbidden" for q_J , given the choice of the first J - 1 Beurling primes $q_1, ..., q_{J-1}$.

PROOF SKETCH CONTINUED

To ensure sufficiently large gaps between the generalized integers, we follow a similar strategy.

We consider sets $\mathcal{M}_J(q_1, q_2, ..., q_{J-1})$, which is "forbidden" for q_J , given the choice of the first J-1 Beurling primes $q_1, ..., q_{J-1}$.

We set

$$B_J = \left\{ \left(q_1, q_2, \dots\right) : q_J \in \mathcal{M}_J(q_1, \dots, q_{J-1}) \right\}.$$

PROOF SKETCH CONTINUED

To ensure sufficiently large gaps between the generalized integers, we follow a similar strategy.

We consider sets $\mathcal{M}_J(q_1, q_2, ..., q_{J-1})$, which is "forbidden" for q_J , given the choice of the first J-1 Beurling primes $q_1, ..., q_{J-1}$.

We set

$$B_J = \{(q_1, q_2, ...) : q_J \in \mathcal{M}_J(q_1, ..., q_{J-1})\}.$$

Again we show that $\sum_{J} P(B_J) < \infty$.

By Borel–Cantelli, with probability 1 only finitely many B_J occur. If only B_{J_1}, \ldots, B_{J_N} occur, we delete the corresponding primes:

$$\tilde{\mathcal{P}} = \mathcal{P} \setminus \{q_{J_1}, \dots, q_{J_N}\}.$$

REFERENCES

- H. Hedenmalm, P. Lindqvist, K. Seip, A Hilbert space of Dirichlet series and a system of dilated functions in L²([0, 1]), Duke Math. J. 86, 1–36 (1997).
- F. Bayart, Hardy spaces of Dirichlet series and their composition operators, Monatsh. Math. 136, 203–236 (2002).
- H. Queffélec, M. Queffélec, *Diophantine Approximation and Dirichlet Series*, Texts and Readings in Mathematics 80, Hindustan Book Agency, New Delhi, Springer, Singapore (2020), Second edition.
- A. Defant, I. Schoolmann, *H_p-theory of general Dirichlet series*, J. Fourier Anal. Appl. **25**, 3220–3258 (2019).
- H. G. Diamond, W.-B. Zhang, *Beurling generalized numbers*, Mathematical Surveys and Monographs series, American Mathematical Society, Providence, RI, 2016.
- F. Broucke, A. Kouroupis, K.-M. Perfekt, A note on Bohr's theorem for Beurling integer systems, Math. Ann. (2023) https://doi.org/10.1007/s00208-023-02756-x.