PhD Day of the BMS, May 13, 2022, LIÈGE

BEURLING GENERALIZED PRIMES

Frederik Broucke - fabrouck.broucke@ugent.be

INTRODUCTION

Let $\pi(x)=\#\{p \leq x, p$ prime $\}$.
Theorem (de la Vallée Poussin, Hadamard, 1896)
The prime number theorem $(P N T): \pi(x) \sim x / \log x$.

INTRODUCTION

Let $\pi(x)=\#\{p \leq x, p$ prime $\}$.

Theorem (de la Vallée Poussin, Hadamard, 1896)

The prime number theorem (PNT): $\pi(x) \sim x / \log x$.
Beurling's question: minimum requirements for proving the PNT? Abstract setting: generalized primes and integers.

$$
\begin{array}{lll}
\mathcal{P}=\left(p_{j}\right)_{j \geq 1}, & 1<p_{1} \leq p_{2} \leq \ldots, & p_{j} \rightarrow \infty ; \\
\mathcal{N}=\left(n_{k}\right)_{k \geq 0}, & 1=n_{0}<n_{1} \leq n_{2} \leq \ldots, & n_{k}=p_{1}^{\nu_{1}} \cdots p_{j}^{\nu_{j}} .
\end{array}
$$

INTRODUCTION

Let $\pi(x)=\#\{p \leq x, p$ prime $\}$.

Theorem (de la Vallée Poussin, Hadamard, 1896)

The prime number theorem (PNT): $\pi(x) \sim x / \log x$.
Beurling's question: minimum requirements for proving the PNT? Abstract setting: generalized primes and integers.

$$
\begin{array}{lll}
\mathcal{P}=\left(p_{j}\right)_{j \geq 1}, & 1<p_{1} \leq p_{2} \leq \ldots, & p_{j} \rightarrow \infty ; \\
\mathcal{N}=\left(n_{k}\right)_{k \geq 0}, & 1=n_{0}<n_{1} \leq n_{2} \leq \ldots, & n_{k}=p_{1}^{\nu_{1}} \cdots p_{j}^{\nu_{j}} .
\end{array}
$$

Counting functions:

$$
\pi_{\mathcal{P}}(x)=\#\left\{p_{j} \leq x\right\}, \quad N_{\mathcal{P}}(x)=\#\left\{n_{k} \leq x\right\} .
$$

EXAMPLES

$\square(\mathcal{P}, \mathcal{N})=\left(\mathbb{P}, \mathbb{N}_{>0}\right)$, the classical primes and integers.

$$
\pi_{\mathbb{P}}(x)=\pi(x), \quad N_{\mathbb{P}}(x)=\lfloor x\rfloor .
$$

EXAMPLES

$■(\mathcal{P}, \mathcal{N})=\left(\mathbb{P}, \mathbb{N}_{>0}\right)$, the classical primes and integers.

$$
\pi_{\mathbb{P}}(x)=\pi(x), \quad N_{\mathbb{P}}(x)=\lfloor x\rfloor .
$$

■ $\mathcal{P}=(2.5,3,5,7, \ldots), \quad \mathcal{N}=(1,2.5,3,5,6.25,7,7.5, \ldots)$.

$$
\begin{aligned}
& \pi_{\mathcal{P}}(x)=\pi(x) \text { for } x \geq 2.5, \quad \pi_{\mathcal{P}}(x)=0 \text { for } x<2.5, \\
& N_{\mathcal{P}}(x)=\sum_{j \geq 0}\left(\left\lfloor x(2 / 5)^{j}\right\rfloor-\left\lfloor(x / 2)(2 / 5)^{j}\right\rfloor\right)=\frac{5}{6} x+O(\log x) .
\end{aligned}
$$

EXAMPLES

$■(\mathcal{P}, \mathcal{N})=\left(\mathbb{P}, \mathbb{N}_{>0}\right)$, the classical primes and integers.

$$
\pi_{\mathbb{P}}(x)=\pi(x), \quad N_{\mathbb{P}}(x)=\lfloor x\rfloor .
$$

$■ \mathcal{P}=(2.5,3,5,7, \ldots), \quad \mathcal{N}=(1,2.5,3,5,6.25,7,7.5, \ldots)$.

$$
\begin{aligned}
& \pi_{\mathcal{P}}(x)=\pi(x) \text { for } x \geq 2.5, \quad \pi_{\mathcal{P}}(x)=0 \text { for } x<2.5, \\
& N_{\mathcal{P}}(x)=\sum_{j \geq 0}\left(\left\lfloor x(2 / 5)^{j}\right\rfloor-\left\lfloor(x / 2)(2 / 5)^{j}\right\rfloor\right)=\frac{5}{6} x+O(\log x) .
\end{aligned}
$$

- \mathcal{O}_{K} the ring of integers of a number field K.

$$
\begin{aligned}
\mathcal{P} & =\left(|P|, P \unlhd \mathcal{O}_{K}, P \text { prime ideal }\right), \\
\mathcal{N} & =\left(|l|, I \unlhd \mathcal{O}_{K}, l \text { integral ideal }\right) . \\
\pi_{\mathcal{O}_{K}}(x) & \sim \frac{x}{\log x}, \quad N_{\mathcal{O}_{K}}(x)=\rho_{K} x+O\left(x^{1-\frac{2}{d+1}}\right) .
\end{aligned}
$$

Beurling's PNT

Theorem (Beurling, 1937)
Let $(\mathcal{P}, \mathcal{N})$ be a g-number system. If $N(x)=\rho x+O\left(x / \log ^{\gamma} x\right)$ for some $\rho>0$ and $\gamma>3 / 2$, then

$$
\pi(x) \sim \frac{x}{\log x}
$$

Beurling's PNT

Theorem (Beurling, 1937)

Let $(\mathcal{P}, \mathcal{N})$ be a g-number system. If $N(x)=\rho x+O\left(x / \log ^{\gamma} x\right)$ for some $\rho>0$ and $\gamma>3 / 2$, then

$$
\pi(x) \sim \frac{x}{\log x}
$$

Critical exponent $\gamma=3 / 2$ is sharp: $\exists(\mathcal{P}, \mathcal{N})$:

$$
N(x)=\rho x+O\left(\frac{x}{\log ^{3 / 2} x}\right), \quad \pi(x) \nsim \frac{x}{\log x} .
$$

The BeURLING ZETA FUNCTION

Define

$$
\zeta_{\mathcal{P}}(s)=\sum_{k=0}^{\infty} \frac{1}{n_{k}^{s}}, \quad s \in \mathbb{C} \text { with } \operatorname{Re} s>1
$$

The Beurling zeta function

Define

$$
\zeta_{\mathcal{P}}(s)=\sum_{k=0}^{\infty} \frac{1}{n_{k}^{s}}, \quad s \in \mathbb{C} \text { with } \operatorname{Re} s>1
$$

We have

$$
\begin{aligned}
\zeta_{\mathcal{P}}(s) & =\prod_{j=1}^{\infty}\left(1+\frac{1}{p_{j}^{s}}+\frac{1}{p_{j}^{2 s}}+\ldots\right) \\
& =\prod_{j=1}^{\infty}\left(1-\frac{1}{p_{j}^{s}}\right)^{-1}=\exp \sum_{j=1}^{\infty}\left\{-\log \left(1-\frac{1}{p_{j}^{s}}\right)\right\} \\
& =\exp \sum_{k=0}^{\infty} \frac{a_{n k}}{n_{k}^{s}}
\end{aligned}
$$

with $a_{n_{k}}=1 / \nu$ if $n_{k}=p_{j}^{\nu}, a_{n_{k}}=0$ otherwise.

ZEROS OF $\zeta_{\mathcal{P}}$

The error term in PNT is closely related to zeros of $\zeta_{\mathcal{P}}(s)$. By absolutely converging Euler product, $\zeta_{\mathcal{P}}(s) \neq 0$ for $\operatorname{Re} s>1$.

Zeros of $\zeta_{\mathcal{P}}$

The error term in PNT is closely related to zeros of $\zeta_{\mathcal{P}}(s)$. By absolutely converging Euler product, $\zeta_{\mathcal{P}}(s) \neq 0$ for $\operatorname{Re} s>1$. Beurling's PNT:

$$
\pi(x) \sim \frac{x}{\log x} \quad " \Longleftrightarrow " \quad \zeta_{\mathcal{P}}(s) \neq 0 \text { for } \operatorname{Re} s \geq 1
$$

Zeros of $\zeta_{\mathcal{P}}$

The error term in PNT is closely related to zeros of $\zeta_{\mathcal{P}}(s)$.
By absolutely converging Euler product, $\zeta_{\mathcal{P}}(s) \neq 0$ for $\operatorname{Re} s>1$.
Beurling's PNT:

$$
\pi(x) \sim \frac{x}{\log x} \quad " \Longleftrightarrow " \quad \zeta_{\mathcal{P}}(s) \neq 0 \text { for } \operatorname{Re} s \geq 1
$$

Larger zero-free regions:

Theorem (Landau, 1903, "avant la lettre")

Suppose that $N(x)=\rho x+O\left(x^{\theta}\right)$ for some $\rho>0$ and $\theta<1$. Then

$$
\pi(x)=\operatorname{Li}(x)+O(x \exp (-c \sqrt{\log x}))
$$

Comes from zero-free region

$$
\zeta_{\mathcal{P}}(\sigma+\mathrm{i} t) \neq 0 \text { for } \sigma \geq 1-\frac{c^{2}}{\log (2+|t|)}
$$

From π to N

For the other direction, we have e.g. these two theorems.
Theorem (Diamond, 1977)
Suppose that $\pi(x)=\mathrm{Li}(x)+O\left(x / \log ^{\gamma} x\right)$, for some $\gamma>1$. Then

$$
N(x) \sim \rho x, \quad \text { for some } \rho>0 .
$$

From π to N

For the other direction, we have e.g. these two theorems.

Theorem (Diamond, 1977)

Suppose that $\pi(x)=\operatorname{Li}(x)+O\left(x / \log ^{\gamma} x\right)$, for some $\gamma>1$. Then

$$
N(x) \sim \rho x, \quad \text { for some } \rho>0
$$

Theorem (Hilberdink, Lapidus, 2006)

Suppose that $\pi(x)=\operatorname{Li}(x)+O\left(x^{\theta}\right)$ for some $\theta<1$. Then

$$
N(x)=\rho x+O\left(x \exp \left(-c^{\prime} \sqrt{\log x \log \log x}\right)\right)
$$

for some $\rho>0$ and $c^{\prime}>0$.

Optimality

Theorem (Diamond, Montgomery, Vorhauer, 2006)

Landau's PNT is optimal: $\exists(\mathcal{P}, \mathcal{N})$:

$$
\begin{aligned}
& N(x)=\rho x+O\left(x^{\theta}\right) \quad \text { for some } \rho>0, \theta<1, \\
& \pi(x)=\operatorname{Li}(x)+\Omega(x \exp (-c \sqrt{\log x})) .
\end{aligned}
$$

Optimality

Theorem (Diamond, Montgomery, Vorhauer, 2006)

Landau's PNT is optimal: $\exists(\mathcal{P}, \mathcal{N})$:

$$
\begin{aligned}
& N(x)=\rho x+O\left(x^{\theta}\right) \quad \text { for some } \rho>0, \theta<1, \\
& \pi(x)=\operatorname{Li}(x)+\Omega(x \exp (-c \sqrt{\log x})) .
\end{aligned}
$$

Theorem (B., Debruyne,Vindas, 2020)

$H-L$ theorem is optimal: $\exists(\mathcal{P}, \mathcal{N})$:

$$
\begin{aligned}
& \pi(x)=\operatorname{Li}(x)+O\left(x^{\theta}\right) \quad \text { for some } \theta<1 \\
& N(x)=\rho x+\Omega\left(x \exp \left(-c^{\prime} \sqrt{\log x \log \log x}\right)\right) \quad \text { for some } \rho>0 .
\end{aligned}
$$

QUESTIONS?

