MALLIAVIN'S
 PROBLEMS
 FOR

BEURLING GENERALIZED PRIMES

Frederik Broucke — fabrouck.broucke@ugent.be

Beurling generalized primes

Beurling's question: minimum requirements for proving the PNT? Abstract setting: generalized primes and integers.

Beurling generalized primes

Beurling's question: minimum requirements for proving the PNT?
Abstract setting: generalized primes and integers.

$$
\begin{array}{lll}
\mathcal{P}=\left(p_{j}\right)_{j \geq 1}, & 1<p_{1} \leq p_{2} \leq \ldots, & p_{j} \rightarrow \infty ; \\
\mathcal{N}=\left(n_{k}\right)_{k \geq 0}, & 1=n_{0}<n_{1} \leq n_{2} \leq \ldots, & n_{k}=p_{1}^{\nu_{1}} \cdots p_{j}^{\nu_{j}} .
\end{array}
$$

Beurling generalized primes

Beurling's question: minimum requirements for proving the PNT?
Abstract setting: generalized primes and integers.

$$
\begin{array}{lll}
\mathcal{P}=\left(p_{j}\right)_{j \geq 1}, & 1<p_{1} \leq p_{2} \leq \ldots, & p_{j} \rightarrow \infty ; \\
\mathcal{N}=\left(n_{k}\right)_{k \geq 0}, & 1=n_{0}<n_{1} \leq n_{2} \leq \ldots, & n_{k}=p_{1}^{\nu_{1}} \cdots p_{j}^{\nu_{j}} .
\end{array}
$$

Counting functions:

$$
\pi_{\mathcal{P}}(x)=\#\left\{p_{j} \leq x\right\}, \quad N_{\mathcal{P}}(x)=\#\left\{n_{k} \leq x\right\}
$$

EXAMPLES

$\square(\mathcal{P}, \mathcal{N})=\left(\mathbb{P}, \mathbb{N}_{>0}\right)$, the classical primes and integers.

$$
\pi_{\mathbb{P}}(x)=\pi(x), \quad N_{\mathbb{P}}(x)=\lfloor x\rfloor .
$$

EXAMPLES

$■(\mathcal{P}, \mathcal{N})=\left(\mathbb{P}, \mathbb{N}_{>0}\right)$, the classical primes and integers.

$$
\pi_{\mathbb{P}}(x)=\pi(x), \quad N_{\mathbb{P}}(x)=\lfloor x\rfloor .
$$

■ $\mathcal{P}=(2.5,3,5,7, \ldots), \quad \mathcal{N}=(1,2.5,3,5,6.25,7,7.5, \ldots)$.

$$
\begin{aligned}
& \pi_{\mathcal{P}}(x)=\pi(x) \text { for } x \geq 2.5, \quad \pi_{\mathcal{P}}(x)=0 \text { for } x<2.5, \\
& N_{\mathcal{P}}(x)=\sum_{j \geq 0}\left(\left\lfloor x(2 / 5)^{j}\right\rfloor-\left\lfloor(x / 2)(2 / 5)^{j}\right\rfloor\right)=\frac{5}{6} x+O(\log x) .
\end{aligned}
$$

EXAMPLES

$■(\mathcal{P}, \mathcal{N})=\left(\mathbb{P}, \mathbb{N}_{>0}\right)$, the classical primes and integers.

$$
\pi_{\mathbb{P}}(x)=\pi(x), \quad N_{\mathbb{P}}(x)=\lfloor x\rfloor .
$$

$■ \mathcal{P}=(2.5,3,5,7, \ldots), \quad \mathcal{N}=(1,2.5,3,5,6.25,7,7.5, \ldots)$.

$$
\begin{aligned}
& \pi_{\mathcal{P}}(x)=\pi(x) \text { for } x \geq 2.5, \quad \pi_{\mathcal{P}}(x)=0 \text { for } x<2.5, \\
& N_{\mathcal{P}}(x)=\sum_{j \geq 0}\left(\left\lfloor x(2 / 5)^{j}\right\rfloor-\left\lfloor(x / 2)(2 / 5)^{j}\right\rfloor\right)=\frac{5}{6} x+O(\log x) .
\end{aligned}
$$

- \mathcal{O}_{K} the ring of integers of a number field K.

$$
\begin{aligned}
\mathcal{P} & =\left(|P|, P \unlhd \mathcal{O}_{K}, P \text { prime ideal }\right), \\
\mathcal{N} & =\left(|l|, I \unlhd \mathcal{O}_{K}, l \text { integral ideal }\right) . \\
\pi_{\mathcal{O}_{K}}(x) & \sim \frac{x}{\log x}, \quad N_{\mathcal{O}_{K}}(x)=\rho_{K} x+O\left(x^{1-\frac{2}{d+1}}\right) .
\end{aligned}
$$

PNT AND DENSITY OF INTEGERS

Theorem (Beurling, 1937)
If $N(x)=\rho x+O\left(x / \log ^{\gamma} x\right)$ for some $\rho>0$ and $\gamma>3 / 2$, then

$$
\pi(x) \sim \operatorname{Li}(x)
$$

PNT AND DENSITY OF INTEGERS

Theorem (Beurling, 1937)

$$
\begin{aligned}
& \text { If } N(x)=\rho x+O\left(x / \log ^{\gamma} x\right) \text { for some } \rho>0 \text { and } \gamma>3 / 2 \text {, then } \\
& \qquad \pi(x) \sim \operatorname{Li}(x) .
\end{aligned}
$$

Theorem (Diamond, 1977)

$$
\text { If } \pi(x)=\mathrm{Li}(x)+O\left(x / \log ^{\eta} x\right) \text { for some } \eta>1 \text {, then }
$$

$$
N(x) \sim \rho x
$$

for some $\rho>0$.

MALLIAVIN-TYPE REMAINDERS

What about estimates with remainder?

MALLIAVIN-TYPE REMAINDERS

What about estimates with remainder?
In 1961, Malliavin consider the following asymptotic formulas:

$$
\begin{align*}
& \pi(x)=\mathrm{Li}(x)+O\left(x \exp \left(-c \log ^{\alpha} x\right)\right), \\
& N(x)=\rho x+O\left(x \exp \left(-c^{\prime} \log ^{\beta} x\right)\right) .
\end{align*}
$$

Here, $\rho, c, c^{\prime}>0$ and $\alpha, \beta \in(0,1]$.

MALLIAVIN-TYPE REMAINDERS

What about estimates with remainder?
In 1961, Malliavin consider the following asymptotic formulas:

$$
\begin{align*}
& \pi(x)=\mathrm{Li}(x)+O\left(x \exp \left(-c \log ^{\alpha} x\right)\right) \\
& N(x)=\rho x+O\left(x \exp \left(-c^{\prime} \log ^{\beta} x\right)\right)
\end{align*}
$$

Here, $\rho, c, c^{\prime}>0$ and $\alpha, \beta \in(0,1]$.
Malliavin showed that

$$
\begin{aligned}
& \left(N_{\beta}\right) \Longrightarrow\left(P_{\alpha}\right) \text { for some } \alpha=\alpha(\beta) \\
& \left(P_{\alpha}\right) \Longrightarrow\left(N_{\beta}\right) \text { for some } \beta=\beta(\alpha)
\end{aligned}
$$

MALLIAVIN-TYPE REMAINDERS

What about estimates with remainder?
In 1961, Malliavin consider the following asymptotic formulas:

$$
\begin{align*}
& \pi(x)=\mathrm{Li}(x)+O\left(x \exp \left(-c \log ^{\alpha} x\right)\right) \\
& N(x)=\rho x+O\left(x \exp \left(-c^{\prime} \log ^{\beta} x\right)\right)
\end{align*}
$$

Here, $\rho, c, c^{\prime}>0$ and $\alpha, \beta \in(0,1]$.
Malliavin showed that

$$
\begin{aligned}
& \left(N_{\beta}\right) \Longrightarrow\left(P_{\alpha}\right) \text { for some } \alpha=\alpha(\beta) \\
& \left(P_{\alpha}\right) \Longrightarrow\left(N_{\beta}\right) \text { for some } \beta=\beta(\alpha)
\end{aligned}
$$

Set

$$
\alpha^{*}(\beta)=\sup \alpha(\beta), \quad \beta^{*}(\alpha)=\sup \beta(\alpha)
$$

MALLIAVIN'S SECOND PROBLEM: $\beta^{*}(\alpha)$

Malliavin showed that

$$
\begin{aligned}
& \pi(x)=\operatorname{Li}(x)+O\left(x \exp \left(-c \log ^{\alpha} x\right)\right) \\
& \Longrightarrow N(x)=\rho x+O\left(x \exp \left(-c^{\prime} \log ^{\frac{\alpha}{\alpha+2}} x\right)\right)
\end{aligned}
$$

i.e. $\beta^{*}(\alpha) \geq \frac{\alpha}{\alpha+2}$.

MALLIAVIN'S SECOND PROBLEM: $\beta^{*}(\alpha)$

Malliavin showed that

$$
\begin{aligned}
\pi(x)=\operatorname{Li}(x)+O(x \exp & \left.\left(-c \log ^{\alpha} x\right)\right) \\
& \Longrightarrow N(x)=\rho x+O\left(x \exp \left(-c^{\prime} \log ^{\frac{\alpha}{\alpha+2}} x\right)\right)
\end{aligned}
$$

i.e. $\beta^{*}(\alpha) \geq \frac{\alpha}{\alpha+2}$.

Theorem (Diamond 1970, Hilberdink, Lapidus, 2006)
Suppose $\pi(x)=\operatorname{Li}(x)+O\left(x \exp \left(-c \log ^{\alpha} x\right)\right)$ for some $c>0$. Then

$$
N(x)=\rho x+O\left(x \exp \left(-c^{\prime}(\log x \log \log x)^{\frac{\alpha}{\alpha+1}}\right)\right)
$$

for some $\rho, c^{\prime}>0$.

OPTIMALITY

Theorem (B., Debruyne, Vindas, 2021)

Given $\alpha \in(0,1]$, there exists $(\mathcal{P}, \mathcal{N})$ with $\pi(x)=\mathrm{Li}(x)+O\left(x \exp \left(-c \log ^{\alpha} x\right)\right)$ and

$$
N(x)=\rho x+\Omega_{ \pm}\left(x \exp \left(-c^{\prime}(\log x \log \log x)^{\frac{\alpha}{\alpha+1}}\right)\right)
$$

OPTIMALITY

Theorem (B., Debruyne, Vindas, 2021)

$$
\begin{aligned}
& \text { Given } \alpha \in(0,1] \text {, there exists }(\mathcal{P}, \mathcal{N}) \text { with } \\
& \pi(x)=\operatorname{Li}(x)+O\left(x \exp \left(-c \log ^{\alpha} x\right)\right) \text { and }
\end{aligned}
$$

$$
N(x)=\rho x+\Omega_{ \pm}\left(x \exp \left(-c^{\prime}(\log x \log \log x)^{\frac{\alpha}{\alpha+1}}\right)\right)
$$

Proof idea: construct a Beurling zeta function which has extreme growth on the contour $\sigma=1-d \frac{\log \log |t|}{\log ^{1 / \alpha}|t|}$.

Optimality

Theorem (B., Debruyne, Vindas, 2021)

$$
\begin{aligned}
& \text { Given } \alpha \in(0,1] \text {, there exists }(\mathcal{P}, \mathcal{N}) \text { with } \\
& \pi(x)=\operatorname{Li}(x)+O\left(x \exp \left(-c \log ^{\alpha} x\right)\right) \text { and }
\end{aligned}
$$

$$
N(x)=\rho x+\Omega_{ \pm}\left(x \exp \left(-c^{\prime}(\log x \log \log x)^{\frac{\alpha}{\alpha+1}}\right)\right) .
$$

Proof idea: construct a Beurling zeta function which has extreme growth on the contour $\sigma=1-d \frac{\log \log |t|}{\log ^{1 / \alpha}|t|}$.
We also determined the optimal value of the constant $c^{\prime}: c^{\prime}=(c(\alpha+1))^{\frac{1}{\alpha+1}}$ In combination with the theorems of Diamond and Hilberdink and Lapidus, we get

$$
\beta^{*}(\alpha)=\frac{\alpha}{\alpha+1} .
$$

PNT with Malliavin remainder

Theorem (Landau, 1903)

Suppose that $N(x)=\rho x+O\left(x^{\theta}\right)$ for some $\rho>0, \theta<1$. Then

$$
\pi(x)=\operatorname{Li}(x)+O(x \exp (-c \sqrt{\log x}))
$$

PNT with Malliavin remainder

Theorem (Landau, 1903)

Suppose that $N(x)=\rho x+O\left(x^{\theta}\right)$ for some $\rho>0, \theta<1$. Then

$$
\pi(x)=\operatorname{Li}(x)+O(x \exp (-c \sqrt{\log x}))
$$

Theorem (Hall, 1972)

Suppose that $N(x)=\rho x+O\left(x \exp \left(-c^{\prime} \log ^{\beta} x\right)\right)$ for some $\rho, c^{\prime}>0$, $\beta \in(0,1)$. Then

$$
\pi(x)=\operatorname{Li}(x)+O\left(x \exp \left(-c \log ^{\frac{\beta}{\beta+6.91}} x\right)\right)
$$

EXAMPLES

Theorem (Diamond, Montgomery, Vorhauer, 2006)

For any $\theta \in(1 / 2,1)$, there exists $(\mathcal{P}, \mathcal{N})$ with $N(x)=\rho x+O\left(x^{\theta}\right)$ for some $\rho>0$, and

$$
\pi(x)=\operatorname{Li}(x)+\Omega_{ \pm}(x \exp (-c \sqrt{\log x}))
$$

EXAMPLES

Theorem (Diamond, Montgomery, Vorhauer, 2006)

For any $\theta \in(1 / 2,1)$, there exists $(\mathcal{P}, \mathcal{N})$ with $N(x)=\rho x+O\left(x^{\theta}\right)$ for some $\rho>0$, and

$$
\pi(x)=\operatorname{Li}(x)+\Omega_{ \pm}(x \exp (-c \sqrt{\log x}))
$$

Theorem (B., 2021)

For any $\beta \in(0,1)$, there exists $(\mathcal{P}, \mathcal{N})$ with

$$
N(x)=\rho x+O\left(x \exp \left(-c^{\prime} \log ^{\beta} x\right)\right), \text { and }
$$

$$
\pi(x)=\operatorname{Li}(x)+\Omega_{ \pm}\left(x \exp \left(-c \log ^{\frac{\beta}{\beta+1}} x\right)\right) .
$$

REMARKS

Proof idea: construct Beurling zeta function which has ∞ many zeros on

$$
\sigma=1-\frac{d}{\log ^{\frac{1}{\alpha}}|t|}
$$

Remarks

Proof idea: construct Beurling zeta function which has ∞ many zeros on

$$
\sigma=1-\frac{d}{\log ^{\frac{1}{\alpha}}|t|}
$$

The previous theorems show that

$$
\alpha^{*}(1)=\frac{1}{2}, \quad \frac{\beta}{\beta+6.91} \leq \alpha^{*}(\beta) \leq \frac{\beta}{\beta+1} \text { for } \beta \in(0,1)
$$

Remarks

Proof idea: construct Beurling zeta function which has ∞ many zeros on

$$
\sigma=1-\frac{d}{\log ^{\frac{1}{\alpha}}|t|}
$$

The previous theorems show that

$$
\alpha^{*}(1)=\frac{1}{2}, \quad \frac{\beta}{\beta+6.91} \leq \alpha^{*}(\beta) \leq \frac{\beta}{\beta+1} \text { for } \beta \in(0,1)
$$

Conjecture (Bateman, Diamond)
For $\beta \in(0,1]$, we have

$$
\alpha^{*}(\beta)=\frac{\beta}{\beta+1} .
$$

References

■ H. G. Diamond, W.-B. Zhang, Beurling generalized numbers, Mathematical Surveys and Monographs series, AMS, Providence, RI, 2016.

- P. Malliavin, Sur le reste de la loi asymptotique de répartition des nombres premiers généralisés de Beurling, Acta Math. 106 (1961); 281-298.

■ F. Broucke, G. Debruyne, J. Vindas, Beurling integers with RH and large oscillation, Adv. Math. 370 (2020), article number 107240.

■ F. Broucke, Note on a conjecture of Bateman and Diamond concerning the abstract PNT with Malliavin-type remainder, Monatsh. Math. 196 (2021), no. 3, 456-470.

■ F. Broucke, G. Debruyne, J. Vindas, The optimal Malliavin-type remainder for Beurling generalized integers, to appear in J. Inst. Math. Jussieu.

QUESTIONS?

