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PRIME NUMBER THEOREM

Prime number theorem

P(x) =D A(n) ~ x.

n<x
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PRIME NUMBER THEOREM

Prime number theorem

P(x) =Y A(n) ~ x.

n<x

Relative error A(x) = (1(x) — x)/x.

A(x) = o(1) PNT,

A(x) < x~1/2te Riemann hypothesis.
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PRIME NUMBER THEOREM

Prime number theorem

P(x) =Y A(n) ~ x.

n<x

Relative error A(x) = (1(x) — x)/x.

A(x) = o(1) PNT,
A(x) < x~1/2te Riemann hypothesis.

Ingham (1932): if {(s) has no zeros for o > 1 — n(|t|), then

A(x) <c exp(—(1/2 — €)wn(x)), wy(x) = ;gf (n(t)log x + log t).
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PINTZ’'S THEOREMS

Theorem (Pintz, 1980)

Suppose ((s) has no zeros ino > 1 — n(|t|), then

A(x) < exp(—(1 — e)wy(x)), Ve >o.
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PINTZ'S THEOREMS
Theorem (Pintz, 1980)
Suppose ((s) has no zeros ino > 1 — n(|t|), then

A(x) < exp(—(1 — e)wy(x)), Ve >o.

Recent refinement by Johnston (2024): one may take

_ )

e =¢gy(x) = logx
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PINTZ’'S THEOREMS

Theorem (Pintz, 1980)

Suppose ((s) has no zeros ino > 1 — n(|t|), then

A(x) < exp(—(1 — e)wy(x)), Ve >o.
Recent refinement by Johnston (2024): one may take

_ CWW(X)_
log x

e =¢y(x)

en(x) =0, &y(x)wy(x) unbounded if y/log x = o(wy(x)).
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PINTZ’'S THEOREMS

Theorem (Pintz, 1980)
Suppose ((s) has infinitely many zeros inc > 1 — g(|t|), then

A(x) = Qe (exp(—(1 + s)wg(x))>, Ve > 0.

4/13



PINTZ’'S THEOREMS

Theorem (Pintz, 1980)
Suppose ((s) has infinitely many zeros inc > 1 — g(|t|), then

A(x) = Qe (exp(—(1 + s)wg(x))>, Ve > 0.

Idea: explicit formula:

A(X)Q:—-E:

p

xP~1

p )

xP~1

p

~ exp(—((1 — ) log x + Iog7)>.
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PINTZ’'S THEOREMS

Theorem (Pintz, 1980)

Suppose ((s) has infinitely many zeros ino > 1 — g(|t

), then

A(x) = Qe (exp(—(1 + s)wg(x))>, Ve > 0.

Idea: explicit formula:

xP~1

A(x)%—z ,

. P

xP~1

p

~ exp(—((1 — ) log x + Iog7)>.

For fixed x, size of A(x) is determined by biggest term in above sum.
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BEURLING NUMBER SYSTEMS

Beurling generalized primes and integers: (P, ).
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BEURLING NUMBER SYSTEMS
Beurling generalized primes and integers: (P, ).

P = (p)j>1, 1<pr<p2<.., pj — 00;
N:(nk)kZO’ 1=n<n <n< ..., nk:p?1---p7j_
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BEURLING NUMBER SYSTEMS
Beurling generalized primes and integers: (P, ).

P = (p)j>1, 1<pr<p2<.., pj — 00;

Q

NZ(nk)kzo, 1T=n<n <nm<.., nk:P?1"'Pj-

Counting functions:

mp(x) = #{p; < x}, Np(x) = #{n < x};
Yp(x) = logp;.

P <x
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BEURLING NUMBER SYSTEMS
Beurling generalized primes and integers: (P, ).

P = (p)j>1, 1<pi<p< s, pj — 00;

Q

/\f:(nk)kzo, 1T=n<n <nm<.., nk:P?1"'Pj-

Counting functions:

mp(x) = #{p < x}.  Np(x) = #{n < x};
Up(x) = Z log pj.

Beurling zeta function

Cp(s) = an =
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LANDAU’S PNT

Theorem (Landau, 1924)

Let (P, N') be a Beurling number system with Np(x) = Ax + O(x?) for
some A > 0andf € [0,1). Then

c(1—10)

s 0 for >1— ,
4.73()7é g |og|t|

Ap(x) = % < exp(—(1 —€)2y/c(1 — ) log x).
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PINTZ’'S THEOREMS IN BEURLING SETTING

Theorem (Révész, 2024)

Suppose Np(x) = Ax + O(x?). If (p(s) has no zeros in
o >1—n(|t]), then

Ap(x) < exp(—(1 — €)wy(x)), Ve >o.

If Cp(s) has infinitely many zeros ino > 1 — g(|t|), then

Ap(x) = Qic <exp(—(1 + e)wg(x))), Ve > 0.
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MY ASSUMPTIONS
Set f(u) := n(e"). We consider those 7 such that
m fregularly varying of index —a, o € (0, 1]:
f(Au)
f(u)

or

m f slowly varying:
f(Au)
f(u)

— 1, u— 00, > 0fixed.

— A% u—=o00, > 0 fixed.
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MY ASSUMPTIONS
Set f(u) := n(e"). We consider those 7 such that
m fregularly varying of index —a, o € (0, 1]:
f(Au)
f(u)

— A% u—=o00, > 0 fixed.

or
m f slowly varying:

f(Au) ,
— 1, u— 00, A> 0fixed.
f(u)
Vinogradov—Korobov zero-free region:

(1) ¢ f regularly varying of index —2/3
= ~> — .

= log 1)2/3(log log £)1/° guiarly varying

t) = f slowly varying.

() = oglogt y varying
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MY REFINEMENT

Theorem (B., 2025)

Suppose Np(x) = Ax 4+ O(x?), and suppose (p(s) has no zeros in
o >1—n(|t|), n as above. Then

Ap(x) < exp(—wp(x) + @y(x)).
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MY REFINEMENT
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Suppose Np(x) = Ax 4+ O(x?), and suppose (p(s) has no zeros in
o >1—n(|t|), n as above. Then

Ap(x) < exp(—wp(x) + @y(x)).

Here,

() = G ())en(x), any € > <

and up(x) is such that wy(x) = f(uo(x)) log x + ug(x) (the minimizer).
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MY REFINEMENT

Theorem (B., 2025)

Suppose Np(x) = Ax 4+ O(x?), and suppose (p(s) has no zeros in
o >1—n(|t|), n as above. Then

Ap(x) < exp(—wp(x) + @y(x)).

Here,

4
wy(x) = Cf(up(x))uo(x), any C > T
and up(x) is such that wy(x) = f(uo(x)) log x + ug(x) (the minimizer).
For Riemann zeta refines Johnston’s result:

always wy(x) < ep(x)wy(x), insome cases w;,(x) = o(ey(x)wy(x)).
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THE EXAMPLES

Theorem (B., 2025)

Letn be as before. Then there exists a Beurling number system (P, N')
such that
Np(x) = Ax + O-(x/?*¢) forall e > 0;

Cp(s) has infinitely many zeros on o = 1 — n(|t|), none to the
right;

Ap(x) = Qe (exp(—wy(x) + (1/8)m(x) ).
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THE EXAMPLES

Theorem (B., 2025)

Letn be as before. Then there exists a Beurling number system (P, N')
such that
Np(x) = Ax + O-(x/?*¢) forall e > 0;

Cp(s) has infinitely many zeros on o = 1 — n(|t|), none to the
right;

Ap(x) = Qe (exp(—wy(x) + (1/8)m(x) ).

One can also construct examples with 1. and 2. and with
Ap(x) < exp(—wy(x))(log x)~" for some small v > 0.
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LANDAU’S METHOD

Theorem (Landau, 1924)
Let o(t) and v)(t) be non-decreasing functions with () < e?(). If
1
Cplo+it) < e for o >1— ——,
¥(t)
then there exists a constant ¢ > 0 such that

Cc
p(2t+ 1)yp(2t + 1)

Cp(o+it) #0 for o >1—
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SHARPNESS

This is sharp up to the value of the constant c:

Proposition (B., 2025)

For every 1) as before, there exists a Beurling zeta (p(s) satisfying 1.
and 2., and admissible functions ¢(t) and 1(t) for which

Cplo+it) <« ?D for o >1— ﬁ
1
2t +1)p(2t + 1)

Mﬂxw(
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QUESTIONS?
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